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Preface to the Second Edition

Multilevel analysis is a domain of data analysis that has been developing strongly before as
well as after the publication of the first edition of our book in 1999. This second edition has
been seriously revised. It contains more material, it has been updated and corrected, and a
number of explanations were clarified.

The main new material is in three new chapters. A chapter was added about miss-
ing data, and another about the use of multilevel modeling for surveys with nonconstant
inclusion probabilities (‘survey weights’). Also a chapter was added in which three special
techniques are briefly treated: Bayesian estimation, cluster-robust standard errors (the so-
called sandwich standard error), and latent class models. The topics of these new chapters
all belong to the ‘advanced’ part of the title. Among what was not covered in the first edi-
tion, these are some of the topics which we believe are most frequently encountered in the
practice of multilevel research.

New material has been added also to existing chapters. The main example (starting
in Chapter 4) has been renewed because the treatment of missing data in the old version
was inadequate. Various other new examples also have been added. Further, there now
is a more elaborate treatment of the combination of within-group evidence without using
full-blown multilevel modeling (Section 3.7); more detailed considerations are discussed
for choosing between fixed and random effects models (Section 4.3); diagnostic and com-
parative standard errors of posterior means are explained (Section 4.8.1); the treatment of
tests for parameters of the random part was corrected and confidence intervals for these
parameters are discussed (Sections 6.2 and 6.3); multiple membership models are treated
in Chapter 13; and there has been an overhaul of the treatment of estimation methods for
hierarchical generalized linear models in Chapter 17. Chapter 18 about multilevel software
was totally rewritten, keeping it relatively short because this is the part of any textbook
that ages most rapidly. Throughout all chapters new developments have been mentioned,
pointers are given to the recent literature, various difficulties now are explained in more
elaborate ways, and errors have been corrected.

All chapters (from the second on) now start by an overview, and are concluded (except
for the last) by a ‘glommary’. As every reader will know after reading this book, this is
a summary of the main concepts treated in the chapter in a form akin to a glossary. Our
intention is that these new elements will improve the didactical qualities of this textbook.
Having said this, we think that the understanding of the book, or parts of it, may be further
enhanced by going through the examples using the data that we made available (as far
as this was allowed) at http://www.stats.ox.ac.uk/∼snijders/mlbook.htm. This website will
also contain our comments on remarks made on the book by industrious readers, as well as
our corrections for errors if any will be discovered.
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We are very grateful for stimulating discussions (over the years or in the recent period
of revising the text), comments on drafts of chapters, and help with software, to many
people: Marnie Bertolet, sir David Cox, Roel de Jong, Jon Fahlander, Mark Huisman, Johan
Koskinen, Catalina Lomos, Mayra Mascareño, Paulina Preciado, Roy Stewart, Anneke
Timmermans, and Marijtje van Duijn. For help with new data sets we are grateful to some of
these people and also to Hennie Brandsma, Simone Doolaard, Sonja Drobnič, Anja Knuver,
Hans Kuyper, Sascha Peter, Stijn Ruiter, Greetje van der Werf, and Frank van Tubergen.

Tom Snijders
Roel Bosker
March, 2011

PREFACE TO THE SECOND EDITION xi



�
�

�
�

�
�Snijders and Bosker – SnBosCE xii 2011/10/18 15:19

�
�

Preface to the First Edition

This book grew out of our teaching and consultation activities in the domain of multilevel
analysis. It is intended for the absolute beginner in this field as well as for those who
have already mastered the fundamentals and are now entering more complicated areas of
application. The reader is referred to Section 1.2 for an overview of this book and for some
reading guidelines.

We are grateful to various people from whom we got reactions on earlier parts of
this manuscript and also to the students who were exposed to it and helped us realize
what was unclear. We received useful comments from, and benefited from discussions
about parts of the manuscript with, among others, Joerg Blasius, Marijtje van Duijn, Wolf-
gang Langer, Ralf Maslowski, and Ian Plewis. Moreover we would like to thank Hennie
Brandsma, Mieke Brekelmans, Jan van Damme, Hetty Dekkers, Miranda Lubbers, Lyset
Rekers-Mombarg and Jan Maarten Wit, Carolina de Weerth, Beate Völker, Ger van der
Werf, and the Zentral Archiv (Cologne) who kindly permitted us to use data from their
respective research projects as illustrative material for this book. We would also like to
thank Annelies Verstappen-Remmers for her unfailing secretarial assistance.

Tom Snijders
Roel Bosker
June, 1999
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1
Introduction

1.1 Multilevel analysis

Multilevel analysis is a methodology for the analysis of data with complex patterns of vari-
ability, with a focus on nested sources of such variability – pupils in classes, employees in
firms, suspects tried by judges in courts, animals in litters, longitudinal measurements of
subjects, etc. In the analysis of such data, it is usually illuminating to take account of the
fact that each level of nesting is associated with variability that has a distinct interpreta-
tion. There is variability, for example, between pupils but also between classes, and one
may draw incorrect conclusions if no distinction is made between these different sources of
variability. Multilevel analysis is an approach to the analysis of such data, including the sta-
tistical techniques as well as the methodology for their use. The term ‘multilevel analysis’
is used mainly in the social sciences (in the wide sense: sociology, education, psychology,
economics, criminology, etc.), but also in other fields such as the biomedical sciences. Our
focus will be on the social sciences. Other terms, referring to the technical aspects, are
hierarchical linear models, mixed models, and random coefficient models.

In its present form, multilevel analysis is a stream which has two tributaries: contex-
tual analysis and mixed effects models. Contextual analysis is a development in the social
sciences which has focused on the effects of the social context on individual behavior. Some
landmarks before 1980 are the paper by Robinson (1950) which discussed the ecological
fallacy (which refers to confusion between aggregate and individual effects), the paper by
Davis et al. (1961) on the distinction between within-group and between-group regression,
the volume edited by Dogan and Rokkan (1969), and the paper by Burstein et al. (1978) on
treating regression intercepts and slopes on one level as outcomes on the higher level.

Mixed effects models are statistical models in the analysis of variance (ANOVA) and in
regression analysis where it is assumed that some of the coefficients are fixed and others
are random. This subject is too vast even to mention some landmarks. A standard reference
book on random effects models and mixed effects models is Searle et al. (1992), Chapter
2 of which gives an extensive historical overview. The name ‘mixed model’ seems to have
been used first by Eisenhart (1947).

Contextual modeling until about 1980 focused on the definition of appropriate vari-
ables to be used in ordinary least squares regression analysis. Until the 1980s the main
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focus in the development of statistical procedures for mixed models was on random effects
(i.e., random differences between categories in some classification system) more than on
random coefficients (i.e., random effects of numerical variables). Multilevel analysis as
we now know it was formed by these two streams coming together. It was realized that,
in contextual modeling, the individual and the context are distinct sources of variability,
which should both be modeled as random influences. On the other hand, statistical methods
and algorithms were developed that allowed the practical use of regression-type models
with nested random coefficients. There was a cascade of statistical papers: Aitkin et al.
(1981), Laird and Ware (1982), Mason et al. (1983), Goldstein (1986), Aitkin and Longford
(1986), Raudenbush and Bryk (1986), de Leeuw and Kreft (1986), and Longford (1987)
proposed and developed techniques for calculating estimates for mixed models with nested
coefficients. These techniques, together with the programs implementing them which were
developed by a number of these researchers or under their supervision, allowed the practical
use of models of which until that moment only special cases were accessible for practical
use. By 1986 the basis of multilevel analysis was established. The first textbook appeared
(by Goldstein, now in its fourth edition) and was followed by a few others in the 1990s and
many more in the 2000s. The methodology has been further elaborated since then, and has
proved to be quite fruitful in applications in many fields. On the organizational side, there
are stimulating centers such as the ‘Multilevel Models Project’ in Bristol with its Newslet-
ter and its website http://www.mlwin.com/, and there is an active internet discussion group
at http://www.jiscmail.ac.uk/lists/multilevel.html.

