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Preface	to	the	Second	Edition

Computer methods continue to be critical in the analysis, simulation, design and 
optimization of engineering processes and systems. Computational approaches are 
needed to solve the complex mathematical equations that typically arise in engineer-
ing problems, for correlating experimental data, and for obtaining numerical results 
that are used for improving existing processes and developing new ones. The second 
edition follows the basic ideas, discussions, approaches, and presentation employed 
in the first edition. The focus is clearly on engineering processes and systems and on 
the equations that characterize and describe these. Computer methods that are 
employed to solve these equations and the nature and validity of the numerical results 
obtained are discussed for a variety of problems. The main thrust is on the discussion 
of the various numerical methods that are available for a given problem, on the pre-
sentation of the basic aspects of the methods, discussing their applicability, effi-
ciency and behavior, and then applying these to typical problems chosen from various 
engineering disciplines.

Besides discussing the solution of different types of mathematical equations, a 
large number of engineering examples and problems were chosen to present the 
choice of the method, development of the numerical algorithm and use of the com-
puter to solve the problem. A systematic approach is followed to obtain physically 
realistic, valid and accurate results through numerical modeling. Examples from 
many different engineering areas are employed to explain the various elements 
involved in the numerical solution and to make the presentation relevant and interest-
ing. Similarly, a large number of solved examples and exercises are included to sup-
plement the discussion and to illustrate the ideas and methods presented in the text. 
The book continues the thinking that the basic purpose of the computational approach 
is to provide physical insight and to obtain inputs for analysis and design of practical 
systems. Thus, the solution methodology is linked to both the computer and to the 
fundamental nature of the problem to allow the student to appreciate the basic aspects 
of the numerical approach.

The book is appropriate as a textbook for engineering undergraduate courses 
on computer methods at the sophomore or junior levels. Because the background 
of students at the sophomore level may not be sufficient for some of the topics 
covered, such as partial differential equations, a few such topics may be avoided 
for sophomore students and may be included in the junior or senior courses. The 
book is also appropriate as a reference on computational methods for various 
other basic and applied undergraduate courses in mechanical engineering and in 
other engineering disciplines. The book will also be useful as a reference for 
engineers who are interested in using computer methods for analysis, simulation, 
design, or data analysis.



xiv	 Preface	to	the	Second	Edition

The second edition is a substantially revised and updated version of the earlier 
book. Recent advances in available computational facilities, both in software and 
in hardware, are included. In several places, the presentation has been simplified 
and clarified to make it easier to follow. Certainly, the main difference from the 
first  edition is the extensive use of MATLAB®, instead of a high-level programming 
language like Fortran, for numerical modeling. This is done in view of the current 
trend in engineering education where MATLAB has emerged as the dominant 
environment for the numerical solution of basic mathematical equations. Much of 
the discussion on computer solution is thus directed at MATLAB and a large num-
ber of MATLAB commands and programs are given in the text, as well as in the 
Appendix, in order to facilitate the presentation as well as to provide ready access 
to MATLAB programs for solving exercises given in the text and other similar 
problems. In many cases, the programs are focused on the example or problem 
being considered, in order to encourage the readers to develop their own computer 
programs for specific problems. However, the programs can be easily modified for 
different circumstances and parameters. Available MATLAB functions and com-
mands are frequently employed to generate results that can be used for compari-
sons with the results obtained from more detailed and versatile programs. Fortran 
has not been abandoned because of its continued importance in engineering and 
the existence of substantial software in Fortran for many complex problems. 
Several important Fortran programs are included in the Appendix to illustrate the 
ease with which one could go from one computational environment or language to 
another and to allow those interested in Fortran to use these for their specific prob-
lems. Additional exercises and examples are included in all the chapters. References 
have been added on new topics included in the book and references in the first edi-
tion have been updated.

The methods, discussions, and computer programs presented in this textbook are 
the result of many years of teaching computer methods to engineering undergraduate 
students, in required as well as elective courses. The inputs from many colleagues 
and graduate students, as well as undergraduate students, who took the courses from 
me, have been valuable in selecting the topics, the depth of coverage, the computer 
programs presented here and many other aspects related to computer methods for 
solving engineering problems. Inputs from those who have used the first edition in 
their courses, particularly from Professor Wally Minkowycz, have been particularly 
valuable. The support and assistance provided by the editorial staff of Taylor & 
Francis, particularly by Jessica Vakili and Jonathan Plant, have been valuable in the 
development of the second edition.

The book would never have been completed without the strong support and 
encouragement of my wife, Anuradha. Our children, Ankur, Aseem, and Pratik, as 
well as Pratik’s wife Leslie and son Vyan, have also been sources of inspiration and 
encouragement for me and have contributed in their own way to my efforts over the 
years. I greatly appreciate the patience and understanding of my family that made it 
possible for me to spend extensive periods of time on the book.
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Preface	to	the	First	Edition

The use of computational methods in the analysis and simulation of engineering 
processes and systems has grown tremendously over recent years. Increasing national 
and international competition has made it imperative to improve existing facilities 
and to develop new ones for a wide variety of applications. Because of the constraints 
imposed on detailed experimentation needed for design and optimization of systems, 
due to excessive time, manpower, and financial requirements, computer simulation is 
extensively employed to obtain the desired information. Analytical methods are gen-
erally very restrictive in their applicability to practical problems, and numerical 
methods are usually necessary. In addition to the growing need for numerical solu-
tions to engineering problems, we have also seen substantial improvements in the 
computational facilities available, both in software and in hardware, over the last 
decade. All of these changes have made it more important than ever for engineers 
and engineering students to develop expertise in numerical methods and to use them 
for solving problems of practical interest.

In recognition of the growing importance of computer methods in engineering, 
many courses in engineering curricula now include the numerical solution of engi-
neering problems on the basis of numerical analysis taught earlier at the sophomore 
or junior level. Generally, engineering students are first exposed to the computational 
procedure through a course on programming, frequently employing Fortran as the 
programming language. Numerical methods are then taught at a later stage to intro-
duce the basic concepts of numerical analysis and to allow the students to numerically 
solve important mathematical problems such as integration, matrix inversion, root 
solving, and solution of differential equations. However, since the basic purpose of the 
computational approach is to provide physical insight and to obtain valuable informa-
tion for the analysis and design of practical systems, such courses have been inte-
grated into the engineering curricula at most universities. This implies that the solution 
methodology is coupled with the computer on one hand and with the physical or 
chemical nature of the problem on the other. The numerical procedure, as well as the 
results, are considered in terms of actual problems to permit the student to develop a 
physical feel for the numerical approach to engineering problems.

Traditionally, numerical analysis courses have been mathematically oriented. 
Although this orientation brings in some very important and fundamental aspects of 
numerical analysis, it lacks in the application of the methodology to actual problems. 
It is extremely important to integrate the basic understanding of the methods with 
their actual use on the computer. Unless the students learn to choose and implement a 
computational scheme on the computers available, they will not develop a satisfactory 
appreciation or understanding of the numerical technique. In addition, recent advances 
in computational facilities, such as structured programming, interactive computer 
usage, and graphics output, must be introduced so that the most efficient procedure is 



xviii	 Preface	to	the	First	Edition

adopted for a given problem. The incorporation of problems derived from various 
engineering disciplines aids in this learning process and also makes it interesting and 
enjoyable. In addition, it reinforces the important point that the physical or chemical 
background of the given problem forms an important element in the selection of the 
method and in the evaluation of the accuracy of the results obtained.

This book, directed at computer methods for engineering, integrates the treatment 
of numerical analysis with the physical background of the problems being solved and 
with the implementation of the methods on available computers, employing several 
recent advances in this field. Although a large number of books are available on 
numerical analysis, not many satisfactorily discuss the implementation of the method-
ology on the computer, and even fewer discuss the implications of the physical nature 
of the problem in the numerical solution. This book recognizes the need for a satisfac-
tory incorporation of these concepts into the mathematical treatment of numerical 
analysis. It couples numerical methods for a variety of mathematical problems with 
the use of these methods for the solution of engineering problems on the computer.

Numerical methods for important mathematical operations, such as integration, 
differentiation, root solving, and solution of algebraic systems, are discussed in 
detail. The solution of differential equations, both ordinary and partial, is presented. 
Curve fitting, which is an important consideration in engineering problems, is also 
discussed. A large number of problems from basic sciences and various engineering 
disciplines are chosen to illustrate the use of these methods. The problems chosen 
are relatively simple so that they can easily be understood by students at the sopho-
more/junior level. However, in several cases, the basic background of the problem is 
outlined so as to bring the important points into proper focus. The importance of the 
physical or chemical background of the problem in the selection of the method, the 
choice of numerical parameters, the estimation of the accuracy of the results, and the 
overall validity of the results is discussed. The book mainly uses Fortran 77 to dem-
onstrate the implementation of the numerical methods on the computer, because of 
the overwhelming importance of this language in engineering applications. However, 
a few programs in Basic are also given to bring out the similarities between the two 
languages and the ease with which one may switch from one to the other. A discus-
sion of other languages and important aspects in computational procedure is included. 
A large number of examples, with the corresponding programs, are given. The pro-
grams are written specifically for these examples, so that the students must develop 
their own programs for the large number of problems given at the end of the chapters. 
Several important features that are currently employed in computational procedure 
are demonstrated in these programs. Recent trends in this area are outlined, and their 
significance for engineering applications is discussed. The students are strongly 
encouraged in every way to develop their own computer programs, since this is an 
essential ingredient for learning computer methods.

Most of the material covered in this book has been employed by the author for 
courses at the sophomore and junior levels. Since the background of students at the 
sophomore level may not be sufficient for some of the topics covered, such as partial 
differential equations, this particular topic and a few sections marked with an asterisk 
may be avoided by sophomore students. The book can also be used at the senior level, 
if such a course is included in the curriculum at this level. The material included is 
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quite adequate for a one-semester course. However, the best time to teach this course 
is probably at the junior level, so that the students can fully understand the material 
and then use it in courses taught at higher levels. The book is also appropriate for 
professional engineers in various disciplines and as a reference for courses that 
employ computational methods as an important element in the presentation. The 
book considers problems from diverse engineering applications, and the treatment is 
at a level appropriate for engineering students of all disciplines.
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The manuscript and its several versions were typed with great patience and compe-
tence by Diane Belford and Lynn Ruggiero.
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1 Introduction

1.1   INTRODUCTORY REMARKS

Over the past three decades, there has been a tremendous increase in the use of 
 computers for engineering problems. This increase has been mainly due to the 
 growing need to optimize systems and processes in order to raise productivity and 
reduce costs. With increasing worldwide competition, it has become necessary to 
modernize existing engineering facilities and develop new ones through analysis and 
design. Consequently, we have seen a considerable improvement in engineering 
 systems, particularly those related to electronic circuitry, materials processing, 
 biotechnology, transportation, and energy generation. The concern with safety, 
including homeland security, and with our environment has also led to detailed 
investigations of existing engineering processes and to substantial improvements in 
many of these to reduce the impact on our environment and to make their use safer.

Because of the complexities involved in most engineering applications, analytical 
methods based on mathematical techniques are usually unable to provide a solution 
to the equations that characterize their behavior, and computational methods are 
needed to obtain quantitative information on physical quantities of interest. Even 
though analytical solutions are obtained in a few simple cases, the form of the 
 solution itself may be quite involved, since the results are frequently expressed as a 
series or in terms of integrals and complex functions. In such cases, the computer is 
needed to extract the desired information from the analytical solution. Also, the 
problem may have to be solved several times with different sets of data, making it 
advantageous to use the computer rather than analytical methods.

