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‘A magnificent achievement.  A Who’s Who of contemporary remote sensing have produced an 
engaging, wide-ranging and scholarly review of the field in just one volume. ‘

Professor Paul Curran, Vice-Chancellor, Bournemouth University

Remote sensing encompasses the scientific and technological aspects of the study of the Earth’s 
surface environment using data acquired from a distance, commonly through the use of sensors 
carried on airborne or spaceborne platforms. Exploiting a wide range of spatial, spectral, temporal 
and radiometric scales, remote sensing is a large and diverse field for which this Handbook will be 
the key research reference. 

The Handbook is organized into six sections: 

•   Introduction
•   Interactions of Electromagnetic Radiation with the Terrestrial Environment
•   Digital Sensors and Image Characteristics
•   Remote Sensing Analysis
•   Remote Sensing Applications
•   Conclusions

Illustrated throughout, including a colour plate section, this essential resource for the analysis of 
remotely sensed data provides researchers with a definitive statement of the core concepts and 
methodologies in the discipline.
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Preface

Although the term remote sensing is about 50 years old, having been coined in 1958 by Evelyn Pruitt, a
geographer at the US Office of Naval Research (Estes and Jensen, 1998), the subject matter covered by
the field of remote sensing is vast. As a methodological approach, remote sensing has underpinnings in
physics, mathematics, engineering, and computer science. Remote sensing plays an important role in the
scientific, commercial, and national security arenas, and the applications of remote sensing extend from
the Earth’s atmosphere to the hydrosphere, cryosphere, biosphere, and lithosphere, as well as to the moon,
planets, and asteroids.

The challenge in compiling a relatively comprehensive survey of such a vast field is evident in the fact
that, to our knowledge, this book is the first comprehensive text in a quarter of a century. Our work follows
in the tradition of the major series, The Manual of Remote Sensing, first published in two volumes by
the American Society of Photogrammetry and Remote Sensing (ASPRS) in 1975, with a second edition
in 1983. Notably, for the third edition, the idea of a single publication was abandoned and an apparently
open-ended series was decided upon. As a result, six volumes in this series have already been published in
the decade since 1997, with additional volumes planned.

For our book, we desired a single volume that provided as broad a view of the field as possible. Our
aim was to give the reader a forward-looking perspective that also explained the developments that led
to the current context. The chapters assume a basic background in remote sensing, but not necessarily
in the specific topics covered. This book should therefore be particularly useful to professionals and
advanced students who desire a systematic overview of the state of the art, as well as potential future
challenges.

In addressing such a huge field we have by necessity had to be selective in our approach. Therefore,
from the outset we limited our scope to the terrestrial Earth. By keeping this focus, we have been able to
cover not only the traditional remote sensing applications, such as in soils, geology, and vegetation, but
also the relatively new applications such as in the social sciences, biogeochemical modeling, and disaster
monitoring.

The initial concept for this volume was developed in a 10-page outline, which was reviewed by
13 anonymous external reviewers. With advice and feedback from those reviewers, we recruited 33 authors
to lead the individual chapters. Those lead authors recruited an additional 42 co-authors, resulting in a total
of 75 authors. The chapters were reviewed by the editors as well as over 90 reviewers.

The book is organized in six major sections. Section I, an introduction, covers broad overarching issues,
including remote sensing policy. Section II is a systematic treatment of the interaction of electromagnetic
radiation with the terrestrial environment. This section provides a key background for the later section on
remote sensing applications. The chapters are organized from short to long wavelength, specifically from
the visible to microwave regions. Section III, on digital sensors and platforms, provides an overview of
how the engineering of image acquisition influences image properties. The section includes chapters on
sensor technology, as well as a series on satellite sensors, organized by relative spatial resolution. Separate
chapters cover hyperspectral sensors, microwave sensors, airborne imaging, and airborne laser scanning
(also known as lidar). Section IV covers remote sensing analysis, from design to implementation. This
section covers both field work and image analysis issues, ending with a discussion on accuracy assessment.
Section V, on remote sensing applications, comprises approximately one third of the book, and is organized
in four subsections: (a) lithospheric sciences, (b) plant sciences, (c) hydrospheric and crysopheric sciences,
and (d) global change and human environments. Section VI provides a short forward-looking summary of
the book.
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interferometry, and the chromostereoscopy, using a broad range of Earth observation data (airborne and
spaceborne; VIR and SAR; fine to coarse resolution). In recent years, he has focused mainly on 3D physical
models and their generalization to fine spatial resolution optical imagery (SPOT5, EROS, IKONOS, Quick-
bird, Formosat, etc.). His main fields of interest are 3D modeling and reconstruction, interactive feature
extraction, cartographic applications of Earth observation data, and the integration of multisource data.

CHAPTER 9

Samuel N. Goward is Professor of Geography at the University of Maryland. He has been involved in
land remote sensing since the early 1970s. One primary research focus area has been automated processing
and analysis of regional and global data sets from AVHRR and Landsat. From 1997 to 2002 he served as
the Landsat Science Team leader and was recently selected to serve as a member of the new USGS/NASA
Landsat Science Team. He also continues to work with the NASALandsat Project Science Office to develop
operational concepts including the long-term acquisition plan. Currently his research is carried out under
the NorthAmerican Carbon Program, in association with NASAand US. Forest Service colleagues, seeking
to improve forest dynamics analysis with Landsat time-series data. Earlier he also worked with the NASA
Stennis Space Center, to evaluate commercial sources of land remote sensing data, including the IKONOS
and QuickBird. Over the last decade he served as co-chair of the advisory committee for the USGS National
Satellite Land Remote Sensing Data Archive (NSLRSDA) at USGS EROS and continues on the editorial
board of Remote Sensing of Environment. Among several honors, he has recently been awarded the USGS
John Wesley Powell Award (2006) and the USGS/NASA William T. Pecora Award (2008) for contributions
to the Landsat Mission.

Terry Arvidson has been part of the Landsat program since 1979, from pre-proposal phases through
on-orbit operations, from developer and tester to operations engineer and project manager. Cur-
rently, she is a manager of sustaining engineering for Landsat 7, and supports both the USGS and
NASA/GSFC. Ms. Arvidson serves as the liaison between the satellite operations team and the Land-
sat Science Project Office. She has been an active member of the international Landsat Ground
Station Operators Working Group since the 1980s. Ms. Arvidson managed the development of the
Landsat-7 Long-Term Acquisition Plan (LTAP), working with the science community on specialized
requirements for land covers such as glaciers and reefs, and maintaining the LTAP databases. She
continues to interface with the science community on scheduling and operations issues and in sup-
port of Drs. Goward and Williams on the Landsat Science Team. Ms. Arvidson has researched the
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Landsat historical archive for the Landsat Legacy project, including internationally-held archives, and
participated in oral history interviews and document preservation. She has published numerous arti-
cles on the LTAP and the Landsat archive history, and co-edited, with Drs. Goward and Williams,
a PE&RS special issue on Landsat 7. Ms. Arvidson has a B.Sc. degree from the University of
Maryland.

Darrel L. Williams serves as Associate Chief of the Hydrospheric and Biospheric Sciences Laboratory
within the Earth Sciences Division at NASA’s Goddard Space Flight Center. He also serves as the Project
Scientist for the Landsat 5 and 7 missions currently in orbit, and is entrusted with ensuring the scientific
integrity of these missions. Prior to his more recent roles in science management, his remote sensing
research involved the development of enhanced techniques for assessing forest ecosystems worldwide. He
has authored ∼100 publications in the field of quantitative remote sensing and served on the editorial board
of the International Journal of Remote Sensing throughout the 1990s. Dr. Williams has received numerous
prestigious awards such as the NASA Medal for Outstanding Leadership (1997), NASA’s Exceptional
Service Medal (2000), and the ‘Aviation Week and Space Technology 1999 Laurels Award’ for outstand-
ing achievement in the field of Space in recognition of his science leadership of the Landsat 7 mission.
Recently Dr. Williams received an ‘Outstanding Alumni Award’ from the School of Forest Resources
at the Pennsylvania State University. Additional awards have been bestowed by the US Department of
Agriculture, the US Department of the Interior, and the American Society of Photogrammetry and Remote
Sensing.

Richard Irish accepted a position, in 1993, with Science Systems Applications, Inc., to work on NASA’s
Landsat-7 program at the Goddard Space Flight Center. There, he developed the cloud cover recognition
algorithm used for Landsat-7, created the Calibration Parameter File used for radiometric and geometric
processing and updates, and defined the standard Landsat-7 distribution product, now an international
exchange standard that is used world wide. Mr. Irish continues his work within NASA’s Biospheric Sciences
Branch on the Landsat program. His research endeavors include developing cloud shadow discrimination
and multiscene merging algorithms for the TM, ETM+, and LDCM missions. He is also the Landsat-7
science liaison to the user community. He wrote and maintains the frequently visited Landsat-7 Science
Data Users Handbook web site.

James R. Irons is the Associate Chief of the Laboratory for Atmospheres, NASA Goddard Space Flight
Center (GSFC). He is also the NASA Landsat Data Continuity Mission (LDCM) Project Scientist. Prior
to 2007, Dr. Irons worked for 28 years as a physical scientist in the Biospheric Sciences Branch, NASA
GSFC where he served as the Landsat-7 Deputy Project Scientist beginning in 1992. Dr. Irons’ career
has been devoted to advancing the science and practice of land remote sensing. His research has focused
on applying Landsat data to land cover mapping. His research has also encompassed the characterization
and understanding bi-directional reflectance distribution functions (BRDFs) for land surfaces, particularly
plant canopies and soil. He is the principal or co-author of 35 peer reviewed journal articles and two book
chapters. Dr. Irons received his B.Sc. degree in environmental resources management in 1976 and the
M.Sc. degree in agronomy in 1979 from the Pennsylvania State University. He received his Ph.D. degree
in agronomy in 1993 from the University of Maryland.

CHAPTER 10

Christopher Owen Justice received his Ph.D. in geography from the University of Reading, UK. In 1978
he came to NASA’s Goddard Space Flight Center as a National Academy of Sciences post-doctoral fellow.
In 1981 he took a fellowship position at ESA ESRIN and in 1983 he returned to the Goddard Space Flight
Center to work withAVHRR data on land studies and helped form the GIMMS Group with Compton Tucker
and Brent Holben. Since 2001 he has been a professor and research director in the Geography Department
of the University of Maryland. He is a team member and land discipline chair of the NASA Moderate
Imaging Spectroradiometer (MODIS) Science Team and is responsible for the MODIS Fire Product and
helped develop the MODIS Rapid Response System. He is a member of the NASA NPOESS Preparatory
Project (NPP) Science Team. He is co-chair of the GOFC/GOLD-Fire Implementation Team, a project of
the Global Terrestrial Observing System (GTOS), and a member of the Integrated Global Observation of
Land (IGOL) Steering Committee and leader of the GEOSS Agricultural Monitoring Task. He is on the
Strategic Objective Team for USAID’s Central Africa Regional Project for the Environment. He is a Co.I.
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on the USGS Landsat Science Team. He is Program Scientist for the NASA Land Cover Land Use Change
Program. His current research is on land cover and land use change, the extent and impacts of global
fire, global agricultural monitoring (with the US Department of Agriculture, Foreign Agricultural Service,
and the GIMMS group at Goddard Space Flight Center), and their associated information technology and
decision support systems.

Compton James Tucker III received his B.S. degree in biology in 1969 from Colorado State University.
After working in two banks and realizing banking was not his calling, he returned to Colorado State
University and received his M.S. degree in forestry in 1973 and his Ph.D. degree, also in forestry, in 1975.
He came to NASA’s Goddard Space Flight Center as a NationalAcademy of Sciences post-doctoral fellow in
late 1975. Since 1977 he has been a physical scientist and leader of the GIMMS group at NASA’s Goddard
Space Flight Center. In the mid 1970s he contributed to the sensor configuration of Landsat’s thematic
mapper instrument. He has been a pioneer in demonstrating the utility of coarse-resolution remote sensing
usingAVHRR and similar data for large-scale vegetation studies exploiting temporal information. Currently
he is using satellite data to study climatically-coupled hemorrhagic fevers, global primary production
including agricultural monitoring, tropical deforestation and habitat fragmentation, and glacier variations
from the 1970s to the present. Since 2005 he has worked for NASA at the Climate Change Science Program
Office in the areas of land use and land cover change and climate and worked to prioritize satellite and
in situ observations for climate research.