In the biomedical sciences mixed models were proposed especially for longitudinal
data; in economics mainly for panel data (Swamy, 1971), the most common longitudinal
data in economics. One of the issues treated in the economics literature was the pool-
ing of cross-sectional and time series data (e.g., Maddala, 1971; Hausman and Taylor,
1981), which is closely related to the difference between within-group and between-group
regressions. Overviews are given by Chow (1984) and Baltagi (2008).

A more elaborate history of multilevel analysis is presented in the bibliographical sec-
tions of Longford (1993) and in Kreft and de Leeuw (1998). For an extensive bibliography
of the older literature, see Hüttner and van den Eeden (1995). A more recent overview of
much statistical work in this area can be found in the handbook by de Leeuw and Meijer
(2008a).

1.1.1 Probability models

The main statistical model of multilevel analysis is the hierarchical linear model, an exten-
sion of multiple linear regression to a model that includes nested random coefficients. This
model is explained in Chapter 5 and forms the basis of most of this book.

There are several ways to argue why it makes sense to use a probability model for
data analysis. In sampling theory a distinction is made between design-based inference and
model-based inference. This is discussed further in Chapter 14. The former means that
the researcher draws a probability sample from some finite population, and wishes to make
inferences from the sample to this finite population. The probability model then follows
from how the sample is drawn by the researcher. Model-based inference means that the
researcher postulates a probability model, usually aiming at inference to some large and
sometimes hypothetical population such as all English primary school pupils in the 2000s
or all human adults living in a present-day industrialized culture. If the probability model

2 MULTILEVEL ANALYSIS
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is adequate then so are the inferences based on it, but checking this adequacy is possible
only to a limited extent.

It is possible to apply model-based inference to data collected by investigating some
entire research population, such as all 12-year-old pupils in Amsterdam at a given moment.
Sometimes the question arises as to why one should use a probability model if no sam-
ple is drawn but an entire population is observed. Using a probability model that assumes
statistical variability, even though an entire research population was investigated, can be
justified by realizing that conclusions are sought which apply not only to the investigated
research population but also to a wider population. The investigated research population is
assumed to be representative of this wider population – for pupils who are older or younger,
in other towns, perhaps in other countries. This is called a superpopulation in Chapter 14,
where the relation between model-based and design-based inference is further discussed.
Applicability of the statistical inference to such a wider population is not automatic, but
has to be carefully argued by considering whether indeed the research population may be
considered to be representative of the larger (often vaguely outlined) population. This is
the ‘second span of the bridge of statistical inference’ as discussed by Cornfield and Tukey
(1956).1 The inference then is not primarily about a given delimited set of individuals but
about social, behavioral, biological, etc., mechanisms and processes. The random effects,
or residuals, playing a role in such probability models can be regarded as resulting from the
factors that are not included in the explanatory variables used. They reflect the approxima-
tive nature of the model used. The model-based inference will be adequate to the extent
that the assumptions of the probability model are an adequate reflection of the effects that
are not explicitly included by means of observed variables.

As we shall see in Chapters 3–5, the basic idea of multilevel analysis is that data sets
with a nesting structure that includes unexplained variability at each level of nesting, such
as pupils in classes or employees in firms, are usually not adequately represented by the
probability model of multiple linear regression analysis, but are often adequately repre-
sented by the hierarchical linear model. Thus, the use of the hierarchical linear model in
multilevel analysis is in the tradition of model-based inference.

1.2 This book

This book is intended as an introductory textbook and as a reference book for practical
users of multilevel analysis. We have tried to include all the main points that come up when
applying multilevel analysis. Most of the data sets used in the examples, and correspond-
ing commands to run the examples in various computer programs (see Chapter 18), are
available on the website http://www.stats.ox.ac.uk/∼snijders/mlbook.htm.

After this introductory chapter, the book proceeds with a conceptual chapter about
multilevel questions and a chapter on ways to treat multilevel data that are not based on
the hierarchical linear model. Chapters 4–6 treat the basic conceptual ideas of the hierar-
chical linear model, and how to work with it in practice. Chapter 4 introduces the random
intercept model as the primary example of the hierarchical linear model. This is extended
in Chapter 5 to random slope models. Chapters 4 and 5 focus on understanding the hier-
archical linear model and its parameters, paying only very limited attention to procedures

1We are indebted to Ivo Molenaar for this reference.

INTRODUCTION 3
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and algorithms for parameter estimation (estimation being work that most researchers del-
egate to the computer). Chapter 6 is concerned with testing parameters and specifying a
multilevel model.

An introductory course on multilevel analysis could cover Chapters 1–6 and Section 7.1,
with selected material from other chapters. A minimal course would focus on Chapters 4–6.
The later chapters cover topics that are more specialized or more advanced, but important
in the practice of multilevel analysis.

The text of this book is not based on a particular computer program for multilevel
analysis. The last chapter, 18, gives a brief review of computer programs that can be used
for multilevel analysis.

Chapters 7 (on the explanatory power of the model) and 10 (on model assumptions)
are important for the interpretation of the results of statistical analyses using the hierar-
chical linear model. Researchers who have data sets with many missing values, or who
plan to collect data sets that may run this type of risk, will profit from reading Chapter 9.
Chapter 11 helps the researcher in setting up a multilevel study, and in choosing sample
sizes at the various levels.

Some multilevel data sets come from surveys done according to a complex design,
associated with survey weights reflecting the undersampling and oversampling of parts of
the population. Ways to analyze such data sets using the hierarchical linear model are
covered in Chapter 14.

Several methods and models have been developed that can sometimes be useful as addi-
tions or alternatives to the more commonly used methods for the hierarchical linear model.
Chapter 12 briefly presents three of these: Bayesian procedures, the sandwich estimator for
standard errors, and latent class models.

Chapters 8 and 13–17 treat various extensions of the basic hierarchical linear model that
are useful in practical research. The topic of Chapter 8, heteroscedasticity (nonconstant
residual variances), may seem rather specialized. Modeling heteroscedasticity, however,
is easily done within the hierarchical linear model and can be very useful. It also allows
model checks and model modifications that are used in Chapter 10. Chapter 13 treats data
structures where the different sources of variability, the ‘levels’ of the multilevel analysis,
are not nested but related in different ways: crossed classifications and multiple member-
ships. Chapter 15 is about longitudinal data, with a fixed occasion design (i.e., repeated
measures data) as well as those with a variable occasion design, where the time moments
of measurement may differ arbitrarily between subjects. This chapter indicates how the
flexibility of the multilevel model gives important opportunities for data analysis (e.g., for
incomplete multivariate or longitudinal data) that were unavailable earlier. Chapter 16 is
about multilevel analysis for multivariate dependent variables. Chapter 17 describes the
multilevel modeling of dichotomous, ordinal, and frequency data.