There has also been a phenomenal increase in the availability of computers over 
the recent years. With the advent of microcomputers, such as personal computers 
(PCs), computational facilities have become widely available. The computational 
power available has also increased dramatically in individual, single-processor, 
machines, or serial computers, as well as in linked multiple machines or processors 
that result in a parallel computing cluster. There is every indication that these trends 
will continue, making computers even more accessible and powerful. Although most 
practical engineering problems still require larger and faster computers (such as 
supercomputers, minicomputers, or parallel computing systems), microcomputers 
do allow the solution of many common problems and are also useful in testing 
numerical procedures that may subsequently be employed on larger or parallel 
machines. The availability of a wide variety of microprocessors has also  substantially 
affected the control and operation of systems through automation and expanded the 
reach of computational software.

Along with the revolution in computer hardware, there has inevitably been one in the 
available software as well, making the use of computers for scientific and  engineering 
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problems easier than ever. Thus, for a wide range of problems, the  programs available 
in the computer library, commercially available software, or user-friendly computa-
tional environment may be used effectively. However, it is  generally necessary to 
understand the basic techniques involved in order to modify the program for satisfac-
tory application to a given problem. In industrial systems, the use of commercially 
available programs is particularly important, since the  processes are often quite 
involved and interest lies in obtaining the needed information as  rapidly as possible. 
For simpler problems, such as those related to individual physical and chemical pro-
cesses that constitute the overall system, it is often easier and more desirable to per-
sonally write the computer program or use an appropriate computational environment, 
rather than use a commercially available code written specifically for a given prob-
lem. Therefore, it is important to understand computational methods relevant to 
engineering applications and to use them in physical problems that are of interest to 
various disciplines.

Computer-aided design, simulation-based design and optimization, and 
 computer-aided manufacturing are important areas that have grown substantially in 
the very recent past. These areas have arisen from the need to optimize on the one hand 
and the growing availability of the computers on the other. They are interdisciplinary 
in nature, particularly simulation-based design, which is of interest in such diverse 
fields as electronic systems and structural design. The basic approach in this case is to 
numerically solve the governing equations, choose physical parameters to simulate 
existing processes and systems, and finally vary these parameters to optimize the 
design for existing and future systems. Several other similar applications of computer 
methods have arisen in recent years, making it imperative to link the computational 
approach to the physical or chemical aspects of the problem under consideration.

In view of the growth of computer usage and availability in the recent years, it is 
surprising that much of the mathematical background underlying numerical analysis 
and computer logic has been available for several centuries. Binary logic operations, 
which use 2 as the base, instead of 10 employed in the decimal system, and which 
form the basis for most present digital computing, have been known and used for 
quite some time. Francis Bacon used binary codes in the early seventeenth century 
to transmit secret messages. In 1804, Joseph Marie Jacquard used punched cards 
with binary codes and logic to operate looms. A mathematical theory for binary 
logic was developed by George Boole during the nineteenth century. Similarly, 
 adding machines and mechanical calculators were developed centuries ago, such as 
the one developed by Blaise Pascal in the seventeenth century. Charles Babbage 
designed the first automatic digital computer in 1833, with several features similar to 
those of modern computers. However, this machine was never constructed.

Modern digital computers were developed largely after World War II. A  high-speed 
electronic digital computer was developed during the period from 1945 to 1952 under 
the direction of John von Neumann at the Institute for Advanced Study in Princeton, 
New Jersey. Binary digits, which can be represented by the opening or closing of a 
switch, were stored electrostatically in cathode-ray tubes. Several thousand vacuum 
tubes were used for computer memory, which had to be again stored about a thousand 
times per second due to the decay of electrostatic charge. Much of the logic behind 
this machine has persisted in modern computers. The major advancement has been in 
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electronic hardware, particularly in the development of transistors, integrated circuits, 
microelectronics, and now nanoscale devices and systems. As a result, there has been 
a considerable reduction in size and cost of electronic digital computers and also a 
substantial increase in their capability, speed, and reliability. The availability of PCs 
has brought computational techniques within easy access for a wide variety of prob-
lems, both for students and for professional engineers. Therefore, the coming years 
may be expected to improve the available computational facilities even further through 
the advancement in both computer software and hardware. It is also evident that PCs, 
with an interface with larger machines or with other machines in a parallel computing 
environment for more complicated problems, will continue to grow in availability and 
usage. Thus, it is important to learn the computational techniques relevant to engi-
neering problems on the basis of the currently available computational facilities, while 
considering expected future trends as well.

Several important and useful features have been incorporated in the modern 
 computer systems. Among the most important of these is an interactive use of the 
computer, rather than the previously common batch operation mode. Frequently, an 
interpretive compiler is used so that each program statement entered into the 
 computer is screened for syntax errors and a message issued if any error has been 
committed. The interactive mode allows one to enter variables and make changes in 
the  program, as the need arises after each run of the program. The execution may 
also be stopped to make modifications and then continued. Therefore, the interac-
tive mode is very well suited for the initial stages of program development, when 
the testing and debugging of the program is being done, and for obtaining the trends 
for a wide range of input parameters. For instance, if the values of x at which a 
nonlinear equation f(x) = 0 is satisfied (known as roots of the equation) are to be 
determined, the interactive mode may be used very effectively to obtain the general 
behavior of f(x) over the range of interest in x. Various values of x may be entered 
and the corresponding values of f(x) obtained. A graph of f(x) versus x may easily 
be plotted using available software. The information obtained may then be used to 
select the method for finding the roots and also to obtain suitable initial guesses for 
the roots. Figure 1.1 shows a few examples where the plot of f(x) versus x would be 
particularly useful in root finding.

The batch operation mode involves feeding the complete job into the computer 
and then running it with no interaction with the operator until the job is executed. 
This mode is appropriate for obtaining the numerical results for different parametric 
values after the program has been developed and debugged, particularly for large 
programs. Other important features available with present computer systems are 
graphics facilities, which plot the computed results, and interfacing between various 
computers, which allows program development to be carried out on small computers 
in the interactive mode. Once the program has been completed, debugged, and tested, 
the numerical code may be transmitted to a larger computer or to a parallel computer 
system, which would generally be more efficient for computing and will have greater 
storage capability, and run in the batch mode to obtain the desired computed results. 
Of course, with the increasing computational power and storage capacity of  individual 
machines and workstations, code developments, as well as extensive computational 
runs, are often carried out on the same unit.
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1.2  NUMERICAL SOLUTION

The development of a computational procedure, or algorithm, to solve a given 
 problem requires knowledge of both the available numerical methods and the 
 methodology to interface with the computer. Since several methods are generally 
available for a given application, it is important to understand the applicability and 
advantages of each method compared to those of the other methods. For instance, a 
system of linear equations may be solved by a wide variety of methods, including 
direct methods, which give a solution in a definite number of steps, and iterative 
methods, which involve a repeated solution of the equations until a chosen conver-
gence criterion is satisfied. The choice of the method for a given problem depends 
mainly on the nature and number of the equations. Direct methods are suitable for 
smaller systems and iterative methods for large sets of equations. Also, if the same 
system of equations must be solved several times with different constants on the 
right-hand side of the equality sign, methods based on matrix inversion are often 
preferable since the different solutions may be obtained easily once the coefficient 
matrix has been inverted. Similarly, in curve fitting, the method to be adopted is 
strongly  dependent on the nature and form of the given data. If the data have been 
provided at uniform intervals of the independent variable, certain specialized meth-
ods may be used, taking advantage of the uniform distribution of data.

Sometimes, several methods are applicable for a given problem, and the selection 
of the method becomes a matter of personal choice. The previous experience with a 
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FIGURE 1.1  Some examples of the plotting of the function f(x) versus x to determine the 
approximate values of the roots of the equation f(x) = 0.
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particular method may be an important consideration in its selection. Also, the 
 availability of certain programs in the computer library may make it advantageous 
to choose a given method. Many specialized methods have been developed for spe-
cific applications. Such methods are often limited in their applicability, although 
they may be the most efficient ones when applied to the problem for which they are 
particularly suited. For instance, certain methods for finding the roots of an algebraic 
equation are applicable only to polynomial equations and are popular choices for this 
application. They cannot be used for other types of algebraic equations, say, tran-
scendental equations that involve transcendental functions such as exponential, loga-
rithm, and trigonometric functions. Similarly, direct methods for solving systems of 
equations apply only for linear equations. Iterative methods are generally necessary 
for a system of nonlinear equations.

It is evident from the preceding discussion that the selection of the most  appropriate 
numerical method for a given problem is an important consideration and is generally 
based on the nature of the problem. Once the method has been selected, one  proceeds 
to implement it on the computer. The program is written in a programming language 
or in the computational environment available on the computer system to be 
employed. Although Fortran, with its many versions like Fortran 77, Fortran 90, 
Fortran 2003, and Fortran 2008, has been used extensively in engineering applica-
tions on most minicomputers and mainframe systems, Basic, C, C++, and other 
languages developed in recent years have often been used on PCs. MATLAB® is 
probably the most commonly used computational software being used today on both 
PCs and servers to solve mathematical problems that arise in engineering and scien-
tific applications. Most of the numerical solutions discussed in this book, therefore, 
employ MATLAB.

The computer program written in the chosen programming language is converted 
into machine language by the computer. This process, known as compilation of the 
program, is achieved by using the relevant software, termed the compiler, available 
on the computer. An operating system is used for the control of the program and the 
computer resources. The editing of the program, for making changes and  corrections, 
is done with the help of the editing system available on the given computer. The 
compilation, editing, and execution of the program are governed by the operating 
system of the computer and therefore vary with the machine. Similarly, the job 
 control language, which interfaces the programmer with the computer, depends on 
the computer system. For those who may not be familiar with the terms mentioned 
here, Chapter 2 outlines the basic features of a computer system.

The interpretation of the numerical results obtained is also an important 
 consideration, since it relates to the accuracy and the correctness of the numerical 
solution. The computational scheme may be employed to yield results for a wide 
range of input variables, so that the results may be considered in terms of the  physical 
or chemical nature of the problem being investigated. If possible, a comparison is 
made with available analytical results in order to determine the accuracy of the 
 computed results. The verification and validation of the numerical scheme involve 
ensuring that the results obtained are accurate and valid. These are particularly 
important if a commercially available computer program or one available in the 
public domain is being employed to solve a given problem. It is also important to 
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determine the range of governing parameters over which the scheme can be used to 
yield accurate numerical results. These considerations are discussed in the following 
sections. Once the accuracy and validity of the results have been verified, the desired 
results may be obtained in a tabulated or graphical form.

1.3  IMPORTANCE OF ANALYTICAL RESULTS

As mentioned earlier, the equations that arise in most engineering problems are too 
complicated to be solved analytically, and computational techniques must be used 
to obtain the numerical values needed. Analytical solutions are often obtained only 
in very simplified circumstances. Also, as indicated before, analytical results are 
frequently given in terms of convergent series, integrals, and complicated functions, 
such as transcendental functions, Bessel functions, and so on. In engineering, we 
are largely interested in numerical values corresponding to given input data, and the 
computer is frequently needed to obtain the desired numerical information from a 
given analytical solution. However, analytical results, whenever available, are 
extremely important in evaluating the accuracy of the numerical scheme and in 
validating the model. Similarly, analytical results may be used to study the conver-
gence characteristics of the numerical method and to decide if the correct solution 
has been obtained.