CHAPTER 11

Douglas A. Stow is a Professor of Geography at San Diego State University (SDSU) and specializes in
remote sensing. He received B.A., M.A., and Ph.D degrees in Geography from the University of Cali-
fornia, Santa Barbara. His remote sensing studies focus on land cover change analyses with emphases on
Mediterranean-type and Arctic tundra ecosystems, and urban areas. He is the co-director of the Center for
Earth Systems Analysis Research and doctoral program coordinator. Stow is currently the P.I. for a NASA
REASoN project on integration of remote sensing and decision support systems for international border
security. He has also served as P.I. for several state and local agency contracts, and as a co-investigator on
numerous NASA, NSF, and NIH grants. He is the author or co-author of over 100 refereed publications
and 35 conference proceedings papers, mostly on remote sensing topics.

Lloyd L. Coulter has worked as a staff researcher in the Department of Geography at San Diego State
University, since November 1998. He specializes in remote sensing and image processing. Mr. Coulter has
served as technical lead on several projects using fine spatial resolution imagery for detecting changes in
southern California native habitat and for mapping such things as invasive plants, urban irrigated vegetation,
urban canyon fire hazards, and land use. Mr. Coulter is also the operator of an ADAR 5500 airborne digital
multispectral camera system owned and operated by the Department of Geography. He has several years
of experience in airborne digital image acquisition and post-processing.

Cody A. Benkelman is the lead engineer at Mission Mountain Technology Associates, which provides
remote sensing, image processing, and geographic information systems services. He served as lead engineer
and co-founder of Positive Systems, Inc., developing multispectral airborne imaging systems and image
processing software. Mr. Benkelman also served as principal investigator and project manager on numerous
NASAR&D projects, focused on development of image co-registration software (SBIR Phase I and Phase II,
2004–2006), multispectral data acquisition for the EOS Science Data Buy Program (1997–2001) and
imaging system design and development (Earth Observation Commercialization andApplications Program,
1993). Mr. Benkelman was awarded peer-reviewed certification as a ‘Mapping Scientist in Remote Sensing’
by the American Society for Photogrammetry and Remote Sensing (ASPRS), certification number RS144,
effective 10/6/03. He received his M.S. degree in electrical engineering from the University of Colorado
in 1987 and a B.S. in physics from Montana State University in 1981.

CHAPTER 12

Michael E. Schaepman is full Professor in remote sensing at the University of Zurich in Switzerland
and adjoint Professor in Geo-Information science with special emphasis on remote sensing at Wageningen
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University (WU) in The Netherlands. His specialization is in quantitative, physical based remote sensing
using imaging spectrometers and multiangular instruments. He pays particular attention on the retrieval
of land surface variables in vegetated areas. After obtaining M.Sc. (1994) and Ph.D. (1998) degrees from
the University of Zurich (CH) in geography and remote sensing, he spent part of his post doctorate at
the University of Arizona (College of Optical Sciences, Tucson, AZ) before being appointed full chair
in Wageningen in 2003 and scientific manager in 2005, and full chair in Zurich in 2008 respectively. He
serves as Chairman of the ISPRS WG VII/1 on Physical Modeling and has significantly contributed to the
further development of imaging spectroscopy over recent years, namely to ESA missions such as LSPIM,
SPECTRA, FLEX andAPEX. Michael E. Schaepman has co-authored more than 300 scientific publications
(>60 peer reviewed papers).

CHAPTER 13

Josef Martin Kellndorfer’s research focuses on the monitoring and assessment of terrestrial and aquatic
ecosystems using geographic information systems (GIS) and remote sensing technology. He studies
land-use, land cover change and their links to the carbon cycle with a focus on climate change at a
regional and global scale. With his scientific findings he strives to support environmental policy deci-
sions at the global scale, and is involved in supporting the UNFCCC negotiations on ‘Reducing Emissions
from Deforestation and Degradation’ (REDD). Dr. Kellndorfer has been principal and co-investigator on
numerous projects involving imaging radar technology. His current research activities include a NASA-
funded project to generate the first high-resolution above-ground biomass and carbon dataset of the United
States based on the integration of space shuttle radar and optical satellite imagery, as well as research
on forest monitoring using the new class of space-borne imaging radar satellites like ALOS//PALSAR,
EnviSat, Radarsat, and TerraSAR-X. Before joining the Woods Hole Research Center, Dr. Kellndorfer was
a research scientist with the Radiation Laboratory in the Department of Electrical Engineering and Com-
puter Science at the University of Michigan. Dr. Kellndorfer holds a diploma degree in physical geography,
computer science, and remote sensing, and a doctorate in geosciences from the Ludwig-Maximilians-
University in Munich, Germany. Dr. Kellndorfer is a senior member of the IEEE Geoscience and Remote
Sensing Society.

Kyle C. McDonald is a Research Scientist in the Water and Carbon Cycles Group of JPL’s Science
Division. He received the Bachelor of Electrical Engineering degree (co-operative plan with highest
honors) from the Georgia Institute of Technology, Atlanta, Georgia in 1983, the M.S. degree in numer-
ical science from Johns Hopkins University, Baltimore, Maryland, in 1985, and the M.S. and Ph.D.
degrees in electrical engineering from the University of Michigan, Ann Arbor, Michigan, in 1986 and
1991, respectively.

Dr. McDonald has been employed in the Science Division, Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, since 1991, and is currently a Research Scientist in the Water and
Carbon Cycles Group. He specializes in electromagnetic scattering and propagation, with emphasis
on microwave remote sensing of terrestrial ecosystems. His research interests have primarily involved
the application of microwave remote sensing techniques for monitoring seasonal dynamics in boreal
ecosystems, as related to ecological and hydrological processes and the global carbon and water cycles.
Recent activities have included development of radar instrumentation for measuring sea ice thickness
from airborne platforms. Dr. McDonald has been a Principal and co-investigator on numerous NASA
Earth Science investigations. He is a member of NASA’s North American Carbon Program (NACP)
science team, NSF’s Pan-Arctic Community-wide HydrologicalAnalysis and Monitoring Program (Arctic-
CHAMP) Science Steering Committee, and the ALOS PALSAR Kyoto and Carbon Initiative science
panel.

CHAPTER 14

Juha Hyyppä received his Master of Science, the Licentiate in Technology, and the Doctor of Technology
degrees from the Helsinki University of Technology (HUT), Faculty of E.Eng., all with honors, in 1987,
1990, and 1994, respectively. He has been Professor and Head of the Department at the Finnish Geodetic
Institute since 2000. He has docentship in space technology especially in remote sensing (HUT, E.E., 1997–),
in laser scanning (HUT, Surveying, 2004–), and in remote sensing of forests (Helsinki University, 2005–).
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He has been Earth Observation Programme Manager at National Funding Agency Tekes, responsible
for the coordination of national and international (ESA and EU) remote sensing activities of Finland,
Finnish adviser to ESA Earth Observation Programme Board, and to ESA Potential Participant Meetings
(1994–1995), coordinator of the Design Phase of the National Remote Sensing Programme (1995),
President of EuroSDR Com II (information extraction) 2004–2010, co-chair to ISPRS WG III/3 2004–2008,
Vice-President of ISPRS Com VII 2008–2012, and Principal Investigator in ESA/NASA Announcement
of Opportunity studies and coordinator for more than 10 international research projects. His references are
represented by over 200 scientific/technical papers (more than 100 refereed papers). His personal hobby
is the development of retrieval methods for laser-assisted individual tree based forest inventory together
with Finnish industry.

Wolfgang Wagner received the Dipl.-Ing. degree in physics and the Dr.techn. degree in remote sensing,
both with excellence, from the Vienna University of Technology (TU Wien), Austria, in 1995 and 1999
respectively. He received fellowships to carry out research at the University of Bern, Atmospheric Envi-
ronment Service Canada, NASA Goddard Space Flight Center, European Space Agency, and the Joint
Research Centre of the European Commission. From 1999 to 2001 he was with the German Aerospace
Agency. In 2001 he was appointed Professor for Remote Sensing at the Institute of Photogrammetry and
Remote Sensing of TU Wien. Since 2006 he has been the head of the institute. In the period 2008–2012
he is the president of ISPRS Commission VII (Thematic Processing, Modeling and Analysis of Remotely
Sensed Data). His main research interests lies in geophysical parameter retrieval techniques from remote
sensing data and application development. He focuses on active remote sensing techniques, in particular
scatterometry, SAR and airborne laser scanning. He is a member of the ScienceAdvisory Groups for SMOS
and ASCAT and committee Chair of the EGU Hydrologic Sciences Sub-Division on Remote Sensing and
Data Assimilation. Since December 2003 he has been the coordinator of the Christian Doppler Laboratory
for ‘Spatial Data from Laser Scanning and Remote Sensing’.

Markus Hollaus, born in 1973, finished his studies of land and water management and engineering at the
University of Natural Resources and Applied Life Sciences (BOKU), Vienna, in March 2000. During his
studies he received a fellowship to study at the Norwegian University of Science and Technology (NTNU)
in Trondheim, Norway. From 2001 to 2003 he was a research scientist at the Institute of Surveying, Remote
Sensing and Land Information at the BOKU. He was involved in several remote sensing and GIS projects
with the focus on land use/cover classification and change. From 2004 to 2008 he was research scientist at the
Institute of Photogrammetry and Remote Sensing (TU – Vienna) and also worked for the Christian Doppler
Laboratory on ‘Spatial Data from Laser Scanning and Remote Sensing’. He received the Dr.techn. (Ph.D.)
degree in November 2006 with the thesis ‘Large scale applications of airborne laser scanning for a complex
mountainous environment’. Since 2009 he is university assistant at the Institute of Photogrammetry and
Remote Sensing at the TU Vienna. The focus of his work is the derivation and modeling of vegetation
parameters from airborne laser scanner data and aerial photographs and the classification of 3D point clouds
using full-waveform airborne laser scanner data.

Hannu Hyyppä received his Master of Science, the Licentiate in Technology, and the Doctor of Technology
degrees from the Helsinki University of Technology (HUT), Faculty of Civil Engineering, in 1986, 1989,
and 2000, respectively. He has a docentship at HUT. Currently, he is post-doctoral fellow of the Academy
of Finland in the Department of Surveying, at the Institute of Photogrammetry and Remote Sensing,
Helsinki University of Technology. Previous employment include Research Fellow, Research Scientist and
Assistant Coordinator, part-time R&D director of DI_Ware Oy, part-time president of UbiMap Oy, Project
Manager, Development and Planning Engineer at Consulting Company Plancenter Ltd, Assistant, Senior
Assistant, and Junior Fellow of the Academy of Finland and Research Scientist at the Laboratory of Road
and Railway Engineering of the Department of Civil Engineering and Surveying at the HUT. He has 18
years of work experience in the research of civil and environmental engineering and geoinformatics. His
references are represented by over 100 publications in the fields of civil and environmental engineering
and geoinformatics, including more than 20 scientific refereed publications. His interests include the use
of laser scanning and geoinformatics in new applications in built environment.