Each chapter starts with an overview and finishes with a summarizing glossary, which
we have called a glommary. The glommaries can be consulted to gain rapid overviews of
what is treated in the various chapters.

If additional textbooks are sought, one could consider the excellent introductions by
Hox (2010) and Gelman and Hill (2007); Raudenbush and Bryk (2002), for an elaborate
treatment of the hierarchical linear model; Longford (1993), Goldstein (2011), Demidenko
(2004), and de Leeuw and Meijer (2008a) for more detailed mathematical background; and
Skrondal and Rabe-Hesketh (2004) for further modeling, especially latent variable models.

4 MULTILEVEL ANALYSIS



�
�

�
�

�
�Snijders and Bosker – SnBosCE 5 2011/10/19 16:37

�
�

1.2.1 Prerequisites

In order to read this textbook, a good working knowledge of statistics is required. It is
assumed that you know the concepts of probability, random variable, probability distribu-
tion, population, sample, statistical independence, expectation (population mean), variance,
covariance, correlation, standard deviation, and standard error. Furthermore, it is assumed
that you know the basics of hypothesis testing and multiple regression analysis, and that you
can understand formulas of the kind that occur in the explanation of regression analysis.

Matrix notation is used only in a few more advanced sections. These sections can be
skipped without loss of understanding of other parts of the book.

1.2.2 Notation

The main notational conventions are as follows. Abstract variables and random variables
are denoted by italicized capital letters, such as X or Y . Outcomes of random variables
and other fixed values are denoted by italicized lower-case letters, such as x or z. Thus we
speak about the variable X , but in formulas where the value of this variable is considered
as a fixed, nonrandom value, it will be denoted by x. There are some exceptions to this, for
example in Chapter 2 and in the use of the letter N for the number of groups (‘level-two
units’) in the data.

The letter E is used to denote the expected value, or population average, of a random
variable. Thus, EY and E( Y ) denote the expected value of Y . For example, if Pn is the
fraction of tails obtained in n coin flips, and the coin is fair, then the expected value is
EPn = 1

2 .
Statistical parameters are indicated by Greek letters. Examples are μ, σ 2, and β. The

following Greek letters are used.

α alpha
β beta
γ gamma
δ delta
η eta
θ theta
λ lambda
μ mu
π pi
ρ rho
σ sigma
τ tau
ϕ phi
χ chi
ω omega
� capital Delta
� capital Sigma
T capital Tau
X capital Chi

INTRODUCTION 5
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2
Multilevel Theories,

Multistage Sampling,
and Multilevel Models

Phenomena and data sets in the social sciences often have a multilevel structure. This may
be reflected in the design of data collection: simple random sampling is often not a very
cost-efficient strategy, and multistage samples may be more efficient instead. This chapter
is concerned with the reasons why it is important to take account of the clustering of the
data, also called their multilevel structure, in the data analysis phase.

OVERVIEW OF THE CHAPTER

First we discuss how methods of inference failing to take into account the multilevel data
structure may lead to erroneous conclusions, because independence assumptions are likely
to be violated. The next two sections sketch the reasons for interest in a multilevel approach
from the applications point of view. In many cases the multilevel data structure reflects
essential aspects of the social (biological, etc.) world, and important research questions can
be formulated about relations between variables at different layers in a hierarchical system.
In this case the dependency of observations within clusters is of focal interest, because it
reflects the fact that clusters differ in certain respects. In either case, the use of single-level
statistical models is no longer valid. The fallacies to which their use can lead are described
in the next chapter.

2.1 Dependence as a nuisance

Textbooks on statistics tell us that observations should be sampled independently of each
other as standard. Thus the standard sampling design on which statistical models are based
is simple random sampling with replacement from an infinite population: the result of one
selection is independent of the result of any other selection, and all single units in the
population have the same chances of being selected into the sample.
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Textbooks on sampling, however, make it clear that there are more cost-efficient sam-
pling designs, based on the idea that probabilities of selection should be known but do not
have to be constant. One of those cost-efficient sampling designs is the multistage sam-
ple: the population of interest consists of subpopulations, also called clusters, and selection
takes place via those subpopulations.

If there is only one subpopulation level, the design is a two-stage sample. Pupils, for
instance, are grouped in schools, so the population of pupils consists of subpopulations
of schools that contain pupils. Other examples are: families in neighborhoods, teeth in
jawbones, animals in litters, employees in firms, and children in families. In a random two-
stage sample, a random sample of the primary units (schools, neighborhoods, jawbones,
litters, firms, families) is taken in the first stage, and then the secondary units (pupils,
families, teeth, animals, employees, children) are sampled at random from the selected
primary units in the second stage. A common mistake in research is to ignore the fact
that the sampling scheme was a two-stage one, and to pretend that the secondary units were
selected independently. The mistake in this case would be that the researcher is overlooking
the fact that the secondary units were not sampled independently of each other: having
selected a primary unit (e.g., a school) increases the chances of selection of secondary units
(e.g., pupils) from that primary unit. In other words, the multistage sampling design leads
to dependent observations, and failing to deal with this properly in the statistical analysis
may lead to erroneous inferences. An example of the grossly inflated type I error rates that
may then occur is given by Dorman (2008).

The multistage sampling design can be depicted graphically as in Figure 2.1. This
shows a population that consists of 10 subpopulations, each containing 10 micro-units. A
sample of 25% is taken by randomly selecting 5 out of 10 subpopulations and within these
– again at random of course – 5 out of 10 micro-units.
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Figure 2.1: Multistage sample.

Multistage samples are preferred in practice, because the costs of interviewing or testing
persons are reduced enormously if these persons are geographically or organizationally
grouped. Such sample designs correspond to the organization of the social world. It is
cheaper to travel to 100 neighbourhoods and interview 10 persons per neighbourhood on

MULTILEVEL THEORIES, MULTISTAGE SAMPLING, AND MULTILEVEL MODELS 7
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their political preferences than to travel to 1,000 neighbourhoods and interview one person
per neighbourhood. In the next chapters we will see how we can make adjustments to deal
with these dependencies.

2.2 Dependence as an interesting phenomenon

The previous section implies that, if we want to make inferences on, for example, the earn-
ings of employees in the for-profit sector, it is cost-efficient to use a multistage sampling
design in which employees are selected via the firms in which they work. A common fea-
ture in social research, however, is that in many cases we wish to make inferences on the
firms as well as on the employees. Questions that we seek to answer may be: Do employ-
ees in multinationals earn more than employees in other firms? Is there a relation between
the performance of pupils and the experience of their teacher? Is the sentence differential
between black and white suspects different between judges, and if so, can we find charac-
teristics of judges to which this sentence differential is related? In this case a variable is
defined at the primary unit level (firms, teachers, judges) as well as at the secondary unit
level (employees, pupils, cases). Henceforth we will refer to primary units as macro-level
units (or macro-units for short) and to secondary units as micro-level units (or micro-units
for short). The micro level is called the lower level (first) and the macro level is called the
higher level (second). For the time being, we will restrict ourselves to the two-level case,
and thus to two-stage samples only. Table 2.1 gives a summary of the terminology.

