
COMPUTER METHODS
FOR ENGINEERING

WITH MATLAB®

APPLICATIONS
YOGESH JALURIA

SECOND EDITION

RT90366

Mechanical Engineering

Substantially revised and updated, Computer Methods for Engineer-
ing with MATLAB® Applications, Second Edition presents equations
to describe engineering processes and systems. It includes computer
methods for solving these equations and discusses the nature and
validity of the numerical results for a variety of engineering problems.
This edition now uses MATLAB® in its discussions of computer
solution.

New to the Second Edition

• Recent advances in computational software and hardware
• A large number of MATLAB® commands and programs for
 solving exercises and to encourage readers to develop their
 own computer programs for specific problems
• Additional exercises and examples in all chapters
• New and updated references

The text follows a systematic approach for obtaining physically realis-
tic, valid, and accurate results through numerical modeling.
It employs examples from many engineering areas to explain the
elements involved in the numerical solution and make the presenta-
tion relevant and interesting. It also includes a wealth of solved exer-
cises to supplement the discussion and illustrate the ideas and
methods presented. The book shows how a computational approach
can provide physical insight and obtain inputs for the analysis and
design of practical engineering systems.

Computer Methods for Engineering with
MATLAB® Applications, Second Edition

ISBN: 978-1-5916-9036-8

9 781591 690368

90000

Computational and Physical Processes
in Mechanics and Thermal Sciences

COMPUTER METHODS FOR ENGINEERING
WITH MATLAB

® APPLICATIONS
SECOND
EDITION

J
A
L
U
R
IA

COMPUTER METHODS
FOR ENGINEERING

WITH MATLAB®

APPLICATIONS
SECOND EDITION

Computational and Physical Processes
in Mechanics and Thermal Sciences

Series in Computational and Physical Processes
in Mechanics and Thermal Sciences
A Series of Reference Books and Textbooks

Series Editors

W. J. Minkowycz
Mechanical and Industrial Engineering

University of Illinois at Chicago
Chicago, Illinois

E. M. Sparrow
Mechanical Engineering

University of Minnesota, Twin Cities
Minneapolis, Minnesota

Computer Methods for Engineering with MATLAB® Applications, Second Edition,
Yogesh Jaluria

Numerical Heat Transfer and Fluid Flow, Suhas V. Patankar

Heat Conduction Using Green’s Functions, Second Edition, Kevin D. Cole, James V. Beck,
A. Haji-Sheikh, and Bahman Litkouhi

Numerical Heat Transfer, T.M. Shih
Finite Element Analysis in Heat Transfer, Gianni Comini, Stefano Del Guidice,

and Carlo Nonino

Computer Methods for Engineers, Yogesh Jaluria

Computational Fluid Mechanics and Heat Transfer, Second Edition, John C. Tannehill,
Dale A. Anderson, and Richard H. Pletcher

Computational Grids, Graham F. Casey

Modern Computational Methods, Herbert A. Konig

The Intermediate Finite Element Method: Fluid Flow and Heat Transfer Applications,
Juan C. Henrich and Darrell W. Pepper

Modeling and Dynamics of Regenerative Heat Transfer, A. John Willmott

Computational Heat Transfer, Second Edition, Yogesh Jaluria and Kenneth Torrance

The Finite Element Method: Basic Concepts and Applications, Second Edition,
Darrell W. Pepper and Juan C. Heinrich

Computational Methods in Heat and Mass Transfer, Pradip Majumdar

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20121009

International Standard Book Number-13: 978-1-4398-9727-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface to the Second Edition .. xiii
Preface to the First Edition ..xvii
Author ...xxi

Chapter 1 Introduction ..1

1.1 Introductory Remarks ..1
1.2 Numerical Solution ..4
1.3 Importance of Analytical Results ..6
1.4 Physical Considerations ...9
1.5 Application of Computer Methods to Engineering
 Problems .. 13
1.6 Outline and Scope of the Book ... 15

1.6.1 Basic Features .. 15
1.6.2 Computer Programs ... 16
1.6.3 Examples and Problems ... 16
1.6.4 A Preview ... 17

Chapter 2 Basic Considerations in Computer Methods 21

2.1 Introduction ... 21
2.2 Computational Procedure ..23

2.2.1 Method Selection ..23
2.2.2 Programming Language ...25
2.2.3 Computer System ...30
2.2.4 Program Development .. 31

2.2.4.1 Algorithm.. 31
2.2.4.2 Available Programs.....................................34
2.2.4.3 Validation .. 35

2.2.5 Serial versus Parallel Computing 35
2.3 Numerical Errors and Accuracy .. 38

2.3.1 Round-Off Error ...40
2.3.2 Truncation Error ... 42
2.3.3 Accuracy of Numerical Results 45
2.3.4 Numerical Stability ..46

2.4 Iterative Convergence ..48
2.4.1 Conditions for Convergence 49
2.4.2 Rate of Convergence ..50
2.4.3 Termination of Iteration ...50

vi	 Contents

2.5 Numerical Parameters ... 51
2.5.1 Step Size ... 52
2.5.2 Convergence Criterion .. 52
2.5.3 Other Arbitrarily Chosen Variables 53

2.6 Summary ...54
Problems ... 56

Chapter 3 A Review of MATLAB® Programming... 59

3.1 Introduction ... 59
3.2 MATLAB® Environment .. 59

3.2.1 Basic Commands .. 59
3.2.2 Matrices .. 61
3.2.3 Arrays and Vectorization ... 62
3.2.4 Matrix Algebra ... 63
3.2.5 Polynomials ..65
3.2.6 Root Solving ...66
3.2.7 Linear Algebraic Equations 67
3.2.8 Curve Fitting .. 67
3.2.9 Flow Control ...68

3.3 Ordinary Differential Equations ... 70
3.4 Input/Output .. 72
3.5 Script m-Files .. 76
3.6 Function m-Files .. 78
3.7 Plotting .. 81
3.8 Summary ... 82
Problems ... 83

Chapter 4 Taylor Series and Numerical Differentiation85

4.1 Introduction ...85
4.2 Taylor Series ..86

4.2.1 Basic Features ..86
4.2.2 Finite Difference Calculus ...87

4.3 Direct Approximation of Derivatives95
4.4 Taylor-Series Approach and Accuracy98

4.4.1 Finite Difference Approximation of the First
Derivative ...98

4.4.2 Second Derivative ..99
4.4.3 Higher-Order Derivatives ... 101
4.4.4 Higher-Accuracy Approximations 103

4.5 Polynomial Representation .. 109
4.6 Partial Derivatives ... 112
4.7 Summary ... 117
Problems ... 118

Contents	 vii

Chapter 5 Roots of Equations ... 121

5.1 Introduction ... 121
5.2 Search Method for Real Roots .. 123
5.3 Bisection Method ... 130
5.4 Regula Falsi and Secant Methods ... 133

5.4.1 Regula Falsi Method .. 133
5.4.2 Secant Method .. 134

5.5 Newton–Raphson Method and Modified
 Newton’s Method ... 138

5.5.1 Newton–Raphson Method .. 138
5.5.2 Modified Newton’s Method 141
5.5.3 Convergence ... 142

5.6 Successive Substitution Method .. 147
5.7 Other Methods ... 150

5.7.1 Müller’s Method ... 151
5.7.2 Iterative Factorization of Polynomials 153
5.7.3 Graeffe’s Method .. 158
5.7.4 Additional Methods .. 160

5.8 Summary ... 162
Problems ... 162

Chapter 6 Numerical Solution of Simultaneous Algebraic Equations 171

6.1 Introduction ... 171
6.2 Gaussian Elimination .. 174

6.2.1 Basic Approach .. 174
6.2.2 Computational Procedure ... 175
6.2.3 Solution Accuracy .. 178

6.2.3.1 Ill-Conditioned Set 179
6.2.3.2 Error Correction 179
6.2.3.3 Pivoting ... 180

6.2.4 Matrix Inversion and Determinant Evaluation 180
6.2.5 Tridiagonal Systems ... 181

6.3 Gauss–Jordan Elimination .. 189
6.3.1 Mathematical Procedure .. 189
6.3.2 Computational Scheme... 190

6.4 Compact Methods .. 194
6.4.1 Matrix Decomposition ... 194
6.4.2 Matrix Decomposition in MATLAB® 196
6.4.3 Crout’s Method ... 197

6.5 Numerical Solution of Linear Systems by
 Matrix Inversion .. 201

6.5.1 Computational Procedure ...202
6.5.2 Additional Considerations ..204

viii	 Contents

6.6 Iterative Methods ...206
6.6.1 Basic Approach ..206
6.6.2 Jacobi and Gauss–Seidel Methods207
6.6.3 Convergence ...208
6.6.4 An Example ..209
6.6.5 Relaxation Methods .. 210

6.7 Homogeneous Linear Equations ... 214
6.7.1 The Eigenvalue Problem .. 215
6.7.2 The Power Method ...220

6.7.2.1 Largest Eigenvalue220
6.7.2.2 Smallest Eigenvalue 221
6.7.2.3 Intermediate Eigenvalues.......................... 222

6.7.3 Other Methods ..224
6.8 Solution of Simultaneous Nonlinear Equations225

6.8.1 Newton–Raphson Method ..226
6.8.2 Modified Jacobi and Gauss–Seidel Methods 227
6.8.3 Convergence ...228

6.9 Summary ...234
Problems ... 235

Chapter 7 Numerical Curve Fitting and Interpolation 247

7.1 Introduction ... 247
7.1.1 Exact and Best Fit ... 247
7.1.2 Interpolation and Extrapolation249
7.1.3 Basic Approach ..249
7.1.4 Use of MATLAB® Commands 251

7.2 Exact Fit and Interpolation .. 251
7.2.1 Exact Fit with an nth-Order Polynomial 252
7.2.2 Uniformly Spaced Independent Variable 255

7.3 Lagrange Interpolation .. 258
7.4 Newton’s Divided-Difference Interpolating Polynomial....... 262

7.4.1 General Formulas ... 263
7.4.2 Uniformly Spaced Data ..266
7.4.3 Extrapolation ..268

7.5 Numerical Interpolation with Splines 272
7.6 Method of Least Squares for a Best Fit 278

7.6.1 Basic Considerations .. 278
7.6.2 Linear Regression ... 281
7.6.3 Best Fit with a Polynomial 283
7.6.4 Nonpolynomial Forms ..285

7.6.4.1 Linearization ...286
7.7 Function of Two or More Independent Variables 293

7.7.1 Exact Fit ...294
7.7.2 Best Fit..296

Contents	 ix

7.8 Summary ...299
Problems ...300

Chapter 8 Numerical Integration ..307

8.1 Introduction ...307
8.1.1 Engineering Examples ...309

8.2 Rectangular and Trapezoidal Rules for Integration 310
8.2.1 The Rectangular Rule .. 311
8.2.2 The Trapezoidal Rule ... 312
8.2.3 Truncation Error ... 313

8.2.3.1 Rectangular Rule 315
8.2.3.2 Trapezoidal Rule 315
8.2.3.3 Total Error .. 316
8.2.3.4 Accuracy ... 318

8.3 Simpson’s Rules for Numerical Integration 322
8.3.1 Simpson’s One-Third Rule 322
8.3.2 Simpson’s Three-Eighths Rule 324
8.3.3 Truncation Errors ... 326
8.3.4 Use of MATLAB® Integration Commands 330

8.4 Higher-Accuracy Methods... 332
8.4.1 Richardson Extrapolation ... 332
8.4.2 Romberg Integration... 334
8.4.3 Higher-Order Newton–Cotes Formulas 336

8.5 Integration with Segments of Unequal Width340
8.5.1 Unequally Spaced Data ..340
8.5.2 Adaptive Quadrature .. 341
8.5.3 Gauss Quadrature ... 343

8.6 Numerical Integration of Improper Integrals 349
8.6.1 Integrals with Infinite Limits 350
8.6.2 Singular Integrand .. 351
8.6.3 Multiple Integrals ... 356

8.7 Summary ... 356
Problems ... 357

Chapter 9 Numerical Solution of Ordinary Differential Equations 365

9.1 Introduction ... 365
9.1.1 Initial and Boundary Value Problems366
9.1.2 Reduction of Higher-Order Equations
 to First-Order Equations ...366
9.1.3 Solution Methods.. 369

9.2 Euler’s Method... 370
9.2.1 Computational Formula and Physical

Interpretation of the Method 370

x	 Contents

9.2.2 Solution of a System of Equations 372
9.2.3 Errors, Convergence, and Stability 374

9.3 Improvements in Euler’s Method ..380
9.3.1 Heun’s Method ...380
9.3.2 Modified Euler’s Method.. 383

9.4 Runge–Kutta Methods ...384
9.4.1 Computational Formulas .. 386
9.4.2 Truncation Error and Accuracy 389
9.4.3 System of Equations ... 391

9.5 Multistep Methods ... 397
9.5.1 Adams Multistep Methods 397
9.5.2 Additional Considerations .. 401

9.6 Predictor–Corrector Methods .. 401
9.6.1 Basic Features ..402
9.6.2 Adams Method ...403
9.6.3 Milne’s Method ..404
9.6.4 Hamming’s Method ..405
9.6.5 Accuracy and Stability of Predictor–Corrector