As an example, let us consider the solution of the differential equation that  governs 
the variation, with time t, of the charge q of a capacitor in an electrical circuit that 
also contains a voltage source and a resistance. If the initial charge in the capacitor 
is Q and the voltage input, resistance, and capacitance are denoted by E, R, and C, 
respectively, the governing equation is obtained as follows (Young et al., 2000):
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If R, C, and E are constants, the preceding equation may be solved mathemati-
cally to obtain

 q Q EC EC Q ECt RC t RC t RC= + − = + −− − −e e e/ / /( ) ( )1  
(1.2)

The physical problem and the analytical solution are sketched in Figure 1.2. The 
charge q decreases from the initial value of Q to a steady-state value of EC, if EC < Q. 
Similarly, q increases to a steady charge of EC, if EC > Q.

Several other physical problems are governed by equations similar to Equation 1.1. 
The temperature T(t) of a small, heated metal block being cooled by a stream of air, 
the moisture content of a wet body drying in air, and the pressure of gas in a container 
with an opening are often governed by equations of the same form as Equation 1.1. 
However, in actual practice, the parameters, such as R, C, and E, may be the nonlinear 
functions of the charge or voltage and may, in some cases, also vary independently 
with time. For instance, nonlinear conductors, such as vacuum tubes, do not obey 
Ohm’s law, and heat and mass transfer processes operating at the surface of a given 
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object generally depend on the temperature, concentration, and pressure, making the 
differential equation nonlinear. The governing equation may, in general, be written as 
dϕ/dt = −H(ϕ, t)ϕ + B, where ϕ is the dependent variable, H(ϕ, t) is a functional 
 parameter, and B is a constant. If q is replaced by ϕ in Equation 1.1, then H(ϕ, t) = 1/RC 
and B = E/R. This equation is linear in ϕ, or q, since H and B are constants, resulting 
in only the first power of ϕ to appear in the equation.

If H is not a constant but a function of ϕ as H(ϕ, t), an analytical solution is often 
not obtained because of the nonlinear expression −H(ϕ, t) ϕ that arises on the 
 right-hand side of the differential equation. In such circumstances, a numerical 
 solution of the differential equation may be obtained by choosing a time step Δt and 
advancing time to compute ϕ as a function of time, starting with the given initial 
condition. This computation is done until an insignificant change is observed in ϕ(t) 
from one time level to the next, thereby indicating that the temperature has reached 
steady state, given by dϕ/dt = 0. However, since an analytical solution is available for 
the simplified circumstance of Equation 1.1, the numerical scheme should first be 
used to solve the problem with H taken as a  constant and the computed results 
 compared with the analytical solution. This comparison will allow determination of 
the anticipated accuracy of the numerical results and will also check the correctness 
of the procedure. Such a comparison is particularly valuable in complicated  problems 
where an error in the numerical scheme may go undetected. Fortunately, many 
 physical and chemical problems can be formulated in terms of idealized circum-
stances, which lead to simplified equations that can be solved analytically. Chapter 8 
discusses several methods for solving ordinary  differential equations (ODEs) and 
demonstrates again the importance of available analytical results.

Similarly, in numerical differentiation and integration, the computational scheme 
may be tested by employing simple functions whose derivatives and integrals can be 
obtained analytically. In radiative heat transfer, for instance, integration over the 
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FIGURE 1.2  Variation with time t of the charge q in a capacitor, which is originally at 
charge Q, due to the closing of the switch in the electrical circuit shown.
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wavelength λ of the radiation is frequently needed to determine the total energy lost 
or gained, Q, per unit area, at a surface. The expression for Q is

 

Q f=
∞

∫ ( )λ λd
0  

(1.3)

where f(λ) is known as the monochromatic emissive power and is often a fairly com-
plicated function of the wavelength λ, generally obtained from a curve fit of experi-
mental measurements. However, the radiation from a blackbody, which is an idealized 
circumstance, is well known in physics and is given by Planck’s law, which expresses 
f(λ) as
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where T is the surface temperature on the Kelvin scale and c1, c2 are the known 
 constants. Figure 1.3 shows the variation of f(λ) with λ for the ideal surface of a 
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FIGURE 1.3   Variation of the emissive power f(λ) with the wavelength λ for thermal radia-
tion by a blackbody, a gray body, and a real surface.
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blackbody, for a real or practical surface, and for a gray body for which f(λ) is a con-
stant fraction of that for a blackbody at all λ.

For a blackbody, the integral in Equation 1.3 has been evaluated analytically and 
is given by

 Q = σT 4 (1.5)

where σ is known as the Stefan–Boltzmann constant and whose numerical value is 
given in the literature as 5.67 × 10−8 W/m2 K4. Therefore, the computational scheme 
developed for numerically determining Q for a wide variety of engineering surfaces, 
and thus different f(λ), may first be applied to blackbody radiation and the results 
compared with the analytical solution given by Equation 1.5 to determine the accu-
racy and validity of the numerical method.

The numerical solution of large systems of linear or nonlinear equations is often 
needed in engineering problems. Since small sets of equations, typically three or 
four equations, can be solved analytically, the numerical procedure for solving 
 systems of simultaneous algebraic equations may be employed for a small number of 
equations and the numerical results compared with the analytical values, to  determine 
the accuracy and correctness of the numerical solution.

In numerical methods based on iteration, a convergence criterion ε is employed to 
decide when to terminate the iteration. Generally, the convergence criterion is applied 
to a physical variable in the problem, and computation is stopped when the change 
from one iteration to the next is less than the chosen value of ε. A relationship 
between ε and the accuracy of the numerical results may be obtained by a compari-
son of the computed values with the analytical solution that may be available for a 
simplified circumstance. This information can then be employed in the choice of the 
convergence criterion. If analytical results are not available, an extensive testing of 
the numerical procedure, over wide ranges of the initial guess, convergence  criterion, 
and time step Δt, for example, in the problem given by Equation 1.1, must be carried 
out to ensure that the numerical results are essentially independent of the values 
chosen and that the desired accuracy level has been achieved. Figure 1.4 sketches 
typical computed iterative and converged solutions to the ODEs that govern a par-
ticular flow circumstance. The questions related to iterative convergence and to the 
choice of the numerical parameters, such as ε and Δt, are extremely important and 
are discussed in detail in Chapter 2.

1.4  PHYSICAL CONSIDERATIONS

The physical or basic considerations that give rise to a given mathematical  expression 
or equation can often be used very effectively in selecting the numerical method, in 
choosing an acceptable solution from the several that may be obtained, and in testing 
the method for accuracy and correctness. In most engineering problems, the basic 
nature of the desired solution is known, along with the range in which it lies. Let us 
consider, for example, the free fall of a body of arbitrary shape in air. A terminal 
velocity is attained due to the balancing of the gravitational force by the frictional 
drag force (Halliday et al., 2004). Depending on the size and shape of the body, an 
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expression for drag may be obtained from considerations of air flow around the 
body. For a flat plate, a commonly employed expression for the frictional force is 
(AV13/7 − BV), where V is the speed at which the plate is moving in stationary air and 
A and B are constants that depend on the length of the plate and the properties of air 
at the given temperature. Then, if m is the mass of the plate and g the magnitude of 
gravitational acceleration, the terminal velocity is the root of the equation

 AV13/7 − BV = mg (1.6)

From a physical consideration of the problem, we know that the terminal velocity 
must have a unique, positive value. The range in which the value lies may also be 
estimated from the available results for other bodies, for example, the sphere. A 
similar equation is obtained for bodies of other shapes and sizes. In many cases, the 
expression for drag is obtained from a curve fit of experimental results and is given 
as a fairly complicated function of the velocity V. A solution of the resulting force 
balance equation will then yield the terminal velocity for the given body. The method 
for solving the above equation may be selected knowing that the root is real, distinct, 
and positive. As discussed in Chapter 5, the secant method and the Newton–Raphson 
method are two efficient computation schemes that may be employed for this  problem. 
If a method that determines all possible roots of the equation is used, the physical 
considerations are employed in choosing the correct solution. Since the solution is 
expected to be unique, the other roots must be complex numbers, negative or beyond 
the expected range of values.

Distance

Ve
lo

ci
ty

Possible
iterations

Final converged
solution

FIGURE 1.4  Typical iterations, leading to a converged result, in the numerical  solution of 
ODEs that determine the velocity profile in a flow.
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The physical background of the mathematical problem being solved numerically 
is particularly important in the solution of nonlinear equations, such as the polyno-
mial equation, Equation 1.6, or transcendental equations. Some examples of the lat-
ter are as follows:

 
tan x

B
x

=
 

(1.7)

 log x + 2x2 = 4  (1.8)

 ex + x2 − 2x = 2 (1.9)

Nonlinear equations arise very frequently in engineering problems, such as those 
related to fluid flow, heat transfer, chemical reactions, and dynamics of bodies. The 
problems encountered may involve finding the roots of a given nonlinear equation or 
solving a system of nonlinear equations. Since the characteristics of nonlinear 
 equations are generally much more complicated than those of linear equations and 
since several solutions are feasible, the physical aspects of the problem are used in 
the development of the computational procedure and in deciding which solutions are 
acceptable. Even for solving a system of linear equations by iterative methods, 
 physical considerations are often important in obtaining the starting values. Linear 
and nonlinear equations are also frequently obtained in the numerical solution of 
partial differential equations (PDEs). The physical nature of the quantities to be 
computed is usually employed in the choice of the method, the initial guess, the grid 
to discretize a computational region, the desired accuracy level, and the convergence 
criterion for the termination of the numerical scheme. Since analytical solutions are 
rarely available, the numerical results obtained are generally considered in terms of 
the fundamental nature of the problem in order to determine the validity of the 
numerical scheme.

Curve fitting is another area in which the physical or basic considerations 
 underlying the given problem are of particular importance in developing the 
 computational scheme. Numerical methods are generally used to obtain the best fit 
to a given set of data. In such cases, it is important to know the expected trends on 
the basis of the physical aspects of the problem, so that the best fit obtained is a true 
representative of the process involved.

Consider, for example, the mean daily ambient air temperature at a given loca-
tion. We wish to obtain a mathematical expression from the 365 data points that 
represent the measurements of the average daily temperature over a year. We could 
obtain a 364th-order polynomial from the given data. However, to do so would 
involve a  substantial computational effort, both in obtaining the polynomial and in 
the  subsequent usage of the polynomial in relevant problems. Moreover, the air 
temperatures fluctuate due to environmental disturbances. Consequently, we are 
interested in obtaining an expression that represents a best fit to the data and also 
characterizes the variation over the year. Since we know that the variation is 
 periodic, with a time period of 365 days, we may try to fit the measurements to a 
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 sinusoidal variation. Examples of some of the distributions that may be employed 
are as follows:

 Ta = A sin [ω(t − a)] (1.10)

 Ta = A sin ωt + B cos ωt (1.11)

 Ta = A sin ωt + b sin 2ωt (1.12)

where Ta is the ambient temperature; ω is the frequency, given as 2π/365; t is the time 
in days; and A, B, and a are constants to be determined numerically from a best fit. 
The first equation is frequently used, with fairly satisfactory results. Figure 1.5 shows 
the resulting curve fit qualitatively. Similar considerations are employed in obtaining 
empirical correlations from experimental data and for  representing  material prop-
erty data, such as those of interest in thermodynamics, by a best fit.

Numerical simulation of engineering systems is important in design and 
 optimization. It involves the mathematical modeling of components and physical or 
chemical processes that comprise the given problem to simplify the problem, 
 followed by a numerical solution of the governing equations obtained. The input 
parameters, initially chosen on the basis of available data, are varied until a close 
agreement between the physical system and the numerical model is obtained. Once 
an existing system or process has been numerically simulated, the effects of  variations 
in design on the performance of the system may be studied numerically, leading to 
optimization. At various stages in such a study, the physical or chemical aspects of 
the problem are employed. In fact, the comparison between the numerical model and 
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ture variation over the year at a given location.
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the actual system forms the basis for the development of the numerical scheme and 
for the study of the numerical results obtained.

