

Designing and Programming
CICS Applications

Designing and Programming
CICS Applications

John Horswill and Members of the CICS
Development Team at IBM Hursley

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Designing and Programming CICS Applications
by John Horswill and Members of the CICS Development Team at IBM Hursley

Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Sue Miller

Production Editor: Maureen Dempsey

Cover Designer: Hanna Dyer

Printing History:

July 2000: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks and The Java™ Series is a trademark of O’Reilly & Associates, Inc. Many of the
designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly & Associates, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.
The association between the image of a gyr falcon and CICS is a trademark of O’Reilly &
Associates, Inc.

This book contains sample programs. Permission is hereby granted by International Business
Machines Corporation to copy and store the sample programs into a data processing machine
and to use the stored copies for study and instruction only. No permission is granted to use
sample programs for any other purpose.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Library of Congress Cataloging-in-Publication Data

Horswill, John.
Designing and programming CICS applications/John Horswill and members of the CICS

Development Team and IBM Hursley. p. cm.
ISBN 1-56592-676-5
1. Application software—development 2. CICS (Computer system) I. IBM United Kingdom.

CICS Development Team. II. Title.
QA76.76.D47 H69 2000

005.4'3—dc21 00-056535

ISBN: 1-56592-676-5 [10/00]

[M]

v
Oracle 8i Internal Services for Waits, Latches, Locks, and Memory, eMatter Edition

Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Table of Contents

Preface ... ix

I. Introduction to CICS .. 1

1. Introduction .. 3
The Essentials of a Business Application .. 4

Business Applications as Creators of Value .. 7

Using CICS for Business Applications ... 8

2. Designing Business Applications .. 12
The Heart of a Business Application .. 13

How CICS Can Help the Application Designer .. 22

Developing the Components of a Business Application 28

What’s Next... ... 30

3. Introducing the Sample Application ... 31
The Business Case ... 31

The Design of the Sample Application ... 34

What’s Next... ... 36

II. The COBOL Business Logic Component 37

4. Designing the Business Logic ... 39
Understanding What COBOL Components Need to Do 40

Incorporating CICS Design Guidelines ... 43

Handling Data .. 49

vi Table of Contents

Oracle 8i Internal Services for Waits, Latches, Locks, and Memory, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Designing the Individual Functions .. 53

Mapping the Functions to CICS Programs .. 56

Looking at the Business Logic Programs .. 58

Summary ... 60

5. Programming the COBOL Business Logic 61
Writing CICS Programs in COBOL .. 61

Handling Files .. 64

Saving Data: Using a Scratchpad Facility .. 83

Controlling Programs ... 84

Abending a Transaction ... 92

Queuing Facilities: Temporary Storage and Transient Data 93

Handling Errors .. 96

What’s Next... ... 106

III. The CICS Java Component ... 107

6. Designing the CICS Java Component .. 109
Background to Java and CORBA in a CICS Environment 110

Understanding What This Component Needs to Do 115

Describing a Customer Account Object with IDL 116

Design of the CICS Java Component .. 118

Implementing CICS Java Components .. 119

What’s Next... ... 120

7. Programming the CICS Java Component 121
Tools ... 121

Setting Up Your Development Environment .. 122

Creating and Compiling the IDL Definition .. 127

Writing the Server Implementation Class ... 130

Exporting and Binding the Server Application to the CICS Region 137

Creating the CORBA Client .. 139

What’s Next... ... 150

IV. The Web Component .. 151

8. Designing the Web Component ... 153
Understanding What the Component Needs To Do 154

Designing the Web Interface ... 155

Table of Contents vii

Oracle 8i Internal Services for Waits, Latches, Locks, and Memory, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Designing the Web Server Components ... 156

Designing the CORBA Client Implementation ... 160

What’s Next... ... 161

9. Programming the Web Component ... 162
Tools ... 162

Building the Web Site .. 166

Programming the Web Server Components ... 167

What’s Next... ... 193

V. The 3270 Interface ... 195

10. Designing the Presentation Logic ... 197
Understanding What the Presentation Logic Component Needs to Do ... 197

Interface Design Principles .. 201

Incorporating CICS Design Guidelines ... 202

Designing the Functions .. 205

11. Programming the 3270 Presentation Logic Component 207
Defining Screens with Basic Mapping Support (BMS) 208

Symbolic Description Maps ... 222

Sending a Map to a Terminal .. 224

Local Printing (NACT03): Requests for Printing ... 241

What’s Next... ... 242

VI. The Visual Basic Component ... 243

12. Designing the Visual Basic Component 245
Understanding What the Component Needs to Do 245

Designing the Graphical User Interface .. 246

Designing the Print Function ... 250

Designing the Online Help ... 251

Designing the Data Validation .. 251

Designing Access to and Control of the CICS Application 252

Designing Error Handling .. 260

13. Programming the Visual Basic Program 261
Writing the Graphical User Interface .. 261

Implementing the Print Function .. 264

Implementing the Online Help ... 264

viii Table of Contents

Oracle 8i Internal Services for Waits, Latches, Locks, and Memory, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Implementing the Data Validation Code .. 264

Accessing Applications on the CICS Server .. 265

Communicating with CICS ... 277

What’s Next.... .. 287

VII. CICS and MQSeries .. 289

14. Designing an Application to Use the MQSeries-CICS Bridge 291
Background to MQSeries ... 291

The MQSeries-CICS Bridge .. 294

Designing the Graphical User Interface .. 295

Designing the Java Application ... 296

Configuring MQSeries .. 296

Running CICS DPL Programs .. 297

Why Design It This Way? .. 298

What’s Next... ... 299

15. Programming the MQSeries-CICS Bridge 300
Building the Java GUI .. 300

Coding the Java Application .. 301

Setting Up MQSeries and CICS .. 307

VIII.Debugging ... 325

16. Debugging in CICS ... 327
CICS-Supplied Transactions ... 328

EDF: Execution Diagnostic Facility ... 333

Summary ... 343

IX. Appendices ... 345

A. Configuring Your CICS for OS/390 Environment 347

B. List of CD-ROM Files .. 362

Glossary .. 365

Suggestions for Further Reading .. 379

Index .. 383

ix
This is the Title of the Book, eMatter Edition

Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Bleeding Tab Text

Preface

This book explains how to write applications for CICS—the world’s favorite trans-
action processing system. Customer Information Control System (CICS) systems
have been running for more than 30 years and CICS has changed dramatically dur-
ing that time, from being a basic transaction processing monitor to being an
advanced distributed application server.