Methods ..406
9.6.5.1 Truncation Errors406
9.6.5.2 Step Size ...408
9.6.5.3 Stability ...409

9.6.6 Simultaneous Equations ... 410
9.6.7 Concluding Remarks on Predictor–Corrector
 Methods .. 410

9.7 Boundary-Value Problems ... 416
9.7.1 Shooting Methods .. 417

9.7.1.1 Linear Equations 419
9.7.2 Finite Difference Methods 420
9.7.3 Eigenvalue Problems .. 423

9.8 Summary ... 430
Problems ... 432

Chapter 10 Numerical Solution of Partial Differential Equations445

10.1 Introduction ...445
10.1.1 Classification ..445
10.1.2 Examples ..446
10.1.3 Basic Considerations ..448

10.2 Parabolic PDEs ..449
10.2.1 Numerical Solution with an Explicit Scheme 450
10.2.2 Stability of Euler’s (FTCS) Method 453
10.2.3 Implicit Methods .. 454
10.2.4 Other Methods and Considerations 456
10.2.5 Multidimensional Problems 458

Contents	 xi

10.3 Elliptic PDEs ... 467
10.3.1 Finite Difference Approach 467
10.3.2 Numerical Solution by Iterative and
 Direct Methods ... 472

10.3.2.1 Point Relaxation .. 474
10.3.2.2 Direct Methods ... 476

10.3.3 Other Methods .. 476
10.3.4 Other Geometries and Boundary Conditions 477
10.3.5 Finite Element and Other Solution Methods480

10.4 Hyperbolic PDEs ... 489
10.4.1 Basic Aspects ... 489
10.4.2 Method of Characteristics .. 489
10.4.3 Finite Difference Methods490

10.5 Summary ...500
Problems ...502

Appendix A: Some Common Commands in MATLAB®509

Appendix B: Computer Programs in MATLAB® .. 513

Appendix C: Computer Programs in FORTRAN .. 553

References ... 591

xiii

Preface	to	the	Second	Edition

Computer methods continue to be critical in the analysis, simulation, design and
optimization of engineering processes and systems. Computational approaches are
needed to solve the complex mathematical equations that typically arise in engineer-
ing problems, for correlating experimental data, and for obtaining numerical results
that are used for improving existing processes and developing new ones. The second
edition follows the basic ideas, discussions, approaches, and presentation employed
in the first edition. The focus is clearly on engineering processes and systems and on
the equations that characterize and describe these. Computer methods that are
employed to solve these equations and the nature and validity of the numerical results
obtained are discussed for a variety of problems. The main thrust is on the discussion
of the various numerical methods that are available for a given problem, on the pre-
sentation of the basic aspects of the methods, discussing their applicability, effi-
ciency and behavior, and then applying these to typical problems chosen from various
engineering disciplines.

Besides discussing the solution of different types of mathematical equations, a
large number of engineering examples and problems were chosen to present the
choice of the method, development of the numerical algorithm and use of the com-
puter to solve the problem. A systematic approach is followed to obtain physically
realistic, valid and accurate results through numerical modeling. Examples from
many different engineering areas are employed to explain the various elements
involved in the numerical solution and to make the presentation relevant and interest-
ing. Similarly, a large number of solved examples and exercises are included to sup-
plement the discussion and to illustrate the ideas and methods presented in the text.
The book continues the thinking that the basic purpose of the computational approach
is to provide physical insight and to obtain inputs for analysis and design of practical
systems. Thus, the solution methodology is linked to both the computer and to the
fundamental nature of the problem to allow the student to appreciate the basic aspects
of the numerical approach.

The book is appropriate as a textbook for engineering undergraduate courses
on computer methods at the sophomore or junior levels. Because the background
of students at the sophomore level may not be sufficient for some of the topics
covered, such as partial differential equations, a few such topics may be avoided
for sophomore students and may be included in the junior or senior courses. The
book is also appropriate as a reference on computational methods for various
other basic and applied undergraduate courses in mechanical engineering and in
other engineering disciplines. The book will also be useful as a reference for
engineers who are interested in using computer methods for analysis, simulation,
design, or data analysis.

xiv	 Preface	to	the	Second	Edition

The second edition is a substantially revised and updated version of the earlier
book. Recent advances in available computational facilities, both in software and
in hardware, are included. In several places, the presentation has been simplified
and clarified to make it easier to follow. Certainly, the main difference from the
first edition is the extensive use of MATLAB®, instead of a high-level programming
language like Fortran, for numerical modeling. This is done in view of the current
trend in engineering education where MATLAB has emerged as the dominant
environment for the numerical solution of basic mathematical equations. Much of
the discussion on computer solution is thus directed at MATLAB and a large num-
ber of MATLAB commands and programs are given in the text, as well as in the
Appendix, in order to facilitate the presentation as well as to provide ready access
to MATLAB programs for solving exercises given in the text and other similar
problems. In many cases, the programs are focused on the example or problem
being considered, in order to encourage the readers to develop their own computer
programs for specific problems. However, the programs can be easily modified for
different circumstances and parameters. Available MATLAB functions and com-
mands are frequently employed to generate results that can be used for compari-
sons with the results obtained from more detailed and versatile programs. Fortran
has not been abandoned because of its continued importance in engineering and
the existence of substantial software in Fortran for many complex problems.
Several important Fortran programs are included in the Appendix to illustrate the
ease with which one could go from one computational environment or language to
another and to allow those interested in Fortran to use these for their specific prob-
lems. Additional exercises and examples are included in all the chapters. References
have been added on new topics included in the book and references in the first edi-
tion have been updated.

The methods, discussions, and computer programs presented in this textbook are
the result of many years of teaching computer methods to engineering undergraduate
students, in required as well as elective courses. The inputs from many colleagues
and graduate students, as well as undergraduate students, who took the courses from
me, have been valuable in selecting the topics, the depth of coverage, the computer
programs presented here and many other aspects related to computer methods for
solving engineering problems. Inputs from those who have used the first edition in
their courses, particularly from Professor Wally Minkowycz, have been particularly
valuable. The support and assistance provided by the editorial staff of Taylor &
Francis, particularly by Jessica Vakili and Jonathan Plant, have been valuable in the
development of the second edition.

The book would never have been completed without the strong support and
encouragement of my wife, Anuradha. Our children, Ankur, Aseem, and Pratik, as
well as Pratik’s wife Leslie and son Vyan, have also been sources of inspiration and
encouragement for me and have contributed in their own way to my efforts over the
years. I greatly appreciate the patience and understanding of my family that made it
possible for me to spend extensive periods of time on the book.

Preface	to	the	Second	Edition	 xv

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

xvii

Preface	to	the	First	Edition

The use of computational methods in the analysis and simulation of engineering
processes and systems has grown tremendously over recent years. Increasing national
and international competition has made it imperative to improve existing facilities
and to develop new ones for a wide variety of applications. Because of the constraints
imposed on detailed experimentation needed for design and optimization of systems,
due to excessive time, manpower, and financial requirements, computer simulation is
extensively employed to obtain the desired information. Analytical methods are gen-
erally very restrictive in their applicability to practical problems, and numerical
methods are usually necessary. In addition to the growing need for numerical solu-
tions to engineering problems, we have also seen substantial improvements in the
computational facilities available, both in software and in hardware, over the last
decade. All of these changes have made it more important than ever for engineers
and engineering students to develop expertise in numerical methods and to use them
for solving problems of practical interest.

In recognition of the growing importance of computer methods in engineering,
many courses in engineering curricula now include the numerical solution of engi-
neering problems on the basis of numerical analysis taught earlier at the sophomore
or junior level. Generally, engineering students are first exposed to the computational
procedure through a course on programming, frequently employing Fortran as the
programming language. Numerical methods are then taught at a later stage to intro-
duce the basic concepts of numerical analysis and to allow the students to numerically
solve important mathematical problems such as integration, matrix inversion, root
solving, and solution of differential equations. However, since the basic purpose of the
computational approach is to provide physical insight and to obtain valuable informa-
tion for the analysis and design of practical systems, such courses have been inte-
grated into the engineering curricula at most universities. This implies that the solution
methodology is coupled with the computer on one hand and with the physical or
chemical nature of the problem on the other. The numerical procedure, as well as the
results, are considered in terms of actual problems to permit the student to develop a
physical feel for the numerical approach to engineering problems.

Traditionally, numerical analysis courses have been mathematically oriented.
Although this orientation brings in some very important and fundamental aspects of
numerical analysis, it lacks in the application of the methodology to actual problems.
It is extremely important to integrate the basic understanding of the methods with
their actual use on the computer. Unless the students learn to choose and implement a
computational scheme on the computers available, they will not develop a satisfactory
appreciation or understanding of the numerical technique. In addition, recent advances
in computational facilities, such as structured programming, interactive computer
usage, and graphics output, must be introduced so that the most efficient procedure is

xviii	 Preface	to	the	First	Edition

adopted for a given problem. The incorporation of problems derived from various
engineering disciplines aids in this learning process and also makes it interesting and
enjoyable. In addition, it reinforces the important point that the physical or chemical
background of the given problem forms an important element in the selection of the
method and in the evaluation of the accuracy of the results obtained.

This book, directed at computer methods for engineering, integrates the treatment
of numerical analysis with the physical background of the problems being solved and
with the implementation of the methods on available computers, employing several
recent advances in this field. Although a large number of books are available on
numerical analysis, not many satisfactorily discuss the implementation of the method-
ology on the computer, and even fewer discuss the implications of the physical nature
of the problem in the numerical solution. This book recognizes the need for a satisfac-
tory incorporation of these concepts into the mathematical treatment of numerical
analysis. It couples numerical methods for a variety of mathematical problems with
the use of these methods for the solution of engineering problems on the computer.

Numerical methods for important mathematical operations, such as integration,
differentiation, root solving, and solution of algebraic systems, are discussed in
detail. The solution of differential equations, both ordinary and partial, is presented.
Curve fitting, which is an important consideration in engineering problems, is also
discussed. A large number of problems from basic sciences and various engineering
disciplines are chosen to illustrate the use of these methods. The problems chosen
are relatively simple so that they can easily be understood by students at the sopho-
more/junior level. However, in several cases, the basic background of the problem is
outlined so as to bring the important points into proper focus. The importance of the
physical or chemical background of the problem in the selection of the method, the
choice of numerical parameters, the estimation of the accuracy of the results, and the
overall validity of the results is discussed. The book mainly uses Fortran 77 to dem-
onstrate the implementation of the numerical methods on the computer, because of
the overwhelming importance of this language in engineering applications. However,
a few programs in Basic are also given to bring out the similarities between the two
languages and the ease with which one may switch from one to the other. A discus-
sion of other languages and important aspects in computational procedure is included.
A large number of examples, with the corresponding programs, are given. The pro-
grams are written specifically for these examples, so that the students must develop
their own programs for the large number of problems given at the end of the chapters.
Several important features that are currently employed in computational procedure
are demonstrated in these programs. Recent trends in this area are outlined, and their
significance for engineering applications is discussed. The students are strongly
encouraged in every way to develop their own computer programs, since this is an
essential ingredient for learning computer methods.

Most of the material covered in this book has been employed by the author for
courses at the sophomore and junior levels. Since the background of students at the
sophomore level may not be sufficient for some of the topics covered, such as partial
differential equations, this particular topic and a few sections marked with an asterisk
may be avoided by sophomore students. The book can also be used at the senior level,
if such a course is included in the curriculum at this level. The material included is

Preface	to	the	First	Edition	 xix

quite adequate for a one-semester course. However, the best time to teach this course
is probably at the junior level, so that the students can fully understand the material
and then use it in courses taught at higher levels. The book is also appropriate for
professional engineers in various disciplines and as a reference for courses that
employ computational methods as an important element in the presentation. The
book considers problems from diverse engineering applications, and the treatment is
at a level appropriate for engineering students of all disciplines.

I owe tremendous gratitude to several colleagues and students who have contrib-
uted to my understanding and enjoyment of computational methods for engineering
applications. First, I would like to thank Dr. Frank Kreith, who suggested that I write
this book and contributed several very valuable suggestions on the presentation.
I would also like to acknowledge several stimulating and interesting discussions on
the subject with Professors Dave Briggs and Abdel Zebib. Professor Samuel Temkin
provided me with tremendous support and encouragement. Dr. M. V. Karwe helped
with the numerical solution of some problems. Also of considerable value was the
support provided by the staff of Allyn and Bacon, Inc., particularly by Ray Short.
The manuscript and its several versions were typed with great patience and compe-
tence by Diane Belford and Lynn Ruggiero.

I would like to dedicate this book to my parents, who have always encouraged,
supported, and inspired me to strive for the best I could achieve. The greatest contri-
butions to this effort have been the encouragement and support of my wife, Anuradha,
and of our children, Pratik, Aseem, and Ankur, who had to bear long hours that kept
me away, working on this book, with patience and understanding.