Table 2.1: Summary of terms to describe units at either level in the two-level case.

macro-level units micro-level units
macro-units micro-units
primary units secondary units
clusters elementary units
level-two units level-one units

Examples of macro-units and the micro-units nested within them are presented in
Table 2.2. Most of the examples presented in the table have been dealt with in the text
already. It is important to note that what is defined as a macro-unit or a micro-unit depends
on the theory at hand. Teachers are nested within schools, if we study organizational effects
on teacher burn-out then teachers are the micro-units and schools the macro-units. But
when studying teacher effects on student achievement, teachers are the macro-units and
students the micro-units. The same goes, mutatis mutandis, for neighborhoods and fam-
ilies (e.g., when studying the effects of housing conditions on marital problems), and for
families and children (e.g., when studying effects of income on educational performance of
siblings).

In all these instances the dependency of the observations on the micro-units within the
macro-units is of focal interest. If we stick to the example of schools and pupils, then the
dependency (e.g., in mathematics achievement of pupils within a school) may stem from:

8 MULTILEVEL ANALYSIS
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Table 2.2: Some examples of units at the macro and micro level.

Macro level Micro level

schools teachers
classes pupils
neighbourhoods families
firms employees
jawbones teeth
families children
litters animals
doctors patients
subjects measurements
interviewers respondents
judges suspects

1. pupils within a school sharing the same school environment;

2. pupils within a school sharing the same teachers;

3. pupils within a school affecting each other by direct communication or shared group
norms;

4. pupils within a school coming from the same neighborhood.

The more the achievement levels of pupils within a school are alike (as compared to pupils
from other schools), the more likely it is that causes of the achievement have to do with the
organizational unit (in this case, the school). Absence of dependency in this case implies
absence of institutional effects on individual performance.

A special kind of nesting is defined by longitudinal data, represented in Table 2.2 as
‘measurements within subjects’. The measurement occasions here are the micro-units and
the subjects the macro-units. The dependence of the different measurements for a given
subject is of primary importance in longitudinal data, but the following section on relations
between variables defined at either level is not directly intended for the nesting struc-
ture defined by longitudinal data. Because of the special nature of this nesting structure,
Chapter 15 is specifically devoted to it.

The models treated in this book are for situations where the dependent variable is at the
lowest level. For models with nested data sets where the dependent variable is defined at a
higher level one may consult Croon and van Veldhoven (2007), Lüdtke et al. (2008), and
van Mierlo et al. (2009).

2.3 Macro-level, micro-level, and cross-level relations

In the study of hierarchical or multilevel systems, Lazarsfeld and Menzel (1971) made
important distinctions between properties and propositions connected to the different levels.

MULTILEVEL THEORIES, MULTISTAGE SAMPLING, AND MULTILEVEL MODELS 9
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In his summary of this work, Tacq (1986) distinguished between three kinds of proposi-
tions: on micro-units (e.g., ‘employees have on average 4 effective working hours per day’;
‘boys lag behind girls in reading comprehension’), on macro-units (e.g., ‘schools have on
average a budget of $20,000 to spend on resources’; ‘in neighborhoods with bad housing
conditions crime rates are above average’), or on macro–micro relations (e.g., ‘if firms have
a salary bonus system, the productivity of employees will be greater’; ‘a child suffering
from a broken family situation will affect the climate in the classroom’).

Multilevel statistical models are always1 called for if we are interested in propositions
that connect variables defined at different levels, the micro and the macro, and also if a
multistage sample design has been employed. The use of such a sampling design is quite
obvious if we are interested in macro–micro relations, less obvious (but often necessary
from a cost-effectiveness point of view) if micro-level propositions are our primary con-
cern, and hardly obvious at all (but sometimes still applicable) if macro-level propositions
are what we are focusing on. These three instances will be discussed below. To facilitate
comprehension, following Tacq (1986) we use figures with the following conventions: a
dotted line indicates that there are two levels; below the line is the micro level; above the
line is the macro level; macro-level variables are denoted by capitals; micro-level variables
are denoted by lower-case letters; and arrows denote presumed causal relations.

Multilevel propositions

Multilevel propositions can be represented as in Figure 2.2. In this example we are inter-
ested in the effect of the macro-level variable Z (e.g., teacher efficacy) on the micro-level
variable y (e.g., pupil motivation), controlling for the micro-level variable x (e.g., pupil
aptitude).

�����

Z

�x y

. . . . . . . . . . . . . . .

Figure 2.2: The structure of a multilevel proposition.

Micro-level propositions

Micro-level propositions are of the form indicated in Figure 2.3. In this case the line indi-
cates that there is a macro level which is not referred to in the hypothesis that is put to the
test, but which is used in the sampling design in the first stage. In assessing the strength
of the relation between occupational status and income, for instance, respondents may have
been selected for face-to-face interviews by zip-code area. This then may cause dependency
(as a nuisance) in the data.

1As with any rule, there are exceptions. If the data set is such that for each macro-unit only one micro-unit is
included in the sample, single-level methods still can be used.

10 MULTILEVEL ANALYSIS
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. . . . . . . . . . . . . . .

Figure 2.3: The structure of a micro-level proposition.

Macro-level propositions

Macro-level propositions are of the form of Figure 2.4. The line separating the macro
level from the micro level seems superfluous here. When investigating the relation between
the long-range strategic planning policy of firms and their profits, there is no multilevel
situation, and a simple random sample may have been taken. When either or both variables
are not directly observable, however, and have to be measured at the micro level (e.g.,
organizational climate measured as the average satisfaction of employees), then a two-stage
sample is needed nevertheless. This is the case a fortiori for variables defined as aggregates
of micro-level variables (e.g., the crime rate in a neighborhood).

�Z Y
. . . . . . . . . . . . . . .

Figure 2.4: The structure of a macro-level proposition.

Macro–micro relations

The most common situation in social research is that macro-level variables are sup-
posed to have a relation with micro-level variables. There are three obvious instances
of macro-to-micro relations, all of which are typical examples of the multilevel situation
(see Figure 2.5). The first case is the macro-to-micro proposition. The more explicit the
religious norms in social networks, for example, the more conservative the views that indi-
viduals have on contraception. The second proposition is a special case of this. It refers to
the case where there is a relation between Z and y, given that the effect of x on y is taken
into account. The example given may be modified to: ‘for individuals of a given educa-
tional level’. The last case in the figure is the macro–micro-interaction, also known as the
cross-level interaction: the relation between x and y is dependent on Z. To put it another
way, the relation between Z and y is dependent on x. The effect of aptitude on achievement,
for instance, may be small in case of ability grouping of pupils within classrooms but large
in ungrouped classrooms.

Next to these three situations there is the so-called emergent, or micro–macro, propo-
sition (Figure 2.6). In this case, a micro-level variable x affects a macro-level variable Z
(student achievement may affect teachers’ experience of stress).

MULTILEVEL THEORIES, MULTISTAGE SAMPLING, AND MULTILEVEL MODELS 11



�
�

�
�

�
�Snijders and Bosker – SnBosCE 12 2011/10/19 16:37

�
�

�
���

Z

y

. . . . . . . . . . �
���

Z

y

. . . . . . . . . .

�x

�
���

Z

y

. . . . . . . . . .

�x

Figure 2.5: The structure of macro–micro propositions.