CHAPTER 15

Gabriela Schaepman-Strub obtained her Ph.D. degree in natural sciences from the University of Zurich,
Switzerland, in 2004. In 2001, she was a guest researcher at the Department of Geography, Boston
University. She obtained a post-doctoral fellowship for prospective researchers from the Swiss National
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Science Foundation in 2005 and was an external post-doctoral fellow of the European Space Agency
(2005–2007) at Wageningen University, the Netherlands. She is currently affiliated with the Nature
Conservation and Plant Ecology Group and the Centre for Geo-information at Wageningen University.
Her experience include performing and analyzing field spectrometer and goniometer measurements of
vegetation canopies, reflectance product terminology, albedo analysis of tundra areas in Northern high
latitudes, and plant functional type related analysis in highly dynamic (e.g., floodplain) and vulnerable (e.g.,
peatland) ecosystems. Her main interests lie in linking advanced vegetation products with dynamic vege-
tation models, and investigating remote sensing based land surface albedo products for climate modeling
applications.

Michael E. Schaepman (see Chapter 12).

John Martonchik obtained the Ph.D. degree in astronomy from the University of Texas at Austin, in 1974.
He joined NASA’s Jet Propulsion Laboratory in 1972 and is currently in the Multi-angle Imaging element of
the Earth and Space Sciences Division with the title of Research Scientist. His experience include analyzing
telescopic and spacecraft observations of planetary atmospheres, laboratory and theoretical studies of
the optical properties of gaseous, liquid, and solid materials, and development and implementation of
1- and 3-dimensional radiative transfer and line-by-line spectroscopy algorithms for studies of planetary
atmospheres and Earth tropospheric remote sensing. He has been involved in several NASALand Processes
programs including Remote Sensing Science, FIFE, and BOREAS and is presently the Aerosol/Surface
product algorithm scientist for the EOS MISR experiment.

Thomas Painter is Assistant Professor of Geography and Director of the Snow Optics Laboratory at the
University of Utah, Salt Lake City. He is also Affiliate Research Scientist with the National Snow and Ice
Data Center and Western Water Assessment of the University of Colorado, Boulder. His research focuses
on radiative, hydrologic, and climatic forcings of dust and soot in snow and ice, alpine surface radiation,
multispectral and hyperspectral remote sensing of snow physical properties, snowmelt hydrology, snow
radiative properties, integration of remote sensing and distributed snow models, dust source mapping, and
robotic goniometry. He is currently a member of the GOES-R cryosphere team, developing the fractional
snow cover algorithm for the next generation geostationary satellite. His research on radiative and climate
effects of dust in snow has been the subject of stories on National Public Radio, Reuters, The Weather Chan-
nel, and myriad articles in the domestic and international media. He is a member of the AGU Cryospheric
Executive Committee and the AGU Hydrology Remote Sensing Technical Committee. His memberships
in professional organizations include the American Geophysical Union, the European Geophysical Union,
International Glaciological Society, and the Western Snow Conference.

Stefan Dangel obtained his Ph.D. degree in physics from the University of Zurich in 1997, specializing
in quantum optics and nonlinear dynamics of pattern formation. His research interests include nonlin-
ear wave propagation in low frequency seismology with applications for the oil and gas industry as
well as spectro-directional effects, BRDF retrieval for field and laboratory goniometer measurements
and goniometer measurement intercomparison in the field of remote sensing. He has contributed to ESA’s
SPECTRA mission as principal investigator for the development of a SPECTRA, end-to-end simulator.
He also obtained a Master’s degree in music. His current focus is on teaching mathematics, physics and
bassoon.

CHAPTER 16

Freek van der Meer has an M.Sc. in structural geology and tectonics of the Free University of Amster-
dam (1989) and a Ph.D. in remote sensing from Wageningen Agricultural University (1995) both in the
Netherlands. He started his career at Delft Geotechnics (now Geodelft) working on geophysical processing
of ground penetrating radar data. In 1989 he was appointed lecturer in geology at the International Institute
for Aerospace Surveys and Earth Sciences (ITC in Enschede, the Netherlands) where he has worked to date
in various positions (presently Professor and Chairman of the Earth Science Department). His research
is directed toward the use of hyperspectral remote sensing for geological applications. In 1999, Dr. van
der Meer was appointed full professor at the Delft University of Technology. In 2004, Dr. van der Meer
was appointed adjunct professor at the Asian Institute of Technology in Bangkok (Thailand). In 2005 he
was appointed Professor in Geological Remote Sensing at the University Utrecht. Professor van der Meer
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published over 100 papers in international journals, authored more than 150 conference papers and reports,
has supervised over 50 M.Sc. projects and graduated eight Ph.D. candidates. He is the past chairman of
the Netherlands Society for Earth Observation and Geoinformatics, chairman of the special interest group
geological remote sensing of EARSeL, member of the Royal Netherlands Academy of Sciences, Associate
Editor for Terra Nova, editor for the International Journal of Applied Geoinformation Science and Earth
Observation, editor for the Netherlands Journal of Geosciences, and editor of the Remote Sensing and
Digital Image Processing Series of Springer.

Harald van der Werff received his M.Sc. degree in geology from Utrecht University. Thereafter he worked
as a researcher at the German Space Organization DLR in Oberpfaffenhofen in the spectroscopy group led
by Andreas Mueller. In 2001 he joined ITC as a Ph.D. candidate working on the development of spectral-
spatial contextual image analysis techniques. He received his Ph.D. in 2006 from the University of Utrecht
on a thesis entitled ‘Knowledge based remote sensing of complex objects’. To date Dr. van der Werff works
as an Assistant Professor at ITC. His research interests are on (geological) hyperspectral remote sensing
and on the integration of spectral and spatial information of remotely sensed images. Current research is
on airborne detection of hydrocarbon spills from pipelines and geological interpretation of hyperspectral
data (OMEGA, CRISM) from Mars by segmentation and landform analysis.

Steven M. de Jong is Professor in Physical Geography with emphasis on land degradation and remote
sensing at the Faculty of Geosciences of Utrecht University since 2001. From 1998 to 2001 he was head
of the Centre for Geo-information and Remote Sensing of Wageningen University. De Jong is chair-
man of the research school Centre for Geo-ecological Research (ICG) and research director of Physical
Geography, Utrecht. From 1995 to 1996 he worked as a visiting scientist at NASA’s Jet Propulsion
Laboratory in Pasadena and conducted research to applications of NASA’s Airborne Visible Infrared
Imaging Spectrometer (AVIRIS). In 1997, 1998, and 2001 de Jong was Principle Investigator of sev-
eral experimental campaigns investigating the usefulness of imaging spectrometers (DAIS7915, HyMap)
for environmental applications in France and Spain. From 1998, to 2001 he was leader of a project
investigating the use of SPOT-XS and IKONOS imagery for urban mapping in Burkina Faso. In 1994
he completed his Ph.D. thesis ‘Soil Erosion Modelling using Hyperspectral Images in Mediterranean
Areas’. De Jong is a member of the editioral board of Remote Sensing and Digital Image Processing
book series (Kluwer) and of the International Journal of Applied Earth Observation and Geo-information
(Elsevier).

CHAPTER 17

Chris J. Johannsen is a Professor Emeritus of Agronomy and Director Emeritus of the Laboratory for
Applications of Remote Sensing (LARS) at Purdue University. His research has related to remote sensing
and GIS applications for precision farming, soil pattern influences on reflectance, spatial-spectral-temporal
resolution impacts and land degradation. He is co-editor of a book titled Remote Sensing for Resource Man-
agement, contributor to 16 book chapters and author or co-author of over 260 papers and articles. He served
as International President of the Soil and Water Conservation Society in 1982–1983. Dr. Johannsen was
responsible for the collection of ground reference information at LARS (1966–1972), continued research
involving uses of reference information at the University of Missouri – Columbia (1972–1984) and resumed
research, education, and outreach responsibilities for LARS as Director (1985–2003). He has received much
recognition for his work including Fellow of five professional societies. Recently, he received the pres-
tigious Hugh Hammond Bennett Award from the SWCS for his work on spatial technologies relating to
studying land degradation.

Craig S. T. Daughtry is a Research Agronomist in the USDA-ARS Hydrology and Remote Sensing
Laboratory in Beltsville, Maryland, USA. His research has focused on measuring and modeling the spectral
reflectance of crops and soils. Daughtry joined the Laboratory ofApplications of Remote Sensing (LARS) at
Purdue University in 1976 and made significant advancements in integrating remotely sensed data into crop
growth and yield models.After joiningARS in 1987, he has developed innovative techniques for measuring
optical properties of leaves, increasing sampling efficiency, and managing the spatial variability of crops and
soils. He also pioneered the use of fluorescence and shortwave infrared technologies to estimate crop residue
cover for quantitatively assessing conservation tillage practices and tracking carbon sequestration. He is
author or co-author of over 180 papers and articles. He has served on various committees of American
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Society of Agronomy and editorial boards of Photogrammetric Engineering and Remote Sensing and
Agronomy Journal.

CHAPTER 18

James W. Merchant is Professor in the School of Natural Resources, University of Nebraska-Lincoln
(UNL) and is Director of UNL’s Center for Advanced Land Management Information Technologies
(CALMIT). Dr. Merchant received a B.A. in geography from Towson University, Baltimore, Maryland,
and both the M.A. and Ph.D. in geography from the University of Kansas. His research has focused upon
(1) development of strategies for large-area land cover characterization using digital multispectral satellite
data, (2) spatial and contextual analysis of digital images, and (3) applications of geographic information
systems in management of natural resources. Dr. Merchant was recipient of the 1999 Outstanding Contri-
butions Award presented by the Nebraska GIS/LIS Association and the 1998 Outstanding Achievements
Award conferred by the Remote Sensing Specialty Group of the Association of American Geographers.
In 1997 he was honored with the John Wesley Powell Award that recognizes significant achievements
in contributing to the research of the US Geological Survey. From 2000–2007 Dr. Merchant served as
Editor of Photogrammetric Engineering and Remote Sensing, the journal of the American Society for
Photogrammetry and Remote Sensing (ASPRS).

Sunil Narumalani is a Professor in the School of Natural Resources, and Associate Director of the Center
for Advanced Land Management Information Technologies (CALMIT), University of Nebraska, Lincoln
(UNL). He received his Ph.D. in geography from the University of South Carolina in 1993. Dr. Narumalani
teaches courses in remote sensing (digital image analysis), introductory and advanced geographic informa-
tion systems. His research focuses on the use of remote sensing for the extraction of biophysical information
from satellite data and aircraft multispectral scanner systems, integration of geospatial data sets for ecologi-
cal and natural resources mapping and monitoring, and the development of new image analyses techniques.
Some of Dr. Narumalani’s recent research has been on using remote sensing and GIS for the assessment of
coral reefs and seagrasses off the coast of Florida and in the Caribbean. Over the past several years he has
also been involved with projects pertaining to homeland security and military applications of geospatial
technologies including the development of workshops for military intelligence units, integration of geospa-
tial technologies for the National Guard, and initiating operational geographic databases for the Nebraska
Emergency Management Agency (NEMA). Dr. Narumalani is also the Geography Program Coordinator
at UNL.

CHAPTER 19

John R. Jensen is a Carolina Distinguished Professor in the Department of Geography at the University of
South Carolina (USC). He majored in physical geography, cartography, and remote sensing at California
State University, Fullerton, 1971 (B.A.); BreghanYoung University, 1972 (M.A.); and UCLA, 1976 (Ph.D.).
While at UCLA, he was trained in photogrammetry at Aero Service, Inc. In 1977, he accepted a profes-
sorship at the University of Georgia. In 1981, he went to USC and helped in developing the Ph.D. in
GIScience. Dr. Jensen has mentored 60 M.S. and 28 Ph.Ds. His research focuses on: (a) remote sensing
of wetland resources and water quality, (b) development of algorithms to classify land cover and detect
change, and (c) the development of remote sensing-assisted decision support systems. Dr. Jensen was
President of ASPRS in 1996. He has published >120 remote sensing articles. He was a co-author of
ASPRS’ Manual of Remote Sensing (1st and 2nd editions) and Manual of Photographic Interpretation
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INTRODUCTION

Remote sensing can be termed a mature disci-
pline, in the sense that the underlying physical
principles are well understood, and applications
are beginning to appear in operational contexts
spanning a diverse array of applications. In addi-
tion, the supporting technology has evolved to
the extent that image acquisition, field work, and
digital analysis are today much more sophisti-
cated than in the early days of analog imaging,
computer mainframe-based processing, and qual-
itative analysis. However, with the wide range of
remotely sensed data that is now available, the
rapid and continued advances in the power and
storage capacity of modern desktop computers,
and the sophistication of the many software pack-
ages available, remote sensing is far from a static
field. Indeed, the last decade has seen the develop-
ment of commercial fine resolution remote sensing
from space (Toutin, in this volume), the expo-
nential growth of lidar (also known as airborne
laser scanning) (Hyyppä et al., in this volume),
and the increasing sophistication and automation
of image processing, to name just a few examples.
This rapid evolution of remote sensing technol-
ogy suggests that there is a need for a periodic
and relatively comprehensive review of the field of
remote sensing. This book is an attempt to address
that need.