Throughout its evolution, CICS has preserved and enhanced its support for devel-
oping and running a very large application workload. This book teaches you the
traditional CICS skills and techniques that have delivered results for over 30 years
that are still just as relevant today for building high-speed transaction processing
applications. It also teaches the modern CICS skills and techniques that exploit
today’s advanced technologies—Java™, Web, MQSeries, workstation tools—tech-
nologies that modern businesses need to exploit in order to stay competitive.

The Book’s Audience
This book is for new and experienced CICS application developers; whether
you’re an undergraduate, a new employee, or an experienced CICS developer who
wishes to update your skills, this book is aimed at you. Chapter 1, Introduction,
should be particularly useful to business managers who need to know how they
can use CICS to add to, and improve, their existing business systems. Chapter 2,
Designing Business Applications, should be read by system architects, designers
and programmers. It explains how to design the architecture for a modern transac-
tional application, with a particular emphasis on the use of CICS. Chapter 3, Intro-
ducing the Sample Application, discusses the components of a business
application, and how you should approach the development of these components.

x Preface

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

From Chapter 4, Designing the Business Logic, onwards, we assume you’re an
application programmer needing to develop CICS applications. These chapters
teach specific CICS skills such as developing programs in COBOL (the business
logic), CICS Java, and Visual Basic, or integrating MQSeries with CICS. They con-
tain guidance about designing, coding, and running the components of a typical
CICS sample application.

We point you to various books in the CICS library that fill in any gaps because, in
a book this size, we won’t be able to tell you all about CICS. We discuss, and base
our examples on, a subset of the full CICS facilities. This makes things easier for
you because it means we won’t have to keep referring you to other books in the
CICS library while you’re learning. These other books are listed in the bibliogra-
phy, and are shown in the library diagram for your particular release of CICS. The
subset of CICS commands we’ve chosen gives you a sound framework for your
first application program and offers a logical starting point for more advanced
work.

The main purpose of this book is to provide a friendly, straightforward, and mod-
ern approach to the writing of CICS application programs. It follows the develop-
ment of a sample application, and at the end of each part you should be able to
generate the relevant code and run the application.

Organization of the Book
The book describes a COBOL application that creates, reads, updates, and deletes
records from a database with and without a locking mechanism. In addition, the
COBOL program includes modules that browse, capture errors, and use the CICS
Basic Mapping System (BMS) for data input and output to a traditional green
screen. There are five additional parts that describe how you can use CICS to
access your core COBOL application:

• Through a CICS Java application

• Through a web-based application using a CORBA

• By using the CICS Basic Mapping System for data input and output

• By using Visual Basic to design and implement a CICS Client application

• By integrating MQSeries with your CICS application

Each part describes the design of the component and how to write the code to
implement the design.

Having written your application, you are guided through a step-by-step process to
deploy your application into a CICS system. There is also advice on how to deal
with the issues arising from large-scale deployment. Finally, there is a chapter
describing some of the debugging facilities available in CICS.

Preface xi

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

About the CD-ROM
The CD-ROM accompanying this book contains the source code of the sample
application that is discussed in this book. This can save you a lot of time by not
having to enter the code. Some of the code has been compiled for use with CICS
Transaction Server Version 1.3. If you want to use it with other CICS releases, you
will have to re-compile the source code. Appendix A describes how to transfer the
code from the CD-ROM to your OS/390 system, to install the files and programs,
and configure your CICS region so that you can run the application. The remain-
ing components of the application access and use the COBOL programs you install
on your mainframe.

In addition to the sample code, the CD-ROM contains the entire CICS Transaction
Server Version 1.3 library in Portable Document Format (PDF) format. Together
with this is a copy of the Adobe Acrobat reader. Other software includes the Java
Development Kit (JDK) Version 1.1.8.

Refer to Appendix B for detailed descriptions of the contents of the CD-ROM. The
README files contains important information about running the sample
application.

We’ve also made the code sample available on the O’Reilly web site:

http://www.oreilly.com/catalog/cics

Conventions in This Book
Throughout this book, we’ve used the following conventions:

Bold
Indicates the code you need to edit within code examples.

UPPERCASE ITALIC
Indicates CICS-supplied transactions, the Application Programming Interface
(API) commands, and their command options.

Italics
Indicates CICS command utilities, filenames, menu options, variable names,
display text, examples and in-text references to syntax models. For example, if
a procedure asks you to type filename, you must type the actual name of the
file. Italics also indicates menu options as well as the first occurrence of a new
term.

xii Preface

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Indicates a tip, suggestion, or general note, For example, we’ll tell
you about some shortcuts or if an operation requires certain
privileges.

Indicates a warning or caution. For example, we’ll tell you if you
need to check your site’s procedures before carrying out a particular
action.

How to Contact Us
We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mis-
takes!). Please let us know about any errors you find, as well as your suggestions
for future editions, by writing to:

O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or
request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we’ll list examples, errata and any plans
for future editions. You can access this page at:

http://www.oreilly.com/catalog/cics

For more information about this book and others, see the O’Reilly web site:

http://www.oreilly.com

Preface xiii

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Acknowledgments
This book is the product of the combined efforts of many individuals. A lot of the
initial work was done by Ian McCallion and Bernard Swords. Phil Appleby devel-
oped the organization and structure that we have in the book today. Our thanks
go to all three.

Part I was written largely by Ian McCallion but many people had a hand in its
organization.

Andy Krasun and Peter Missen reviewed the book extensively. Our thanks to them
for pointing out the inconsistencies and adding valuable details to the text. Andy,
in particular, was able to add a lot of valuable information based on his extensive
experience working with customers over many years.

The COBOL code on which Part II and Part V are based was developed by Jerry
Ozaniec. Becca Dunleavey, Joanne Hodges and others revised and improved the
application.

Part III and Part IV were written by Rob Breeds, who developed the application.
He also spent a lot of time very patiently explaining things to Phil Appleby and
myself. There must have been times when he despaired.

Part VI and Part VII were written by Mike Moynihan and Steve Young. Mike devel-
oped the Visual Basic component and persevered with the application when lesser
mortals might have given in. Steve wrote the Java code for the MQSeries part of
the book and helped us put the CD-ROM together.

Part VIII, written by Janet Righton, whose experience of debugging CICS pro-
grams is second to none!

Joyce Cousins spent a great deal of time ensuring that we had a mainframe appli-
cation that worked. She also spent time with our graduates ensuring their tests
worked.