					


x

Z
. . . . . . . . . . . . . . .

Figure 2.6: The structure of a micro–macro proposition.

It is of course possible to form combinations of the various examples given. Figure 2.7
contains a causal chain that explains through which micro-variables there is an association
between the macro-level variables W and Z (cf. Coleman, 1990). As an example of this
chain, we may be interested in why the qualities of a football coach affect his social prestige.
The reason is that good coaches are capable of motivating their players, thus leading the
players to good performance, thus to winning games, and this of course leads to more
social prestige for the coach. Another instance of a complex multilevel proposition is the
contextual effects proposition. For example, low socio-economic status pupils achieve less
in classrooms with a low average aptitude. This is also a cross-level interaction effect,
but the macro-level variable, average aptitude in the classroom, is now an aggregate of a
micro-level variable.

. . . . . . . . . . . . . . . . . . . .
W

���

Z

���
x � y

Figure 2.7: A causal macro–micro–micro–macro chain.

The methodological advances in multilevel modeling are now also leading to theoreti-
cal advances in contextual research: suitable definitions of context and ‘levels’, meaningful
ways of aggregating variables to higher levels, conceptualizing and analyzing the interplay
between characteristics of lower- and higher-level units. Some examples in various dis-
ciplines are the following. Following up on the initial work of Hauser (1970, 1974), in
which he stated that group composition effects may be artifacts of underspecification of
the micro-level model, Harker and Tymms (2004) discuss the issue of group composition
effects in education. Sampson et al. (2002) give a review of theoretical work in the analysis
of neighborhood effects. Diez-Roux (2000), Blakely and Woodward (2000), and O’Campo
(2003) comment on advances along these lines in epidemiology and public health.

In the next chapters the statistical tools to handle multilevel structures will be introduced
for outcome variables defined at the micro level.

12 MULTILEVEL ANALYSIS
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2.4 Glommary

Multilevel data structures. Many data sets in the social sciences have a multilevel struc-
ture, that is, they constitute hierarchically nested systems with multiple levels. Much
of our discussion focuses on two-level structures, but this can be generalized to three
or more nested levels.

Sampling design. Often the multilevel nature of the social world leads to the practical
efficiency of multistage samples. The population then consists of a nested system
of subpopulations, and a nested sample is drawn accordingly. For example, when
employing a random two-stage sample design, in the first stage a random sample of
the primary units is taken, and in the second stage the secondary units are sampled at
random from the selected primary units.

Levels. The levels are numbered such that the most detailed level is the first. For example,
in a two-level structure of individuals nested in groups the individuals are called
level-one units and the groups level-two units. (Note the different terminology com-
pared to the words used in theories of survey sampling: in the preceding example,
the primary units are the level-two units and the secondary units the level-one units.)

Units. The elements of a level are called units. Higher-level units are also called clusters.
We talk about level-one units, level-two units, etc.

Dependence as a nuisance. Not taking account of the multilevel data structure, or of the
multistage sampling design, is likely to lead to the use of statistical procedures in
which independence assumptions are violated so that conclusions may be unfounded.

Dependence as an interesting phenomenon. The importance of the multilevel structure
of social (biological, etc.) reality implies that research can often become more
interesting when it takes account of the multilevel structure.

Multilevel propositions. Illustrations were given of scientific propositions involving mul-
tiple levels: micro-level propositions, macro-level propositions, macro–micro rela-
tions, cross-level interaction, and emergent propositions or micro–macro relations.

MULTILEVEL THEORIES, MULTISTAGE SAMPLING, AND MULTILEVEL MODELS 13
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3
Statistical Treatment of Clustered Data

Before proceeding in the next chapters to the explanation of the hierarchical linear model,
the main statistical model for multilevel analysis, this chapter looks at approaches to
analyzing multilevel data sets that are more elementary and do not use this model.

OVERVIEW OF THE CHAPTER

The chapter starts by considering what will happen if we ignore the multilevel structure
of the data. Are there any instances where one may proceed with single-level statistical
models although the data stem from a multistage sampling design? What kind of errors
– so-called ecological fallacies – may occur when this is done? The rest of the chapter
is devoted to some statistical methods for multilevel data that attempt to uncover the role
played by the various levels without fitting a full-blown hierarchical linear model. First, we
describe the intraclass correlation coefficient, a basic measure for the degree of dependency
in clustered observations. Second, some simple statistics (mean, standard error of the mean,
variance, correlation, reliability of aggregates) are treated for two-stage sampling designs.
To avoid ecological fallacies it is essential to distinguish within-group from between-group
regressions. These concepts are explained, and the relations are spelled out between within-
group, between-group, and total regressions, and similarly for correlations. Finally, we
mention some simple methods for combining evidence from several independent studies,
or groups, in a combined test or a combined estimate.

3.1 Aggregation

A common procedure in social research with two-level data is to aggregate the micro-level
data to the macro level. The simplest way to do this is to work with the averages for each
macro-unit.

There is nothing wrong with aggregation in cases where the researcher is only interested
in macro-level propositions, although it should be borne in mind that the reliability of an
aggregated variable depends, inter alia, on the number of micro-level units in a macro-level
unit (see later in this chapter), and thus will be larger for the larger macro-units than for
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the smaller ones. In cases where the researcher is interested in macro–micro or micro-level
propositions, however, aggregation may result in gross errors.

The first potential error is the ‘shift of meaning’ (cf. Firebaugh, 1978; Hüttner, 1981).
A variable that is aggregated to the macro level refers to the macro-units, not directly to the
micro-units. The firm average of an employee rating of working conditions, for example,
may be used as an index for ‘organizational climate’. This variable refers to the firm, not
directly to the employees.

The second potential error with aggregation is the ecological fallacy (Robinson, 1950).
A correlation between macro-level variables cannot be used to make assertions about micro-
level relations. The percentage of black inhabitants in a neighborhood could be related to
average political views in the neighborhood – for example, the higher the percentage of
blacks in a neighborhood, the higher might be the proportion of people with extreme right-
wing political views. This, however, does not give us any clue about the micro-level relation
between race and political conviction. (The shift of meaning plays a role here, too. The
percentage of black inhabitants is a variable that means something for the neighborhood,
and this meaning is distinct from the meaning of ethnicity as an individual-level variable.)
The ecological and other related fallacies are extensively discussed by Alker (1969), Diez-
Roux (1998), and Blakely and Woodward (2000). King (1997), originally focusing on
deriving correlates of individual voting behavior from aggregate data, describes a method
for making inferences – within certain boundaries – at the micro level, when data are only
available in aggregate form at the macro level.

The third potential error is the neglect of the original data structure, especially when
some kind of analysis of covariance is to be used. Suppose one is interested in assessing
between-school differences in pupil achievement after correcting for intake differences, and
that Figure 3.1 depicts the true situation. The figure depicts the situation for five groups,
for each of which we have five observations. The groups are indicated by the symbols
�, ×, +, ♦, and ∗. The five group means are indicated by •.
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Figure 3.1: Micro-level versus macro-level adjustments.
( X , Y ) values for five groups indicated by ∗, ♦, +, ×, � ; group averages by •.