In this introductory chapter we lay the ground-
work for a theme that is common throughout many
of the chapters in this book, namely, the trade-offs
and issues that should be considered in select-
ing data for a specific problem. For example, in
Chapter 25 Wulder et al. consider data selection
within the context of vegetation characterization,
and in Chapter 31, Crews and Walsh review data
selection from the perspective of social scien-
tists. This introductory chapter provides a broad
perspective on this important topic.

Ironically, selecting data is today more chal-
lenging than in the past, a consequence of the
wide range of data currently available. In the
past, few remotely sensed data sets were available,
and consequently the properties of the available
data tended to determine the nature of the prob-
lems that could be addressed. Thus, an important
part of early remote sensing research using the
Earth Resources Technology Satellite (ERTS, later
renamed Landsat) was simply to ask the question,
‘What can we do with these new data?’ Today, we
have a vast array of data to select from in remote
sensing, and so a new problem has emerged – how
do we optimize the data characteristics that we use,
so that the data will most effectively address a par-
ticular application or research problem? It should
thus be clear that the definition of an optimal data
set is entirely dependent on the aims of the project
for which the data are intended.
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Adding to the complexity of choosing data
attributes are three related issues. Firstly, there
are fundamental physical and engineering trade-
offs that limit the nature and detail of the data that
can be collected using an imaging system (Kerekes,
in this volume; Figure 1.1). These constraints help
explain the design choices made in satellite-borne
sensors, and likewise need to be considered by
those planning their own custom acquisitions of
aerial imagery (Stow, in this volume).

A second issue that makes selecting the appro-
priate data for a project complex is that, just as too
little data will likely reduce quality of the analysis,
data with too much detail may also have a negative
effect (Latty et al. 1985). It is intuitive that too much
spatial detail can be burdensome for a computer-
based analysis, and the same principle applies to

other components of imagine information, includ-
ing the spectral, radiometric, and temporal scales of
the data. For example, Hughes (1968) showed that
an excessive number of spectral bands can lead to
lower classification accuracy, an observation that
is known as the Hughes phenomenon (Swain and
Davis 1978).

The last issue, perhaps the most important of the
three, is the need to match the scale of the analysis
to the scale of the phenomena under investigation
(Wiens 1989). Inferences drawn from an analysis at
one spatial scale are not necessarily valid at another
scale, an issue known in ecology as cross-level
ecological fallacy (Robinson 1950, Alker 1969).
In geography, the dependence of observed patterns
on how data are aggregated is known as the mod-
ifiable areal unit problem (MAUP, Openshaw and

Figure 1.1 Given a limited bandwidth for image acquisition, storage, and communication,
trade-offs have to be made regarding the spatial, spectral, and temporal scale of the imagery
that can be acquired. Radiometric scale (not shown) is also important. (See the color plate
section of this volume for a color version of this figure).
Source: Figure reproduced from T. Key, T. Warner, J. McGraw, and M. A. Fajvan, 2001. A comparison
of multispectral and multitemporal imagery for tree species classification. Remote Sensing of
Environment 75: 100–112.
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Taylor 1979, Openshaw 1983, 1984). The MAUP
has two components (Jelinsky and Wu 1996):

• The scale problem, which focuses on how results
may vary as the size of the aggregation units
(pixels, in the typical remote sensing analysis)
varies.

• The zoning (or aggregation) problem, which
focuses on how the results may vary as the shape,
orientation and position of the units vary, even as
the number of aggregation units is held constant.

In remote sensing, attention has usually focused
on the MAUP scale problem, and less attention has
been applied to the zoning problem (for an excep-
tion, see Jelinsky and Wu 1996), because most
pixels are assumed to represent a similar, approx-
imately square shape. However, NOAA Advanced
Very High Resolution Radiometer (AVHRR)
Global Area Coverage (GAC) data is produced
by aggregating a linear-oriented subset of finer
scale Local Area Coverage pixels (Justice and
Tucker, in this volume), thus potentially open-
ing the GAC data to zoning problems. Clearly,
both scale and zoning MAUP problems are poten-
tially present when ancillary vector-derived data
are used in a remote sensing analysis (Merchant
and Narumalani, in this volume).

Woodcock and Strahler (1987) provide a useful
remote sensing conceptual framework that catego-
rizes images based on the size of the pixels relative
to objects in the scene. Thus an H-resolution image
has pixels small enough to resolve objects or phe-
nomena of interest in the scene. In contrast, in
an L-resolution image, the pixels are too large
to resolve the individual objects. However, most
scenes have objects at a variety of scales, and there-
fore it may be more useful to refer to H- and
L-resolution image elements, both of which are
likely to be present in any one image (Ferro and
Warner 2002).

Central to the ideas presented so far is the con-
cept of scale (Quattrochi and Goodchild 1997,
Walsh et al. 1997, 2003, Marceau and Hay 1999,
Spiker and Warner 2007). Landscape ecology rec-
ognizes scale as having two attributes: grain and
extent (Turner et al. 2001). Although there are
numerous definitions of these terms, for our pur-
poses we will define grain as the finest level of
measurement, the degree of detail, or the sam-
pling unit.An example of grain is the instantaneous
field of view (IFOV) of the sensor, which in
turn is related to the ground sampling distance
or ground resolution element, depending on the
context. (Although pixel size is not as precise a
term, for simplicity we will use it to represent
the concept of ground sampling distance in this
chapter.) Extent can be defined as the range over

which measurements are made, for example, the
area represented in an imaged scene. Grain and
extent tend to be inversely related, simply because
the total amount of data that can be collected is
usually constrained.

Even though the examples given here draw on
image spatial properties, the term scale is often also
applied to the three other attributes of image data
already referred to, namely the spectral, radiomet-
ric, and temporal properties. Although scale is a
common thread in this chapter, it is important to
note that it is not the only attribute that is important
in selecting data to address a particular problem.

The remainder of this chapter is organized in
seven major sections. Following this general intro-
duction, we discuss factors that influence the opti-
mal characteristics of each of the four major types
of image properties: spatial, spectral, radiometric,
and temporal. We then present some examples of
the interactions and trade-offs between the indi-
vidual types of major image properties, before
considering some broader, more general issues.
In the concluding sections, we look to the future
to discuss challenges and opportunities on the
horizon.

SELECTING IMAGES WITH OPTIMAL
SPATIAL PROPERTIES

Scale and image spatial properties

The concept of scale is particularly useful for dis-
cussing image spatial properties (Cao and Lam
1997, Marceau and Hay 1999). For example, the
section in this book on satellite-borne sensors is
partly organized along the lines of pixel size. Thus,
we have chapters on fine (Toutin, in this vol-
ume), moderate (Goward et al., in this volume),
and coarse spatial resolution (Justice and Tucker,
in this volume) sensors. However, the challenges
that the authors of these chapters faced, both in
arriving at these terms, and in using them con-
sistently, suggests that meaning of scale varies
greatly depending on the focus of the analysis,
and perhaps also the historical context of the time.
Thus, despite its name, the Advanced Very High
Resolution Radiometer (AVHRR), with 1.1 km
pixels, is grouped in this book with coarse re-
solution sensors. The Landsat Enhanced Thematic
Mapper Plus (ETM+), which we treat as a mod-
erate resolution sensor, has also been termed a
fine spatial resolution sensor by some. Adding
complexity is the fact that many satellite-borne
sensors have bands of differing spatial resolution.
For example ASTER acquires data in three bands
with 15 m pixels, six bands with 30 m pixels, and
five bands with 90 m pixels. It is apparent that
spatial resolution of modern satellite sensors fall
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Table 1.1 Image spatial resolution
categories

Pixel Spatial Example satellite-borne
size (m) resolution sensors

<1 very fine WorldView
1–10 Fine IKONOS
10–100 Moderate ASTER, AWIFS, ETM+, MSS, SPOT
100–1000 Coarse MODIS, MERIS
>1000 Very coarse AVHRR, GOES, METEOSAT

along a continuum, and therefore attempts to label
sensors by simple spatial resolution descriptors
is inherently arbitrary. Nevertheless, to minimize
confusion, we have attempted throughout this book
to standardize as far as possible on the terms
summarized in Table 1.1.

Although often used interchangeably, spatial
resolution and pixel size are not strictly speaking
equivalent. This is because pixel size refers to the
sampling frequency, and not the ground resolution
element or sampling area. Thus, for example, the
Landsat MultiSpectral Scanner (MSS) oversam-
pled data along the scan line, producing pixels
that are smaller than the ground resolution ele-
ment. In addition, spatial resolution is dependent
on the spectral radiometric properties of both the
object being resolved, and the background against
which it is being resolved. Generally, a higher spec-
tral radiometric contrast between an object and its
background will result in a higher apparent spatial
resolution. At the one extreme, an object with no
contrast against the background is not resolvable,
irrespective of its size. At the other extreme, it is
potentially possible to detect the presence of a sin-
gle, bright object that is much smaller than a pixel,
as long as the object is surrounded by a much darker
background. However, for this latter example, it is
not normally possible to predict where in the pixel
that object occurs, so in that sense, the resolution
is ultimately limited by the pixel size. Neverthe-
less, because of mixed pixels, and the low contrast
of most Earth scenes, objects generally need to be
multiple times the size of a single pixel before they
are large enough to be discerned as distinct spatial
features.

A more precise way of specifying resolution is
the modulation transfer function (MTF). This is a
specification of how contrast in the scene is repre-
sented in (‘transferred to’) the image. To measure
MTF, a test signal of multiple bars of defined con-
trast, and varying spatial frequency (width of the
bars), is imaged, normally in a laboratory setting.
The contrast in the resulting image, at each of
the various spatial frequencies, is then measured
as a proportion of the original contrast. A similar
measure is the point spread function (PSF), which
characterizes how a point signal is blurred when
it is measured by the sensor (Huang et al. 2002).

Blurring results from the effects of the atmosphere,
the sensor optics and electronics, and image resam-
pling. Because of blurring, the information in a
pixel usually includes a component from neighbor-
ing pixels (Zhang et al. 2006). Huang et al. (2002)
have shown how modeling of the PSF can be used
to reduce this adjacency effect, and thus improve
the overall fidelity of the image.

In real images, quantifying spatial resolution
requires identification and exploitation of natu-
ral boundaries between features in the image.
Tarnavsky et al. (2004) used the full-width-half-
maximum (FWHM) of the line spread function
(LSF), derived from the study of the edges of
objects in the image, to compare the spatial fidelity
of scanned aerial film, and digital aerial images.

Image spatial extent and pixel size are generally
inversely related. Thus, spatial resolution generally
limits the potential extent of the scene. For exam-
ple, it is possible to collect a global set of near
cloud-free Landsat 7 ETM+ imagery, with 30 m
pixel size, on a seasonal basis (Goward et al., in
this volume). However, MODIS with 250 m visible
and near infrared (NIR) pixels, can provide weekly
global composites of nearly cloud-free imagery
(Justice et al. 2002). In contrast, despite almost a
decade of data collection by multiple commercial
companies, there is as yet no fine spatial resolution
global data set.