Norman Bell has also been very helpful in ironing out the wrinkles in the applica-
tion, and he helped us gain a much clearer understanding of the way that CICS
works in an OS/390 environment.

Bob Yelavich always responded with copious comments, and gave us much valu-
able insight from his wealth of experience. We appreciate his commitment and
support.

Finally, I have to thank the people from O’Reilly, including Frank Willison, who
supported the original idea of producing this book, and Robert Denn, who fol-
lowed through with the contract. Our thanks to our editor, Sue Miller, who kept us
on the straight and narrow when we all wondered if this project would ever see

xiv Preface

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

the light of day. Our thanks to Steven Abrams for his patience in guiding me
through the tools and formats and juggling the files and managing the external
review. Our thanks go to Rob Romano for his work on the illustrations and to
Maureen Dempsey for her role as production editor.

There are many others who have spent a lot of time reviewing and providing
invaluable comments on this book, and I hope that I haven’t omitted anyone.

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

I
I.Introduction to CICS

You may not be aware of it, but hardly a day goes by when something that you
do has not involved a CICS application somewhere in the world—whether it is a
trip to the supermarket, taking money from your bank account, having a package
delivered to your house, managing your company’s accounts, stock control or per-
sonnel records—CICS is involved. CICS is also involved in many manufacturing
plants, providing feedback about the production processes and stock levels, and it
may even be linked to suppliers so that stocks can be replenished when neces-
sary. In short, CICS is likely to have played a part in much of the underlying soft-
ware (often called middleware) that underpins all types of industry applications.

Part I looks at how CICS can help in the world of business applications. It con-
tains the following chapters:

• Chapter 1, Introduction, describes the essentials of a business
application, and the benefits of using CICS with business
applications.

• Chapter 2, Designing Business Applications, looks at the key design
elements in a business application, and the CICS facilities that
support the application designer.

• Chapter 3, Introducing the Sample Application, describes the
planning of a CICS application that uses existing COBOL business
logic and a variety of presentation logic including Dynamic
HyperText Markup Language (DHTML), CICS Java (JCICS), a Visual
Basic front end using a CICS client, a Java frontend integrating
MQSeries with CICS, as well as a traditional 3270 frontend.

3
This is the Title of the Book, eMatter Edition

Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1Bleeding Tab

Text

In this chapter:
• The Essentials of a

Business Application
• Business Applications

as Creators of Value
• Using CICS for

Business Applications

1
Introduction

Computer systems are used for many different purposes in business today. These
range from keeping personal to-do lists to developing business-critical applica-
tions in banks. Applications are often categorized by their purpose. For example:

Personal productivity and groupware
The use of Personal Computers (PCs) for word processing, electronic mail
(email), and document sharing using a Local Area Network (LAN).

Design and development
Computer-aided design and software development.

Manufacturing and production
Monitoring and control applications in factories.

Business intelligence
Data warehousing applications used to aid decision-making, arising from pow-
erful, large-scale databases.

Business operations
Business operations applications (sometimes called line of business applica-
tions) that “transact the business” of a company—in other words, they per-
form business transactions on behalf of the company. This is not limited to
cash-for-goods transactions. It can include any buyer/supplier transaction that
can be translated into a digital format, as well as internal business processes
dealing with company resources. For example:

— Credit card transactions

— Cash transactions from a bank’s Automatic Teller Machine (ATM) or super-
market cash dispenser

— Stock market transactions for a stock exchange or brokerage

4 Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

— Information transactions for collecting, collating, and distributing news—
such as the results and medal tables for the Olympic Games

— Payroll transactions (essential for the smooth operation of any
corporation)

— Logistics transactions, such as the scheduling of vehicles in a transporta-
tion company

— Voice application transactions (“Press 1 to enter your meter reading....”)
for a computer integrated telephony system

— Sales transactions for companies doing business through the Internet

Business applications are crucial to many large and medium-sized companies. For
such companies, doing business without these applications would be unthinkable;
a bank that lost its computerized account records would cease trading. Many, if
not most, of the largest business applications around the world run on CICS.

The Essentials of a Business Application
Even though the computer is at its center, a business application is focused on
people. It is a human system as much as a computer system. The purpose of a
business application is to keep accurate, up-to-date, and secure operational busi-
ness information and deliver it rapidly to the users of the application. There are a
number of key features that any business application needs. They have to be fast,
accurate, secure, and auditable. In addition, the information has to be up to date
and available to multiple users across a company, its suppliers, customers, and
business partners. A model of the relationship between computers and people is
shown in Figure 1-1.

Division of Responsibilities

Accuracy (in the sense of adhering to the intent of the business) depends on the
computer system being controlled appropriately; that is, having clear lines of
responsibility and division of responsibilities. It is essential to have organizational
responsibilities that the system itself monitors and enforces. To this end, business
applications broadly separate system development, system operations, and system
use with checks and balances. These may be as official as a system audit. There
are, of course, many subdivisions of these roles; for example, system develop-
ment may be subdivided into architecture, design, programming, and testing.

Division of responsibility ensures that different groups of people involved with an
application are unable to take advantage of their situations. Consider a payroll
application, it should be impossible for payroll clerks to update their own salaries
without being monitored; programmers would have built into the program an

The Essentials of a Business Application 5

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

audit log that is checked by the audit department. Similarly, the program should
include a log of all software updates to ensure that system administrators are
unable to make fraudulent changes to the program without trace.

Lifecycle Requirements

Business applications define the business rules that control the delivery and
update of critical data; therefore, they require support throughout their lifecycle.
The stages of a lifecycle include:

Design
Design user interfaces that meet users’ needs; design for growth and exten-
sion; design to build complex applications with many features and capabilities.

Develop
Develop efficiently, using modern tools and techniques.

Test
Test thoroughly and efficiently to find problems and track down causes of
problems.

Update
Update in such a way as not to disrupt the existing version when upgrading to
a new version.

Figure 1-1. Business applications as people systems

Hardware and system software

Applications

Customers and
company users

IT
operations

In-house
development

Business sponsors
new services

Software
vendors

Audit

6 Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Technical Requirements

In addition to lifecycle requirements, business applications must also meet a set of
general technical requirements:

Accessibility
 The application can be used from any appropriate place on the network.

Availability
The application is available for use by authorized persons at all designated
times; it does not need to be shut down for routine maintenance and can be
upgraded without interruption.

Communication
Rapid communication is possible between distributed parts of the application.

Manageability
Systems administrators can monitor the application to detect problems, and
can take corrective action before users complain.

Prioritized use of the hardware
A management capability should be in place to determine how much the
machines are used, so that the workload can be distributed evenly.