Therefore, in the presentation of numerical methods for engineering problems, 
actual problems need to be considered, in order to demonstrate the importance of the 
physical background of the problem in the selection of the method and in  determining 
if the numerical results are accurate and valid. The general features of the various 
methods are important and must also be studied in detail. However, some of the 
important aspects can be best understood in terms of the underlying physical 
 considerations. Therefore, simple examples from several areas of engineering  interest 
are employed in this book.

1.5   APPLICATION OF COMPUTER METHODS TO ENGINEERING 
PROBLEMS

Computational techniques are used in engineering for a wide variety of applications. 
Several examples of problems that are generally solved on the computer have been 
given in the preceding discussion. Numerical methods for engineering application 
may best be considered in terms of the various mathematical problems that com-
monly arise in engineering. Computer methods for the solution of these problems 
may then be considered, using examples of mathematical expressions and equations 
from various engineering disciplines. This approach would allow a consideration of 
the various methods that may be employed for obtaining the numerical solution of a 
particular mathematical problem, say, integration, while employing examples from 
engineering to bring out the importance of physical considerations in obtaining 
accurate and valid results. This book employs this approach to present and discuss 
computer methods for engineering.

Various types of mathematical equations are encountered in engineering  applications, 
such as linear and nonlinear algebraic equations and ordinary and PDEs. Frequently, 
systems of equations, which are linked with each other through the unknown variables, 
are obtained. PDEs arise in areas such as heat transfer, fluid mechanics, elasticity, 
electrostatics, and combustion. These equations are usually solved by finite-difference 
or finite-element methods, which convert the problem into a system of algebraic equa-
tions by applying the PDEs at a finite number of grid points or integrating them over 
finite regions. ODEs are also sometimes solved by these methods. Therefore, the solu-
tion of a system of algebraic equations is very important in engineering applications, 
and many methods have been developed to solve the different types of equations that 
are frequently encountered. Sets of  algebraic equations are also directly obtained in 
many physical problems, such as those of interest in thermodynamics, economics, 
vibrations, structural analysis, and electrical networks. Although linear systems are 
particularly important, many  engineering problems result in systems of nonlinear 
equations, which must be solved iteratively to obtain the solution. However, in most 
cases, nonlinear systems are  formulated so that the methods for linear equations may 
be employed iteratively to converge to the desired solution.

In many engineering problems, the roots of a nonlinear algebraic equation, 
 transcendental or polynomial, are to be determined. Such problems arise, for instance, 
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in the determination of the temperature of a body from an energy balance, the termi-
nal velocity of a body falling under gravity, the density of a gas from its equation of 
state, and vibration frequencies from the characteristic equation of a given system. 
Again, various methods are available, some of which are applicable only to polyno-
mial equations, while others may be used for finding the real or  complex roots of 
other types of equations. Depending on the nature of the problem, the appropriate 
method may be selected. If not much prior information is available on the nature and 
approximate magnitude of the roots, the general behavior of the function f(x) that 
constitutes the given equation, f(x) = 0, where x is the unknown, may be investigated 
numerically. The numerical method for the solution may then be chosen on the basis 
of the information obtained on the variation of f(x) with x.

ODEs are important in several areas of engineering interest, such as heat and 
mass transfer, dynamics, fluid flow, chemical reactions, electrical circuit analysis, 
and elasticity. In some cases, PDEs can be transformed into ODEs. Frequently, sev-
eral ODEs that are coupled through the unknowns are to be solved simultaneously. 
The solution procedure depends on the nature of the problem, particularly on the 
order of the equation, that is, the highest-order derivative in the equation, and the 
boundary conditions. For instance, the following second-order ordinary differential 
is obtained for a resonant electrical circuit:
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where V is the voltage across a capacitor, A and B are constants that depend on the 
resistance, inductance, and capacitance in the circuit, and t is time. If the initial 
 conditions are given as
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we have an initial-value problem, in which the integration of the equation may be 
started at the given time t = 0 and incremented to larger time to obtain the solution. 
If one of the conditions is given at a different time, a boundary-value problem is 
obtained, in which a correction scheme is needed to satisfy the given conditions. 
Similarly, the boundary conditions may be given at two different spatial locations, or 
two different values of the independent variable. Then, iteration is generally employed 
to converge to the solution.

Besides algebraic and differential equations, several other mathematical  problems 
arise in engineering. Numerical differentiation and integration are needed in many 
cases, often as part of a more complicated problem. Numerical integration over time 
is needed, for instance, in determining the total energy lost or gained by an object, 
such as at the surface of a lake. Similarly, integration of velocity across a cross sec-
tion of a channel gives the total volume flow rate in the channel. Numerical differen-
tiation is needed, for example, in the determination of the acceleration of a particle 
from the measured variation of its velocity with time. Rate processes are important 
in engineering, and numerical differentiation is frequently employed for obtaining 
the rates of change of various physical quantities. Numerical techniques are also 
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needed in interpolation and extrapolation, employing curve fitting of given data. In 
some cases, an exact fit which yields the exact value at the given data points is 
 appropriate. However, more frequently, a best fit of the data is employed so that the 
general features of the results may be represented by a correlating equation, without 
forcing the curve to pass through each data point, as seen earlier in Figure 1.5. 
Software for graphics can be employed advantageously with the computer solution of 
engineering problems to present the numerical results.

In summary, a consideration of numerical methods for engineering application 
involves a wide variety of mathematical problems, as outlined here. It is important to 
understand the advantages and limitations of a particular method for solving a given 
problem. The numerical procedure and the results obtained must also be related to the 
physical or basic background of the problem in order to ensure the validity of the com-
putational scheme and to choose an acceptable solution. Similarly, a comparison 
between the numerical and analytical results must be made, whenever possible, to 
check the accuracy of the results obtained. The development of the numerical scheme 
for a given problem may be discussed in several ways. A practical approach is to take 
the mathematical problem arising from the actual circumstance, present the  computer 
program, and discuss the numerical results in terms of the physical aspects of the prob-
lem and available analytical results. It is this approach that is followed here. The com-
putational software chosen is MATLAB, which is presently the most widely used 
computational environment for the application of computer methods to  engineering 
problems. However, other languages and software may also be employed by suitably 
modifying the given programs, as discussed in Chapter 2. Of particular importance in 
the use of numerical techniques for solving engineering problems is the need to check 
the computational scheme for accuracy and to correctly interpret the  numerical results 
obtained. In this book, these and other aspects mentioned  earlier will be  considered in 
terms of various examples taken from several  engineering disciplines, including aero-
nautical, chemical, civil, electrical, industrial, and mechanical engineering.

1.6  OUTLINE AND SCOPE OF THE BOOK

1.6.1  Basic Features

This book presents the mathematical background as well as the application of 
 computational techniques to problems of engineering interest. The material is 
 developed by the derivation of the formulas for each method, followed by a  discussion 
of the accuracy, computational effort, storage requirements, and range of  applicability 
of the method. For each problem area considered, for example, root solving, several 
methods are discussed, emphasizing the ones that are most extensively employed. A 
comparison between various methods applicable for a particular type of mathemati-
cal problem is made, in order to indicate the advantages and disadvantages of a given 
method. Of particular interest in such a comparison are the associated errors, ease in 
programming, computing time and storage needed, and flexibility in the application 
to a wide variety of problems. The circumstances under which a given method would 
be the preferred one are outlined. This consideration is an important one, since  several 
methods are frequently available for problems that arise in engineering  applications 
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and the choice of the most appropriate method is highly desirable, in order to  minimize 
the computing resources needed and to obtain the required accuracy level.

Following a detailed discussion of the mathematical background and the  derivation 
of the relevant formulas for each numerical method, the computational procedure for 
applying the technique is discussed. The important considerations underlying the 
development of the numerical scheme are discussed, along with the difficulties that 
may be encountered. Appropriate MATLAB commands and schemes are outlined, 
whenever appropriate, or reference is made to programs in Appendix B to  illustrate 
the numerical solution. Finally, examples based on actual engineering or  mathematical 
problems are given, for most of the methods considered, and the computer program 
is outlined. Again, the important features of the program are discussed and the 
numerical results obtained are presented and discussed. The emphasis is on  presenting 
the basic algorithm of the method in terms of its application to an actual physical, 
chemical, or mathematical problem. Although the program is discussed as part of the 
example and is, therefore, geared to the solution of the specific problem considered, 
a few modifications in the program can easily be made to use it for the solution of 
other problems of similar nature. This approach of writing a problem-oriented 
 computer program presents the program simply as a sample and encourages the 
reader to write his or her own program on the basis of the information given, making 
the program as efficient as possible and employing ongoing improvements in  available 
computational facilities. General programs that can be used for a wide range of 
 problems are also presented in many cases.

1.6.2  computer programs

Many useful features are incorporated in the computer programs given in the book. 
Both interactive and batch operation modes are utilized. In the former case, the input 
data are fed and the results are obtained interactively by the operator. This makes an 
interactive use of the computer preferable for short computer runs and for program 
development. The batch mode, in which the entire program is entered with the input 
data and the computer gives the results after the complete run, is preferred for large 
runs and complicated programs, after the program has been developed, tested, and 
debugged. Although most programs are written for the MATLAB environment, sev-
eral programs are also given in Fortran, in order to indicate the similarities and 
 differences between these and to demonstrate the ease with which the basic logic of 
the program can be employed in a different language or environment. Also, Fortran 
continues to be an important programming language for engineering problems. 
Subroutines or function files are useful in developing complicated programs and are 
employed wherever appropriate. In some cases, the outputs are stored in data files for 
future analysis or plotting and, in others, these are printed or plotted as soon as the 
computational runs are completed.

1.6.3  examples and proBlems

The examples and problems considered in this book are derived from topics of 
 interest in the major engineering disciplines and in the basic sciences. The physical 
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or basic background of the problem is outlined in order to enable the reader to fol-
low the relevance of these considerations in the choice and testing of a particular 
numerical technique. Also, a selection of problems that arise in practical circum-
stances makes the discussion interesting and relevant to engineering applications. As 
 discussed earlier in this chapter, numerical solutions must be considered not only in 
terms of the basic nature of the given problem but also in terms of any analytical 
solutions available, even if these are for very simple situations. These aspects are 
stressed in evaluating the numerical results for accuracy and validity. In solving 
problems of engineering interest, the available information on the given system or 
process must form the basis for the development of the numerical scheme and for the 
verification of the results obtained.

Both the problems and the examples tend to expand on the material covered, so 
that they contribute to an increased understanding of the discussion given in the text. 
Several new physical phenomena are also introduced in the problems to indicate the 
application of the methods presented to a much wider spectrum of engineering 
 processes. Although the emphasis is, obviously, on the numerical solution, several 
problems are also directed at the mathematical background, particularly at the 
errors  involved and the mathematical formulation for a numerical solution. In 
 addition, many problems can be solved on a calculator in order to study a given 
numerical scheme.

Much of the material presented in this book has been used in courses taught at the 
sophomore and junior levels in engineering. A few of the topics covered may be 
somewhat advanced for sophomore students. Similarly, the physical background of 
the problems may not be familiar to some of the readers. Consequently, a brief dis-
cussion of the important aspects of the problem or example under consideration is 
included. In some cases, reference is also made to books that can be consulted for a 
more detailed coverage of the topic. A background in programming, such as a fresh-
man-level, one-semester course, is assumed, although some of the important aspects 
are covered in Chapters 2 and 3 for completeness.