Choosing an optimal spatial scale

What is the optimal spatial resolution for a partic-
ular project? As already mentioned, it is important
to clarify the interpretation objective of a project,
before this question can be addressed. If the aim
is to map the location of discrete objects, or the
overall spatial patterns in an image data set, then
methods that estimate optimal resolution based on
finding the pixel size with the maximum local vari-
ation have been shown to be very effective. For
example, Woodcock and Strahler (1987) related the
graph of local variation plotted against pixel size
to the average size of objects in an image. Vari-
ograms, which characterize the variability between
measurements as a function of distance between
those measurements (Jupp et al. 1989), have a par-
ticularly rich theoretical underpinning (Matheron
1971, Journel and Huijbregts 1978, Jupp et al.
1988). Variograms have been used to identify opti-
mal distances between field measurements and the
optimal pixel size (Hyppänen 1996, Atkinson and
Curran 1997). An alternative measure, lacunarity,
which is based on fractal theory, is useful for identi-
fying multiple scales in an image (Butson and King
2006).

If the aim is to map the size and spatial extent of
individual objects or regions, then it is important
to have a pixel size much smaller than the distance
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calculated for optimal sampling, as described
above. However, if the resolution becomes too fine,
unwanted spatial detail will likely be resolved in
the image, and, at least using conventional image
analysis techniques, classification accuracy may be
lower (Latty et al. 1985). On this basis, the optimal
resolution has been defined as the scale that min-
imizes variance within the classes to be mapped
(Marceau et al. 1994). An important consequence
of this definition is that the optimal scale is there-
fore likely to be class-dependent (Marceau et al.
1994).

Hengl (2006) provides a thorough overview of
the issues associated with choosing an optimal
scale. He recommends a scale that is a compromise
between the coarsest legible scale, which respects
the scale and properties of the dataset; and the finest
legible scale, which preserves at least 95% of the
object or scene variability (Hengl 2006). McCloy
and Bøcher (2007) extend Woodcock and Strahler’s
(1987) local variance concept to show how a graph
of average local variance (AVL) can help pre-
dict a scale that minimizes within class variance,
and thus optimizes the accuracy of subsequent
classifications.

Image geometric properties

Another issue that should be considered in select-
ing data is the quality of the georeferencing to a
cartographic projection. High quality georeferenc-
ing is generally expensive. For an image acquired
from a nadir-viewing sensor, a simple polyno-
mial warp that does not include terrain correction
may be sufficient, and if local map control at a
sufficient scale is available, can be applied rou-
tinely. Topographically induced image distortion
increases with increasing angle away from nadir, as
does the distortion of the shape and size of the pixel.
Thus, with sensors that have a pointing capability,
the view angle is an important variable to consider
in selecting data. However, the increasing sophis-
tication and availability of automated photogram-
metric software makes it potentially possible for
non-specialists to generate high quality orthorecti-
fications, although the procedure remains relatively
complex.

The quality of the image geometric properties
is particularly important for multi-temporal analy-
sis. Even a 0.2 pixel misregistration can cause as
much as 10% error in the estimate of the change in
spectral values, depending on the heterogeneity of
the scene (Townshend et al. 1992). The quality of
georeferencing is also important for change detec-
tion derived from object-based classification. In
object-based classification, pixels are first grouped
into so-called image objects, which are then clas-
sified as a single unit (Jensen et al., in this vol-
ume). In a series of experiments on the effects of

misregistration on object-based change detection,
Wang and Ellis (2005) found change detection error
increased with increased positional error, increased
landscape heterogeneity, and finer change detection
resolution (the local region over which change is
identified). The relationships between these vari-
ables were summarized using regression, and then
used to calculate an optimal change detection reso-
lution, based on a desired degree of accuracy (Wang
and Ellis 2005).

SELECTING IMAGES WITH OPTIMAL
SPECTRAL PROPERTIES

Scale and image spectral properties

When the concept of scale is applied to spectral
properties, spectral grain can be used to refer to
the wavelength interval, or width, of the spectral
bands. Multispectral sensors, with a coarse spectral
grain, have bands that span hundreds to thousands
of nm. The spectral extent can be used to describe
the spectral wavelength region encompassed by the
bands (e.g., many optical sensors operate in the vis-
ible and near-infrared spectral region), and the total
number of bands. The definition of hyperspectral
data, which usually emphasizes the number, width
and contiguity of the spectral bands (Schaepman,
in this volume), thus encompasses the concepts of
both spectral grain and extent.

The specific location and width of spectral bands
can be very important for subsequent analysis. For
example, Teillet et al. (1997) show that normal-
ized difference vegetation index (NDVI) values are
not necessarily comparable between satellites with
different spectral properties, even if the data are
atmospherically corrected and radiometrically cal-
ibrated. The width and location of the red band
used in the NDVI calculation is particularly impor-
tant, and should ideally be less than 50 nm wide
(Teillet et al. 1997). Thus the spectral grain of
Envisat Medium Resolution Imaging Spectrome-
ter (MERIS) appears to be more appropriate for
NDVI work than either the Landsat TM or SPOT
HRV sensors (Teillet et al. 1997).

The choice between using multispectral and
hyperspectral data has important ramifications for
the range of information extraction routines that
are appropriate for subsequent analysis. Multi-
spectral analysis techniques tend to use data from
within the scene to develop empirical models and
classifications. Obtaining sufficient reliable within-
scene training data can be a major challenge with
multispectral analyses. In addition, the spectral sep-
arability of the classes of interest may be limited
with multispectral data.

Hyperspectral analysis techniques often employ
methods that are not premised on requiring
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in-scene knowledge. For example, hyperspectral
methods may employ theoretical biophysical mod-
els, or draw on spectral libraries for classification
(Chen and Campagna, in this volume). Spectral
libraries consist of high quality spectra, usually
acquired under laboratory conditions, which are
assumed to represent material classes over wide
areas. A number of extensive mineralogical spec-
tral libraries are available in the public domain
(for example, Clark et al. 2003); more recently
an urban land cover library has been developed
(Herold et al. 2003). The availability of spectral
libraries for vegetation tends to be more limited,
because of the phenological and environmental
variation in vegetation properties limit the general-
ization that can be achieved. One of the difficulties
in exploiting library spectra is that scaling from
small laboratory samples and field spectrometer
measurements to pixels, is complex (Baccini et al.
2007).

Choosing the optimal spectral bands

In the early days of digital image processing of
remotely sensed data, limited computing power
made it attractive to select only the most useful
bands for classification. This constraint has largely
fallen away with the steady improvement in com-
puting power. Nevertheless band reduction is still
often desirable, especially as advances in sensor
technology enable data acquisition in more bands.
The Hughes phenomenon (Hughes 1968, Warner
and Nerry 2008), which has already been referred
to above, is assumed to result from the increased
number of parameters needed to characterize the
distributions of training samples as the number of
bands increases. The effect of the Hughes phe-
nomenon is most likely classifier-dependent, and
indeed, support vector machines are thought to
be less susceptible to this problem (Melgani and
Bruzzone 2004).

The simplest way of selecting bands is to use
knowledge of the spectral properties of interest.
For example, in a vegetation application one might
select bands from the visible, NIR, and short wave
infrared (SWIR) to sample spectral regions influ-
enced by vegetation pigments, leaf structure, and
moisture status, respectively (van Leeuwen, in this
volume). In geological applications, one might
use spectral libraries to identify the wavelengths
associated with important diagnostic absorption
features of the minerals and rocks of interest (Chen
and Campagna, in this volume).

Avariety of automated and statistical approaches
have been proposed for selecting optimal sub-
sets of image bands that carry the most informa-
tion (Serpico and Moser 2007). One assumption
common to many band selection methods is that
highly correlated bands are redundant (Wiersma

and Landgrebe 1980, Miao et al. 2007). Using the
statistical method of principle component analysis
(PCA) (Jensen 2005), the axes of multidimensional
data can be rotated so that an n-band original
data set is transformed to n new orthogonal and
uncorrelated bands. The new bands are normally
ordered according to the proportion of the origi-
nal variance each new band explains. This strategy
generally works very well, with the first few princi-
ple components carrying most of the information,
and the remaining, low variance components gen-
erally dominated by noise. PCA is one of the most
widely-used general image analysis techniques,
having applications that go well beyond data com-
pression and band selection. The minimum noise
fraction (MNF) transformation (Green et al. 1988),
typically applied to hyperspectral data, is a cas-
caded sequence of PCA transformations in which
the noise is isolated and removed.

Despite the robustness of PCA, it is important
to be aware that this method uses correlated vari-
ance as a surrogate measure for information. In
situations where the signal of interest is not cor-
related across bands, but is instead isolated in a
narrow spectral absorption feature, PCA will not
be so useful. In addition, although highly corre-
lated bands are likely somewhat redundant, they
may nevertheless contain non-redundant infor-
mation that can be very useful for separating
subtle spectral differences (Warner and Shank
1997).

An alternative to this focus on covariance is data
transformations and band selections that specifi-
cally enhance the spatial patterns in the resulting
images. The spatial analog to PCA is multivari-
ate spatial correlation (MSC) (Wartenberg 1985),
which can be used to transform and compress
image data (Warner 1999). Comparisons of the
autocorrelation of ratios of image bands have also
been used to select individual bands, and combi-
nations of bands (Warner and Shank 1997). This
autocorrelation-based method of selecting bands
has been found not only to increase classification
accuracy, but also to result in classifications that
have higher autocorrelation, and thus potentially
more clearly defined spatial patterns (Warner et al.
1999).

Data fusion

Data fusion has been defined as:

a formal framework in which [there] are expressed
means and tools for the alliance of data originating
from different sources. It aims at obtaining infor-
mation of greater quality; the exact definition of
‘greater quality’ will depend upon the application.
(Wald 1999: 1191)
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Pohl and Van Genderen (1998) note that data fusion
can take place at three different levels in the image
processing chain of analysis:

1 At the pixel level, by combining raw image bands
of different sources.

2 At the feature level, by segmenting the images to
identify image objects, and combining the different
images in the context of each image object.

3 At the decision level, where each image is first ana-
lyzed separately, and then the derived information
is combined.

The attributes of the data that are combined
through data fusion could potentially cover any
individual or combinations of the four attributes of
scale: spatial, spectral, radiometric, and temporal,
as well as a combination of imagery with ancil-
lary data (Pohl and Van Genderen 1998). In this
section, which focuses on image spectral proper-
ties, the discussion will be limited to attempts to
increase the information content of a data set by
combining images of disparate wavelengths at the
pixel level (Briem et al. 2002). Subsequently, in the
section on interactions between the different scale
components, pan-sharpening using multi-spatial
resolution data fusion will also be discussed.

The underlying rational for multi-wavelength
data fusion is that different wavelength regions may
respond to different physical phenomena. Thus, for
example, a combined analysis of optical and syn-
thetic aperture radar imagery potentially can pro-
vide information about vegetation type, biomass,
structure, and water content (Hill et al. 2005).

Similarly, combining hyperspectral VNIR and
SWIR with multispectral thermal infrared (TIR)
data may allow the incorporation of temperature
or emittance variations in discrimination between
land cover units. For mineral mapping, SWIR
bands often provide an ability to discriminate
clays, whereas multispectral thermal bands are
valuable for separating silicate minerals (Chen and
Campagna, in this volume; Chen et al. 2007a).
However, the benefits of combining these disparate
wavelength regions varies greatly with classifica-
tion method used (Chen et al. 2007b), and for some
classifiers, the accuracy may actually decline when
disparate data are combined. This suggests that a
suitable approach for mineral discrimination may
sometimes be an expert system that adapts to the
spectral pattern of each pixel to draw on different
classifiers, using different wavelength intervals, to
classify each pixel independently.

The fusion of VNIR and SWIR data with multi-
spectral thermal data also holds promise for classi-
fication in the urban environment, especially for the
discrimination of different roof and road materials.
In a study of Strasbourg, France, it was found that

various combinations of four to six broad bands
from the visible, NIR and SWIR, together with
six multispectral TIR bands, resulted in higher
classification accuracy than with using 71 hyper-
spectral visible, NIR, and SWIR bands (Warner and
Nerry 2008). Unfortunately, there are currently no
planned medium or high spatial resolution thermal
satellite-based sensors, and therefore opportuni-
ties to exploit data fusion with TIR may remain
limited.