The author extends special thanks to the following reviewers whose contributions
have enriched the text: Professor Clayton Crowe, Washington State University;
Professor Rodney W. Douglass, University of Nebraska; Professor S. V. Patankar,
University of Minnesota; Dr. James F. Welty, U.S. Department of Energy.

xxi

Author
Yogesh Jaluria is currently a board of governors professor at Rutgers, the State
University of New Jersey, New Brunswick, New Jersey, and the chairman of the
Mechanical and Aerospace Engineering Department. He received his BS from the
Indian Institute of Technology (IIT), Delhi, India, and his MS and PhD in mechani-
cal engineering from Cornell University. He worked at Bell Labs and at IIT, Kanpur,
before joining Rutgers University in 1980.

Professor Jaluria has contributed more than 450 technical articles, including over
170 in archival journals and 16 chapters in books. He has two patents in materials
processing and is the author/coauthor of seven books. He is also editor/coeditor of 13
conference proceedings, two books, and three special issues of archival journals.
Professor Jaluria received the prestigious 2007 Kern Award from the American
Society of Chemical Engineers (AIChE), the 2003 Robert Henry Thurston Lecture
Award from the American Society of Mechanical Engineers (ASME), and the 2002
Max Jakob Memorial Award, the highest international recognition for eminent
achievement in the field of heat transfer, from ASME and the AIChE.

In 2001, he was named a board of governors professor of mechanical and aero-
space engineering at Rutgers University. He received the 2000 Freeman Scholar
Award for work on fluid flow in materials processing, the 1999 Worcester Reed
Warner Medal for extensive contributions to the engineering literature, and the 1995
Heat Transfer Memorial Award for significant research contributions to the science
of heat transfer, all from ASME. He served as the chair of the Heat Transfer Division
of ASME during 2002–2003. He was the editor of the ASME Journal of Heat
Transfer, the preeminent publication in this field, during 2005–2010, and is on the
editorial boards of several international journals.

1

1 Introduction

1.1   INTRODUCTORY REMARKS

Over the past three decades, there has been a tremendous increase in the use of
 computers for engineering problems. This increase has been mainly due to the
 growing need to optimize systems and processes in order to raise productivity and
reduce costs. With increasing worldwide competition, it has become necessary to
modernize existing engineering facilities and develop new ones through analysis and
design. Consequently, we have seen a considerable improvement in engineering
 systems, particularly those related to electronic circuitry, materials processing,
 biotechnology, transportation, and energy generation. The concern with safety,
including homeland security, and with our environment has also led to detailed
investigations of existing engineering processes and to substantial improvements in
many of these to reduce the impact on our environment and to make their use safer.

Because of the complexities involved in most engineering applications, analytical
methods based on mathematical techniques are usually unable to provide a solution
to the equations that characterize their behavior, and computational methods are
needed to obtain quantitative information on physical quantities of interest. Even
though analytical solutions are obtained in a few simple cases, the form of the
 solution itself may be quite involved, since the results are frequently expressed as a
series or in terms of integrals and complex functions. In such cases, the computer is
needed to extract the desired information from the analytical solution. Also, the
problem may have to be solved several times with different sets of data, making it
advantageous to use the computer rather than analytical methods.

There has also been a phenomenal increase in the availability of computers over
the recent years. With the advent of microcomputers, such as personal computers
(PCs), computational facilities have become widely available. The computational
power available has also increased dramatically in individual, single-processor,
machines, or serial computers, as well as in linked multiple machines or processors
that result in a parallel computing cluster. There is every indication that these trends
will continue, making computers even more accessible and powerful. Although most
practical engineering problems still require larger and faster computers (such as
supercomputers, minicomputers, or parallel computing systems), microcomputers
do allow the solution of many common problems and are also useful in testing
numerical procedures that may subsequently be employed on larger or parallel
machines. The availability of a wide variety of microprocessors has also substantially
affected the control and operation of systems through automation and expanded the
reach of computational software.

Along with the revolution in computer hardware, there has inevitably been one in the
available software as well, making the use of computers for scientific and engineering

2	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

problems easier than ever. Thus, for a wide range of problems, the programs available
in the computer library, commercially available software, or user-friendly computa-
tional environment may be used effectively. However, it is generally necessary to
understand the basic techniques involved in order to modify the program for satisfac-
tory application to a given problem. In industrial systems, the use of commercially
available programs is particularly important, since the processes are often quite
involved and interest lies in obtaining the needed information as rapidly as possible.
For simpler problems, such as those related to individual physical and chemical pro-
cesses that constitute the overall system, it is often easier and more desirable to per-
sonally write the computer program or use an appropriate computational environment,
rather than use a commercially available code written specifically for a given prob-
lem. Therefore, it is important to understand computational methods relevant to
engineering applications and to use them in physical problems that are of interest to
various disciplines.

Computer-aided design, simulation-based design and optimization, and
 computer-aided manufacturing are important areas that have grown substantially in
the very recent past. These areas have arisen from the need to optimize on the one hand
and the growing availability of the computers on the other. They are interdisciplinary
in nature, particularly simulation-based design, which is of interest in such diverse
fields as electronic systems and structural design. The basic approach in this case is to
numerically solve the governing equations, choose physical parameters to simulate
existing processes and systems, and finally vary these parameters to optimize the
design for existing and future systems. Several other similar applications of computer
methods have arisen in recent years, making it imperative to link the computational
approach to the physical or chemical aspects of the problem under consideration.

In view of the growth of computer usage and availability in the recent years, it is
surprising that much of the mathematical background underlying numerical analysis
and computer logic has been available for several centuries. Binary logic operations,
which use 2 as the base, instead of 10 employed in the decimal system, and which
form the basis for most present digital computing, have been known and used for
quite some time. Francis Bacon used binary codes in the early seventeenth century
to transmit secret messages. In 1804, Joseph Marie Jacquard used punched cards
with binary codes and logic to operate looms. A mathematical theory for binary
logic was developed by George Boole during the nineteenth century. Similarly,
 adding machines and mechanical calculators were developed centuries ago, such as
the one developed by Blaise Pascal in the seventeenth century. Charles Babbage
designed the first automatic digital computer in 1833, with several features similar to
those of modern computers. However, this machine was never constructed.

Modern digital computers were developed largely after World War II. A high-speed
electronic digital computer was developed during the period from 1945 to 1952 under
the direction of John von Neumann at the Institute for Advanced Study in Princeton,
New Jersey. Binary digits, which can be represented by the opening or closing of a
switch, were stored electrostatically in cathode-ray tubes. Several thousand vacuum
tubes were used for computer memory, which had to be again stored about a thousand
times per second due to the decay of electrostatic charge. Much of the logic behind
this machine has persisted in modern computers. The major advancement has been in

Introduction	 3

electronic hardware, particularly in the development of transistors, integrated circuits,
microelectronics, and now nanoscale devices and systems. As a result, there has been
a considerable reduction in size and cost of electronic digital computers and also a
substantial increase in their capability, speed, and reliability. The availability of PCs
has brought computational techniques within easy access for a wide variety of prob-
lems, both for students and for professional engineers. Therefore, the coming years
may be expected to improve the available computational facilities even further through
the advancement in both computer software and hardware. It is also evident that PCs,
with an interface with larger machines or with other machines in a parallel computing
environment for more complicated problems, will continue to grow in availability and
usage. Thus, it is important to learn the computational techniques relevant to engi-
neering problems on the basis of the currently available computational facilities, while
considering expected future trends as well.

Several important and useful features have been incorporated in the modern
 computer systems. Among the most important of these is an interactive use of the
computer, rather than the previously common batch operation mode. Frequently, an
interpretive compiler is used so that each program statement entered into the
 computer is screened for syntax errors and a message issued if any error has been
committed. The interactive mode allows one to enter variables and make changes in
the program, as the need arises after each run of the program. The execution may
also be stopped to make modifications and then continued. Therefore, the interac-
tive mode is very well suited for the initial stages of program development, when
the testing and debugging of the program is being done, and for obtaining the trends
for a wide range of input parameters. For instance, if the values of x at which a
nonlinear equation f(x) = 0 is satisfied (known as roots of the equation) are to be
determined, the interactive mode may be used very effectively to obtain the general
behavior of f(x) over the range of interest in x. Various values of x may be entered
and the corresponding values of f(x) obtained. A graph of f(x) versus x may easily
be plotted using available software. The information obtained may then be used to
select the method for finding the roots and also to obtain suitable initial guesses for
the roots. Figure 1.1 shows a few examples where the plot of f(x) versus x would be
particularly useful in root finding.

The batch operation mode involves feeding the complete job into the computer
and then running it with no interaction with the operator until the job is executed.
This mode is appropriate for obtaining the numerical results for different parametric
values after the program has been developed and debugged, particularly for large
programs. Other important features available with present computer systems are
graphics facilities, which plot the computed results, and interfacing between various
computers, which allows program development to be carried out on small computers
in the interactive mode. Once the program has been completed, debugged, and tested,
the numerical code may be transmitted to a larger computer or to a parallel computer
system, which would generally be more efficient for computing and will have greater
storage capability, and run in the batch mode to obtain the desired computed results.
Of course, with the increasing computational power and storage capacity of individual
machines and workstations, code developments, as well as extensive computational
runs, are often carried out on the same unit.

4	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

1.2  NUMERICAL SOLUTION

The development of a computational procedure, or algorithm, to solve a given
 problem requires knowledge of both the available numerical methods and the
 methodology to interface with the computer. Since several methods are generally
available for a given application, it is important to understand the applicability and
advantages of each method compared to those of the other methods. For instance, a
system of linear equations may be solved by a wide variety of methods, including
direct methods, which give a solution in a definite number of steps, and iterative
methods, which involve a repeated solution of the equations until a chosen conver-
gence criterion is satisfied. The choice of the method for a given problem depends
mainly on the nature and number of the equations. Direct methods are suitable for
smaller systems and iterative methods for large sets of equations. Also, if the same
system of equations must be solved several times with different constants on the
right-hand side of the equality sign, methods based on matrix inversion are often
preferable since the different solutions may be obtained easily once the coefficient
matrix has been inverted. Similarly, in curve fitting, the method to be adopted is
strongly dependent on the nature and form of the given data. If the data have been
provided at uniform intervals of the independent variable, certain specialized meth-
ods may be used, taking advantage of the uniform distribution of data.

Sometimes, several methods are applicable for a given problem, and the selection
of the method becomes a matter of personal choice. The previous experience with a

f (x)

x

f (x)

x

f (x)

x

f (x)

x

FIGURE 1.1  Some examples of the plotting of the function f(x) versus x to determine the
approximate values of the roots of the equation f(x) = 0.

Introduction	 5

particular method may be an important consideration in its selection. Also, the
 availability of certain programs in the computer library may make it advantageous
to choose a given method. Many specialized methods have been developed for spe-
cific applications. Such methods are often limited in their applicability, although
they may be the most efficient ones when applied to the problem for which they are
particularly suited. For instance, certain methods for finding the roots of an algebraic
equation are applicable only to polynomial equations and are popular choices for this
application. They cannot be used for other types of algebraic equations, say, tran-
scendental equations that involve transcendental functions such as exponential, loga-
rithm, and trigonometric functions. Similarly, direct methods for solving systems of
equations apply only for linear equations. Iterative methods are generally necessary
for a system of nonlinear equations.

It is evident from the preceding discussion that the selection of the most appropriate
numerical method for a given problem is an important consideration and is generally
based on the nature of the problem. Once the method has been selected, one proceeds
to implement it on the computer. The program is written in a programming language
or in the computational environment available on the computer system to be
employed. Although Fortran, with its many versions like Fortran 77, Fortran 90,
Fortran 2003, and Fortran 2008, has been used extensively in engineering applica-
tions on most minicomputers and mainframe systems, Basic, C, C++, and other
languages developed in recent years have often been used on PCs. MATLAB® is
probably the most commonly used computational software being used today on both
PCs and servers to solve mathematical problems that arise in engineering and scien-
tific applications. Most of the numerical solutions discussed in this book, therefore,
employ MATLAB.

The computer program written in the chosen programming language is converted
into machine language by the computer. This process, known as compilation of the
program, is achieved by using the relevant software, termed the compiler, available
on the computer. An operating system is used for the control of the program and the
computer resources. The editing of the program, for making changes and corrections,
is done with the help of the editing system available on the given computer. The
compilation, editing, and execution of the program are governed by the operating
system of the computer and therefore vary with the machine. Similarly, the job
 control language, which interfaces the programmer with the computer, depends on
the computer system. For those who may not be familiar with the terms mentioned
here, Chapter 2 outlines the basic features of a computer system.

The interpretation of the numerical results obtained is also an important
 consideration, since it relates to the accuracy and the correctness of the numerical
solution. The computational scheme may be employed to yield results for a wide
range of input variables, so that the results may be considered in terms of the physical
or chemical nature of the problem being investigated. If possible, a comparison is
made with available analytical results in order to determine the accuracy of the
 computed results. The verification and validation of the numerical scheme involve
ensuring that the results obtained are accurate and valid. These are particularly
important if a commercially available computer program or one available in the
public domain is being employed to solve a given problem. It is also important to

6	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

determine the range of governing parameters over which the scheme can be used to
yield accurate numerical results. These considerations are discussed in the following
sections. Once the accuracy and validity of the results have been verified, the desired
results may be obtained in a tabulated or graphical form.