Rapid response
The response time for end users is appropriate (which usually means short!).

Reliability
The application is not expected to fail, but if it does, it provides diagnostic
information to help identify the cause of the failure.

Recoverability
The application restarts quickly after a failure, without loss of information or
of data integrity.

Scaleability
The application can support as many users as needed without slowing down
excessively or requiring excessive resources.

Security
The application includes the ability to control who can use it, and which
actions the users can perform.

CICS was originally seen as a transaction processing system. Indeed behind the
scenes this is a lot of what it is doing. But, like a lot of middleware, CICS comes to
life by virtue of the many applications and operating systems that it supports. It
not only provides an extensive Application Programming Interface (API), but it
also controls the resources behind the applications; for example, security, data-
bases, files, programs, transactions and so on, that the applications use. Hence, as

Business Applications as Creators of Value 7

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

CICS has evolved, describing it as an application server gives a much truer picture
of its role today. In Figure 1-1 we see a loose arrangement of applications, which
largely function independently of each other. Figure 1-2, on the other hand, draws
those applications together so that there can be, for example, shared resources dis-
tributed across a computer network. To support the division of responsibilities,
lifecycle requirements, and general technical requirements, an application server is
required to manage the business applications. This is where CICS fits in. IBM’s
product CICS is an application server.

If you have key applications that run 24 hours a day for 7 days a week and if your
business requires that applications can be recovered completely after failure, you
have good reason to move to CICS. If your business already uses CICS, extending
your CICS system provides an integrated solution for your ever-increasing busi-
ness requirements.

Business Applications
as Creators of Value
Historically, companies adopted and became dependent upon business applica-
tions because of the reduced costs, improved accuracy, and timeliness of informa-
tion achieved by transferring key operational data for their business onto
computers. Today’s business applications must enable rapid development of mod-
ern services and must be able to exploit new hardware and software technology
for competitive advantage. The latest technology is, of course, the Internet.

Figure 1-2. Application server supporting business applications

Hardware and system software

Customers and
company users

IT
operations

In-house
development

Business sponsors
new services

Software
vendors

Audit

Application Server
General technical

requirements

Applications

8 Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Responsibility for developing and managing business applications has changed
from being a separate business function to a central part of competitive strategy—
from merely boosting operational efficiency to profoundly changing the nature of
products, services, and business processes.

The ability to adapt and extend applications has become increasingly important
when launching new products and services for maximum advantage. This applies
when you’re bringing your own ideas to market quickly, and bettering your com-
petitor’s offerings. Companies that are today maximizing the potential of Informa-
tion Technology (IT) to create value are taking radical approaches to developing
the systems necessary. The key features are:

• Use of cross-functional teams having responsibility to the business—especially
between central and departmental IT groups—because command and control
management needs to include all interested parties.

• Maximizing the amount of information held by IT networks.

• Maximizing connectivity to provide information where it is needed.

• Selective use of contracted skills—for example, in web design—rather than
attempting to maintain in-house skills across the entire range of technologies.

At the heart of all successful implementations of this approach are the business
applications that have been running the business for years—but expanded with
more data, applications, processing power and connectivity, and augmented with
technologies such as web servers and computer telephony integration. In
Figure 1-2, we emphasized how CICS as an application server draws together the
applications and resources of a computer system. Figure 1-3 shows application
servers have to interact with other systems, both software, for example, web serv-
ers and firewalls, and hardware, for example, telephony. Interconnectivity between
operating systems and hardware is critical. As a result, a modern business applica-
tion looks something like that shown in Figure 1-3.

Using CICS for Business Applications
This book shows you how the CICS environment enables you to build a business
application consisting of a varied set of components. By satisfying the essentials of
a modern business application, CICS provides solutions for your business that
improve efficiency, competitiveness, and productivity. Additionally, CICS can help
your business implement an e-business strategy—competing in a global market-
place for worldwide customers who find you and trade with you electronically
using the World Wide Web.

Using CICS for Business Applications 9

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Examples of Business Applications That Use CICS

CICS is used in many different ways by many different businesses. Let’s look at a
few examples in which CICS is used to help businesses. These examples are based
on real customers. For a much longer list of case studies, go to the CICS home
page at http://www.ibm.com/software/ts/cics/ and select case studies.

Financial services (banking, securities, investment services, and insurance)
Company A provides a wide range of services, from consumer banking to
securities brokerage. Transaction processing is essential in providing these ser-
vices. The company uses CICS to produce timely, accurate financial informa-
tion, in the knowledge that if problems arise they can be resolved easily.
Recovery of data is critical. There are a large number of vital CICS applica-
tions, written in COBOL many years ago, which Company A doesn’t want to
give up. But, at the same time, it wants to embrace the World Wide Web and
spread some of its applications to workstations and Unix systems. The require-
ment is to retain the reliability and integrity of its mainframe-based systems
while meeting the need from internal and external customers for more flexi-
ble, distributed processing.

With CICS, this is not a problem. The company’s IT managers can use their
existing COBOL programs, retaining all the existing CICS transactions. In addi-
tion, they decide to use their current files as their database and then use the
CICS External Call Interface (ECI) as a gateway for non-CICS servers to gain
access to their business data. This ensures that they extend their business to
the distributed environment. Having done that, they are then able to imple-
ment a web-trading application very quickly. Six months later, they were

Figure 1-3. Structure of modern business applications

Hardware and system software

Customers and
company users

IT
operations

In-house
development

Business sponsors
new services

Software
vendors

Audit

Application Server
General technical

requirements

Applications

Web Server

Firewall

Telephony

10 Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

processing 60,000 transactions per day in this environment, on top of a peak
load of 1,200 CICS transactions per second. The key to their success was to
build an infrastructure that enabled them to extend their mainframe process-
ing to the distributed environment.

Bank B, which provides full banking sevices with 800 branches online con-
nected with distributed CICS servers, processes 30 million transactions a day
using all the business attributes of CICS: reliability, recoverability, scalability,
security, and so on.

Retail
The distributed processing model can be extended to the retail market. Take
the case of Company C, which runs a chain of pharmacies across the country.
With the help of CICS, a data sharing system is set up for the processing of
customer prescriptions. The system allows customers to input their informa-
tion (name, address, specific allergies, and so on) and allows for detailed
online checking to ensure that the drugs being dispensed are right for the cus-
tomer. The information required to give the complete picture can be built up
on the pharmacist’s display in real time using CICS and DB2.