SELECTING IMAGES WITH OPTIMAL
RADIOMETRIC PROPERTIES

Scale and image radiometric properties

Radiometric resolution is arguably as important
as spatial, spectral, and temporal resolution, yet
does not seem to receive as much attention as
the other image attributes. When scale is applied
to radiometric properties, grain refers to the fine-
ness of the division between successive brightness
levels the sensor measures. Extent refers to the
range of brightness levels over which the sen-
sor can differentiate changes in radiance. A sen-
sor with a rather unusual radiometric extent is
the Operational Linescan System (OLS), which is
flown aboard the Defense Meteorological Satellite
Program (DSPM). The OLS is particularly sensi-
tive to a range of low light levels, which makes it
possible to detect illumination at night from street
lights (Henderson et al. 2003) and other sources of
illumination, such as fires and flares.

The number of bits over which the signal is
quantized can serve as an indicator of the radio-
metric grain. An eight-bit resolution (28, or 0–255
DN values) has been until recently a common
choice, partly because this data range corresponds
to the underlying structure of computer data stor-
age. Nevertheless, it is important to consider the
range of radiometric values actually filled (Malila
1985), as well as the noise in the data. Thus,
radiometric grain is perhaps more usefully char-
acterized as the minimum radiance change that
can be detected reliably. This change can be mea-
sured in radiance units, or as the signal-to-noise
ratio. The latter measure is normally defined as the
mean signal divided by the standard deviation of
the noise.Atkinson et al. (2007) have demonstrated
the utility of using land-cover-specific variograms
to estimate the signal-to-noise ratio based on the
relative variance of both the signal and noise. This
land-cover-specific measure of radiometric grain
emphasizes the importance of the scene context in
interpreting measures of noise.

Over time the radiometric range of data quantiza-
tion from available sensors has increased notably.
Tarnavsky et al. (2004) have shown that scanned
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color infrared aerial photographs have more noise
than Airborne Data Acquisition and Registration
(ADAR) 5500 multispectral images, which are
acquired using digital cameras. The original Land-
sat MSS sensor recorded just six bits of data,
although the data for the first three bands were
scaled non-linearly to provide an effective seven-
bit range (Goward et al., in this volume). In con-
trast, Landsat TM data is quantized over eight bits.
Malila (1985) used an analysis of entropy to show
the importance of this radiometric improvement in
increasing the information content compared to the
improvement in the number, width and location of
the spectral bands. On the other hand, Narayanan
et al. (2000) suggest that TM imagery can poten-
tially be compressed to as few as only four bits
per pixel, and still produce classifications that are
similar in accuracy to the original eight-bit data.

The commercial high resolution sensors of
IKONOS, Quickbird and OrbView are all quan-
tized with 11-bit data (Toutin, in this volume).
Nevertheless, purchasers of these data sets are
offered degraded 8-bit versions of the data, perhaps
reflecting legacy software or limited hardware and
software available to some purchasers. Based on
the personal experience of the authors, one of the
advantages of the higher radiometric resolution of
the commercial sensors appears to be the increased
information content in dark areas of the images,
especially shadows.

Radiometric normalization and
calibration

Many image analysis procedures can be under-
taken with images in DN format. However, some
change detection techniques and most biophysical
transformations (e.g. vegetation indices) require
normalization or calibration to radiance units or
equivalent reflectance (Teillet et al. 1997, Song
et al. 2001). For example, conversion to reflectance
is particularly important for hyperspectral data,
especially if the imagery is to be classified using
spectral libraries (Chen and Campagna, in this
volume). In comparing radiance and reflectance
measurements between sensors, and between field
spectrometers and remote imaging devices, it is
particularly important to define and consider the
geometric arrangement of the illuminating energy
and the observing sensor. Schaepman-Strub et al.
(in this volume) provide a comprehensive review
of the terminology and the relationships between
different types of spectral measurements.

Conversion to reflectance requires information
about the spectral sensitivity of the sensor, as
well as both solar illumination and atmospheric
transmission and scattering. The effect of topog-
raphy on illumination may be calculated if a suffi-
ciently detailed digital elevation model is available

(Warner and Chen 2001). However, the bidirec-
tional reflectance distribution function (BRDF), or
dependence of reflectance on the geometry on the
illumination and observation (Schaepman-Strub
et al., in this volume), varies between different
materials, and thus if a single BRDF model is
used to normalize topographic variations in an area
of varying land cover properties, the calculated
reflectances may have cover-dependent errors.

SELECTING IMAGES WITH OPTIMAL
TEMPORAL PROPERTIES

Scale and image temporal
properties

The application of the concept of scale to image
temporal properties is somewhat more complex
than in the spatial and spectral domains. Normally,
an image is acquired in a single, very short period
of time, which might be referred to as the temporal
scale extent. If only one image is considered, the
grain and extent are identical. On the other hand,
the concept of temporal scale is very useful for dis-
cussing multitemporal image archives, as well as
for characterizing change detection and time series
analyses. The temporal extent of an archive is quite
straightforward, and is the overall period of time
covered. However, the temporal grain can poten-
tially refer to two different attributes. In the case
of a series of individual images, the grain might
be the period between the image acquisition dates.
However, for coarse resolution data, single bands
are often generated on a pixel by pixel basis from
multiple sequential images, using algorithms that
minimize the effects of cloud. For such data, the
final image represents a multitemporal composite,
where each pixel has been individually selected
from the images acquired during the compositing
period (Holben 1986). Thus, at least for multi-
temporal composited data, grain could also refer
to the period of time over which the image data
have been integrated. For example, a composit-
ing period of a week or a month is often used to
generate some image data products (Justice et al.
2002).

Cloud-free multitemporal composites have been
found to be particularly useful for characteriz-
ing the annual pattern of ecosystem response to
annual weather patterns (Loveland et al. 1995).
For example, the date of onset of greenness, total
integrated greenness over time, and maximum
greenness, have been used to classify different
land cover classes. By extending such studies over
multiple years, apparent changes in climate have
been observed, including an earlier spring greenup
at high latitudes (Myneni et al. 1997, Delbart
et al. 2006). However, Schwartz et al. (2002) have
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cautioned that the integration of data over a week
or longer periods can result in uncertainty and bias
in the phenological trends identified.

For change detection studies, the temporal extent
of the available image archive constrains the period
over which change can be observed. Thus, the
Landsat TM and ETM+ sensors provide a particu-
larly important long term data set, with a temporal
extent of over 25 years (Goward et al., in this
volume). The temporal extent of change detection
studies can be extended back to 1972 by using
Landsat MSS imagery, and for some areas, to as
early as 1960, by using declassified CORONA
imagery, although the latter are mostly digitized
black and white film. However, for change detec-
tion studies, images from different sensors should
be used with caution, because it can be challenging
to differentiate between real changes in the scene,
and changes in the sensors.

The grain, or revisit period of the sensor, also
constrains the potential differentiation of events
within the period studied. However, the actual
availability of cloud free imagery is usually some
small fraction of what might be assumed based on
only the sensor revisit time.

Image acquisition frequency

Finding recent imagery tends to be an important
consideration for some applications. Procedures
for satellite data collection vary greatly between
the nadir viewing sensors, such as Landsat ETM+,
and pointable satellites, a category which includes
all fine resolution sensors, such as IKONOS and
WorldView. For nadir-viewing sensors, the oper-
ators usually attempt to acquire and archive all
images on a systematic basis, at least when the
satellite is within sight of a receiving station. Land-
sat ETM+ is unique in that the operators have a
policy of acquiring multiple global data sets on
a regular basis (Goward et al., in this volume).
For pointable satellites, image acquisition is prior-
itized based on requests from customers, who pay
a premium for tasking the satellite. Thus, archive
imagery is only available over limited areas, and
new acquisitions may be delayed depending on
the priorities of the operator. These same issues
tend to apply to other sensors that have only a
limited acquisition capability, such as ASTER and
HYPERION.

Obtaining images of the appropriate season is
also important. This is particularly true of vege-
tation studies, where the timing of phenological
events such as leaf out and senescence may be as
valuable as spectral information (Key et al. 2001).

Geostationary satellites, such as European
EuMetSat’s Meteosat Second Generation (MSG)
satellites and the planned US National Polar-
orbiting Operational Environmental Satellite

System (NPOESS) satellites, offer the greatest
potential for high frequency of coverage. For
example METOSAT-9 acquires full disk images
of Earth every 15 minutes, and in rapid scan-
ning mode, where only part of the Earth disk
is imaged, images can be acquired even more
frequently. The trade-off with geostationary sen-
sors is the comparatively low spatial resolution,
for example 1–3 km pixels at the sub-satellite
point for the METEOSAT Spinning Enhanced
Visible and Infrared Imager (SEVIRI) instrument.
Nevertheless, this high temporal frequency of
acquisition opens the possibility for completely
new remote sensing applications associated with
highly dynamic phenomena, such as modeling
the growth and development of individual fires
(Umamaheshwaran et al. 2007).

Airborne sensors (Stow et al., in this volume)
can provide high spatial resolution as well as com-
plete user-control of acquisition timing, including
not just the date, but even time of day. In practice,
however, mobilization and operational costs may
limit the degree to which the user can achieve this
flexibility.

Acquisitions for time-critical events

Time-critical applications of remote sensing
include disaster response (Teeuw et al., in this vol-
ume) and precision agriculture (Nellis et al., in this
volume) support. When timing is critical, pointable
sensors clearly have advantage over nadir viewing
sensors in that they have a shorter potential revisit
period.

For disaster response, a rapid delivery of ana-
lyzed imagery requires a series of expedited
responses, starting with emergency tasking of the
satellite, pre-preprocessing by the satellite oper-
ator, and internet-based data delivery. Following
receipt of the data, the analyst may need to perform
additional georeferencing work before interpreta-
tion can be done. Because time is normally very
limited, relatively routine or simple methods are
necessary.

The fact that rapid response requires some
advance planning and organization is demonstrated
by the establishment of the International Charter
on Space and Major Disasters (International Char-
ter 2007, Harris, in this volume, Teeuw et al.,
in this volume). This agreement, initiated by the
French, European, and Canadian space agencies in
2000, now includes the space agencies of six other
countries, and additional agreements with commer-
cial satellite operators. The charter provides for
24-hour availability of a single point of contact
for requesting emergency remote sensing support.
In France, the organization Service Régional de
Traitement d’Image et de Télédétection (SERTIT)
has been contracted by the French space agency,
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CNES, to provide 24-hour availability of image
analysts (SERTIT 2005). SERTIT places its image
map products on a website, for free down-
load (http://sertit.u-strasbg.fr/documents/RMS_
page_garde/RMS_page_garde.htm).

Of course, data currency is a concern not just
in disaster response, but in all applications study-
ing dynamic phenomena. Satellite images typically
require preprocessing by the data provider prior to
being made available to the user. Additional bot-
tlenecks may occur in the distribution, although
internet access to the data can overcome this
problem.

INTERACTIONS BETWEEN DIFFERENT
COMPONENTS OF SCALE

So far, the discussion has been limited to each of
the different components of scale: spatial, spec-
tral, temporal, and radiometric. However, clearly,
these components are linked. For example, if image
acquisition is constrained by the rate at which data
are stored and transmitted, then increasing one
type of resolution (such as spectral resolution), will
necessarily require changes to other types of reso-
lution (such as spatial resolution) (Figure 1.1). The
Compact Airborne Spectral Imager (CASI), man-
ufactured by ITRES of Canada, is a good example
of an instrument that is designed to have maximum
flexibility within the constraints of data acquisi-
tion trade-offs. CASI is a programmable sensor, in
which the operator chooses the number, width, and
location of spectral bands prior to image acquisi-
tion. Because longer integration times are needed
as the number of bands imaged increases, there is an
inverse relationship between the number of bands
and the spatial resolution for this sensor (ITRES
2007).