Now suppose the question is whether the differences between the groups on the vari-
able Y , after adjusting for differences on the variable X , are substantial. The micro-level
approach, which adjusts for the within-group regression of Y on X , will lead to the regres-
sion line with positive slope. In this picture, the micro-units from the group that have the �
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symbol are all above the line, whereas those from the group with the ∗ symbol are all below
the regression line. The micro-level regression approach will thus lead us to conclude that
the five groups do differ given that an adjustment for X has been made.

Now suppose we were to aggregate the data, and regress the average Ȳ on the average X̄ .
The averages are depicted by •. This situation is represented in the graph by the regression
line with negative slope. The averages of all groups are almost exactly on the regression
line (the observed average Ȳ can be almost perfectly predicted from the observed average
X̄ ), thus leading us to the conclusion that there are almost no differences between the five
groups after adjusting for the average X̄ .

Although the situation depicted in the graph is an idealized example, it clearly shows
that working with aggregate data ‘is dangerous at best, and disastrous at worst’ (Aitkin and
Longford, 1986, p. 42). When analyzing multilevel data, without aggregation, the problem
described in this section can be dealt with by distinguishing between the within-group and
the between-group regressions. This is worked out in Sections 3.6, 4.6, and 10.2.1.

The last objection to aggregation is that it prevents us from examining potential cross-
level interaction effects of a specified micro-level variable with an as yet unspecified macro-
level variable. Having aggregated the data to the macro level one cannot examine relations
such as whether the sentence differential between black and white suspects is different
between judges, when allowance is made for differences in seriousness of crimes. Or, to
give another example, whether the effect of aptitude on achievement, present in the case of
whole-class instruction, is smaller or even absent in the case of ability grouping of pupils
within classrooms.

3.2 Disaggregation

Now suppose that we treat our data at the micro level. There are two situations:

1. we also have a measure of a variable at the macro level, next to the measures at the
micro level;

2. we only have measures of micro-level variables.

In situation (1), disaggregation leads to ‘the miraculous multiplication of the number of
units’. To illustrate, suppose a researcher is interested in the question of whether older
judges hand down more lenient sentences than younger judges. A two-stage sample is
taken: in the first stage ten judges are sampled, and in the second stage for each judge ten
trials are sampled (in total there are thus 10 × 10 = 100 trials). One might disaggregate the
data to the level of the trials and estimate the relation between the experience of the judge
and the length of the sentence, without taking into account that some trials involve the
same judge. This is like pretending that there are 100 independent observations, whereas
in actual fact there are only 10 independent observations (the 10 judges). This shows that
disaggregation and treating the data as if they are independent implies that the sample
size is dramatically exaggerated. For the study of between-group differences, disaggrega-
tion often leads to serious risks of committing type I errors (asserting on the basis of the
observations that there is a difference between older and younger judges whereas in the
population of judges there is no such relation). On the other hand, when studying within-
group differences, disaggregation often leads to unnecessarily conservative tests (i.e., type
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I error probabilities that are too low); this is discussed in detail in Moerbeek et al. (2003)
and Berkhof and Kampen (2004).

If measures are taken only at the micro level, analyzing the data at the micro level
is a correct way to proceed, as long as one takes into account that observations within
a macro-unit may be correlated. In sampling theory, this phenomenon is known as the
design effect for two-stage samples. If one wants to estimate the average management
capability of young managers, while in the first stage a limited number of organizations
(say, 10) are selected and within each organization five managers are sampled, one runs the
risk of making an error if (as is usually the case) there are systematic differences between
organizations. In general, two-stage sampling leads to the situation that the ‘effective’
sample size that should be used to calculate standard errors is less than the total number of
cases, the latter being given here by the 50 managers. The formula will be presented in one
of the next sections.

Starting with Robinson’s (1950) paper on the ecological fallacy, many papers have been
written about the possibilities and dangers of cross-level inference, that is, methods to con-
clude something about relations between micro-units on the basis of relations between data
at the aggregate level, or conclude something about relations between macro-units on the
basis of relations between disaggregated data. Discussions and many references are given
by Pedhazur (1982, Chapter 13), Aitkin and Longford (1986), and Diez-Roux (1998). Our
conclusion is that if the macro-units have any meaningful relation to the phenomenon under
study, analyzing only aggregated or only disaggregated data is apt to lead to misleading and
erroneous conclusions. A multilevel approach, in which within-group and between-group
relations are combined, is more difficult but much more productive. This approach requires,
however, assumptions to be specified about the way in which macro- and micro-effects are
put together. The present chapter presents some multilevel procedures that are based on
only a minimum of such assumptions (e.g., the additive model of equation (3.1)). Later
chapters in this book are based on a more elaborate model, the so-called hierarchical lin-
ear model, which since about 1990 has been the most widely accepted basis for multilevel
analysis.

3.3 The intraclass correlation

The degree of resemblance between micro-units belonging to the same macro-unit can be
expressed by the intraclass correlation coefficient. The use of the term ‘class’ is conven-
tional here and refers to the macro-units in the classification system under consideration.
There are, however, several definitions of this coefficient, depending on the assumptions
about the sampling design. In this section we assume a two-stage sampling design and
infinite populations at either level. The macro-units will also be referred to as groups.

A relevant model here is the random effects ANOVA model.1 Denoting by Yij the
outcome value observed for micro-unit i within macro-unit j, this model can be expressed as

Yij = μ + Uj + Rij, (3.1)

1This model is also known in the statistical literature as the one-way random effects ANOVA model and as Eisen-
hart’s Type II ANOVA model. In multilevel modeling it is known as the empty model, and is treated further in
Section 4.4.
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where μ is the population grand mean, Uj is the specific effect of macro-unit j, and Rij is the
residual effect for micro-unit i within this macro-unit. In other words, macro-unit j has the
‘true mean’ μ + Uj, and each measurement of a micro-unit within this macro-unit deviates
from this true mean by some value Rij. Units differ randomly from one another, which
is reflected in the fact that Uj is a random variable and the name ‘random effects model’.
Some units have a high true mean, corresponding to a high value of Uj, others have a true
mean close to average, and still others a low true mean. It is assumed that all variables are
independent, the group effects Uj having population mean 0 and population variance τ 2

(the population between-group variance), and the residuals having mean 0 and variance σ 2

(the population within-group variance). For example, if micro-units are pupils and macro-
units are schools, then the within-group variance is the variance within the schools about
their true means, while the between-group variance is the variance between the schools’
true means. The total variance of Yij is then equal to the sum of these two variances,

var( Yij) = τ 2 + σ 2.

The number of micro-units within the jth macro-unit is denoted by nj. The number of
macro-units is N , and the total sample size is M =∑j nj.

In this situation, the intraclass correlation coefficient ρI can be defined as

ρI = population variance between macro-units

total variance
= τ 2

τ 2 + σ 2
. (3.2)

This is the proportion of variance that is accounted for by the group level. This parameter
is called a correlation coefficient because it is equal to the correlation between values of
two randomly drawn micro-units in the same, randomly drawn, macro-unit. Hedges and
Hedberg (2007) report on a large variety of studies of educational performance in American
schools, and find that values often range between 0.10 and 0.25.

It is important to note that the population variance between macro-units is not directly
reflected by the observed variance between the means of the macro-units (the observed
between-macro-unit variance). The reason is that in a two-stage sample, variation between
micro-units will also show up as extra observed variance between macro-units. It is indi-
cated below how the observed variance between cluster means must be adjusted to yield a
good estimator for the population variance between macro-units.