Distribution
The distributed processing model can also be used to track packages, from the
time that they leave manufacturing to their final delivery. In Company D, driv-
ers using hand-held devices record the delivery of the packages, and this
information is sent to the server and made available to the anxious customer.
The flexibility and variety of modes to input information—together with the
ability to instantly deliver that information to the place it is wanted—are the
true benefits of this real-time system.

News and information
At the Olympics, there is a huge amount of computer processing. Two of the
main requirements are controlling the movements and providing adequate
security for the competitors and officials, and dealing with the results from
thousands of events.

During the games, more than 150,000 competitors and officials require access
to 80 venues and facilities. Part of the process is a timely, accurate procedure
for registering, authenticating, and badging the competitors and officials, and
using those badges as a means to manage access to venues, thus ensuring the
safety and security of the events. The badging process alone involves 5,000
complex transactions a day, together with background transactions involving
100–150 concurrent users, and emphasizes the need for a system that sup-
ports a high transaction throughput in a distributed environment.

The results system gathers, calculates, and tabulates information from the tim-
ing, scoring, and judging stations. The results are immediately sent out to the

Using CICS for Business Applications 11

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

venue scoreboards and interactive touch screens, where they are checked by
judges. They are then transferred to the mainframe for distribution to other
venues, to printers and to the massed ranks of sports journalists. The Com-
mentator Information System (CIS) communicates directly with the mainframe
and PCs that run the results systems. A touch screen allows commentators to
pull up information about different sports and participants, allowing a com-
mentator in one venue to comment on several events taking place elsewhere.
Altogether the data collection system contains over one million data fields of
researched, validated historical results, 20,000 biographies and over 30,000
paragraphs of text—a total of 60 gigabytes of information.

CICS works as an integral part of both systems, people management and process-
ing of results.

12
This is the Title of the Book, eMatter Edition

Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2Bleeding Tab

Text

In this chapter:
• The Heart of a

Business Application
• How CICS Can Help

the Application
Designer

• Developing the
Components of a
Business Application

• What’s Next...

2
Designing Business
Applications

Chapter 1, Introduction, looked at the essentials of a business application, and the
advantages of using CICS to create and run business applications. It also described
how many new types of applications, such as interactive web sites, involve an
application server such as CICS. As well as having a long pedigree in supporting
traditional business applications, CICS also has all of the characteristics needed to
support the new types of applications. In this book we are going to develop a fic-
titious company called KanDoIT. They have been in business for a number of
years and now want to expand their business and benefit from e-business oppor-
tunities either through the Web or by using message queuing technology or using
clients to link to their CICS servers. Initially they have to set about gathering
requirements from users and begin to develop an application that satisfies those
needs. Much of the remainder of this book describes the design and the program-
ming of the components of the KanDoIT company’s application.

Before looking at the details of the application, this chapter gives you some more
ideas about the facilities that you can exploit in CICS to make writing scalable
transactions with integrity easier. It covers the following topics:

• The key design elements that you need to consider when developing general
business requirements

• The CICS facilities that support the key design elements

• The process for developing the components of a business application

The Heart of a Business Application 13

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The Heart of a Business Application
There are three key aspects of a business application design that support the gen-
eral business requirements outlined in Chapter 1:

• Components

• Transactions

• Error handling

These are described in more detail as follows.

Components

An important principle of business application design is to separate program code
into components. Although this may sound obvious, this has not always been
done and is such an important topic that we are going to spend some time on it.

Components are not the same things as objects, nor are they simply the divide and
conquer aspect of implementing a large project. Components are about managing
a complex IT environment, keeping it in step with the needs of the business, and
about reuse—the ability to use large amounts of an existing application to build a
new one. With good component design, you have the ability to enhance a busi-
ness application rapidly in response to market needs or to exploit a newly-
emerging technology with adherence to business rules assured and without loss of
auditability.

There are three aspects that fundamentally differentiate the parts of a modern busi-
ness application:

Different responsibilities within the overall application
For example, in a bank application, one program might deal with personal
accounts, and others with scheduled transactions or cash.

Different types of responsibility
For example, one program may be dealing with presentation of data to users,
another with interest rate calculations or credit to an account which results in
the update of databases.

Different hardware and software platforms
For example, you might have part of an application running in CICS Transac-
tion Server, part running on another server platform, part running on a client
workstation, and part running on a web server that presents static HTML and
converts business data to dynamic HTML. Some are server components; others
are client components.

The advantage of server components is that they are (usually) installed in one
place and shared by all users. Therefore they can be maintained easily. The

14 Chapter 2: Designing Business Applications

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

advantage of client components is that users get more predictable response
times from the client code. However, because client code is installed in many
places, it can be more difficult to maintain unless you employ methods that
automatically update client code.

Where you place the function of a business application is determined by find-
ing a balance between achieving good response times and maintainability.

There are also some practical differences; that is, the components may be:

• Run in different geographical locations

• Run on different types of hardware

• Written by different people (in different companies, different groups, or with
different skills)

• Developed, tested, and deployed at different times

• Modified, retested, and redeployed at different times

These differences cannot be ignored. Instead, they must be taken into account
when designing and developing an application. In other words, your application
should be structured into components.

The key components of any business application are business logic components
and presentation logic components. The business logic component is responsible
for business calculations and updating databases. These components are the hard-
est to develop, the most critical to the operation of the business, and the most
valuable to reuse. Get these right and everything falls into place. The presentation
logic components and their component interfaces control the presentation of infor-
mation to end users. The presentation logic components are represented in this
book as the 3270 interface using COBOL, as a web interface using servlets and
Java Server Pages (JSP), as a Graphical User Interface (GUI) using Visual Basic,
and as a Java program using MQSeries to access data in our CICS application. In
Figure 2-1 we show the 3270 frontend. Each of the three other frontends have a
similar input screen and account display screen.

Business logic components

The individual functions of a business logic component should be designed to
operate in a server environment. Business logic functions typically:

• Validate input data

• Search the database

• Cross-validate input data and database data

• Update data (including additions and deletions)

• Log activities

The Heart of a Business Application 15

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Business logic components should do these things in a way that adheres to busi-
ness rules and ensures their consistent implementation. For example, they should:

• Update a journal on a particular database containing sensitive material (such
as a payroll) for an audit trail.

• Provide the one-and-only approved program that performs complex computa-
tions such as interest earned on a deposit account or discount granted on a
customer order.

• Obey rules imposed by regulatory bodies.

• Ensure that consistency cannot be compromised. For example, critical updates
that are inextricably linked should be done in the same program.