1.3  IMPORTANCE OF ANALYTICAL RESULTS

As mentioned earlier, the equations that arise in most engineering problems are too
complicated to be solved analytically, and computational techniques must be used
to obtain the numerical values needed. Analytical solutions are often obtained only
in very simplified circumstances. Also, as indicated before, analytical results are
frequently given in terms of convergent series, integrals, and complicated functions,
such as transcendental functions, Bessel functions, and so on. In engineering, we
are largely interested in numerical values corresponding to given input data, and the
computer is frequently needed to obtain the desired numerical information from a
given analytical solution. However, analytical results, whenever available, are
extremely important in evaluating the accuracy of the numerical scheme and in
validating the model. Similarly, analytical results may be used to study the conver-
gence characteristics of the numerical method and to decide if the correct solution
has been obtained.

As an example, let us consider the solution of the differential equation that governs
the variation, with time t, of the charge q of a capacitor in an electrical circuit that
also contains a voltage source and a resistance. If the initial charge in the capacitor
is Q and the voltage input, resistance, and capacitance are denoted by E, R, and C,
respectively, the governing equation is obtained as follows (Young et al., 2000):

R

q
t

q
C

E
d
d

+ =

(1.1)

If R, C, and E are constants, the preceding equation may be solved mathemati-
cally to obtain

 q Q EC EC Q ECt RC t RC t RC= + − = + −− − −e e e/ / /() ()1
(1.2)

The physical problem and the analytical solution are sketched in Figure 1.2. The
charge q decreases from the initial value of Q to a steady-state value of EC, if EC < Q.
Similarly, q increases to a steady charge of EC, if EC > Q.

Several other physical problems are governed by equations similar to Equation 1.1.
The temperature T(t) of a small, heated metal block being cooled by a stream of air,
the moisture content of a wet body drying in air, and the pressure of gas in a container
with an opening are often governed by equations of the same form as Equation 1.1.
However, in actual practice, the parameters, such as R, C, and E, may be the nonlinear
functions of the charge or voltage and may, in some cases, also vary independently
with time. For instance, nonlinear conductors, such as vacuum tubes, do not obey
Ohm’s law, and heat and mass transfer processes operating at the surface of a given

Introduction	 7

object generally depend on the temperature, concentration, and pressure, making the
differential equation nonlinear. The governing equation may, in general, be written as
dϕ/dt = −H(ϕ, t)ϕ + B, where ϕ is the dependent variable, H(ϕ, t) is a functional
 parameter, and B is a constant. If q is replaced by ϕ in Equation 1.1, then H(ϕ, t) = 1/RC
and B = E/R. This equation is linear in ϕ, or q, since H and B are constants, resulting
in only the first power of ϕ to appear in the equation.

If H is not a constant but a function of ϕ as H(ϕ, t), an analytical solution is often
not obtained because of the nonlinear expression −H(ϕ, t) ϕ that arises on the
 right-hand side of the differential equation. In such circumstances, a numerical
 solution of the differential equation may be obtained by choosing a time step Δt and
advancing time to compute ϕ as a function of time, starting with the given initial
condition. This computation is done until an insignificant change is observed in ϕ(t)
from one time level to the next, thereby indicating that the temperature has reached
steady state, given by dϕ/dt = 0. However, since an analytical solution is available for
the simplified circumstance of Equation 1.1, the numerical scheme should first be
used to solve the problem with H taken as a constant and the computed results
 compared with the analytical solution. This comparison will allow determination of
the anticipated accuracy of the numerical results and will also check the correctness
of the procedure. Such a comparison is particularly valuable in complicated problems
where an error in the numerical scheme may go undetected. Fortunately, many
 physical and chemical problems can be formulated in terms of idealized circum-
stances, which lead to simplified equations that can be solved analytically. Chapter 8
discusses several methods for solving ordinary differential equations (ODEs) and
demonstrates again the importance of available analytical results.

Similarly, in numerical differentiation and integration, the computational scheme
may be tested by employing simple functions whose derivatives and integrals can be
obtained analytically. In radiative heat transfer, for instance, integration over the

Time (t)

Switch

El
ec

tr
ic

al
 ch

ar
ge

 (q
)

Q

EC

EC < Q

E

RC

FIGURE 1.2  Variation with time t of the charge q in a capacitor, which is originally at
charge Q, due to the closing of the switch in the electrical circuit shown.

8	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

wavelength λ of the radiation is frequently needed to determine the total energy lost
or gained, Q, per unit area, at a surface. The expression for Q is

Q f=
∞

∫ ()λ λd
0

(1.3)

where f(λ) is known as the monochromatic emissive power and is often a fairly com-
plicated function of the wavelength λ, generally obtained from a curve fit of experi-
mental measurements. However, the radiation from a blackbody, which is an idealized
circumstance, is well known in physics and is given by Planck’s law, which expresses
f(λ) as

f

c
c T

()
exp()

λ
λ λ

=
−[]

1
5

2 1/

(1.4)

where T is the surface temperature on the Kelvin scale and c1, c2 are the known
 constants. Figure 1.3 shows the variation of f(λ) with λ for the ideal surface of a

Blackbody, 1600 K

14

12

10

8

6

4

2

0
2 4 6 8 10

Wavelength (λ, μm)

M
on

oc
hr

om
at

ic
 em

iss
iv

e p
ow

er
 ×

 1
0–4

 (f
(λ

),
W

/m
2 · μ

m
)

0

Gray body, 1600 K

Real body

FIGURE 1.3   Variation of the emissive power f(λ) with the wavelength λ for thermal radia-
tion by a blackbody, a gray body, and a real surface.

Introduction	 9

blackbody, for a real or practical surface, and for a gray body for which f(λ) is a con-
stant fraction of that for a blackbody at all λ.

For a blackbody, the integral in Equation 1.3 has been evaluated analytically and
is given by

 Q = σT 4 (1.5)

where σ is known as the Stefan–Boltzmann constant and whose numerical value is
given in the literature as 5.67 × 10−8 W/m2 K4. Therefore, the computational scheme
developed for numerically determining Q for a wide variety of engineering surfaces,
and thus different f(λ), may first be applied to blackbody radiation and the results
compared with the analytical solution given by Equation 1.5 to determine the accu-
racy and validity of the numerical method.

The numerical solution of large systems of linear or nonlinear equations is often
needed in engineering problems. Since small sets of equations, typically three or
four equations, can be solved analytically, the numerical procedure for solving
 systems of simultaneous algebraic equations may be employed for a small number of
equations and the numerical results compared with the analytical values, to determine
the accuracy and correctness of the numerical solution.

In numerical methods based on iteration, a convergence criterion ε is employed to
decide when to terminate the iteration. Generally, the convergence criterion is applied
to a physical variable in the problem, and computation is stopped when the change
from one iteration to the next is less than the chosen value of ε. A relationship
between ε and the accuracy of the numerical results may be obtained by a compari-
son of the computed values with the analytical solution that may be available for a
simplified circumstance. This information can then be employed in the choice of the
convergence criterion. If analytical results are not available, an extensive testing of
the numerical procedure, over wide ranges of the initial guess, convergence criterion,
and time step Δt, for example, in the problem given by Equation 1.1, must be carried
out to ensure that the numerical results are essentially independent of the values
chosen and that the desired accuracy level has been achieved. Figure 1.4 sketches
typical computed iterative and converged solutions to the ODEs that govern a par-
ticular flow circumstance. The questions related to iterative convergence and to the
choice of the numerical parameters, such as ε and Δt, are extremely important and
are discussed in detail in Chapter 2.

1.4  PHYSICAL CONSIDERATIONS

The physical or basic considerations that give rise to a given mathematical expression
or equation can often be used very effectively in selecting the numerical method, in
choosing an acceptable solution from the several that may be obtained, and in testing
the method for accuracy and correctness. In most engineering problems, the basic
nature of the desired solution is known, along with the range in which it lies. Let us
consider, for example, the free fall of a body of arbitrary shape in air. A terminal
velocity is attained due to the balancing of the gravitational force by the frictional
drag force (Halliday et al., 2004). Depending on the size and shape of the body, an

10	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

expression for drag may be obtained from considerations of air flow around the
body. For a flat plate, a commonly employed expression for the frictional force is
(AV13/7 − BV), where V is the speed at which the plate is moving in stationary air and
A and B are constants that depend on the length of the plate and the properties of air
at the given temperature. Then, if m is the mass of the plate and g the magnitude of
gravitational acceleration, the terminal velocity is the root of the equation

 AV13/7 − BV = mg (1.6)

From a physical consideration of the problem, we know that the terminal velocity
must have a unique, positive value. The range in which the value lies may also be
estimated from the available results for other bodies, for example, the sphere. A
similar equation is obtained for bodies of other shapes and sizes. In many cases, the
expression for drag is obtained from a curve fit of experimental results and is given
as a fairly complicated function of the velocity V. A solution of the resulting force
balance equation will then yield the terminal velocity for the given body. The method
for solving the above equation may be selected knowing that the root is real, distinct,
and positive. As discussed in Chapter 5, the secant method and the Newton–Raphson
method are two efficient computation schemes that may be employed for this problem.
If a method that determines all possible roots of the equation is used, the physical
considerations are employed in choosing the correct solution. Since the solution is
expected to be unique, the other roots must be complex numbers, negative or beyond
the expected range of values.

Distance

Ve
lo

ci
ty

Possible
iterations

Final converged
solution

FIGURE 1.4  Typical iterations, leading to a converged result, in the numerical solution of
ODEs that determine the velocity profile in a flow.

Introduction	 11

The physical background of the mathematical problem being solved numerically
is particularly important in the solution of nonlinear equations, such as the polyno-
mial equation, Equation 1.6, or transcendental equations. Some examples of the lat-
ter are as follows:

tan x

B
x

=

(1.7)

 log x + 2x2 = 4 (1.8)

 ex + x2 − 2x = 2 (1.9)

Nonlinear equations arise very frequently in engineering problems, such as those
related to fluid flow, heat transfer, chemical reactions, and dynamics of bodies. The
problems encountered may involve finding the roots of a given nonlinear equation or
solving a system of nonlinear equations. Since the characteristics of nonlinear
 equations are generally much more complicated than those of linear equations and
since several solutions are feasible, the physical aspects of the problem are used in
the development of the computational procedure and in deciding which solutions are
acceptable. Even for solving a system of linear equations by iterative methods,
 physical considerations are often important in obtaining the starting values. Linear
and nonlinear equations are also frequently obtained in the numerical solution of
partial differential equations (PDEs). The physical nature of the quantities to be
computed is usually employed in the choice of the method, the initial guess, the grid
to discretize a computational region, the desired accuracy level, and the convergence
criterion for the termination of the numerical scheme. Since analytical solutions are
rarely available, the numerical results obtained are generally considered in terms of
the fundamental nature of the problem in order to determine the validity of the
numerical scheme.

Curve fitting is another area in which the physical or basic considerations
 underlying the given problem are of particular importance in developing the
 computational scheme. Numerical methods are generally used to obtain the best fit
to a given set of data. In such cases, it is important to know the expected trends on
the basis of the physical aspects of the problem, so that the best fit obtained is a true
representative of the process involved.

Consider, for example, the mean daily ambient air temperature at a given loca-
tion. We wish to obtain a mathematical expression from the 365 data points that
represent the measurements of the average daily temperature over a year. We could
obtain a 364th-order polynomial from the given data. However, to do so would
involve a substantial computational effort, both in obtaining the polynomial and in
the subsequent usage of the polynomial in relevant problems. Moreover, the air
temperatures fluctuate due to environmental disturbances. Consequently, we are
interested in obtaining an expression that represents a best fit to the data and also
characterizes the variation over the year. Since we know that the variation is
 periodic, with a time period of 365 days, we may try to fit the measurements to a

12	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

 sinusoidal variation. Examples of some of the distributions that may be employed
are as follows:

 Ta = A sin [ω(t − a)] (1.10)

 Ta = A sin ωt + B cos ωt (1.11)

 Ta = A sin ωt + b sin 2ωt (1.12)

where Ta is the ambient temperature; ω is the frequency, given as 2π/365; t is the time
in days; and A, B, and a are constants to be determined numerically from a best fit.
The first equation is frequently used, with fairly satisfactory results. Figure 1.5 shows
the resulting curve fit qualitatively. Similar considerations are employed in obtaining
empirical correlations from experimental data and for representing material prop-
erty data, such as those of interest in thermodynamics, by a best fit.