Example 3.1 Random data.
Suppose we have a series of 100 observations as in the random digits in Table 3.1. The core part
of the table contains the random digits. Now suppose that each row in the table is a macro-unit, so
that for each macro-unit we have observations on 10 micro-units. The averages of the scores for
each macro-unit are in the last column. There seem to be large differences between the randomly
constructed macro-units, if we look at the variance in the macro-unit averages (which is 105.7). The
total observed variance between the 100 micro-units is 814.0. Suppose the macro-units were schools,
the micro-units pupils, and the random digits test scores. According to these two observed variances
we might conclude that the schools differ considerably with respect to their average test scores. We
know in this case, however, that in ‘reality’ the macro-units differ only by chance.

The following subsections show how the intraclass correlation can be estimated and
tested. For a review of various inference procedures for the intraclass correlation we refer
to Donner (1986). An extensive overview of many methods for estimating and testing the
within-group and between-group variances is given by McCulloch and Searle (2001).
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Table 3.1: Data grouped into macro-units (random digits from Glass and Stanley, 1970,
p. 511).

j Scores Yij for micro-units (random digits) Average Ȳ.j

01 60 36 59 46 53 35 07 53 39 49 43.7
02 83 79 94 24 02 56 62 33 44 42 51.9
03 32 96 00 74 05 36 40 98 32 32 44.5
04 19 32 25 38 45 57 62 05 26 06 31.5
05 11 22 09 47 47 07 39 93 74 08 35.7
06 31 75 15 72 60 68 98 00 53 39 51.1
07 88 49 29 93 82 14 45 40 45 04 48.9
08 30 93 44 77 44 07 48 18 38 28 42.7
09 22 88 84 88 93 27 49 99 87 48 68.5
10 78 21 21 69 93 35 90 29 12 86 53.4

3.3.1 Within-group and between-group variance

We continue to refer to the macro-units as groups. To disentangle the information contained
in the data about the population between-group variance and the population within-group
variance, we consider the observed variance between groups and the observed variance
within groups. These are defined as follows. The mean of macro-unit j is denoted by

Ȳ.j = 1

nj

nj∑
i=1

Yij,

and the overall mean is

Ȳ.. = 1

M

N∑
j=1

nj∑
i=1

Yij = 1

M

N∑
j=1

njȲ.j.

The observed variance within group j is given by

S2
j = 1

nj − 1

nj∑
i=1

( Yij − Ȳ.j)
2 .

This number will vary from group to group. To have one parameter that expresses the
within-group variability for all groups jointly, one uses the observed within-group variance,
or pooled within-group variance. This is a weighted average of the variances within the
various macro-units, defined as

S2
within = 1

M − N

N∑
j=1

nj∑
i=1

( Yij − Ȳ.j)
2 (3.3)

= 1

M − N

N∑
j=1

( nj − 1) S2
j .
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If model (3.1) holds, the expected value of the observed within-group variance is exactly
equal to the population within-group variance:

Expected variance within = ES2
within = σ 2. (3.4)

The situation for the between-group variance is a little more complicated. For equal
group sizes nj, the observed between-group variance is defined as the variance between the
group means,

S2
between = 1

N − 1

N∑
j=1

( Ȳ.j − Ȳ..)
2 . (3.5)

For unequal group sizes, the contributions of the various groups need to be weighted. The
following formula uses weights that are useful for estimating the population between-group
variance:

S2
between = 1

ñ( N − 1)

N∑
j=1

nj( Ȳ.j − Ȳ..)
2 . (3.6)

In this formula, ñ is defined by

ñ = 1

N − 1

{
M −

∑
j n2

j

M

}
= n̄ − s2( nj)

N n̄
, (3.7)

where n̄ = M/N is the mean sample size and

s2( nj) = 1

N − 1

N∑
j=1

( nj − n̄)2

is the variance of the sample sizes. If all nj have the same value, then ñ also has this value.
In this case, S2

between is just the variance of the group means, given by (3.5).
It can be shown that the total observed variance is a combination of the within-group

and the between-group variances, expressed as follows:

observed total variance = 1

M − 1

N∑
j=1

nj∑
i=1

( Yij − Ȳ..)
2

= M − N

M − 1
S2

within + ñ( N − 1)

M − 1
S2

between. (3.8)

The complications with respect to the between-group variance arise from the fact that the
micro-level residuals Rij also contribute, albeit to a minor extent, to the observed between-
group variance. Statistical theory tells us that the expected between-group variance is given
by

Expected observed variance between

= True variance between + Expected sampling error variance.
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More specifically, the formula is

ES2
between = τ 2 + σ 2

ñ
(3.9)

(cf. Hays (1988, Section 13.3) for the case with constant nj and Searle et al. (1992, Section
3.6) for the general case), which holds provided that model (3.1) is valid. The second
term in this formula becomes small when ñ becomes large. Thus for large group sizes, the
expected observed between variance is practically equal to the true between variance. For
small group sizes, however, it tends to be larger than the true between variance due to the
random differences that also exist between the group means.

In practice, we do not know the population values of the between and within macro-unit
variances; these have to be estimated from the data. One way of estimating these parameters
is based on formulas (3.4) and (3.9). From the former it follows that the population within-
group variance, σ 2, can be estimated without bias by the observed within-group variance:

σ̂ 2 = S2
within. (3.10)

From the combination of the last two formulas it follows that the population between-group
variance, τ 2, can be estimated without bias by taking the observed between-group variance
and subtracting the contribution that the true within-group variance makes, on average,
according to (3.9), to the observed between-group variance:

τ̂ 2 = S2
between − S2

within

ñ
. (3.11)

(Another expression is given in (3.14).) This expression can take negative values. This
happens when the difference between group means is less than would be expected on the
basis of the within-group variability, even if the true between-group variance τ 2 were 0. In
such a case, it is natural to estimate τ 2 as 0.

It can be concluded that the split between the observed within-group variance and
observed between-group variance does not correspond precisely to the split between the
within-group and between-group variances in the population: the observed between-group
variance reflects the population between-group variance plus a little of the population
within-group variance.

The intraclass correlation is estimated according to formula (3.2) by

ρ̂I = τ̂ 2

τ̂ 2 + σ̂ 2
. (3.12)

(Formula (3.15) gives another, equivalent, expression.) The standard error of this estimator
in the case where all group sizes are constant, nj = n, is given by

S.E.( ρ̂I) = ( 1 − ρI ) ( 1+( n − 1) ρI )

√
2

n( n − 1) ( N − 1)
. (3.13)

This formula was given by Fisher (1958, Section 39) and by Donner (1986, equation (6.1)),
who also gives the (quite complicated) formula for the standard error for the case of vari-
able group sizes. Donner and Wells (1986) compare various ways to construct confidence
intervals for the intraclass correlation coefficient.
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The estimators given above are so-called analysis of variance or ANOVA estimators.
They have the advantage that they can be represented by explicit formulas. Other much
used estimators are those produced by the maximum likelihood (ML) and residual max-
imum likelihood (REML) methods (cf. Section 4.7). For equal group sizes, the ANOVA
estimators are the same as the REML estimators (Searle et al., 1992). For unequal group
sizes, the ML and REML estimators are slightly more efficient than the ANOVA estimators.
Multilevel software can be used to calculate the ML and REML estimates.