The criteria for grouping business logic functions into business logic components
are pragmatic. Business logic components should:

• Encapsulate as much data as possible.

• Have an interface that can be tested independently.

• Be able to move to another server without affecting other components.

• Have a purpose and responsibility that can be discussed in a business context
and should not have a purely technical definition such as everything running
on a server X.

Presentation logic components

This is the code primarily concerned with the presentation of data to an end user
and receipt of data from an end user. It should:

• Invoke the general-purpose presentation management code that controls the
layout of data on a visual display screen or other output device.

• Validate input.

Figure 2-1. Initial outline of a 3270 application

Presentation
Logic

Business
Logic

Account
Files

16 Chapter 2: Designing Business Applications

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

• Handle interactions in the correct sequence.

• Confirm completeness (that is, that all necessary information has been
provided).

• Invoke one or more pieces of business logic, as needed.

Presentation logic may be designed to run on a client. For example, if the user sits
at a personal computer, the presentation logic could be a Visual Basic application;
if the user uses a web browser, the presentation logic could be a set of Java serv-
lets running on a web server.

Component interfaces

Not all components have interfaces that can be invoked by other components.
Those that have invocable variables must:

• Publish the interfaces for use when developing client components (which may
not be programmed in the same language or run on the same type of
machine).

• Be tested thoroughly against the interfaces.

• Protect the interfaces using security mechanisms.

• Make the interfaces available to any executing client, locally or remotely.

A note about traditional CICS applications

Many CICS applications written in the past combined presentation logic and busi-
ness logic. Such applications are difficult to treat as components. As such, you
would have to use the External Presentation Interface (EPI) to do many of the pro-
cesses that are described in this book. For example, EPI allows a Java program to
emulate a CICS 3270 terminal, and start CICS transactions on the server. The pro-
gram sends and receives data as CICS terminal datastreams. Programming in EPI
involves screen-scraping, where you must extract data from a screen-orientated
buffer row by row and column by column. It is intended for use by CICS server
programs that cannot be modified to be called by the External Call Interface (ECI)
due to the tightly coupled presentation and business logic. See Chapter 12, Design-
ing the Visual Basic Component, for more information about the ECI.

Transactions

In a business application, a transaction has the same meaning as it does in every-
day English—a single event or item of business between two parties. Business
application transactions should have the so-called ACID* (Atomicity, Consistency,

* The term “ACID properties of a transaction” was coined by Haerder and Reuter in 1983 and used by Jim
Gray and Andreas Reuter. In CICS, ACID properties apply to a “unit of work” (see “CICS Transactions”).

The Heart of a Business Application 17

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Isolation, and Durability) properties, which are described in more detail later on in
this section. However, before explaining what ACID transactions are, consider the
problems that can occur with transactions.

Imagine a component that operates on bank accounts. The component has three
services that could be invoked by end users, one to add to an account, one to
delete from an account, and one to move money between accounts.

The most difficult of these is to move money, because it must do everything nec-
essary to ensure that all the accounts are updated and that the operation only pro-
ceeds when appropriate. Consider what would happen if things went wrong—if
the server failed or if the database contained errors after some, but not all, of the
updates had been done. One customer could have his money withdrawn, without
the other customer receiving any money (providing an unintended bonus for the
bank!). Or, even worse (for the bank at least!), both customers could receive
money, resulting in an unintended loss for the bank.

Also, consider what could happen if two bank employees try to move money from
the same account at the same time. If the component is designed to read the data-
base to check whether there are sufficient funds and then update the database
with the new balance, one of the updates could be lost.

To prevent problems such as these, we need to create ACID transactions:

“A” is for Atomicity
To be atomic, a transaction must execute completely or not at all. This means
that every file, database, or queue operation within the transaction must exe-
cute without error. If any part of the operation fails, then the entire unit of
work is terminated, which means that changes to the data are undone. There
is no trace of the attempt to execute the transaction. The requirement may
exist to log the start of a transaction for audit purposes. If all the operations
execute successfully, the transaction can be committed, which means that the
changes to the data are made permanent or durable.

“C” is for Consistency
This means that the transaction taken as a whole does not violate any of the
integrity constraints associated with the state of the resources. Obviously, the
program itself is the arbiter of consistency in a business sense. In our simple
example, moving money should not alter the total amount of money in the
accounts.

“I” is for Isolation
Isolation means that even though transactions execute concurrently, they
appear to be serialized. In other words, it appears to each transaction that any
other transaction executed either before it or after it, but not simultaneously.

18 Chapter 2: Designing Business Applications

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Remember that we are developing a multi-user system accessing a shared
database. When some but not all of the updates needed for consistency have
been done, the database is inconsistent. When all the updates have been done
but the transaction has still not yet committed, the transaction could back out.
In either of these cases, allowing other transactions to see or update the
records could result in errors in the database.

Isolation means that other transactions can be prevented from seeing or updat-
ing the same records. In other words, the data that a transaction accesses can-
not affect or be affected by any other part of the system until the transaction is
completed. If moving money was not isolated, an inconsistent view of the
database would be possible—or worse, concurrent updates could corrupt the
database. Complete isolation is logically equivalent to forcing serialization of
all transactions against the database, only allowing concurrent transactions that
do not affect each other in any way at all.

“D” is for Durability
This means that after a transaction completes successfully (that is, commits), its
changed state survives failures. This normally requires that all the data changes
made during the course of a unit of work must be written to some type of
physical storage when the transaction is successfully completed.

Trying to implement the ACID properties by unique application code in every
business application component would be difficult. It would totally obscure the
business logic, making the code difficult to maintain and audit. The problem is
that some things are not business issues but technical issues—things the technol-
ogy should address in order to ensure the code is as easy to write as possible—so
as to allow the business logic programmer to focus on the business issues. There
is a clear difference between business exceptions, (such as, “the account does not
have enough money in it”) and technical exceptions (such as, “the account data-
base has only accepted one of my updates”). Our system software, our middle-
ware, should hide the messy realities of the machinery and present us with
services that don’t need us to solve this problem.

Using an application server such as CICS, you can obtain the ACID properties by
defining groups of updates that must all be done together. As the transaction pro-
ceeds, the updates are done on a provisional basis, and logged. If they all work,
you can commit (syncpoint) the changes, that is, make them permanent. But if
there are problems you can cancel the changes, that is, back them out. If the sys-
tem fails—say there is a power outage before you have issued the commit—the
system automatically backs out the changes you made. Your program’s responsi-
bility has ended, though the client may need to resubmit the request once power
is restored. You can concentrate on ensuring that business exceptions are han-
dled, and you can safely leave the technical exceptions to the system.