Numerical simulation of engineering systems is important in design and
 optimization. It involves the mathematical modeling of components and physical or
chemical processes that comprise the given problem to simplify the problem,
 followed by a numerical solution of the governing equations obtained. The input
parameters, initially chosen on the basis of available data, are varied until a close
agreement between the physical system and the numerical model is obtained. Once
an existing system or process has been numerically simulated, the effects of variations
in design on the performance of the system may be studied numerically, leading to
optimization. At various stages in such a study, the physical or chemical aspects of
the problem are employed. In fact, the comparison between the numerical model and

20

10

0

–10
120 240 360

365

Time from Jan. 1 (Days)

A
m

bi
en

t t
em

pe
ra

tu
re

 (°
C

)

0
Jan. 1

Experimental data

FIGURE 1.5  Sketch of the best-fit curve to the experimental data on the ambient tempera-
ture variation over the year at a given location.

Introduction	 13

the actual system forms the basis for the development of the numerical scheme and
for the study of the numerical results obtained.

Therefore, in the presentation of numerical methods for engineering problems,
actual problems need to be considered, in order to demonstrate the importance of the
physical background of the problem in the selection of the method and in determining
if the numerical results are accurate and valid. The general features of the various
methods are important and must also be studied in detail. However, some of the
important aspects can be best understood in terms of the underlying physical
 considerations. Therefore, simple examples from several areas of engineering interest
are employed in this book.

1.5   APPLICATION OF COMPUTER METHODS TO ENGINEERING 
PROBLEMS

Computational techniques are used in engineering for a wide variety of applications.
Several examples of problems that are generally solved on the computer have been
given in the preceding discussion. Numerical methods for engineering application
may best be considered in terms of the various mathematical problems that com-
monly arise in engineering. Computer methods for the solution of these problems
may then be considered, using examples of mathematical expressions and equations
from various engineering disciplines. This approach would allow a consideration of
the various methods that may be employed for obtaining the numerical solution of a
particular mathematical problem, say, integration, while employing examples from
engineering to bring out the importance of physical considerations in obtaining
accurate and valid results. This book employs this approach to present and discuss
computer methods for engineering.

Various types of mathematical equations are encountered in engineering applications,
such as linear and nonlinear algebraic equations and ordinary and PDEs. Frequently,
systems of equations, which are linked with each other through the unknown variables,
are obtained. PDEs arise in areas such as heat transfer, fluid mechanics, elasticity,
electrostatics, and combustion. These equations are usually solved by finite-difference
or finite-element methods, which convert the problem into a system of algebraic equa-
tions by applying the PDEs at a finite number of grid points or integrating them over
finite regions. ODEs are also sometimes solved by these methods. Therefore, the solu-
tion of a system of algebraic equations is very important in engineering applications,
and many methods have been developed to solve the different types of equations that
are frequently encountered. Sets of algebraic equations are also directly obtained in
many physical problems, such as those of interest in thermodynamics, economics,
vibrations, structural analysis, and electrical networks. Although linear systems are
particularly important, many engineering problems result in systems of nonlinear
equations, which must be solved iteratively to obtain the solution. However, in most
cases, nonlinear systems are formulated so that the methods for linear equations may
be employed iteratively to converge to the desired solution.

In many engineering problems, the roots of a nonlinear algebraic equation,
 transcendental or polynomial, are to be determined. Such problems arise, for instance,

14	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

in the determination of the temperature of a body from an energy balance, the termi-
nal velocity of a body falling under gravity, the density of a gas from its equation of
state, and vibration frequencies from the characteristic equation of a given system.
Again, various methods are available, some of which are applicable only to polyno-
mial equations, while others may be used for finding the real or complex roots of
other types of equations. Depending on the nature of the problem, the appropriate
method may be selected. If not much prior information is available on the nature and
approximate magnitude of the roots, the general behavior of the function f(x) that
constitutes the given equation, f(x) = 0, where x is the unknown, may be investigated
numerically. The numerical method for the solution may then be chosen on the basis
of the information obtained on the variation of f(x) with x.

ODEs are important in several areas of engineering interest, such as heat and
mass transfer, dynamics, fluid flow, chemical reactions, electrical circuit analysis,
and elasticity. In some cases, PDEs can be transformed into ODEs. Frequently, sev-
eral ODEs that are coupled through the unknowns are to be solved simultaneously.
The solution procedure depends on the nature of the problem, particularly on the
order of the equation, that is, the highest-order derivative in the equation, and the
boundary conditions. For instance, the following second-order ordinary differential
is obtained for a resonant electrical circuit:

A

V
t

B
V
t

V
d
d

d
d

2

2 0+ + =

(1.13)

where V is the voltage across a capacitor, A and B are constants that depend on the
resistance, inductance, and capacitance in the circuit, and t is time. If the initial
 conditions are given as

V V

V
t

t= = =0 0 0and
d
d

at

(1.14)

we have an initial-value problem, in which the integration of the equation may be
started at the given time t = 0 and incremented to larger time to obtain the solution.
If one of the conditions is given at a different time, a boundary-value problem is
obtained, in which a correction scheme is needed to satisfy the given conditions.
Similarly, the boundary conditions may be given at two different spatial locations, or
two different values of the independent variable. Then, iteration is generally employed
to converge to the solution.

Besides algebraic and differential equations, several other mathematical problems
arise in engineering. Numerical differentiation and integration are needed in many
cases, often as part of a more complicated problem. Numerical integration over time
is needed, for instance, in determining the total energy lost or gained by an object,
such as at the surface of a lake. Similarly, integration of velocity across a cross sec-
tion of a channel gives the total volume flow rate in the channel. Numerical differen-
tiation is needed, for example, in the determination of the acceleration of a particle
from the measured variation of its velocity with time. Rate processes are important
in engineering, and numerical differentiation is frequently employed for obtaining
the rates of change of various physical quantities. Numerical techniques are also

Introduction	 15

needed in interpolation and extrapolation, employing curve fitting of given data. In
some cases, an exact fit which yields the exact value at the given data points is
 appropriate. However, more frequently, a best fit of the data is employed so that the
general features of the results may be represented by a correlating equation, without
forcing the curve to pass through each data point, as seen earlier in Figure 1.5.
Software for graphics can be employed advantageously with the computer solution of
engineering problems to present the numerical results.

In summary, a consideration of numerical methods for engineering application
involves a wide variety of mathematical problems, as outlined here. It is important to
understand the advantages and limitations of a particular method for solving a given
problem. The numerical procedure and the results obtained must also be related to the
physical or basic background of the problem in order to ensure the validity of the com-
putational scheme and to choose an acceptable solution. Similarly, a comparison
between the numerical and analytical results must be made, whenever possible, to
check the accuracy of the results obtained. The development of the numerical scheme
for a given problem may be discussed in several ways. A practical approach is to take
the mathematical problem arising from the actual circumstance, present the computer
program, and discuss the numerical results in terms of the physical aspects of the prob-
lem and available analytical results. It is this approach that is followed here. The com-
putational software chosen is MATLAB, which is presently the most widely used
computational environment for the application of computer methods to engineering
problems. However, other languages and software may also be employed by suitably
modifying the given programs, as discussed in Chapter 2. Of particular importance in
the use of numerical techniques for solving engineering problems is the need to check
the computational scheme for accuracy and to correctly interpret the numerical results
obtained. In this book, these and other aspects mentioned earlier will be considered in
terms of various examples taken from several engineering disciplines, including aero-
nautical, chemical, civil, electrical, industrial, and mechanical engineering.

1.6  OUTLINE AND SCOPE OF THE BOOK

1.6.1  Basic Features

This book presents the mathematical background as well as the application of
 computational techniques to problems of engineering interest. The material is
 developed by the derivation of the formulas for each method, followed by a discussion
of the accuracy, computational effort, storage requirements, and range of applicability
of the method. For each problem area considered, for example, root solving, several
methods are discussed, emphasizing the ones that are most extensively employed. A
comparison between various methods applicable for a particular type of mathemati-
cal problem is made, in order to indicate the advantages and disadvantages of a given
method. Of particular interest in such a comparison are the associated errors, ease in
programming, computing time and storage needed, and flexibility in the application
to a wide variety of problems. The circumstances under which a given method would
be the preferred one are outlined. This consideration is an important one, since several
methods are frequently available for problems that arise in engineering applications

16	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

and the choice of the most appropriate method is highly desirable, in order to minimize
the computing resources needed and to obtain the required accuracy level.

Following a detailed discussion of the mathematical background and the derivation
of the relevant formulas for each numerical method, the computational procedure for
applying the technique is discussed. The important considerations underlying the
development of the numerical scheme are discussed, along with the difficulties that
may be encountered. Appropriate MATLAB commands and schemes are outlined,
whenever appropriate, or reference is made to programs in Appendix B to illustrate
the numerical solution. Finally, examples based on actual engineering or mathematical
problems are given, for most of the methods considered, and the computer program
is outlined. Again, the important features of the program are discussed and the
numerical results obtained are presented and discussed. The emphasis is on presenting
the basic algorithm of the method in terms of its application to an actual physical,
chemical, or mathematical problem. Although the program is discussed as part of the
example and is, therefore, geared to the solution of the specific problem considered,
a few modifications in the program can easily be made to use it for the solution of
other problems of similar nature. This approach of writing a problem-oriented
 computer program presents the program simply as a sample and encourages the
reader to write his or her own program on the basis of the information given, making
the program as efficient as possible and employing ongoing improvements in available
computational facilities. General programs that can be used for a wide range of
 problems are also presented in many cases.

1.6.2  computer programs

Many useful features are incorporated in the computer programs given in the book.
Both interactive and batch operation modes are utilized. In the former case, the input
data are fed and the results are obtained interactively by the operator. This makes an
interactive use of the computer preferable for short computer runs and for program
development. The batch mode, in which the entire program is entered with the input
data and the computer gives the results after the complete run, is preferred for large
runs and complicated programs, after the program has been developed, tested, and
debugged. Although most programs are written for the MATLAB environment, sev-
eral programs are also given in Fortran, in order to indicate the similarities and
 differences between these and to demonstrate the ease with which the basic logic of
the program can be employed in a different language or environment. Also, Fortran
continues to be an important programming language for engineering problems.
Subroutines or function files are useful in developing complicated programs and are
employed wherever appropriate. In some cases, the outputs are stored in data files for
future analysis or plotting and, in others, these are printed or plotted as soon as the
computational runs are completed.

1.6.3  examples and proBlems

The examples and problems considered in this book are derived from topics of
 interest in the major engineering disciplines and in the basic sciences. The physical

Introduction	 17

or basic background of the problem is outlined in order to enable the reader to fol-
low the relevance of these considerations in the choice and testing of a particular
numerical technique. Also, a selection of problems that arise in practical circum-
stances makes the discussion interesting and relevant to engineering applications. As
 discussed earlier in this chapter, numerical solutions must be considered not only in
terms of the basic nature of the given problem but also in terms of any analytical
solutions available, even if these are for very simple situations. These aspects are
stressed in evaluating the numerical results for accuracy and validity. In solving
problems of engineering interest, the available information on the given system or
process must form the basis for the development of the numerical scheme and for the
verification of the results obtained.

Both the problems and the examples tend to expand on the material covered, so
that they contribute to an increased understanding of the discussion given in the text.
Several new physical phenomena are also introduced in the problems to indicate the
application of the methods presented to a much wider spectrum of engineering
 processes. Although the emphasis is, obviously, on the numerical solution, several
problems are also directed at the mathematical background, particularly at the
errors involved and the mathematical formulation for a numerical solution. In
 addition, many problems can be solved on a calculator in order to study a given
numerical scheme.

Much of the material presented in this book has been used in courses taught at the
sophomore and junior levels in engineering. A few of the topics covered may be
somewhat advanced for sophomore students. Similarly, the physical background of
the problems may not be familiar to some of the readers. Consequently, a brief dis-
cussion of the important aspects of the problem or example under consideration is
included. In some cases, reference is also made to books that can be consulted for a
more detailed coverage of the topic. A background in programming, such as a fresh-
man-level, one-semester course, is assumed, although some of the important aspects
are covered in Chapters 2 and 3 for completeness.

1.6.4  a preview

The presentation of the numerical techniques for engineering application starts
with Chapter 2 on the basic considerations in computer methods. This chapter
outlines the important elements in computational procedure, including program
development, numerical errors, accuracy, convergence, and other basic aspects.
Although some of the discussion will be quite familiar to those experienced in
computer programming, many of the aspects considered in this chapter are impor-
tant in obtaining an accurate and valid solution to a problem of engineering inter-
est. This chapter also outlines the current trends in computational methods and
facilities, with respect to both the software development and the growing capabil-
ity of computer systems.