1.6.4  a preview

The presentation of the numerical techniques for engineering application starts 
with Chapter 2 on the basic considerations in computer methods. This chapter 
outlines the important elements in computational procedure, including program 
development, numerical errors, accuracy, convergence, and other basic aspects. 
Although some of the discussion will be quite familiar to those experienced in 
computer programming, many of the aspects considered in this chapter are impor-
tant in obtaining an accurate and valid solution to a problem of engineering inter-
est. This chapter also outlines the current trends in computational methods and 
facilities, with respect to both the  software development and the growing capabil-
ity of computer systems.

A brief review of MATLAB is presented in Chapter 3 in order to discuss the main 
features of this computational environment. Commonly used commands and the 
basic procedures to develop a program in MATLAB are outlined. Standard software 
that can be used advantageously to solve mathematical problems, such as matrix 
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inversion, root solving for polynomial equations, solution of a system of linear 
 equations, and obtaining a best fit from given data, is presented and discussed. Since 
plotting of data is easily done in MATLAB, some simple plotting methods are 
 presented. This chapter serves to give a brief discussion of programming in 
MATLAB, while  referring to more extensive presentations in other books, and also 
outlines the  terminology and nomenclature to be used in later chapters

The Taylor series, which forms an important element in the estimation of numeri-
cal truncation errors (TEs), is presented in Chapter 4, along with the numerical 
approximation of derivatives. Several methods for differentiation are presented, and 
many of the results presented here are employed in later chapters. Methods for 
 finding the roots of nonlinear algebraic equations are discussed in Chapter 5. Several 
methods, which are based on the sign change, at the root, of the function f(x) in the 
given equation f(x) = 0, are first considered. Efficient methods such as the secant and 
Newton’s methods, which converge very rapidly, although they may also diverge in 
certain cases, are discussed in detail. Specialized methods for equations in which 
f(x) is a polynomial are also discussed. Finally, a comparison between the various 
available methods is made.

The solution of simultaneous linear or nonlinear algebraic equations is an  important 
problem in engineering applications and forms the subject of Chapter 6. Direct as well 
as iterative numerical methods are discussed, the latter being the inevitable approach 
for most nonlinear equations. Eigenvalue problems are also considered and the avail-
able methods outlined. Numerical methods for curve fitting of data are presented in 
Chapter 7, considering both the exact fit as well as the best-fit approach. Various tech-
niques for interpolation are discussed, emphasizing popular methods such as Lagrange 
and Newton’s interpolating polynomials. The least-squares method for a best fit is 
 discussed in detail, and various forms of the function for curve fitting are considered.

Numerical integration forms the subject of Chapter 8, and several important 
methods, such as the trapezoidal and Simpson’s rules, Romberg integration, and 
Gaussian quadrature, are discussed. The advantages of each method, its limitations, 
and the conditions under which it is preferred are considered in some detail. The 
associated errors and the resulting accuracy are also discussed. The numerical 
 integration of improper integrals, whose limits of integration may be infinite or the 
integrand may become singular over the range of integration, is also presented.

The solution of differential equations is an important subject in engineering. 
Because of the complexity of typical engineering problems, numerical methods are 
generally needed. ODEs are considered in Chapter 9 and PDEs in Chapter 10. Both 
self-starting methods, such as Euler’s and Runge–Kutta methods, and multistep 
methods, such as predictor–corrector methods, are considered for ODEs. Also, the 
associated errors, accuracy, stability, and convergence of these methods are 
 considered, along with their efficiency in terms of the computational effort required. 
Several types of equations, including initial-value, boundary-value, and systems of 
 equations, are considered and the relevant numerical techniques are presented. 
Again, a critical comparison between the various methods is made in order to guide 
the choice of the most suitable scheme for a given problem. Finite-difference meth-
ods, derived from the numerical approximation of derivatives given in Chapter 4, are 
also  outlined for ODEs.
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PDEs are included in this book largely for junior- and senior-level students and 
also for professional engineers. With the introductory background presented, the 
material could also be used for less advanced students. The material covered in 
Chapter 10 considers mainly linear equations of parabolic, elliptic, and hyperbolic 
type. The basic nature of the equations is discussed in detail, and important  numerical 
methods for their solution are presented. The questions of accuracy, convergence, 
and stability are again considered. Finite difference methods are largely considered, 
with a brief introduction to finite element methods, since the former is easier to 
understand and can be developed on the basis of the material presented in Chapter 4. 
The methods for treating different types of boundary conditions are also outlined.

In all the topics considered here, a large number of examples and problems are 
given, so as to provide a strong physical and numerical base for the computational 
study of engineering problems. Since the best way to learn numerical methods is by 
applying the techniques available to different problems and developing one’s own 
computer code, almost all the examples and many of the exercises demand the 
 development of the relevant program and its use for obtaining the desired numerical 
results. Although a calculator may be used in several cases to study the  computational 
steps in a given method, the readers are strongly encouraged to write computer 
 programs for the problems given, using the discussions, formulas, and examples 
given in the text.

As mentioned earlier, this book is largely directed at the use of the MATLAB 
 computing environment for solving engineering problems. However, many Fortran 
programs are also included in deference to the continued importance of this 
 programming language in engineering. Extensive expertise and software exist in 
Fortran and it continues to be widely used, particularly for complex problems. However, 
the student or the reader can easily focus entirely on MATLAB, if desired, or a chosen 
mixture of the two computing software may be employed for instruction.





21

2 Basic	Considerations	
in Computer	Methods

2.1  INTRODUCTION

In the numerical solution of engineering problems, there are several important 
aspects that need to be considered in order to ensure the validity of the chosen 
approach for a given problem and the accuracy of the results obtained. The 
 computational procedure involves a consideration of the methods available for solv-
ing the given problem, the appropriate programming language, the  computational 
environment and software being employed, the computer and its operating system, 
and so forth, before proceeding to the development of the  numerical scheme, or 
algorithm, and the corresponding program. Since these  considerations are funda-
mental to most computer methods, this chapter discusses the general approach to 
the development of the computational scheme. Also  considered are the interfacing 
with available computer software and the  verification and validation of the  numerical 
results by a  comparison with available analytical and experimental results, as 
 discussed in Chapter 1.

The consideration of numerical errors and the accuracy of the results is important 
in the numerical solution of any given problem. The various types of errors that arise 
in the computational approach are discussed, along with methods that may be 
employed for reducing the error. The accuracy of the solution may often be estimated 
by comparing the numerical results with those from the analytical solution for sim-
pler problems, since the analytical solution of the given problem is presumably not 
available. Frequently, satisfactory analytical results are not available for comparison. 
In such cases, the numerical scheme itself is first employed to check the accuracy of 
the numerical results by ensuring that numerical parameters, such as the chosen time 
step and grid size, do not significantly affect the results. This process is often known 
as verification of the numerical method. Also, the basic nature of the problem being 
solved can often be employed as a check on the validity of the  numerical scheme and 
the correctness of the results obtained. The accuracy of the numerical results can 
frequently be evaluated by substituting the solution obtained back into the algebraic 
or PDE being solved to determine how closely it satisfies the equation. Several other 
similar procedures are generally employed to check the accuracy of the numerical 
solution.

Consider, for example, the dynamics of a moving body whose displacement x is 
governed by the ODE dx/dt = F(x, t), where t is time and F(x, t) is a given function. 
We may assume that the analytical solution is not available, since if it were, there 
would be no need to solve the problem numerically. However, the numerical scheme 
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may be employed to solve a simpler equation, say, dx/dt = –ax + b, where a and b are 
constants. The mathematical solution to this equation can be obtained as x = ce−at + b/a, 
where c is a constant to be determined by applying the initial condition, that is, by 
using the given value x0 of the displacement at time t = 0 or at any other specified 
time; see Figure 2.1. The accuracy of the numerical method may be estimated by 
comparing the numerical solution for this simple problem with the analytical  solution. 
For a more complicated function F(x, t), the following considerations may be used. 
The physical nature of the problem demands that the displacement be real and 
 positive. Also, it would often be known whether it is periodic or whether it must 
increase, or decrease, with time. This information may be employed to select the 
correct solution in case multiple solutions arise and also to check the validity of the 
numerical scheme. Once the numerical solution x(t) is obtained, numerical 
 differentiation may be used to determine dx/dt for a few selected values of t. These 
may then be employed to check if the numerical values of x do indeed satisfy the 
equation dx/dt = F(x, t) to the desired accuracy level. Finally, the step size Δt 
employed in the numerical scheme must be reduced until a further reduction in Δt 
does not significantly affect the numerical results. Of course, if any experimental 
results are available on the given problem, these may be effectively used for evaluat-
ing the accuracy of the numerical results.

The numerical methods for the solution of several problems are based on an iterative 
approach, in which the solution is gradually improved, starting with an initial, guessed 
value until the change in the solution from one step to the next becomes less than a 
chosen small quantity, known as the convergence criterion or parameter. In such cases, 
the convergence of the iterative procedure is an important consideration, and it is 
 necessary to determine the conditions under which the scheme may diverge. If a par-
ticular method diverges for a given problem, the problem can sometimes be  reformulated 
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FIGURE 2.1  Sketch of the analytical solution of the differential equation dx/dt =  −ax + b, 
where a and b are constants and x = x0 at t = 0.
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so that the scheme converges. Otherwise, a different method must be employed. 
Numerical stability is another important consideration that guides the selection of the 
method and of the grid, or step, size in the numerical scheme. Again, it is necessary to 
determine when numerical instability might arise and to take steps to avoid it.

This chapter discusses many of these considerations which are basic to most 
 numerical methods. The general approach to the development of a numerical scheme is 
outlined, indicating various important aspects that need to be taken into account. The 
concepts of error, accuracy, iteration, convergence, and stability are discussed in general 
terms, by taking examples from various topics, such as root solving,  numerical 
 differentiation and integration, curve fitting, and solution of algebraic and  differential 
equations, considered in greater detail in later chapters. The discussion in this  chapter 
forms the basis for the development, application, verification, and validation of the 
numerical procedures for these and other topics of interest in engineering applications.

2.2  COMPUTATIONAL PROCEDURE

The general approach to the development and application of the computational 
 procedure for solving a given problem is discussed in this section, indicating the 
important aspects that generally need to be considered for an efficient and accurate 
scheme. Although some of the considerations outlined here may not be applicable to 
a particular circumstance, it is important to recognize the important steps that lead to 
a successful numerical method. Most of the items included here are fairly straightfor-
ward and are quite familiar to those who have done a significant amount of numerical 
work. However, the systematic approach given here is helpful,  particularly for those 
who are relatively less experienced in computer methods, in investigating the relevant 
aspects that determine the efficiency, accuracy, and  validity of the numerical 
 procedure. It is assumed that the mathematical  formulation of the given physical or 
engineering problem has been completed and that an  analytical solution is not easily 
obtainable, so that it has been decided to solve the problem numerically.

2.2.1  method selection

Frequently, several methods are available for the numerical solution of a given 
 mathematical problem. The selection of the method to be employed, from among the 
several applicable methods, is an important consideration and is generally based on 
many relevant criteria, such as the following:

 1. Accuracy
 2. Efficiency
 3. Numerical stability
 4. Programming simplicity
 5. Versatility
 6. Computer storage requirements
 7. Interfacing with available software
 8. Previous experience with a given method
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The accuracy of a given method is an important consideration in its selection for 
solving a particular problem. The evaluation of the accuracy of a method may be based 
on a comparison of the numerical results with available analytical results, as outlined in 
the preceding section, on an estimation of the associated numerical errors, or on various 
methods for checking the correctness of the numerical solution, such as substitution of 
the numerical results back into the equation being solved to determine the accuracy to 
which the numerical solution satisfies it. All these aspects, particularly the numerical 
errors that arise in computational methods, are discussed in detail later in this chapter.