The Heart of a Business Application 19

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Limitations of ACID transactions

Does the above sound too good to be true? You’re right, it is! Here are the poten-
tial problems.

An ACID transaction should be “short,” because it locks shared resources.
Here, “short” is a relative term. In a large system running hundreds of transac-
tions per second, short would be less than a second. It is up to the designer to
set a target for the duration of a transaction, but in almost all cases it is unde-
sirable that human think-time be allowed to control the duration of an ACID
transaction. This is important because it means the programs should not wait
for user input in the middle of a transaction, however appealing it is to ask for
user confirmation before committing. “Maintaining File Integrity: Using Lock-
ing” in Chapter 4 shows some of the practical ways to work around this issue.

ACID transactions should not be “big.”
Here, “big” is also relative. For example, don’t implement a transaction that
runs through the entire database correcting telephone numbers due to
changes in the national telephone numbering plan. It should not be logically
necessary to do this atomically, that is, do one record or row at a time and
commit the result before passing it on to the next, because otherwise it would
effectively lock out all other users until completed.

Be aware that under certain conditions a state known as “deadlock” can occur.
This is where two or more transactions are trying to access the same set of
resources and each ends up waiting for the others to complete. For example,
program A has updated a record with key X and then wishes to update a
record with key Y. Program B wishes to do the reverse. Neither can continue
because invalid data would result. The system detects this and arbitrarily can-
cels one of the transactions which, since there is no actual error, should sim-
ply retry and start from the beginning.

Complete isolation may have intolerable throughput implications.
There are cases with adding or deleting records where complete isolation may
not be recommended, in situations where, for example, all transactions are
serialized. So typically, systems provide the ability to relax the isolation prop-
erty, allowing improved concurrence while still preventing multiple concur-
rent updates to the same record.

Error Handling

It is a well known fact that in computing 80% of programming code deals with
handling errors and/or exception conditions, that is, with knowing what is sup-
posed to happen, checking that it has, and doing something about it if it has not!

Suppose a device error occurs on a disk—the data will not be available until the
disk is replaced and the data restored. But suppose the application that was trying
to read the disk failed to check that the operation succeeded and, as a result,

20 Chapter 2: Designing Business Applications

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

wrote incorrect data to another file. Merely restoring the original data will no
longer fix the problem, and finding out why the second file contained garbage
could be very difficult.

Suppose a software bug in an infrequently used part of a program caused an
undetected overwrite of stored data. Not only could subsequent uses of the pro-
gram fail because some piece of memory is corrupted, but finding out why the
problem occurred could be very difficult.

These examples show why handling errors is vitally important. Errors are a fact of
life. In developing applications, it is best to remember these two maxims:

• “Anything that can happen will happen, usually at the worst possible time.”

• “Absolutely anything can happen!”

Errors that disrupt business applications can stop a company doing business until
the problem is fixed, so it is vital to detect errors early, clean up after the errors to
allow operations to continue, and record diagnostic information so that problems
can be fixed quickly.

The need for a methodical approach

In component-based applications, errors mostly occur in the interface between
two components. It is therefore important to document and test the interfaces in a
methodical way. Also, components are supposed to hide complexity from their
users, so we want to notify errors in a simple way from the user’s point of view.

How is that done? First, some definitions:

Fault
Something going wrong, such as a LAN (Local Area Network) failure, software
bug or unexpected data received.

Error
The symptom of a fault, such as a parameter check failing.

Abend (Abnormal ending)
The situation where program execution cannot continue normally, such as a
storage violation.

Error notification
The passing of information that an error has been detected from one compo-
nent to another component. This can either be by return code or by execut-
ing an abort command.

Signalling component
The component that notifies an error.

Receiving component
The component to which notification of an error is given.

The Heart of a Business Application 21

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

As for noticing an error, we need to decide if there is a fault causing it. Not all
errors are the result of a fault; for example, a module issuing a database read com-
mand that returns a “record not found” error may regard the error as acceptable.

If there is a fault, you need to:

1. Record enough diagnostic information so that computer support staff can
quickly determine what the fault is and correct it.

2. If possible, bypass the error so that no other components are affected by the
problem.

3. If the error cannot be bypassed:

a. Clean up as much as possible.

b. Notify other components of the error.

c. For presentation logic components, provide clear instructions to end users
regarding who to inform about the error and what to do to continue
working.

In practical terms, the above guidelines translate to the following:

During design:

• Always specify that component interfaces must have return codes.

• Consider what the end user should do when errors occur.

During development:

• Always check for return codes.

• Give meaningful return codes.

• Clean up before returning.

• Log errors.

• Include code for an abnormal end (abend) situation.

• Include error messages, explaining what needs to be done, in the end user
interface.

You’ll find more information about error handling in “Handling Errors” in
Chapter 4, which looks at error handling in the COBOL business logic component
of the sample application.

22 Chapter 2: Designing Business Applications

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

How CICS Can Help the Application
Designer
A business application should incorporate the key design elements of compo-
nents, transactions, and error handling. This section provides some more back-
ground to show how CICS supports the application designer to structure an
application so that it meets the business requirements described in Chapter 1, and
incorporates the key design elements. CICS provides the following facilities:

• An environment for executing presentation logic and business logic
components

• Calls between components

• Efficient control of concurrently running application programs serving many
online users

• Provision of ACID properties through management of the units of work (see
the following section)

• Shared error handling

• System management

It’s useful at this point to look at CICS transactions, and CICS programs and link-
ing, in more detail. We’ll also consider how CICS deals with critical activities such
as error handling and security.

CICS Transactions

In a CICS application, a transaction is the processing initiated by a request, usu-
ally from an end user. A transaction starts, executes, and ends. A single business
transaction (such as the enrollment of a new customer) may involve several CICS
transactions.

As well as referring to a single event, transaction can also refer to
the class of similar events. Thus, we speak of adding Mary Smith to
the payroll file with a (single) add transaction, but we also speak of
the add transaction, meaning the class of additions to that particular
file.

A CICS transaction may contain one or more Units of Work (UOW) where a UOW
begins with the first action to alter a protected resource and ends with either an
explicit or implicit syncpoint. To summarize, a business transaction involves one
or more CICS transactions that, in turn, can involve one or more units of work.