A brief review of MATLAB is presented in Chapter 3 in order to discuss the main
features of this computational environment. Commonly used commands and the
basic procedures to develop a program in MATLAB are outlined. Standard software
that can be used advantageously to solve mathematical problems, such as matrix

18	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

inversion, root solving for polynomial equations, solution of a system of linear
 equations, and obtaining a best fit from given data, is presented and discussed. Since
plotting of data is easily done in MATLAB, some simple plotting methods are
 presented. This chapter serves to give a brief discussion of programming in
MATLAB, while referring to more extensive presentations in other books, and also
outlines the terminology and nomenclature to be used in later chapters

The Taylor series, which forms an important element in the estimation of numeri-
cal truncation errors (TEs), is presented in Chapter 4, along with the numerical
approximation of derivatives. Several methods for differentiation are presented, and
many of the results presented here are employed in later chapters. Methods for
 finding the roots of nonlinear algebraic equations are discussed in Chapter 5. Several
methods, which are based on the sign change, at the root, of the function f(x) in the
given equation f(x) = 0, are first considered. Efficient methods such as the secant and
Newton’s methods, which converge very rapidly, although they may also diverge in
certain cases, are discussed in detail. Specialized methods for equations in which
f(x) is a polynomial are also discussed. Finally, a comparison between the various
available methods is made.

The solution of simultaneous linear or nonlinear algebraic equations is an important
problem in engineering applications and forms the subject of Chapter 6. Direct as well
as iterative numerical methods are discussed, the latter being the inevitable approach
for most nonlinear equations. Eigenvalue problems are also considered and the avail-
able methods outlined. Numerical methods for curve fitting of data are presented in
Chapter 7, considering both the exact fit as well as the best-fit approach. Various tech-
niques for interpolation are discussed, emphasizing popular methods such as Lagrange
and Newton’s interpolating polynomials. The least-squares method for a best fit is
 discussed in detail, and various forms of the function for curve fitting are considered.

Numerical integration forms the subject of Chapter 8, and several important
methods, such as the trapezoidal and Simpson’s rules, Romberg integration, and
Gaussian quadrature, are discussed. The advantages of each method, its limitations,
and the conditions under which it is preferred are considered in some detail. The
associated errors and the resulting accuracy are also discussed. The numerical
 integration of improper integrals, whose limits of integration may be infinite or the
integrand may become singular over the range of integration, is also presented.

The solution of differential equations is an important subject in engineering.
Because of the complexity of typical engineering problems, numerical methods are
generally needed. ODEs are considered in Chapter 9 and PDEs in Chapter 10. Both
self-starting methods, such as Euler’s and Runge–Kutta methods, and multistep
methods, such as predictor–corrector methods, are considered for ODEs. Also, the
associated errors, accuracy, stability, and convergence of these methods are
 considered, along with their efficiency in terms of the computational effort required.
Several types of equations, including initial-value, boundary-value, and systems of
 equations, are considered and the relevant numerical techniques are presented.
Again, a critical comparison between the various methods is made in order to guide
the choice of the most suitable scheme for a given problem. Finite-difference meth-
ods, derived from the numerical approximation of derivatives given in Chapter 4, are
also outlined for ODEs.

Introduction	 19

PDEs are included in this book largely for junior- and senior-level students and
also for professional engineers. With the introductory background presented, the
material could also be used for less advanced students. The material covered in
Chapter 10 considers mainly linear equations of parabolic, elliptic, and hyperbolic
type. The basic nature of the equations is discussed in detail, and important numerical
methods for their solution are presented. The questions of accuracy, convergence,
and stability are again considered. Finite difference methods are largely considered,
with a brief introduction to finite element methods, since the former is easier to
understand and can be developed on the basis of the material presented in Chapter 4.
The methods for treating different types of boundary conditions are also outlined.

In all the topics considered here, a large number of examples and problems are
given, so as to provide a strong physical and numerical base for the computational
study of engineering problems. Since the best way to learn numerical methods is by
applying the techniques available to different problems and developing one’s own
computer code, almost all the examples and many of the exercises demand the
 development of the relevant program and its use for obtaining the desired numerical
results. Although a calculator may be used in several cases to study the computational
steps in a given method, the readers are strongly encouraged to write computer
 programs for the problems given, using the discussions, formulas, and examples
given in the text.

As mentioned earlier, this book is largely directed at the use of the MATLAB
 computing environment for solving engineering problems. However, many Fortran
programs are also included in deference to the continued importance of this
 programming language in engineering. Extensive expertise and software exist in
Fortran and it continues to be widely used, particularly for complex problems. However,
the student or the reader can easily focus entirely on MATLAB, if desired, or a chosen
mixture of the two computing software may be employed for instruction.

21

2 Basic	Considerations	
in Computer	Methods

2.1  INTRODUCTION

In the numerical solution of engineering problems, there are several important
aspects that need to be considered in order to ensure the validity of the chosen
approach for a given problem and the accuracy of the results obtained. The
 computational procedure involves a consideration of the methods available for solv-
ing the given problem, the appropriate programming language, the computational
environment and software being employed, the computer and its operating system,
and so forth, before proceeding to the development of the numerical scheme, or
algorithm, and the corresponding program. Since these considerations are funda-
mental to most computer methods, this chapter discusses the general approach to
the development of the computational scheme. Also considered are the interfacing
with available computer software and the verification and validation of the numerical
results by a comparison with available analytical and experimental results, as
 discussed in Chapter 1.

The consideration of numerical errors and the accuracy of the results is important
in the numerical solution of any given problem. The various types of errors that arise
in the computational approach are discussed, along with methods that may be
employed for reducing the error. The accuracy of the solution may often be estimated
by comparing the numerical results with those from the analytical solution for sim-
pler problems, since the analytical solution of the given problem is presumably not
available. Frequently, satisfactory analytical results are not available for comparison.
In such cases, the numerical scheme itself is first employed to check the accuracy of
the numerical results by ensuring that numerical parameters, such as the chosen time
step and grid size, do not significantly affect the results. This process is often known
as verification of the numerical method. Also, the basic nature of the problem being
solved can often be employed as a check on the validity of the numerical scheme and
the correctness of the results obtained. The accuracy of the numerical results can
frequently be evaluated by substituting the solution obtained back into the algebraic
or PDE being solved to determine how closely it satisfies the equation. Several other
similar procedures are generally employed to check the accuracy of the numerical
solution.

Consider, for example, the dynamics of a moving body whose displacement x is
governed by the ODE dx/dt = F(x, t), where t is time and F(x, t) is a given function.
We may assume that the analytical solution is not available, since if it were, there
would be no need to solve the problem numerically. However, the numerical scheme

22	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

may be employed to solve a simpler equation, say, dx/dt = –ax + b, where a and b are
constants. The mathematical solution to this equation can be obtained as x = ce−at + b/a,
where c is a constant to be determined by applying the initial condition, that is, by
using the given value x0 of the displacement at time t = 0 or at any other specified
time; see Figure 2.1. The accuracy of the numerical method may be estimated by
comparing the numerical solution for this simple problem with the analytical solution.
For a more complicated function F(x, t), the following considerations may be used.
The physical nature of the problem demands that the displacement be real and
 positive. Also, it would often be known whether it is periodic or whether it must
increase, or decrease, with time. This information may be employed to select the
correct solution in case multiple solutions arise and also to check the validity of the
numerical scheme. Once the numerical solution x(t) is obtained, numerical
 differentiation may be used to determine dx/dt for a few selected values of t. These
may then be employed to check if the numerical values of x do indeed satisfy the
equation dx/dt = F(x, t) to the desired accuracy level. Finally, the step size Δt
employed in the numerical scheme must be reduced until a further reduction in Δt
does not significantly affect the numerical results. Of course, if any experimental
results are available on the given problem, these may be effectively used for evaluat-
ing the accuracy of the numerical results.

The numerical methods for the solution of several problems are based on an iterative
approach, in which the solution is gradually improved, starting with an initial, guessed
value until the change in the solution from one step to the next becomes less than a
chosen small quantity, known as the convergence criterion or parameter. In such cases,
the convergence of the iterative procedure is an important consideration, and it is
 necessary to determine the conditions under which the scheme may diverge. If a par-
ticular method diverges for a given problem, the problem can sometimes be reformulated

Time (t)

Initial
condition

Steady-state
value as t → ∞

0

D
isp

la
ce

m
en

t (
x)

x0

b/a

FIGURE 2.1  Sketch of the analytical solution of the differential equation dx/dt = −ax + b,
where a and b are constants and x = x0 at t = 0.

Basic	Considerations	in Computer	Methods	 23

so that the scheme converges. Otherwise, a different method must be employed.
Numerical stability is another important consideration that guides the selection of the
method and of the grid, or step, size in the numerical scheme. Again, it is necessary to
determine when numerical instability might arise and to take steps to avoid it.

This chapter discusses many of these considerations which are basic to most
 numerical methods. The general approach to the development of a numerical scheme is
outlined, indicating various important aspects that need to be taken into account. The
concepts of error, accuracy, iteration, convergence, and stability are discussed in general
terms, by taking examples from various topics, such as root solving, numerical
 differentiation and integration, curve fitting, and solution of algebraic and differential
equations, considered in greater detail in later chapters. The discussion in this chapter
forms the basis for the development, application, verification, and validation of the
numerical procedures for these and other topics of interest in engineering applications.

2.2  COMPUTATIONAL PROCEDURE

The general approach to the development and application of the computational
 procedure for solving a given problem is discussed in this section, indicating the
important aspects that generally need to be considered for an efficient and accurate
scheme. Although some of the considerations outlined here may not be applicable to
a particular circumstance, it is important to recognize the important steps that lead to
a successful numerical method. Most of the items included here are fairly straightfor-
ward and are quite familiar to those who have done a significant amount of numerical
work. However, the systematic approach given here is helpful, particularly for those
who are relatively less experienced in computer methods, in investigating the relevant
aspects that determine the efficiency, accuracy, and validity of the numerical
 procedure. It is assumed that the mathematical formulation of the given physical or
engineering problem has been completed and that an analytical solution is not easily
obtainable, so that it has been decided to solve the problem numerically.

2.2.1  method selection

Frequently, several methods are available for the numerical solution of a given
 mathematical problem. The selection of the method to be employed, from among the
several applicable methods, is an important consideration and is generally based on
many relevant criteria, such as the following:

 1. Accuracy
 2. Efficiency
 3. Numerical stability
 4. Programming simplicity
 5. Versatility
 6. Computer storage requirements
 7. Interfacing with available software
 8. Previous experience with a given method

24	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

The accuracy of a given method is an important consideration in its selection for
solving a particular problem. The evaluation of the accuracy of a method may be based
on a comparison of the numerical results with available analytical results, as outlined in
the preceding section, on an estimation of the associated numerical errors, or on various
methods for checking the correctness of the numerical solution, such as substitution of
the numerical results back into the equation being solved to determine the accuracy to
which the numerical solution satisfies it. All these aspects, particularly the numerical
errors that arise in computational methods, are discussed in detail later in this chapter.

The efficiency of a given method is generally based on the total number of
 arithmetic operations needed for solving the given problem. This is reduced to the
number of arithmetic operations needed per computational step if the number of steps
is fixed. One could also solve a given problem with different methods and determine
the computational or central processing unit (CPU) time needed in each case, as
obtained from the computer. However, the number of arithmetic operations, which
include addition, subtraction, multiplication, and division, can often be determined by
noting down the various mathematical manipulations performed, per step, in a given
numerical scheme. If a particular method involves a smaller number of total arithmetic
operations needed to solve the given problem, than another method, then it is more
efficient. A higher efficiency of the method also implies shorter computer time and,
thus, lower computational cost. For instance, matrix inversion methods for solving
systems of linear equations, though convenient and widely used, are generally less
efficient than other direct methods, as seen in a later chapter.

Numerical instability refers to the unbounded growth of numerical errors as com-
putation proceeds. It is of particular concern in the solution of differential equations
and, if present, can lead to an erroneous and unacceptable numerical solution.
Therefore, it is important to determine the stability characteristics of the various
methods that are applicable to a given problem. Frequently, the numerical scheme may
be conditionally stable; that is, it may be stable within certain constraints that often
limit the grid or step size. In the solution of parabolic PDEs, for instance, the explicit
schemes, which are generally simpler to use, often restrict the step size to small values,
making these schemes inefficient. Then the implicit methods, which usually do not
have such constraints resulting from stability considerations, are preferred. Thus, the
numerical instability of the method is an important consideration in its selection.

As listed before, several other considerations also play an important role in the
selection of the method. These include simplicity in programming, versatility of the
method, computer storage needed, and interfacing with available software. In
 engineering applications, the simplicity and versatility of the method are very
 important, since interest often lies in solving a wide variety of problems with the
least amount of effort. This is particularly true for the design and optimization of
systems that often involved a diversity of components and equations. Frequently,
some sacrifice is made with respect to accuracy and efficiency in order to select a
simpler and more versatile method. An example of this is the Runge–Kutta method,
for solving ODEs. This method is often chosen over predictor–corrector methods,
which are more efficient than the former but are also more complicated to program.

The computer storage requirements of the method are generally important in the
simulation of large systems that are of interest in engineering applications. For

Basic	Considerations	in Computer	Methods	 25

example, the Jacobi method for solving a system of linear algebraic equations
involves the storage of the matrices of the unknowns at two iterative steps, the present
and the previous one, whereas the Gauss–Seidel method requires the storage of only
the latest values. Thus, the latter method requires only about half the storage needed
by the first method. It is also more efficient on conventional single-processor
 computers and is preferred.