Alternatively, it is possible in some instances to
overcome the spatial-spectral constraint described
above by employing pan sharpening, in which
data fusion is used to combine high spatial resolu-
tion, panchromatic (i.e., single band) images with
comparatively low spatial resolution, multispec-
tral images (Alparone et al. 2007). Pan sharpening
has become increasingly important since the SPOT
sensors popularized the concept of acquiring simul-
taneous high spatial resolution panchromatic data
to complement a lower spatial resolution multi-
spectral data set, and this design approach has
been followed for a number of subsequent sen-
sors, including ETM+ (Goward et al., in this
volume), IKONOS, and QuickBird (Toutin, in
this volume). The aim of pan sharpening is quite
simple: to incorporate the spatial detail from the
panchromatic image, and the spectral informa-
tion from the multispectral images. The chal-
lenge, however, is to ensure that the combined

data set maintains a spectral balance such that
when the images are displayed as a color com-
posite, the colors of the sharpened images are
similar to the original, low spatial resolution mul-
tispectral data set (Alparone et al. 2007). This
challenge is particularly great if the panchromatic
band is poorly correlated with the individual mul-
tispectral bands (Gross and Schott 1998, Price
1999).

Pohl and Van Genderen (1998) provide a com-
prehensive review of pan sharpening methods.
Alparone et al. (2007) empirically compared eight
different methods, and found that multiresolu-
tion analysis, incorporating for example wavelets
or Laplacian pyramids to characterize the spa-
tial dependence of DN values on scale, generally
outperformed component substitution, in which
some transformed component of the multispec-
tral data set, such as the first principal compo-
nent, is replaced by the panchromatic data. In
particular, the two methods found to have the
best results both take into account physical mod-
els of the image formation, namely the modu-
lation transfer function (Alparone et al. 2007).
Wang et al. (2005) use a theoretical framework,
which they term general image fusion, to com-
pare the different methods, and conclude that the
optimal method is multiresolution analysis-based
intensity modulation. Pan sharpening using spec-
tral mixture analysis also shows promise, espe-
cially for hyperspectral imagery (Gross and Schott
1998).

There are other complex interactions between
the different types of resolution. Malila (1985)
has found that, although the increased number and
range of spectral bands of TM compared to MSS
provide a great deal more information as indicated
by studies of entropy, if both TM and MSS had been
quantized at just five bits, the information content
of the two sensors would have been approximately
equal.

Key et al. (2001) compared the value of mul-
tiple spectral bands with multiple image dates
for classifying individual deciduous trees species.
Their study showed that a single, optimally chosen,
multispectral image acquired during peak autumn
colors resulted in relatively high classification
accuracy. However, multiple dates of single band
imagery could provide a similar high accuracy.
This finding suggests that if the spatial resolution
of multispectral imagery is too coarse, panchro-
matic imagery, which typically has a higher spatial
resolution, may be substituted, if multiple dates
can be obtained (Key et al. 2001). For example,
the current highest spatial resolution from com-
mercial satellites is provided by the WorldView-1
sensor, launched in 2007. WorldView-1 provides
imagery with 0.5 m pixels, but only panchromatic
data, with no multispectral bands (DigitalGlobe
2007).
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OTHER ISSUES

Additional, broader issues should be considered in
selecting image data sets. Data cost, particularly for
the new commercial sensors, can be high. However,
the commercial providers generally make a dis-
tinction between new acquisitions, which require
tasking the satellite, and existing images in the
companies’ archives, charging a premium for the
former. Commercial image licensing agreements
may constrain sharing the data with others, even
in the same organization. Thus purchasers should
consider the long-term use of imagery, and consider
paying extra to have more flexible use of the data.
One of the major advantages of US government
data, including Landsat TM, ETM+, and Terra and
Aqua MODIS data, is not only the very economical
price, but the absence of constraints on data shar-
ing (Harris, in this volume). Indeed, large internet
archives of US satellite imagery are available for
free downloading (Table 1.2).

A second major issue relates to data volume.
Large volumes of data can strain computer stor-
age and processing capacity. Although this issue is
far less significant today compared to when early
sensing systems such as the Landsat MSS were
launched, it is still important for projects that cover
relatively large geographic areas, or use multiple
dates of images.

In addition to improvements in computer hard-
ware, software has also advanced considerably
since the early 1970s. Early programs, typically
running on main-frame computers, often were
based on command-line program initiation. Today,
remote sensing packages typically have graphical
user-interfaces, and even semi-automated ‘wiz-
ards’ that help guide the less sophisticated users.
Furthermore, there are now specific programs
for advanced analysis such as for photogramme-
try and hyperspectral classification. On the other
hand, the development of software that integrates
remote sensing analysis and GIS analysis has been
more mixed (Merchant and Narumalani, in this
volume).

FUTURE CHALLENGES AND
OPPORTUNITIES

It is evident that the number and diversity of
satellite-borne sensors will only grow in future
years, especially as the commercial satellite sector
grows, and additional nations launch and operate
their own satellite programs. Thus, the challenges,
and opportunities, in selecting data to address spe-
cific problems, will also likely grow. Some specific
trends can be observed with regards to image spatial
and spectral properties, as well as the availability
of relatively new types of image data.

With regards to spatial resolution, it appears for
the moment that ∼0.5 m is the smallest pixel size of
space-borne imagery that will be available to non-
government users, due to security issues. Thus, the
operating licenses for both Worldview-1 (Digital-
Globe 2007) and the planned GEOEYE-1 (GeoEye
2007) limit the spatial resolution of imagery that is
sold to the general public to 0.5 m.

In terms of spectral properties, one likely
future development is finally to achieve opera-
tional hyperspectral imaging from space. For the
user, space-based hyperspectral imagery should
be more economical than contracting for airborne
hyperspectral data. An operational satellite-borne
hyperspectral system will also remove the geo-
graphical constraints of the narrow swath of the
experimental satellite-based Hyperion hyperspec-
tral sensor. Once these financial and geographi-
cal barriers are removed, hyperspectral analysis
may enter the mainstream, especially if there is
continued improvement in the ease of use of
hyperspectral software analysis tools. Neverthe-
less, limits on the signal-to-noise and spatial re-
solution for space-based hyperspectral sensors may
ensure that aerial hyperspectral imaging will con-
tinue to play an important role for some time
to come.

Another area of likely future importance, and
challenge to users, will be greater integration
of diverse wavelength regions and characteris-
tics, including hyperspectral VNIR and SWIR,

Table 1.2 Sources of free imagery

Facility Example data URL1

Global Land Cover Facility,
University of Maryland

TM, MSS, MODIS, ASTER http://glcf.umiacs.umd.edu

AmericaView Landsat http://glovis.texasview.org
USGS EROS Landsat http://edc.usgs.gov/products/satellite/landsat_ortho.html
USGS-NASA DataPool ASTER, MODIS http://lpdaac.usgs.gov/datapool/datapool.asp
Boston University Climate and

Vegetation Group
AVHRR, MODIS http://cliveg.bu.edu/modismisr/products/products.html

Boston University Land Cover
and Land Cover Dynamics

MODIS http://duckwater.bu.edu/lc/datasets.html

1URLs current as of January 2008.
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hyperspectral thermal, and multi-wavelength,
fully polarimetric radar. The integration of lidar
with multispectral and hyperspectral imagery
seems a particularly promising area (Bork and
Su 2007).

Relatively new types of data will also likely
become more available, although once again the
general exploitation of these data may be depen-
dent on the development of easy to use software.
Polarization information, currently used mainly
with microwave wavelengths, holds promise
for improved image analysis of optical wave-
lengths (Zallat et al. 2004). Multi-angular imaging,
already available from the Multiangle Imaging
SpectroRadiometer (MISR) experimental satellite,
allows characterization and exploitation of BRDF
information (Armston et al. 2007, Jovanovic et al.
2007). One particularly interesting application of
BRDF information is for mapping wetlands by
exploiting the distinctive and strong angular reflec-
tion signature of water compared to other sur-
face types. This approach has been shown to
be effective for discriminating inundated areas
with emergent vegetation, open water, and non-
inundated areas (Vanderbilt et al. 2002). One
strength of this approach is that as the pixel
size increases, the accuracy of unmixing the pro-
portions of these cover types tends to increase
(Vanderbilt et al. 2007), making the method par-
ticularly effective for global-scale hydrological
modeling.

In conclusion, remote sensing has advanced
greatly since the early 1970s and since the
beginnings of regular satellite Earth observations
with the ERTS/Landsat MSS sensor. The many
advances in remote sensing technology have them-
selves brought new challenges, as exemplified by
issues such as the Hughes Phenomenon (Hughes
1968). Although many of these challenges can be
addressed through innovative research, one area
outside the control of most individual scientists is
the general area of remote sensing policy (Harris,
in this volume). For example, despite the impor-
tance of data continuity in global change studies,
there unfortunately seems to be a lack of politi-
cal will, at least in the United States, to support
an aggressive, long term strategy to ensure data
continuity for moderate resolution imaging. This
problem has recently been highlighted by the diffi-
culties associated with the Landsat Data Continuity
Mission (Goward et al., in this volume). Despite
these difficulties, remote sensing offers a pow-
erful, objective, and consistent tool for studying
the earth, from local to global scales. The value
of remote sensing is demonstrated by the grow-
ing number of research studies, and the increasing
use of remote sensing in operational environments.
The chapters that follow give insight into the many
facets and key issues of this rapidly developing
subject.
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INTRODUCTION

Policy: (1) a course or principle of action adopted
or proposed by an organization or an individual;
(2) prudent or expedient conduct or action. Origin:
from the French police–bill of lading, contract of
insurance. Oxford English Dictionary

Act so as to produce the greatest good for the great-
est number. The Principle of Utility, Jeremy Bentham
(1748–1832)

The history of satellite remote sensing has so
far shown a commendable although unconscious
example of Bentham’s Principle of Utility, or
Utilitarianism (Harte and North 2004). Satellite
remote sensing missions have mainly been gen-
eral purpose satellite missions, such as Landsat,
designed to capture environmental data that can be
used by anyone with the knowledge and technical
capability to do so. Sometimes policy development
has preceded this technical capability and some-
times followed it, but remote sensing policy has in
general been characterized by utilitarianism, that is
the greatest good for the greatest number.

Remote sensing policy is mainly written by gov-
ernments in some form, be it through national
legislation as in the USA or through national rep-
resentation in international organizations, such as
the European Space Agency (ESA) or Eumetsat.
In that sense remote sensing is often an exten-
sion of national policy. The USA is a good case
in point. Each fiscal year a report is sent to
the US Congress entitled Our Changing Planet

(CCSP 2006). The report, which summarizes a
great deal of US remote sensing research and appli-
cations, describes the activities and the plans of the
Climate Change Science Program that was estab-
lished under the US Global Change Research Act
of 1990 and the US Climate Change Research
Initiative established by the US President in 2001.
While the report has the appearance of a science
progress report it has a foundation in national
government policy that is part of a wider US pol-
icy landscape, for example on science, national
security and industry privatization. The report
Our Changing Planet is transmitted each year to
the US Congress by the Secretaries of State for
Commerce and for Energy, both political appoint-
ments, together with the Director of the Office for
Science and Technology Policy of the Executive
Office of the President. Where governments appear
not to be directly involved in remote sensing pol-
icy they still have a responsibility for regulation or
licencing. Fine spatial resolution missions such as
DigitalGlobe or IKONOS operate with a licence
issued by the US government which in turn relays
the national commitments it has entered into as well
as reflecting national government priorities.