How CICS Can Help the Application Designer 23

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

When processing transactions, CICS accumulates performance statistics and moni-
tors the resources used. This provides the information that enables user depart-
ments in your organization to be charged accordingly. It also allows you to find
out which parts of CICS are being heavily or lightly used. This helps your systems
managers to tune the system to improve its performance.

CICS Programs and Linking

A program is the smallest replaceable unit of an application. Programs are com-
piled, linked or bound, and turned into a single executable file which is then
deployed. They can be written in many languages and run in many different envi-
ronments. A component of a business application typically consists of multiple
programs.

CICS provides a variety of ways for programs using CICS to invoke and be
invoked by other programs running inside or outside CICS, for example on web
servers or end-user workstations. Program calls can be:

Synchronous
Control is not returned to the calling program until the call is complete.

Asynchronous
The calling program continues executing while the call is performed. The
access method informs the application program after the operation is
completed.

Synchronous calling between programs

There are two main ways in which one program can invoke another program
inside CICS. These are discussed in more detail in “Commands for Passing Pro-
gram Control” in Chapter 5. For the time being suffice it to say that the CICS API
consists of a number of commands that define resources, make calls to other pro-
grams and so on. In this book you will meet a wide range of these commands par-
ticularly in Part II and Part V. Two of these commands create links from one
program to another. Figure 2-2 shows the linking process and relationship of one
program to the next. The commands are:

EXEC CICS LINK
Allows one program to transfer control to another in a synchronous manner
and continue execution after the called program has returned. This also occurs
by means of native programming language facilities such as a COBOL CALL
statement.“The LINK Command” in Chapter 5 gives more detail.

EXEC CICS XCTL
Allows for one program to call another in a synchronous manner but unlike
LINK will not receive control back when the called program returns. This has

24 Chapter 2: Designing Business Applications

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

no equivalent high-level language facility. It is particularly useful in error pro-
cessing when an unexpected error is detected that implies that the program
which trapped the error cannot continue. “The XCTL Command” in Chapter 5
gives more details.

In both cases a COMMAREA (for “communication area”) is used to pass parame-
ters and returned values. For more information about COMMAREAs see “Saving
Data: Using a Scratchpad Facility” in Chapter 5.

The LINK and XCTL commands introduce the idea that different programs involved
in the processing for a transaction can be executing at different logical levels. A
program invoked directly by CICS is considered to be at the highest logical level of
the task (level 1). If it then uses the LINK command to link to another program
then the linked-to program is considered to be at a lower logical level (level 2).
However, if the program detects an unexpected condition it can use XCTL to call
an error handler which will be considered by CICS to be executing at the same
logical level as the program issuing the XCTL request. Figure 2-2 illustrates this
principle.

Asynchronous calling between programs

One CICS program can invoke another asynchronously passing data in the FROM
area defined in the EXEC CICS START command. The program for which START
has been issued is executed as logical level 1, independent of the level of pro-
gram that issued the START. The FROM area can be accessed by executing a
RETRIEVE command.

Figure 2-2. Transferring control between programs (after an Abend)

CICS

Program 1
LINK

Program 2
XCTL

Program 3
LINK

Program 4

.......RETURN

.......RETURN

.......ABEND

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

If no ABEND handler is
active in Program 1, 3 or 4

How CICS Can Help the Application Designer 25

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Alternatively you can use MQSeries. This is discussed in “Working with MQSeries,”
later in this chapter.

Calling CICS programs from non-CICS programs

CICS provides a number of ways in which non-CICS programs executing on a vari-
ety of hardware and software platforms can call CICS programs. In fact, there are
more ways than we are able to describe in this book, but here are a few examples:

A software package known as the CICS Client provides the ECI and EPI facilities:

ECI (External Call Interface)
Allows the calling program to call a CICS program as though it had been
linked to (using the LINK command) by another CICS program. The ECI uses
a COMMAREA.

EPI (External Presentation Interface)
Allows the calling program to call a CICS program as though it had been
invoked by a user at a 3270-type device.

The CICS Client is designed to run on end-user workstations and meet the needs
of a single user running programs that invoke CICS programs. Our sample applica-
tion makes use of the CICS Client ECI function call.

For programmers using the ECI or EPI, there are application tools that build some
of the program calls automatically. One such tool is VisualAge Interspace. The
sample application demonstrates the use of Interspace.

For server applications, a software package known as the CICS Transaction Gate-
way also supports the ECI and EPI. The CICS Transaction Gateway would be used,
for example, by programs running under the control of a web server.

When the calling program is written in Java, there is a pure Java version of the ECI
and EPI facilities that access the CICS Transaction Gateway using TCP/IP.

Finally, a CICS program written in Java can be invoked using the Internet Inter-
ORB Protocol (IIOP); the sample program uses IIOP.

Defining resources

CICS has a set of resources that are grouped into categories, for example, File
Control (FC), Temporary Storage (TS), and so on. These resources can be defined
in batch using the DFHCSDUP utility program or online using the Resource Defini-
tion Online (RDO) transactions. A historical note: several years ago, many
resources were assembled (sic) together into tables; so, for example, File Control
resources were aggregated into a File Control Table (FCT).

26 Chapter 2: Designing Business Applications

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Working with MQSeries

For asynchronous processing, you can achieve the greatest flexibility by using
IBM’s broad range of MQSeries products. Neither the calling program nor the
called program needs to know anything at all about where or when the other pro-
gram executes because MQSeries provides a common set of facilities for sending
and receiving messages, takes responsibility for routing messages to the required
location, and holds the message until the receiving program wants it. The sample
application uses MQSeries to invoke a CICS program.

Error Handling Facilities

Error handling facilities are critical in any application. CICS includes several error
handling facilities, including:

• ABEND

• Return codes in commands

• DUMP

• TRACE

• Sending messages to system consoles where operators can respond to the
problems

These are described in more detail in “Handling Errors” in Chapter 5.

Security

Security is a complex subject that requires careful planning before it is imple-
mented; as such, it is not dealt with thoroughly here. As we have already men-
tioned, many people, with many different roles, interact with business applications
and the security, auditability, and accuracy of the application depends on these
roles being kept separate and identifiable. Therefore it is natural that security of
business applications should be role-based.

Once each user’s role has been understood, security can be implemented on the
following basis:

Authentication
Where the user’s identities are verified, typically using a user ID and pass-
word approach

Authorization
Where an attempted action by a user is checked to see whether it is permitted

CICS works in co-operation with OS/390 security managers (for example, Resource
Access Control Facility (RACF), Access Control Facility (CA-ACF2), or TopSecret) to
implement this role-based security, with CICS calling the security manager as