The efficiency of a given method is generally based on the total number of 
 arithmetic operations needed for solving the given problem. This is reduced to the 
number of arithmetic operations needed per computational step if the number of steps 
is fixed. One could also solve a given problem with different methods and determine 
the computational or central processing unit (CPU) time needed in each case, as 
obtained from the computer. However, the number of arithmetic operations, which 
include addition, subtraction, multiplication, and division, can often be  determined by 
noting down the various mathematical manipulations performed, per step, in a given 
numerical scheme. If a particular method involves a smaller  number of total  arithmetic 
operations needed to solve the given problem, than another method, then it is more 
efficient. A higher efficiency of the method also implies shorter computer time and, 
thus, lower computational cost. For instance, matrix inversion methods for solving 
systems of linear equations, though convenient and widely used, are generally less 
efficient than other direct methods, as seen in a later chapter.

Numerical instability refers to the unbounded growth of numerical errors as com-
putation proceeds. It is of particular concern in the solution of differential equations 
and, if present, can lead to an erroneous and unacceptable numerical solution. 
Therefore, it is important to determine the stability characteristics of the various 
methods that are applicable to a given problem. Frequently, the numerical scheme may 
be conditionally stable; that is, it may be stable within certain  constraints that often 
limit the grid or step size. In the solution of parabolic PDEs, for instance, the explicit 
schemes, which are generally simpler to use, often restrict the step size to small values, 
making these schemes inefficient. Then the implicit methods, which usually do not 
have such constraints resulting from stability considerations, are  preferred. Thus, the 
numerical instability of the method is an important  consideration in its selection.

As listed before, several other considerations also play an important role in the 
selection of the method. These include simplicity in programming, versatility of the 
method, computer storage needed, and interfacing with available software. In 
 engineering applications, the simplicity and versatility of the method are very 
 important, since interest often lies in solving a wide variety of problems with the 
least amount of effort. This is particularly true for the design and optimization of 
systems that often involved a diversity of components and equations. Frequently, 
some sacrifice is made with respect to accuracy and efficiency in order to select a 
simpler and more versatile method. An example of this is the Runge–Kutta method, 
for solving ODEs. This method is often chosen over predictor–corrector methods, 
which are more efficient than the former but are also more complicated to program.

The computer storage requirements of the method are generally important in the 
simulation of large systems that are of interest in engineering applications. For 
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example, the Jacobi method for solving a system of linear algebraic equations 
involves the storage of the matrices of the unknowns at two iterative steps, the  present 
and the previous one, whereas the Gauss–Seidel method requires the storage of only 
the latest values. Thus, the latter method requires only about half the storage needed 
by the first method. It is also more efficient on conventional single-processor 
 computers and is preferred.

The interfacing of the numerical method with the computer software is  particularly 
important when available programs are being employed. For instance, if a matrix inver-
sion program is available, methods based on the inverse of the matrix for  solving a 
system of linear equations may be chosen. This is particularly true for MATLAB®, which 
has excellent matrix inversion software built into the system. Similarly, prior  personal 
experience with a given method would be an important consideration in its selection.

2.2.2  programming language

After the numerical method for the solution of the given problem has been selected, the 
next step is the development of the computer program or code that allows one to inter-
face with the computer system. However, before proceeding with the code develop-
ment, one must select the programming language and the computer system to be used 
and become fully conversant with the selections made. The programming languages, 
often termed high-level languages, allow one to write the step-by-step instructions, or 
algorithm, for the computer in a form that is quite similar to  ordinary English and 
algebra. The computer itself interprets and executes statements only in the machine 
language, and a compiler is employed by the computer to achieve the translation from 
the programming language to the machine language. The machine language program 
is then stored, providing direct access for immediate or later execution.

Several high-level programming languages have been developed over the years. 
In the past, the most widely used among these, for engineering and science, was 
Fortran, which stands for formula translation. It was originally developed by IBM 
in the 1950s for scientific and engineering applications and is now available in many 
versions, such as Fortran 77, Fortran 90, Fortran 95, and Fortran 2003. It is still 
 commonly used and remains one of the important languages for high-performance 
scientific computing and for benchmarking and ranking the world's fastest 
 supercomputers, partly because of extensive existing programs for a wide array of 
engineering problems. Fortran 90 and beyond are also well suited for use on parallel 
machines. Most Fortran programs are structured so that control flows from top to 
bottom, rather than one in which control is transferred from one point in the program 
to another in a seemingly random fashion. The structured system makes  development 
as well as debugging relatively easy. Similarly, other important features, such as 
object-oriented programming that uses objects, which include information on the 
relevant data, methods, and their use to design the computer programs, have also 
been incorporated in recent versions. Several Fortran programs are given in this 
book to present the algorithm and the logic of the method, as well as to show the 
similarities with and differences from the MATLAB environment and to provide 
 information for those who are well versed in this programming language. Many 
books are available on programming in Fortran and may be referenced for details on 
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the language. See, for instance, the books by Metcalf, Reid, and Cohen (2004), 
Chapman (2007), and Chivers and Sleightholme (2009).

There are several other programming languages that have been employed for 
 solving problems in science and engineering. These include Basic, Pascal, C, Lisp, 
and others. Among these, Basic, which stands for beginner’s all-purpose symbolic 
instruction code, was also a widely used language, particularly on PCs, since it is 
generally simpler to use than Fortran and is well suited for small programs. 
However, it is not as versatile as Fortran and is often inconvenient for large,  complex 
programs. Many improved versions of Basic have been developed in recent years, 
and many of the constraints that existed in the earlier versions have been elimi-
nated. A useful  version is Visual Basic, which is a relatively easy to learn and use 
programming  language, because of its graphical development features and deriva-
tion from Basic.

Similarly, other programming languages have their special advantages and 
 limitations. An important language is C, which is a general-purpose programming 
language developed in the last two decades. It is a relatively low-level language, 
implying that it is closer to assembly language than high-level languages such as 
Fortran. As a result, it is more difficult to move the program from one computer 
system to a different one. However, the language was designed to encourage 
 machine-independent programming, allowing C programs to be compiled for a very 
wide variety of computer platforms and operating systems with little or no change to 
its source code. The language has several advantageous features in control flow and 
data structures because of which it is one of the most popular programming  languages 
and is widely used on many different software platforms. C has greatly influenced 
many other popular programming languages, most notably C++, which originally 
began as an extension to C. For details on the C and C++ languages, the books by 
Kernighan and Ritchie (1988), Kochan (2004), Prata (2005), King (2008), and 
Stroustrup (2000, 2009), among many other available books, may be consulted.

Several other programming languages have gained considerable importance in 
the last few years. Among these are languages that allow symbolic manipulation, 
that is, languages in which words, sentences, and expressions can be employed for 
programming. Lisp, which takes its name from list programming, is one such 
 language that is important in the development of intelligence in computers. Similarly, 
Prolog and Smalltalk are languages used in generating artificial intelligence in 
 engineering systems. For details on these languages, several references are available. 
See, for instance, the books by Winston and Horn (1989), Clocksin (2003), Clocksin 
and Mellish (2004), and Lalonde (2008).

Recent years have seen a tremendous growth in computational software,  including 
programming languages and computational environments, making it convenient 
and efficient to carry out the numerical solution of the wide range of problems 
encountered in engineering applications. Some of these that may be mentioned are 
MATLAB, Mathematica, SciLab, Maple, GNU Octave, R programming language, 
and Perl Data Language. The more computationally intensive aspects in the soft-
ware are often based on some variation of Fortran or C. The main computational 
 environment used in this book is MATLAB and Chapter 3 is devoted to a brief 
 discussion on the programming and implementation in this environment.
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The computer program, written in a high-level language such as Fortran or C++, 
is implemented on the computer by means of an interpreter or a compiler. An 
 interpreter examines each line of the program and checks it for the rules of the 
 language before it is executed. The interpreted approach is very valuable during 
 program  development, since error messages are given as soon as a statement is 
entered. However, it is very slow in the execution of the program. A compiler, on the 
other hand, organizes the entire program into a set of machine instructions and 
locations, and several compilers are available. The compiler is often written for a 
given  computer system and is generally a completely separate process undertaken 
before the program is run. Once the machine code has been produced by the com-
piler, the compiled  program is stored and the program may be executed with a sepa-
rate  command. A single command that compiles and executes the program may 
also be used. The use of a compiler thus reduces the computer time for a given 
problem. Various compilers have their particular advantages and characteristics. 
For instance, Unix and Linux are particularly good at providing diagnostic error 
messages and are widely used.

From the above brief discussion of the various programming languages widely 
employed for engineering problems, it is obvious that the trend has been toward 
structured programming and interactive use of the computer, through an interpreter, 
which responds almost immediately, or an interactive compiler. Substantial 
 improvements and modifications continue to be made in the available languages to 
simplify programming and to increase the versatility and capability of the language. 
Although it is difficult to keep up with all the advancements in the high-level 
 languages, available interpreters and compilers and computational software, it is 
important to determine what is available on a given computer.

In general, an interactive use of the computer is preferable during program 
 development, since the parameters of the problem may be entered by the operator at 
the terminal. The program may be compiled and executed to obtain the output as the 
program continues to execute. If the results are unacceptable, the execution may be 
stopped at any stage, and the input parameters varied and execution resumed. In the 
batch operation mode, the input parameters are part of the program, and the  execution 
of the program must be completed before any changes can be made. Thus, at the 
initial stages of program development, interactive computer usage is particularly 
valuable. Once the program has been satisfactorily developed, detailed numerical 
results are best obtained by the batch operation mode on the computer.

Example 2.1

Compute the sum S of the series

 S = 1 + x + x2 + x3 + … + xn + … (2.1)

where x is a variable whose value is to be entered into the program interactively. 
In order for the series to be convergent, |x| < 1. This series represents the  binomial 
expansion of 1/(1 − x), which therefore gives the exact value SX of the series. Compare 
the exact and computed values of S to determine the numerical error. Discuss the 
dependence of the sum S on the number of terms n taken in the series.
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SOLUTION

The value of x is to be entered and terms in Equation 2.1 are to be added 
sequentially. The basic considerations relevant to convergence are discussed 
in detail later in this chapter. However, it will suffice to mention here that each 
term in the series, given in Equation 2.1, is larger than the next term, for |x| < 1. 
Thus, the contribution of each additional term to the sum decreases as n is 
increased. This relationship is used as a check on the convergence, since it 
is not possible to take an infinite number of terms and since it is desirable to 
have the least number of terms that give S within an acceptable error. If SN 
represents the nth term and S the sum of the series up to and including this 
term, then the condition SN/S < ε, where ε is a chosen small quantity, such as 
10−6, which implies that the contribution of the nth term to the sum S is less 
than 10−4%, can be employed to check the convergence and to terminate the 
computation if this condition is satisfied. The percentage error E is then given 
by E = 100 [(SX – S)/SX].

The preceding description of the procedure to solve the problem may be 
 written in terms of the following steps:

 1. Set the initial value of the sum S as zero.
 2. Set the initial value of the term n as zero.
 3. Enter the value of x.
 4. Add the next term SN = xn to the sum S.
 5. Check if the convergence criterion SN/S < ε is satisfied.
 6. If the convergence criterion is satisfied, stop and print the results on n, S, 

and E.
 7. If the convergence criterion is not satisfied, advance n by 1 and go back to 

step 4.
 8. Continue till convergence criterion is satisfied or a given maximum value of 

n is reached.