The interfacing of the numerical method with the computer software is particularly
important when available programs are being employed. For instance, if a matrix inver-
sion program is available, methods based on the inverse of the matrix for solving a
system of linear equations may be chosen. This is particularly true for MATLAB®, which
has excellent matrix inversion software built into the system. Similarly, prior personal
experience with a given method would be an important consideration in its selection.

2.2.2  programming language

After the numerical method for the solution of the given problem has been selected, the
next step is the development of the computer program or code that allows one to inter-
face with the computer system. However, before proceeding with the code develop-
ment, one must select the programming language and the computer system to be used
and become fully conversant with the selections made. The programming languages,
often termed high-level languages, allow one to write the step-by-step instructions, or
algorithm, for the computer in a form that is quite similar to ordinary English and
algebra. The computer itself interprets and executes statements only in the machine
language, and a compiler is employed by the computer to achieve the translation from
the programming language to the machine language. The machine language program
is then stored, providing direct access for immediate or later execution.

Several high-level programming languages have been developed over the years.
In the past, the most widely used among these, for engineering and science, was
Fortran, which stands for formula translation. It was originally developed by IBM
in the 1950s for scientific and engineering applications and is now available in many
versions, such as Fortran 77, Fortran 90, Fortran 95, and Fortran 2003. It is still
 commonly used and remains one of the important languages for high-performance
scientific computing and for benchmarking and ranking the world's fastest
 supercomputers, partly because of extensive existing programs for a wide array of
engineering problems. Fortran 90 and beyond are also well suited for use on parallel
machines. Most Fortran programs are structured so that control flows from top to
bottom, rather than one in which control is transferred from one point in the program
to another in a seemingly random fashion. The structured system makes development
as well as debugging relatively easy. Similarly, other important features, such as
object-oriented programming that uses objects, which include information on the
relevant data, methods, and their use to design the computer programs, have also
been incorporated in recent versions. Several Fortran programs are given in this
book to present the algorithm and the logic of the method, as well as to show the
similarities with and differences from the MATLAB environment and to provide
 information for those who are well versed in this programming language. Many
books are available on programming in Fortran and may be referenced for details on

26	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

the language. See, for instance, the books by Metcalf, Reid, and Cohen (2004),
Chapman (2007), and Chivers and Sleightholme (2009).

There are several other programming languages that have been employed for
 solving problems in science and engineering. These include Basic, Pascal, C, Lisp,
and others. Among these, Basic, which stands for beginner’s all-purpose symbolic
instruction code, was also a widely used language, particularly on PCs, since it is
generally simpler to use than Fortran and is well suited for small programs.
However, it is not as versatile as Fortran and is often inconvenient for large, complex
programs. Many improved versions of Basic have been developed in recent years,
and many of the constraints that existed in the earlier versions have been elimi-
nated. A useful version is Visual Basic, which is a relatively easy to learn and use
programming language, because of its graphical development features and deriva-
tion from Basic.

Similarly, other programming languages have their special advantages and
 limitations. An important language is C, which is a general-purpose programming
language developed in the last two decades. It is a relatively low-level language,
implying that it is closer to assembly language than high-level languages such as
Fortran. As a result, it is more difficult to move the program from one computer
system to a different one. However, the language was designed to encourage
 machine-independent programming, allowing C programs to be compiled for a very
wide variety of computer platforms and operating systems with little or no change to
its source code. The language has several advantageous features in control flow and
data structures because of which it is one of the most popular programming languages
and is widely used on many different software platforms. C has greatly influenced
many other popular programming languages, most notably C++, which originally
began as an extension to C. For details on the C and C++ languages, the books by
Kernighan and Ritchie (1988), Kochan (2004), Prata (2005), King (2008), and
Stroustrup (2000, 2009), among many other available books, may be consulted.

Several other programming languages have gained considerable importance in
the last few years. Among these are languages that allow symbolic manipulation,
that is, languages in which words, sentences, and expressions can be employed for
programming. Lisp, which takes its name from list programming, is one such
 language that is important in the development of intelligence in computers. Similarly,
Prolog and Smalltalk are languages used in generating artificial intelligence in
 engineering systems. For details on these languages, several references are available.
See, for instance, the books by Winston and Horn (1989), Clocksin (2003), Clocksin
and Mellish (2004), and Lalonde (2008).

Recent years have seen a tremendous growth in computational software, including
programming languages and computational environments, making it convenient
and efficient to carry out the numerical solution of the wide range of problems
encountered in engineering applications. Some of these that may be mentioned are
MATLAB, Mathematica, SciLab, Maple, GNU Octave, R programming language,
and Perl Data Language. The more computationally intensive aspects in the soft-
ware are often based on some variation of Fortran or C. The main computational
 environment used in this book is MATLAB and Chapter 3 is devoted to a brief
 discussion on the programming and implementation in this environment.

Basic	Considerations	in Computer	Methods	 27

The computer program, written in a high-level language such as Fortran or C++,
is implemented on the computer by means of an interpreter or a compiler. An
 interpreter examines each line of the program and checks it for the rules of the
 language before it is executed. The interpreted approach is very valuable during
 program development, since error messages are given as soon as a statement is
entered. However, it is very slow in the execution of the program. A compiler, on the
other hand, organizes the entire program into a set of machine instructions and
locations, and several compilers are available. The compiler is often written for a
given computer system and is generally a completely separate process undertaken
before the program is run. Once the machine code has been produced by the com-
piler, the compiled program is stored and the program may be executed with a sepa-
rate command. A single command that compiles and executes the program may
also be used. The use of a compiler thus reduces the computer time for a given
problem. Various compilers have their particular advantages and characteristics.
For instance, Unix and Linux are particularly good at providing diagnostic error
messages and are widely used.

From the above brief discussion of the various programming languages widely
employed for engineering problems, it is obvious that the trend has been toward
structured programming and interactive use of the computer, through an interpreter,
which responds almost immediately, or an interactive compiler. Substantial
 improvements and modifications continue to be made in the available languages to
simplify programming and to increase the versatility and capability of the language.
Although it is difficult to keep up with all the advancements in the high-level
 languages, available interpreters and compilers and computational software, it is
important to determine what is available on a given computer.

In general, an interactive use of the computer is preferable during program
 development, since the parameters of the problem may be entered by the operator at
the terminal. The program may be compiled and executed to obtain the output as the
program continues to execute. If the results are unacceptable, the execution may be
stopped at any stage, and the input parameters varied and execution resumed. In the
batch operation mode, the input parameters are part of the program, and the execution
of the program must be completed before any changes can be made. Thus, at the
initial stages of program development, interactive computer usage is particularly
valuable. Once the program has been satisfactorily developed, detailed numerical
results are best obtained by the batch operation mode on the computer.

Example 2.1

Compute the sum S of the series

 S = 1 + x + x2 + x3 + … + xn + … (2.1)

where x is a variable whose value is to be entered into the program interactively.
In order for the series to be convergent, |x| < 1. This series represents the binomial
expansion of 1/(1 − x), which therefore gives the exact value SX of the series. Compare
the exact and computed values of S to determine the numerical error. Discuss the
dependence of the sum S on the number of terms n taken in the series.

28	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

SOLUTION

The value of x is to be entered and terms in Equation 2.1 are to be added
sequentially. The basic considerations relevant to convergence are discussed
in detail later in this chapter. However, it will suffice to mention here that each
term in the series, given in Equation 2.1, is larger than the next term, for |x| < 1.
Thus, the contribution of each additional term to the sum decreases as n is
increased. This relationship is used as a check on the convergence, since it
is not possible to take an infinite number of terms and since it is desirable to
have the least number of terms that give S within an acceptable error. If SN
represents the nth term and S the sum of the series up to and including this
term, then the condition SN/S < ε, where ε is a chosen small quantity, such as
10−6, which implies that the contribution of the nth term to the sum S is less
than 10−4%, can be employed to check the convergence and to terminate the
computation if this condition is satisfied. The percentage error E is then given
by E = 100 [(SX – S)/SX].

The preceding description of the procedure to solve the problem may be
 written in terms of the following steps:

 1. Set the initial value of the sum S as zero.
 2. Set the initial value of the term n as zero.
 3. Enter the value of x.
 4. Add the next term SN = xn to the sum S.
 5. Check if the convergence criterion SN/S < ε is satisfied.
 6. If the convergence criterion is satisfied, stop and print the results on n, S,

and E.
 7. If the convergence criterion is not satisfied, advance n by 1 and go back to

step 4.
 8. Continue till convergence criterion is satisfied or a given maximum value of

n is reached.

A fairly simple computer program can be written to follow these steps, as dis-
cussed below and shown in Figure 2.2 in Fortran 77. This program is presented to
show the logic and the various steps involved and for those who are familiar with
the language.

The program would then yield the number of terms needed for the preceding
convergence criterion to be satisfied, the computed sum S of the series, and
the percentage error E. Figure 2.3 presents the typical results obtained from this
program. Here E is given in a format of the form 0.1E–04, or 0.1 × 10−4, in order to
check against the convergence criterion of SX/S < 10−6. Clearly, the error is a func-
tion of ε, which may be chosen to keep the error within an acceptable value. Also,
note that the number of terms needed increases with the value of x. This result
is expected, since convergence is slower at the larger value of x, as discussed in
most textbooks on advanced calculus; see, for instance, Larson et al. (2005) and
Stewart (2007).

This is an interesting problem, which shows the effect of truncating a series
after a certain number of terms and the use of a convergence criterion. The
 analytical result of the summation of the infinite series is known and can be used
as a check on accuracy.

Basic	Considerations	in Computer	Methods	 29

C	 	 PROGRAM	SERIES	SUMMATION
C
C	 	 HERE	S	IS	THE	SUM	OF	THE	SERIES	UP	TO	AND	INCLUDING	THE	NTH
C	 	 TERM,	SN	IS	THE	NTH	TERM,	SX	IS	THE	EXACT	VALUE	OF	THE
C	 	 FUNCTION	F(X)=1.0/(1.0–X),	WHICH	IS	REPRESENTED	BY	THE
C	 	 SERIES,	AND	ER	IS	THE	ERROR.
C
C
C	 	 ENTER	INPUT	QUANTITIES
C
	 	 	 IMPLICIT	REAL	(A–H,O–Z)
	 	 	 DO	5	I=1,5
	 	 	 PRINT	*,	'ENTER	THE	VALUE	OF	X'
	 	 	 READ	*,	X
	 	 	 N=0
	 	 	 S=0.0
C
C	 	 SUM	THE	SERIES
C
	 1		 SN=X**N
	 	 	 S=S+SN
C
C	 	 CONVERGENCE	CHECK
C
	 	 	 IF	((SN/S)	.GT.	1E–06)THEN
	 	 	 N=N+1
	 	 	 GO	TO	1
	 	 	 ELSE
	 6		 WRITE	(1,2)X
	 2		 FORMAT(2X,	'X=',	F6.3)
	 	 	 WRITE(1,7)N
	 7		 FORMAT(2X,	'THE	REQUIRED	NUMBER	OF	TERMS=',I5)
	 	 	 WRITE(1,3)S
	 3		 FORMAT(2X,	'THE	SUM	OF	THE	SERIES=',	F12.6)
C
C	 	 COMPUTE	THE	ANALYTICAL	VALUE	OF	THE	SUM	AND	THE	ERROR
C
	 	 	 SX=1.0/(1.0–X)
	 	 	 ER=((SX–S)/SX)*100.0
	 	 	 WRITE(1,4)ER
	 4		 FORMAT(2X,	'THE	ERROR=',	E10.5,'PERCENT'	/)
	 	 	 END	IF
	 5		 CONTINUE
	 	 	 STOP
	 	 	 END

FIGURE  2.2  Computer program in Fortran for the summation of the series given in
Example 2.1.

30	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

2.2.3  computer system

The next consideration in the numerical solution of a given problem pertains to the
computer system. Frequently, several systems, ranging from PCs or workstations
to minicomputers and mainframe computers, are available to engineers. Super-
computers may also be accessible for large-scale simulations of engineering sys-
tems. If several computers are available, the selection of the most appropriate one
for a given problem is important. Once this selection has been made, or if only one
computer system is available, one proceeds to obtain detailed information on the
various elements of the system, such as the languages available, the operating sys-
tem, the software available on the system, the input/output facilities, the memory/
storage constraints, and the job control language, so as to implement the computer
program being developed on the system.

	ENTER	THE	VALUE	OF	X
0.1
	 	X	=	0.100
	 	THE	REQUIRED	NUMBER	OF	TERMS	=	7
	 	THE	SUM	OF	THE	SERIES	=	1.111111
	 	THE	ERROR	=.10729E-04PERCENT

	ENTER	THE	VALUE	OF	X
0.3
	 	X	=	0.300
	 	THE	REQUIRED	NUMBER	OF	TERMS	=	13
	 	THE	SUM	OF	THE	SERIES	=	1.428571
	 	THE	ERROR	=	.25034E-04PERCENT

	ENTER	THE	VALUE	OF	X
0.5
	 	X	=	0.500
	 	THE	REQUIRED	NUMBER	OF	TERMS	=	20
	 	THE	SUM	OF	THE	SERIES	=	1.999998
	 	THE	ERROR	=	.95367E-04PERCENT

	ENTER	THE	VALUE	OF	X
0.7
	 	X	=	0.700
	 	THE	REQUIRED	NUMBER	OF	TERMS	=	37
	 	THE	SUM	OF	THE	SERIES	=	3.333328
	 	THE	ERROR	=	.17166E-03PERCENT

	ENTER	THE	VALUE	OF	X
0.9
	 	X	=	0.900
	 	THE	REQUIRED	NUMBER	OF	TERMS	=	111
	 	THE	SUM	OF	THE	SERIES	=	9.999912
	 	THE	ERROR	=	.85831E-03PERCENT

FIGURE 2.3  Results from the program in Fortran for Example 2.1.