Example 3.2 Within- and between-group variability for random data.
For our random digits table of the earlier example the observed between variance is S2

between = 105.7.
The observed variance within the macro-units can be computed from formula (3.8). The observed
total variance is known to be 814.0 and the observed between variance is given by 105.7. Solving
(3.8) for the observed within variance yields S2

within =( 99/90) ×( 814.0−( 10/11) ×105.7) = 789.7.

Then the estimated true variance within the macro-units is also σ̂ 2 = 789.7. The estimate for the true
between macro-units variance is computed from (3.11) as τ̂2 = 105.7−( 789.7/10) = 26.7. Finally,
the estimate of the intraclass correlation is ρ̂I = 26.7/( 789.7 + 26.7) = 0.03. Its standard error,
computed from (3.13), is 0.06.

3.3.2 Testing for group differences

The intraclass correlation as defined by (3.2) can be zero or positive.2 A statistical test can
be performed to investigate whether a positive value for this coefficient could be attributed
to chance. If it may be assumed that the within-group deviations Rij are normally dis-
tributed, one can use an exact test for the hypothesis that the intraclass correlation is 0,
which is the same as the null hypothesis that there are no group differences, or the true
between-group variance is 0. This is just the F-test for a group effect in the one-way anal-
ysis of variance, which can be found in any textbook on ANOVA. The test statistic can be
written as

F = ñS2
between

S2
within

,

and it has an F distribution with N −1 and M −N degrees of freedom if the null hypothesis
holds.

Example 3.3 The F-test for the random data set.
For the data of Table 3.1, F = ( 10 × 105.7) /789.7 = 1.34 with 9 and 90 degrees of freedom. This
value is far from significant (p > 0.10). Thus, there is no evidence of true between-group differences.

Statistical computer packages usually give the F-statistic and the within-group vari-
ance, S2

within. From this output, the estimated population between-group variance can be
calculated by

τ̂ 2 = S2
within

ñ
( F − 1) (3.14)

2In a data set it is possible for the estimated intraclass correlation coefficient to be negative. This is always the
case, for example, for group-centered variables. In a population satisfying model (3.1), however, the population
intraclass correlation cannot be negative.
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and the estimated intraclass correlation coefficient by

ρ̂I = F − 1

F + ñ − 1
, (3.15)

where ñ is given by (3.7). If F < 1, it is natural to replace both of these expressions by
0. These formulas show that a high value for the F-statistic will lead to large estimates for
the between-group variance as well as the intraclass correlation, but that the group sizes, as
expressed by ñ, moderate the relation between the test statistic and the parameter estimates.

If there are covariates, it often is relevant to test whether there are group differences
in addition to those accounted for by the effect of the covariates. This is achieved by the
usual F-test for the group effect in an analysis of covariance (ANCOVA). Such a test is
relevant because it is possible that the ANOVA F-test does not demonstrate any group
effects, but that such effects do emerge when controlling for the covariates (or vice versa).
Another check on whether the groups make a difference can be carried out by testing the
group-by-covariate interaction effect. These tests can be found in textbooks on ANOVA and
ANCOVA, and they are contained in the well-known general-purpose statistical computer
programs.

So, to test whether a given nesting structure in a data set calls for multilevel analysis,
one can use standard ANOVA techniques. In addition to testing for the main group effect, it
is also advisable to test for group-by-covariate interactions. If there is neither evidence for
a main effect nor for interaction effects involving the group structure, then the researcher
may leave aside the nesting structure and analyze the data by single-level methods such as
ordinary least squares (‘OLS’) regression analysis. This approach to testing for group dif-
ferences can be employed whenever the number of groups is not too large for the computer
program being used. If there are too many groups, however, the program will refuse to do
the job. In such a case it will still be possible to carry out the tests for group differences that
are treated in the following chapters, following the logic of the hierarchical linear model.
This will require the use of statistical multilevel software.

3.4 Design effects in two-stage samples

In the design of empirical investigations, the determination of sample sizes is an important
decision. For two-stage samples, this is more complicated than for simple (‘one-stage’)
random samples. An elaborate treatment of this question is given in Cochran (1977). This
section gives a simple approach to the precision of estimating a population mean, indicating
the basic role played by the intraclass correlation. We return to this question in Chapter 11.

Large samples are preferable in order to increase the precision of parameter estimates,
that is, to obtain tight confidence intervals around the parameter estimates. In a simple
random sample the standard error of the mean is related to the sample size by the formula

standard error = standard deviation√
sample size

. (3.16)

This formula can be used to indicate the required sample size (in a simple random sample)
if a given standard error is desired.
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When using two-stage samples, however, the clustering of the data should be taken into
account when determining the sample size. Let us suppose that all group sizes are equal,
nj = n for all j. Then the (total) sample size is Nn. The design effect is a number that
indicates how much the sample size in the denominator of (3.16) is to be adjusted because
of the sampling design used. It is the ratio of the variance of estimation obtained with the
given sampling design to the variance of estimation obtained for a simple random sample
from the same population, supposing that the total sample size is the same. A large design
effect implies a relatively large variance, which is a disadvantage that may be offset by the
cost reductions implied by the design. The design effect of a two-stage sample with equal
group sizes is given by

design effect = 1 + ( n − 1) ρI. (3.17)

This formula expresses the fact that, from a purely statistical point of view, a two-stage
sample becomes less attractive as ρI increases (clusters become more homogeneous) and as
the group size n increases (the two-stage nature of the sampling design becomes stronger).

Suppose, for example, we were studying the satisfaction of patients with the treatments
provided by their doctors. Furthermore, let us assume that some doctors have more satisfied
patients than others, leading to a ρI of 0.30. The researchers used a two-stage sample, since
that is far cheaper than selecting patients simply at random. They first randomly selected
100 doctors, from each chosen doctor selected five patients at random, and then interviewed
each of these. In this case the design effect is 1 + ( 5−1) × 0.30 = 2.20. When estimating
the standard error of the mean, we no longer can treat the observations as independent of
each other. The effective sample size, that is, the equivalent total sample size that we should
use in estimating the standard error, is equal to

Neffective = Nn

design effect
, (3.18)

in which N is the number of selected macro-units. For our example we find Neffective =
( 100 × 5) /2.20 = 227. So the two-stage sample with a total of 500 patients here is
equivalent to a simple random sample of 227 patients.

One can also derive the total sample size using a two-stage sampling design on the
basis of a desired level of precision, assuming that ρI is known, and fixing n because of
budgetary or time-related considerations. The general rule is: this required sample size
increases as ρI increases and it increases with the number of micro-units one wishes to
select per macro-unit. Using (3.17) and (3.18), this can be derived numerically from the
formula

Nts = Nsrs + Nsrs ( n − 1) ρI.

The quantity Nts in this formula refers to the total desired sample size when using a two-
stage sample, whereas Nsrs refers to the desired sample size if one had used a simple random
sample.

In practice, ρI is unknown. However, it often is possible to make an educated guess
about it on the basis of earlier research.

In Figure 3.2, Nts is graphed as a function of n and ρI (0.1, 0.2, 0.4, and 0.6, respec-
tively), and taking Nsrs = 100 as the desired sample size for an equally informative simple
random sample.
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