A fairly simple computer program can be written to follow these steps, as dis-
cussed below and shown in Figure 2.2 in Fortran 77. This program is presented to 
show the logic and the various steps involved and for those who are familiar with 
the language.

The program would then yield the number of terms needed for the  preceding 
convergence criterion to be satisfied, the computed sum S of the series, and 
the percentage error E. Figure 2.3 presents the typical results obtained from this 
program. Here E is given in a format of the form 0.1E–04, or 0.1 × 10−4, in order to 
check against the convergence criterion of SX/S < 10−6. Clearly, the error is a func-
tion of ε, which may be chosen to keep the error within an acceptable value. Also, 
note that the  number of terms needed increases with the value of x. This result 
is expected, since convergence is slower at the larger value of x, as discussed in 
most  textbooks on advanced  calculus; see, for instance, Larson et al. (2005) and 
Stewart (2007).

This is an interesting problem, which shows the effect of truncating a series 
after a certain number of terms and the use of a convergence criterion. The 
 analytical result of the summation of the infinite series is known and can be used 
as a check on accuracy.
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C	 	 PROGRAM	SERIES	SUMMATION
C
C	 	 HERE	S	IS	THE	SUM	OF	THE	SERIES	UP	TO	AND	INCLUDING	THE	NTH
C	 	 TERM,	SN	IS	THE	NTH	TERM,	SX	IS	THE	EXACT	VALUE	OF	THE
C	 	 FUNCTION	F(X)=1.0/(1.0–X),	WHICH	IS	REPRESENTED	BY	THE
C	 	 SERIES,	AND	ER	IS	THE	ERROR.
C
C
C	 	 ENTER	INPUT	QUANTITIES
C
	 	 	 IMPLICIT	REAL	(A–H,O–Z)
	 	 	 DO	5	I=1,5
	 	 	 PRINT	*,	'ENTER	THE	VALUE	OF	X'
	 	 	 READ	*,	X
	 	 	 N=0
	 	 	 S=0.0
C
C	 	 SUM	THE	SERIES
C
	 1		 SN=X**N
	 	 	 S=S+SN
C
C	 	 CONVERGENCE	CHECK
C
	 	 	 IF	((SN/S)	.GT.	1E–06)THEN
	 	 	 N=N+1
	 	 	 GO	TO	1
	 	 	 ELSE
	 6		 WRITE	(1,2)X
	 2		 FORMAT(2X,	'X=',	F6.3)
	 	 	 WRITE(1,7)N
	 7		 FORMAT(2X,	'THE	REQUIRED	NUMBER	OF	TERMS=',I5)
	 	 	 WRITE(1,3)S
	 3		 FORMAT(2X,	'THE	SUM	OF	THE	SERIES=',	F12.6)
C
C	 	 COMPUTE	THE	ANALYTICAL	VALUE	OF	THE	SUM	AND	THE	ERROR
C
	 	 	 SX=1.0/(1.0–X)
	 	 	 ER=((SX–S)/SX)*100.0
	 	 	 WRITE(1,4)ER
	 4		 FORMAT(2X,	'THE	ERROR=',	E10.5,'PERCENT'	/)
	 	 	 END	IF
	 5		 CONTINUE
	 	 	 STOP
	 	 	 END

FIGURE  2.2  Computer program in Fortran for the summation of the series given in 
Example 2.1.
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2.2.3  computer system

The next consideration in the numerical solution of a given problem pertains to the 
computer system. Frequently, several systems, ranging from PCs or workstations 
to minicomputers and mainframe computers, are available to engineers. Super-
computers may also be accessible for large-scale simulations of engineering sys-
tems. If several computers are available, the selection of the most appropriate one 
for a given  problem is important. Once this selection has been made, or if only one 
computer system is available, one proceeds to obtain detailed information on the 
various  elements of the system, such as the languages available, the operating sys-
tem, the software available on the system, the input/output facilities, the memory/
storage constraints, and the job control language, so as to implement the computer 
program being developed on the system.

	ENTER	THE	VALUE	OF	X
0.1
	 	X	=	0.100
	 	THE	REQUIRED	NUMBER	OF	TERMS	=	7
	 	THE	SUM	OF	THE	SERIES	=	1.111111
	 	THE	ERROR	=.10729E-04PERCENT

	ENTER	THE	VALUE	OF	X
0.3
	 	X	=	0.300
	 	THE	REQUIRED	NUMBER	OF	TERMS	=	13
	 	THE	SUM	OF	THE	SERIES	=	1.428571
	 	THE	ERROR	=	.25034E-04PERCENT

	ENTER	THE	VALUE	OF	X
0.5
	 	X	=	0.500
	 	THE	REQUIRED	NUMBER	OF	TERMS	=	20
	 	THE	SUM	OF	THE	SERIES	=	1.999998
	 	THE	ERROR	=	.95367E-04PERCENT

	ENTER	THE	VALUE	OF	X
0.7
	 	X	=	0.700
	 	THE	REQUIRED	NUMBER	OF	TERMS	=	37
	 	THE	SUM	OF	THE	SERIES	=	3.333328
	 	THE	ERROR	=	.17166E-03PERCENT

	ENTER	THE	VALUE	OF	X
0.9
	 	X	=	0.900
	 	THE	REQUIRED	NUMBER	OF	TERMS	=	111
	 	THE	SUM	OF	THE	SERIES	=	9.999912
	 	THE	ERROR	=	.85831E-03PERCENT

FIGURE 2.3  Results from the program in Fortran for Example 2.1.
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As mentioned earlier, there are two main steps in the numerical solution of an 
engineering problem. The first involves the development of the computer code, and 
the second involves repeated execution of the program for a wide variety of input 
conditions and governing parameters to generate the numerical data needed for, 
say, the design and analysis of a given engineering system such as a furnace, a 
boiler, electronic equipment, a robot, a mechanical structure, or a chemical reac-
tor. The computer requirements are usually quite different for these two steps. 
Code  development involves frequent changes in the program and is thus best suited 
to an interactive use of the computer, preferably with an interpreter. The operating 
system, examples of which are Microsoft Windows, UNIX, and LINUX, controls 
the interaction with the computer, particularly the editor, and is an important com-
ponent in the process. A screen editor, such as word processing programs and 
EMACS, which is available on many personal and minicomputers, allows one to 
make changes in the program very rapidly by moving the cursor to the desired 
location and making the needed modification. A line editor, on the other hand, 
allows changes to be made line by line, or in a collection of lines, and is much 
slower. The speed of the CPU, which finally runs the program, is not a very impor-
tant consideration during code  development. Similarly, the output facilities are not 
as important as at the second stage when computational results are being obtained, 
in tabular or graphical form.

Thus, during the development of the computer program, a good screen editor, 
which allows frequent changes and corrections in the program, is desirable. Also, the 
interpreter or compiler should provide adequate error diagnostics. PCs, workstations, 
and several minicomputers are particularly suited to code development because of 
the availability of most of the desirable features mentioned above.

Once the computer program has been developed, the desired numerical results 
for wide ranges of the governing parameters are obtained by repeatedly running the 
program with minor changes to enter the appropriate parametric values. Clearly, a 
rapid execution, with good output facilities, particularly graphics, is desirable at 
this stage. The editor and error diagnostics are not important. Also, an interactive 
use of the computer is not necessary. Thus, a batch execution of the developed pro-
gram on a mainframe computer, or on a supercomputer, is the best method, particu-
larly for large, computationally intensive programs. The program is loaded, 
compiled, and linked with computer memory before execution, which then pro-
ceeds rapidly.

2.2.4  program development

2.2.4.1  Algorithm
After the selection and the consideration of the important aspects of the method of 
solution, the programming language, and the computer system, one proceeds to the 
development of the computer program. However, before the program can be written, 
a step-by-step procedure, known as an algorithm, must be developed.
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The method of solution is generally expressed in terms of the mathematical 
 formulas involved in the computation. However, the computer must be programmed 
to follow a definite, logical, step-by-step procedure to perform the desired 
 computation. The algorithm may be written as a sequence of steps to be followed. 
More  frequently, the algorithm is represented graphically by means of a flow chart, 
which shows the steps in the form of a block diagram. Generally, a flow chart is used 
to outline the computational procedure, without giving the details of the actual 
 computational steps, which are eventually entered into the actual program. Thus, a 
flow chart serves to indicate the logical sequence of programming steps and is 
 frequently drawn before the program is developed.

The flow chart follows an accepted collection of symbols to represent input/ 
output, decision, terminal, and computation. For example, let us consider the 
 determination of the maximum of a function f(x). In the optimization of engineer-
ing systems, one is frequently concerned with maximization or minimization of 
 functions, under specified constraints. Let us assume that it is known that the 
given function f(x) has a maximum in the range x1 < x < x2, where x is the inde-
pendent variable. We know from mathematics that at the maximum, df/dx is zero 
and d2f/dx2 must be negative. Employing these characteristics of a maximum, one 
may write the algorithm as a sequence of steps, shown in Figure 2.4, or represented 
by a flow chart, shown in Figure 2.5.

For this problem, the computational procedure involves entering xl and x2, 
 advancing x with a chosen step size Δx, and computing the derivative df/dx. If the 
derivative is close enough to zero, as indicated by a chosen small quantity ε, a 
 maximum or a minimum is obtained. Then the second derivative d2f/dx2 is  computed. 
A maximum is obtained if d2f/dx2 is negative. In this case, the computation is 

STEP 1. Start the calculation.
 2. Input the limits x1 and x2 on x and the definition of the function f(x).
 3.  Select the numerical parameters: Step size Δx and the convergence 

parameter ε.
 4. Initialize: Take xi = x1.
 5. Calculate the first derivative �f xi( )
 6. Check whether the magnitude of the derivative is within ε.
 7.   If | ( )ʹf xi |>ε, then advance xi by Δx and check whether xi < x2. If

| ( ) |ʹ <f xi ε, then go to Step 10.
 8. Stop the calculation if xi > x2.
 9.  Calculate �f xi( ) and again compare its magnitude with ε. Continue 

with Step 7 if | ( )ʹf xi |>ε .
 10. If | ( ) |ʹ <f xi ε then calculate the second derivative ��f xi( ) .
 11. If ��f xi( )  is positive or zero, advance xi by Δx. Go to Step 8.
 12. If ��f xi( ) is negative, a maximum is indicated.
 13. Print the required results: xi and f xi( ).
 14. Stop the calculation.

FIGURE 2.4  Representation of the algorithm for determining the value and location of the 
maximum of a given function f(x) as a sequence of steps to be followed by the computer.
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 terminated and the output printed. However, if d2f/dx2 is positive, a minimum is 
indicated. A value of zero indicates a saddle or inflexion point. Then, the computa-
tion of df/dx is again carried out by advancing x until a maximum is obtained or until 
the upper limit on x (i.e., x = x2) is attained. If a maximum is not obtained in the 
given domain and if f(x) is known to have a maximum in the region, a larger value of 
ε may be selected and the procedure repeated. In fact, both ε and Δx must be varied 
to ensure that the location of the maximum is essentially independent of the values 
chosen.

As shown in Figures 2.4 and 2.5, a flow chart is a more convenient representation of 
an algorithm. The various symbols used for indicating the type or nature of a given step 

Start

Start

Input
f (x), x1, x2

Numerical scheme
calculate f´ (xi)

Output
print xi, f (xi)

Stop

Stop Start/stop
(terminal)

Input/output

Numerical
process

Decision

Connector

Select Δx, ε
Initialize, xi = x1

Yes

Yes

Yes

No

No

No

Is
xi > x2?

Is
| f´(xi)| ≤ ε?