Government influence is therefore important in
understanding remote sensing policy. As differ-
ent national governments around the world have
different political complexions, and indeed politi-
cal complexions that change over time, so remote
sensing policies are different. The remote sensing
policy debate is especially contentious within the
Group on Earth Observation (GEO) initiative to
the extent that the term ‘data policy’, a key part of
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remote sensing policy, is deliberately avoided and
only the term ‘data sharing’ is allowed (Achache
2006). This book examines a very wide variety of
remote sensing data, techniques to process the data
and applications of the data. This chapter looks at
remote sensing policy, trying to disentangle the
ways in which the organizations responsible for
providing the data examined in later chapters have
come to their different views. This chapter will con-
centrate on data policy because this is where remote
sensing policy has the greatest impact on access to
and use of remote sensing data, while comment-
ing on wider policy concerns where appropriate.
The chapter opens by examining remote sensing
policy agreements reached at the global scale, and
then goes on to examine the policies developed
in the USA and Europe as major organizational
actors in remote sensing. A review of selected
national policies is used to highlight differences
in approach to policy, for example India’s very
clear concern with national security, before the
conclusion points to critical tensions such as pric-
ing policy and the overall sustainability of remote
sensing.

Whether in the public sector or the private sector
Bentham’s Principle of Utility is without doubt an
unconscious characteristic of remote sensing. One
could go even further along the road of utilitari-
anism and argue that the comments of the Roman
senator Cicero are also applicable to twenty-first
century remote sensing (Oxford 1981):

Salus populi suprema est lex
[The good of the people is the chief law]

GLOBAL SCALE REMOTE SENSING POLICY

United Nations principles on remote
sensing

On 3 December 1986 the United Nations (UN)
reached agreement on the UN Resolution Relat-
ing to the Remote Sensing of the Earth from Outer
Space (Jasentuliyana 1988, von der Dunk 2002).
This Resolution contains 15 principles on remote
sensing that were agreed as a compromise between
the perspective of state territorial sovereignty and
the principle of the freedom to use outer space
that is embodied in the Outer Space Treaty.1 Those
nations that had satellite remote sensing capability
both wanted and needed freedom to capture remote
sensing data for any and all parts of the Earth. Some
of those nations that lacked a satellite remote sens-
ing capability wanted to control access to the outer
space above their territory in much the same way
as they controlled the air space above their territory
(Harris and Harris 2006). This approach of control

envisaged the concept of ownership extending to
a limitless distance above a nation’s territory and
would have invited all organizations that orbited
remote sensing spacecraft to seek the permission of
each and every country to allow orbital passes over
their country. The compromise between the points
of view of open access and control was the agree-
ment of the 15 UN Principles on Remote Sensing.
While all 15 principles are relevant to this book,
four principles are particularly important.

Principle I. For the purposes of these principles
with respect to remote sensing activities: (a) The
term ’remote sensing’ means the sensing of the
Earth’s surface from space by making use of
the properties of electromagnetic waves emitted,
reflected or diffracted by the sensed objects, for
the purpose of improving natural resources man-
agement, land use and the protection of the envi-
ronment.

This first principle (of which only part (a) of five
parts is reproduced here) provides a definition of
the scope of the later principles. At the time of the
agreement the UN principles were thought to apply
to civil remote sensing only of the land surface,
but since 1986 the term ‘protection of the environ-
ment’ has taken on a much wider meaning because
of the concerns about climate change (IPCC 2007)
and it is now difficult to identify which elements of
the Earth system (ocean, ice, atmosphere, land) fall
outside the scope of the protection of the environ-
ment. Principle I may therefore now be considered
very wide in scope.

Principle IV. Remote sensing activities shall be …
carried out for the benefit and in the interests of all
countries, irrespective of their degree of economic
or scientific development, and stipulates the princi-
ple of freedom of exploration and use of outer space
on the basis of equality. These activities shall be con-
ducted on the basis of respect for the principle of full
and permanent sovereignty of all States and peo-
ples over their own wealth and natural resources,
with due regard to the rights and interests, in accor-
dance with international law, of other States and
entities under their jurisdiction. Such activities shall
not be conducted in a manner detrimental to the
legitimate rights and interests of the sensed State.

This principle strikes at the core of the dilemma
noted above: the freedom of the use of outer
space by those nations equipped to do so and
the sovereignty that nations have over their own
territory and resources.

Principle XII. As soon as the primary data and the
processed data concerning the territory under its
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jurisdiction are produced, the sensed State shall
have access to them on a non-discriminatory basis
and on reasonable cost terms.

Principle XII means that space-faring nations
cannot keep the remote sensing data collected by
their space missions to themselves, and answers
in part the question posed by Principle IV. Princi-
ple XII allows a state sensed by a remote sensing
satellite to have access to the data collected by
the satellite under three conditions: as soon as
the data are produced; on a non-discriminatory
basis; and on reasonable cost terms. None of these
three conditions of access is tightly defined: the
balance of issues around these three terms is dis-
cussed at length by Frans von der Dunk in Harris
(2002).

Principle XIV. … States operating remote sens-
ing satellites shall bear international responsibility
for their activities and assure that such activities
are conducted in accordance with the provisions of
the Treaty and the norms of international law, irre-
spective of whether such activities are carried out
by governmental or non-governmental entities or
through international organizations to which such
States are parties. This principle is without prejudice
to the applicability of the norms of international law
on State responsibility for remote sensing activities.

The UN principles were agreed between states,
so are private companies and other organizations
exempt? Principle XIV covers both governmental
and non-governmental entities which brings pri-
vate companies and other organizations into the
scope and the legitimacy of the UN Principles. This
principle therefore covers the authority of govern-
ments to grant licences to private companies such
as DigitalGlobe and to participate in international
organizations such as Eumetsat.

United Nations Charter Space and
major disasters

As well as drawing up the set of 15 Principles the
United Nations has been active in arranging major
meetings of all UN member states to discuss the
opportunities offered by the use of outer space.
There have been three such major meetings called
UNISPACE conferences. At the third UNISPACE
conference in Vienna in 1999 the ESA and the
French Space Agency (CNES) launched the idea
of a UN Charter on Space and Major Disasters.
The basic idea of the Charter is to provide a uni-
fied system of space data acquisition and delivery
to those affected by natural or man-made disasters
through the mechanism of authorized users. The
UN Charter has two major objectives.

• Supply during periods of crisis, to states or com-
munities whose population, activities or property
are exposed to an imminent risk, or are already
victims, of natural or technological disasters, data
providing a basis for critical information for the
anticipation and management of potential crises.

• Participation, by means of this data and of
the information and services resulting from the
exploitation of space facilities, in the organiza-
tion of emergency assistance or reconstruction and
subsequent operations.

Following the lead given by Europe other mem-
bers have joined the Charter, namely Canada, India,
Japan, the US National Oceanic and Atmospheric
Administration (NOAA), US Geological Survey
(USGS) and the participants in the Disaster Man-
agement Constellation of small satellites (Algeria,
Nigeria, Turkey and the United Kingdom).

When a disaster strikes an authorized user can
contact a single point to request satellite remote
sensing data acquisition. The space agency mem-
bers of the Charter then work together to plan
image acquisitions and provide data of the dis-
aster location to the authorized users free of all
charges. Each year there are approximately 20–30
activations of the Charter, acquiring data of, for
example, floods in Indonesia, a typhoon in the
Philippines, an oil slick off the coast of Lebanon,
an earthquake in Pakistan, the 2004 tsunami in the
Indian Ocean and forest fires in Portugal. Further
discussion on the use of remote sensing in disas-
ter applications is given by Teeuw et al. (in this
volume).

World Meteorological Organisation
Resolution 40

A second policy related to remote sensing that is
global in nature was that agreed by the World
Meteorological Organisation (WMO) in 1995. At
the Twelfth Meteorological Congress in Geneva in
June 1995 the WMO passed 41 resolutions cov-
ering a wide range of its activities from the use
of the Portuguese language to the Global Climate
Observing System (WMO 1995). One of these res-
olutions, Resolution 40, states the WMO policy for
exchanging meteorological data including remote
sensing meteorological data. The policy applies to
all 187 WMO member states and so is a policy
that is global in reach. WMO Resolution 40 has at
its core:

As a fundamental principle …, WMO commits itself
to broadening and enhancing the free and unre-
stricted international exchange of meteorological
and related data and products.
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Resolution 40 then provides advice to WMO
member states on the practice of the resolution
(WMO 1995):

Members shall provide on a free and unrestricted
basis essential data and products which are nec-
essary for the provision of services in support of
the protection of life and property and the well-
being of all nations, particularly those basic data
and products as … required to describe and fore-
cast accurately weather and climate, and support
WMO programmes.

Annexes to the resolution provide advice on how
to implement the basic ideas of free and unre-
stricted access. The meteorological community has
always practiced relatively unrestrictive exchange
of weather data and this principle is followed
through to cover meteorological remote sensing
data. Resolution 40 is important in remote sens-
ing policy because it provides a clear statement of
one community’s view of how remote sensing data
should be regarded. There is an implicit assumption
that meteorological remote sensing data are a pub-
lic good (Samuelson 1954, Pearce 1995, Longhorn
and Blakemore 2004, Miller 2007), an attractive
idea in the development of the information soci-
ety but an idea not without its problems such as
financing the systems that deliver the data.

International Council for Science

In 2004, the International Council for Science
(ICSU) published a report that is essentially a
guidance document for science data policy (ICSU
2004). It covers all science data and informa-
tion, identifying especially remote sensing data and
biomedical data as exemplars of massive data sets
that are presenting new challenges to science. The
ICSU recommendations cover the roles of the pub-
lic and private sectors in the production of scientific
data and information, data rescue and safeguarding,
interoperability, dissemination, intellectual prop-
erty rights and funding. For remote sensing policy a
key issue can be summed up in the recommendation
on professional data management (ICSU 2004):

The panel recommends that ICSU play a major
role in promoting professional data management
and that it foster greater attention to consistency,
quality, permanent preservation of the scientific
data record, and the use of common data man-
agement standards throughout the global scientific
community.

This book is concerned with the acquisition,
treatment and use of remote sensing data, yet these
data are more than just digits. They are information

resources about the state of the Earth, resources
that are important in understanding the Earth both
now and in the future. Professional approaches to
data management will improve the access to remote
sensing data and will improve the opportunity to
gain a greater scientific and operational return on
the large investments involved. The International
Polar Year and the Electronic Geophysical Year
(both having a focus on 2007–08) have been stimu-
lated by the ICSU policy ideas in developing their
own policies and frameworks for data, including
policies on the legacy that will be left in the form
of professionally archived data sets.

All users of remote sensing data benefit from
improvements in policy definition because it means
that the conditions of access are explicit and known.
Initiatives such as Global Monitoring of Envi-
ronment and Security (GMES) and Global Earth
Observation System of Systems (GEOSS) increas-
ingly rely on data that are robust and have a known
pedigree, which in turn means that professional
data management and clear data policies become
essential to progress in the field of remote sensing.

UNITED STATES

The United States has the most developed and the
most formal approach to remote sensing policy. The
major national initiatives that incorporate remote
sensing are frequently passed as national laws and
are then subject to regular, formal review. The US
has an overall law on access to all data produced
by the Federal government. This is the Paperwork
Reduction Act of 19952 that was made operational
in the Office of Management and Budget (OMB)
Circular A-130. The Act is relevant to remote sens-
ing because it mandates that all data produced by
the Federal government, including remote sensing
data produced by federal agencies, should be pro-
vided to users with no restrictions and no copyright
protection. This means that when a user acquires,
for example, a Landsat ETM+ or a MODIS digital
image then this data set can be provided to other
users free of any copyright restrictions. By con-
trast this is not the case for SPOT (Satellite Pour
l’Observation de la Terre) data which cannot be
copied freely to other users by the initial purchaser.
The general approach in the US is that the tax payer
has paid once for remote sensing data and so to
maximize the value of the data then they should be
provided to as many users as can benefit from them
with low barriers to use.

The US Climate Change Science Program
(CCSP) was created in 2002 as a combination and
integration of two government policy actions, the
Global Change Research Act of 1990,3 which was
approved by Congress, and the Climate Change
Research Initiative which was established by