Calculate
f˝(xi)

Is
f˝(xi) < 0?

xi = x1 + Δx

xi = xi + Δx

FIGURE 2.5  Flow chart representation of the algorithm outlined in Figure 2.4.
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are also shown in Figure 2.5. The flow chart is a useful tool as long as it is used to give 
an outline of the overall process and not the detailed representations of individual 
steps. The numbered sequence of steps, given in Figure 2.4, can also be used instead, 
depending on the personal preference of the programmer. However, with experience, 
one could form a mental picture of the various steps in the  algorithm, particularly for 
relatively simple problems, and proceed directly to  computer programming.

2.2.4.2  Available Programs
Along with improvements in computer systems in recent years, with respect to  memory 
and computational speed, there has been an explosive growth in software as well. A 
question, which is frequently asked these days, is if there is a need to develop numerical 
codes when many general purpose and specialized codes are easily  available in the 
public and commercial domains. General-purpose programs such as Fidap, Fluent, 
Phoenics, Nekton, and Ansys are commercially available and can  easily be used to 
study a wide variety of engineering problems. Software such as Maple, MathCAD, and 
MATLAB can be used for obtaining analytical and numerical solutions to a variety of 
mathematical problems such as differential equations, integration, root solving, and 
algebraic equations. Similarly, specialized codes such as Polyflow for polymer 
 processing can be employed for specific problems and applications. In the public 
domain, several codes are available free of cost. These include programs for solving 
systems of linear equations, for solving ODEs, for inverting matrices, for curve fitting, 
and for providing graphical outputs of the computational results.

Commercially available software is generally expensive and usually does not 
 provide the source code so that it is difficult to make changes in the code for a spe-
cific problem. In many cases, information on the algorithm, accuracy, discretization, 
convergence characteristics, range of applicability, and other  important aspects asso-
ciated with the software is not available in adequate detail. Despite the claims made 
with respect to the wide variety of problems a given software is capable of solving, 
one must judge each program very carefully and choose the one most suitable for a 
given application, keeping its cost, versatility, accuracy, and other  features in mind. 
However, the general-purpose programs are finding wide use in industry, usually 
with specific changes made in the software to address the  requirements of the given 
industry.

Computer programs in the public domain do not have many of these concerns and 
can often be adapted to a given computer system and linked with other software to 
solve a given problem. Thus, a program for solving a system of linear equations by 
cyclic reduction, fast Fourier transforms, or matrix decomposition may be used as 
part of the overall computer code to simulate an engineering problem. Certainly, 
software packages for producing graphical outputs are extensively used with the 
computational scheme generating the results. This approach of developing the core 
software and linking it with codes available in the public domain is a particularly 
attractive approach and is widely used.

Besides the easy availability of a wide variety of computer codes in the public 
and  commercial domains that have led to considerable improvements and 
 simplifications in numerical model development for engineering processes, several 
other  advancements have occurred in recent years. These are expected to continue to 



Basic	Considerations	in Computer	Methods	 35

have a significant impact on computational methods. Certainly, the most important 
 development is that of parallel machines which employ several processors, instead of 
the single CPU used in traditional serial or sequential computing machines. As 
 outlined in Section 2.2.5, multiple processors allow concurrent calculations to be 
carried out, resulting in a considerable speed up of the process. Similarly,  considerable 
progress has been made in graphical representations of the results, employing color 
plots, contour plots, particle trajectories, two- and three-dimensional graphs, and 
vector field graphs, among other useful and interesting features.

The need to use supercomputers to solve complicated problems, such as those 
involving three-dimensional transport and turbulent flow, has led to improvements in 
computational techniques through vectorization of the variables, so that rather than 
treating each quantity in an array as a scalar the whole array is treated as a vector. 
Improvements in the user–computer interface, using languages such as Visual Basic, 
have also resulted in considerable ease in entering the relevant data such as  geometry, 
operating conditions, and material characteristics. Information storage and retrieval, 
linking with the knowledge base on a given process or material, often using artificial 
intelligence techniques, and other new features in computer systems and software 
have had a considerable impact on traditional programming. It is expected that such 
advancement will continue in the future, resulting in valuable and desirable changes 
in the field of computational methods as well.

2.2.4.3  Validation
The final stage in the development of the computer program for solving a given 
 problem is verification or validation of the numerical scheme. As discussed in Section 
1.3, validation is done by a comparison of the numerical results with available 
 analytical solutions and experimental results. However, the analytical solution of the 
problem being solved numerically is obviously not available, at least in a convenient 
form, making a numerical solution necessary. Therefore, the numerical scheme is 
generally validated by a comparison with the analytical solution available for  simpler 
problems. For example, the algorithm shown in Figure 2.4 may be used with a simple 
analytic function whose maximum can easily be determined mathematically. Thus, 
a function such as f(x) = 5 + 4x − 3x3, which can easily be shown to have a maximum 
at x = 2/3, may be chosen for the testing of the numerical scheme. The numerically 
obtained value may be compared with the analytical one to verify that the scheme is 
performing satisfactorily. Other, more complicated expressions may also be 
employed, if the corresponding analytical results are known, for the validation of the 
computer program. Similarly, experimental results are generally not available on the 
problem being solved. However, experimental data on similar systems or problems 
may be available. These data can then be used to validate the numerical solution.

2.2.5  serial versus parallel computing

In this book, it is generally assumed that at a given instant only one computational step 
is being carried out on the computer. This assumption applies to most  commonly used 
computers, such as PCs and minicomputers, for engineering calculations. The compu-
tational procedure in which the required calculations are performed sequentially, with 
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each step being undertaken by the machine after the previous one is over, is known as 
serial or sequential computing. Thus, a single CPU is involved in the  computation. 
However, in recent years, computers with multiple processors that allow concurrent 
calculations have been developed. Generally termed parallel computers, these 
machines represent the new generation of computing and have become  important in 
the numerical simulation of complicated processes and systems.

In order to fully utilize these machines with multiple processing units, one must 
write the algorithm so as to employ the feature of parallel computing. Thus, state-
ments must be given to direct various calculation steps to different units. Algorithms 
in which different steps are independent of each other are ideally suited for parallel 
computing, since each calculation step can easily be assigned to a given processor. 
Algorithms that involve strongly coupled steps cannot be solved very efficiently with 
parallel computing. Besides the calculation for each step, the processors need to 
communicate with each other at various stages in order to solve the overall problem. 
Thus, parallel computing involves developing algorithms that allow concurrent 
 calculations and message passing between processors for greater efficiency. 
Depending on the problem and the algorithm, a considerable speed up of the 
 computation can be obtained for a system consisting of n processors, a value 
approaching n indicating an excellent utilization of the parallel computing 
 environment. Even though the assumption here is serial or sequential computing, the 
implications for parallel computing will be given at many places in the book. For 
details on parallel computing, see Grama et al. (2003) and Scott et al. (2005).

Example 2.2

A firm needs to borrow $50,000 to undertake improvements in its existing 
 facilities. For the repayment of the loan, the firm wishes to pay only $1000 each 
month, beginning at the end of the first month after taking the loan, toward the 
 principal and the interest. Considering possible interest rates as 8%, 10%, and 12%, 
 determine the time required to pay off the loan for these three cases. Calculate the 
time required and the future worth (FW), or the value on the day the repayment 
is completed, of the money paid toward the loan. Also, determine the amount by 
which the final payment must be reduced to pay off the loan exactly.

SOLUTION

Let x denote the percent interest rate, so that an annual compounding yields an 
interest of x on $100. Then the annual interest on each dollar is x/100, denoted 
by x1. Therefore, the FW of an amount P after n years is P(l + x1)n, due to this inter-
est which is compounded annually. Similarly, the present worth (PW), or the value 
today, of an amount R paid at the end of n years is R/(l + x1)n. The concepts of 
PW and FW are very important in economic analysis; see, for instance, Stoecker 
(1989). First, we need to consider the PW of a series of uniform annual amounts 
R, paid at the end of each year starting at the end of the first year. If n is the total 
number of years, the PW of such a series of amounts is
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The series can be summed up to give

 
PW =
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where x1 = x/100 (since x is given as a percent).
Equation 2.2 follows from the fact that the PW of an amount P paid at the end 

of n years is given by PW = P/(l + x1)n and from the consideration of each lump-
sum annual payment to yield the given series. Now, if we consider monthly pay-
ments, the total number of payments become m, where m = 12n, and the interest 
rate becomes xm, where xm = x/(12 × 100). Thus,
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The FW of this series of amounts is obtained by simply multiplying the PW by 
(1 + xm)m. Therefore,
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Now, R is given as $1000 and x as 8%, 10%, or 12%. We wish to compute the time, 
in months m, needed to repay the loan, and the FW of the total payment. The PW 
is $50,000. Thus, m is to be computed from Equation 2.4, and the FW may then be 
obtained from Equation 2.5. The determination of m from Equation 2.4 is a root-
solving problem, which will be presented in Chapter 5. Here, we shall use a very 
simple approach, since root-solving methods have not been discussed yet. For a 
given value of xm, the value of m may be increased in steps of 1, starting with m = 1, 
and the PW computed from Equation 2.4, until the value of $50,000 is reached. 
The computation stops when PW exceeds this amount, since a fixed  payment of 
$1000 is made each month. In practice, the monthly payment is adjusted to an 
appropriate value close to $1000, so that the loan is paid off exactly.

Figure 2.6 shows the algorithm to be employed, in terms of a flow chart. 
The computational scheme is very simple for this problem and is based on a 
 comparison between the PW of $50,000 and the sum of the series in Equation 
2.4, employing an increasing number of terms m. Once the latter exceeds the PW, 
the loan is paid off and the number of months needed is printed. Also, the FW, on 
the date when the loan is paid off, of the total payment made is computed from 
Equation 2.5. The PW of the total payment exceeds $50,000, and the last pay-
ment may be reduced to avoid this excess payment or the monthly payments may 
be adjusted, as mentioned above. The FW of the loan is $50,000 (1 + xm)m, and if 
this amount is subtracted from the computed FW of the payments, we obtain the 
amount by which the final payment may be reduced to pay off the loan exactly.

A computer program may easily be developed on the basis of this algorithm. 
Figure 2.7 presents a Fortran 77 program to give the logic and the various steps 
indicated in the algorithm.

Figure 2.8 presents the numerical results obtained from such a program. The 
inputs are entered and the print out gives the results, along with the input para-
meters to ensure that the correct values are being employed in the  calculations. 
As seen here, the number of months needed to repay the loan increases with 
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the interest rate, as expected. Also, the FW increases. Note also that, since the 
monthly  payment is kept constant, the total payment is more than the loan. To 
determine the amount needed to repay the loan exactly, subtract the FW of the 
loan from the FW of the total payment. This amount is the overpayment and is 
subtracted from the last month's payment of $1000 to obtain the reduction in the 
final payment if the loan is to be paid off exactly.

2.3  NUMERICAL ERRORS AND ACCURACY

A very important consideration in the solution of a given mathematical, chemical, 
physical, or engineering problem by computational methods is the accuracy of the 
numerical results obtained. The true measure of inaccuracy, or error, in the numeri-
cal solution is the difference between the numerical and the exact, or analytical, 
results. However, the analytical solution of the given problem is presumably not 
available, making it necessary to solve it numerically. Thus, alternative methods for 
estimating the errors involved and the accuracy of the numerical solution are needed. 
The dependence of the errors on the various parameters associated with the  numerical 
procedure must also be determined, so that the accuracy of the solution may be 
improved by varying these parameters.
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FIGURE 2.6  Flow chart for the problem in economics considered in Example 2.2.