Basic	Considerations	in Computer	Methods	 31

As mentioned earlier, there are two main steps in the numerical solution of an
engineering problem. The first involves the development of the computer code, and
the second involves repeated execution of the program for a wide variety of input
conditions and governing parameters to generate the numerical data needed for,
say, the design and analysis of a given engineering system such as a furnace, a
boiler, electronic equipment, a robot, a mechanical structure, or a chemical reac-
tor. The computer requirements are usually quite different for these two steps.
Code development involves frequent changes in the program and is thus best suited
to an interactive use of the computer, preferably with an interpreter. The operating
system, examples of which are Microsoft Windows, UNIX, and LINUX, controls
the interaction with the computer, particularly the editor, and is an important com-
ponent in the process. A screen editor, such as word processing programs and
EMACS, which is available on many personal and minicomputers, allows one to
make changes in the program very rapidly by moving the cursor to the desired
location and making the needed modification. A line editor, on the other hand,
allows changes to be made line by line, or in a collection of lines, and is much
slower. The speed of the CPU, which finally runs the program, is not a very impor-
tant consideration during code development. Similarly, the output facilities are not
as important as at the second stage when computational results are being obtained,
in tabular or graphical form.

Thus, during the development of the computer program, a good screen editor,
which allows frequent changes and corrections in the program, is desirable. Also, the
interpreter or compiler should provide adequate error diagnostics. PCs, workstations,
and several minicomputers are particularly suited to code development because of
the availability of most of the desirable features mentioned above.

Once the computer program has been developed, the desired numerical results
for wide ranges of the governing parameters are obtained by repeatedly running the
program with minor changes to enter the appropriate parametric values. Clearly, a
rapid execution, with good output facilities, particularly graphics, is desirable at
this stage. The editor and error diagnostics are not important. Also, an interactive
use of the computer is not necessary. Thus, a batch execution of the developed pro-
gram on a mainframe computer, or on a supercomputer, is the best method, particu-
larly for large, computationally intensive programs. The program is loaded,
compiled, and linked with computer memory before execution, which then pro-
ceeds rapidly.

2.2.4  program development

2.2.4.1  Algorithm
After the selection and the consideration of the important aspects of the method of
solution, the programming language, and the computer system, one proceeds to the
development of the computer program. However, before the program can be written,
a step-by-step procedure, known as an algorithm, must be developed.

32	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

The method of solution is generally expressed in terms of the mathematical
 formulas involved in the computation. However, the computer must be programmed
to follow a definite, logical, step-by-step procedure to perform the desired
 computation. The algorithm may be written as a sequence of steps to be followed.
More frequently, the algorithm is represented graphically by means of a flow chart,
which shows the steps in the form of a block diagram. Generally, a flow chart is used
to outline the computational procedure, without giving the details of the actual
 computational steps, which are eventually entered into the actual program. Thus, a
flow chart serves to indicate the logical sequence of programming steps and is
 frequently drawn before the program is developed.

The flow chart follows an accepted collection of symbols to represent input/
output, decision, terminal, and computation. For example, let us consider the
 determination of the maximum of a function f(x). In the optimization of engineer-
ing systems, one is frequently concerned with maximization or minimization of
 functions, under specified constraints. Let us assume that it is known that the
given function f(x) has a maximum in the range x1 < x < x2, where x is the inde-
pendent variable. We know from mathematics that at the maximum, df/dx is zero
and d2f/dx2 must be negative. Employing these characteristics of a maximum, one
may write the algorithm as a sequence of steps, shown in Figure 2.4, or represented
by a flow chart, shown in Figure 2.5.

For this problem, the computational procedure involves entering xl and x2,
 advancing x with a chosen step size Δx, and computing the derivative df/dx. If the
derivative is close enough to zero, as indicated by a chosen small quantity ε, a
 maximum or a minimum is obtained. Then the second derivative d2f/dx2 is computed.
A maximum is obtained if d2f/dx2 is negative. In this case, the computation is

STEP 1. Start the calculation.
 2. Input the limits x1 and x2 on x and the definition of the function f(x).
 3. Select the numerical parameters: Step size Δx and the convergence

parameter ε.
 4. Initialize: Take xi = x1.
 5. Calculate the first derivative �f xi()
 6. Check whether the magnitude of the derivative is within ε.
 7. If | ()ʹf xi |>ε, then advance xi by Δx and check whether xi < x2. If

| () |ʹ <f xi ε, then go to Step 10.
 8. Stop the calculation if xi > x2.
 9. Calculate �f xi() and again compare its magnitude with ε. Continue

with Step 7 if | ()ʹf xi |>ε .
 10. If | () |ʹ <f xi ε then calculate the second derivative ��f xi() .
 11. If ��f xi() is positive or zero, advance xi by Δx. Go to Step 8.
 12. If ��f xi() is negative, a maximum is indicated.
 13. Print the required results: xi and f xi().
 14. Stop the calculation.

FIGURE 2.4  Representation of the algorithm for determining the value and location of the
maximum of a given function f(x) as a sequence of steps to be followed by the computer.

Basic	Considerations	in Computer	Methods	 33

 terminated and the output printed. However, if d2f/dx2 is positive, a minimum is
indicated. A value of zero indicates a saddle or inflexion point. Then, the computa-
tion of df/dx is again carried out by advancing x until a maximum is obtained or until
the upper limit on x (i.e., x = x2) is attained. If a maximum is not obtained in the
given domain and if f(x) is known to have a maximum in the region, a larger value of
ε may be selected and the procedure repeated. In fact, both ε and Δx must be varied
to ensure that the location of the maximum is essentially independent of the values
chosen.

As shown in Figures 2.4 and 2.5, a flow chart is a more convenient representation of
an algorithm. The various symbols used for indicating the type or nature of a given step

Start

Start

Input
f (x), x1, x2

Numerical scheme
calculate f´ (xi)

Output
print xi, f (xi)

Stop

Stop Start/stop
(terminal)

Input/output

Numerical
process

Decision

Connector

Select Δx, ε
Initialize, xi = x1

Yes

Yes

Yes

No

No

No

Is
xi > x2?

Is
| f´(xi)| ≤ ε?

Calculate
f˝(xi)

Is
f˝(xi) < 0?

xi = x1 + Δx

xi = xi + Δx

FIGURE 2.5  Flow chart representation of the algorithm outlined in Figure 2.4.

34	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

are also shown in Figure 2.5. The flow chart is a useful tool as long as it is used to give
an outline of the overall process and not the detailed representations of individual
steps. The numbered sequence of steps, given in Figure 2.4, can also be used instead,
depending on the personal preference of the programmer. However, with experience,
one could form a mental picture of the various steps in the algorithm, particularly for
relatively simple problems, and proceed directly to computer programming.

2.2.4.2  Available Programs
Along with improvements in computer systems in recent years, with respect to memory
and computational speed, there has been an explosive growth in software as well. A
question, which is frequently asked these days, is if there is a need to develop numerical
codes when many general purpose and specialized codes are easily available in the
public and commercial domains. General-purpose programs such as Fidap, Fluent,
Phoenics, Nekton, and Ansys are commercially available and can easily be used to
study a wide variety of engineering problems. Software such as Maple, MathCAD, and
MATLAB can be used for obtaining analytical and numerical solutions to a variety of
mathematical problems such as differential equations, integration, root solving, and
algebraic equations. Similarly, specialized codes such as Polyflow for polymer
 processing can be employed for specific problems and applications. In the public
domain, several codes are available free of cost. These include programs for solving
systems of linear equations, for solving ODEs, for inverting matrices, for curve fitting,
and for providing graphical outputs of the computational results.

Commercially available software is generally expensive and usually does not
 provide the source code so that it is difficult to make changes in the code for a spe-
cific problem. In many cases, information on the algorithm, accuracy, discretization,
convergence characteristics, range of applicability, and other important aspects asso-
ciated with the software is not available in adequate detail. Despite the claims made
with respect to the wide variety of problems a given software is capable of solving,
one must judge each program very carefully and choose the one most suitable for a
given application, keeping its cost, versatility, accuracy, and other features in mind.
However, the general-purpose programs are finding wide use in industry, usually
with specific changes made in the software to address the requirements of the given
industry.

Computer programs in the public domain do not have many of these concerns and
can often be adapted to a given computer system and linked with other software to
solve a given problem. Thus, a program for solving a system of linear equations by
cyclic reduction, fast Fourier transforms, or matrix decomposition may be used as
part of the overall computer code to simulate an engineering problem. Certainly,
software packages for producing graphical outputs are extensively used with the
computational scheme generating the results. This approach of developing the core
software and linking it with codes available in the public domain is a particularly
attractive approach and is widely used.

Besides the easy availability of a wide variety of computer codes in the public
and commercial domains that have led to considerable improvements and
 simplifications in numerical model development for engineering processes, several
other advancements have occurred in recent years. These are expected to continue to

Basic	Considerations	in Computer	Methods	 35

have a significant impact on computational methods. Certainly, the most important
 development is that of parallel machines which employ several processors, instead of
the single CPU used in traditional serial or sequential computing machines. As
 outlined in Section 2.2.5, multiple processors allow concurrent calculations to be
carried out, resulting in a considerable speed up of the process. Similarly, considerable
progress has been made in graphical representations of the results, employing color
plots, contour plots, particle trajectories, two- and three-dimensional graphs, and
vector field graphs, among other useful and interesting features.

The need to use supercomputers to solve complicated problems, such as those
involving three-dimensional transport and turbulent flow, has led to improvements in
computational techniques through vectorization of the variables, so that rather than
treating each quantity in an array as a scalar the whole array is treated as a vector.
Improvements in the user–computer interface, using languages such as Visual Basic,
have also resulted in considerable ease in entering the relevant data such as geometry,
operating conditions, and material characteristics. Information storage and retrieval,
linking with the knowledge base on a given process or material, often using artificial
intelligence techniques, and other new features in computer systems and software
have had a considerable impact on traditional programming. It is expected that such
advancement will continue in the future, resulting in valuable and desirable changes
in the field of computational methods as well.

2.2.4.3  Validation
The final stage in the development of the computer program for solving a given
 problem is verification or validation of the numerical scheme. As discussed in Section
1.3, validation is done by a comparison of the numerical results with available
 analytical solutions and experimental results. However, the analytical solution of the
problem being solved numerically is obviously not available, at least in a convenient
form, making a numerical solution necessary. Therefore, the numerical scheme is
generally validated by a comparison with the analytical solution available for simpler
problems. For example, the algorithm shown in Figure 2.4 may be used with a simple
analytic function whose maximum can easily be determined mathematically. Thus,
a function such as f(x) = 5 + 4x − 3x3, which can easily be shown to have a maximum
at x = 2/3, may be chosen for the testing of the numerical scheme. The numerically
obtained value may be compared with the analytical one to verify that the scheme is
performing satisfactorily. Other, more complicated expressions may also be
employed, if the corresponding analytical results are known, for the validation of the
computer program. Similarly, experimental results are generally not available on the
problem being solved. However, experimental data on similar systems or problems
may be available. These data can then be used to validate the numerical solution.

2.2.5  serial versus parallel computing

In this book, it is generally assumed that at a given instant only one computational step
is being carried out on the computer. This assumption applies to most commonly used
computers, such as PCs and minicomputers, for engineering calculations. The compu-
tational procedure in which the required calculations are performed sequentially, with

36	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

each step being undertaken by the machine after the previous one is over, is known as
serial or sequential computing. Thus, a single CPU is involved in the computation.
However, in recent years, computers with multiple processors that allow concurrent
calculations have been developed. Generally termed parallel computers, these
machines represent the new generation of computing and have become important in
the numerical simulation of complicated processes and systems.

In order to fully utilize these machines with multiple processing units, one must
write the algorithm so as to employ the feature of parallel computing. Thus, state-
ments must be given to direct various calculation steps to different units. Algorithms
in which different steps are independent of each other are ideally suited for parallel
computing, since each calculation step can easily be assigned to a given processor.
Algorithms that involve strongly coupled steps cannot be solved very efficiently with
parallel computing. Besides the calculation for each step, the processors need to
communicate with each other at various stages in order to solve the overall problem.
Thus, parallel computing involves developing algorithms that allow concurrent
 calculations and message passing between processors for greater efficiency.
Depending on the problem and the algorithm, a considerable speed up of the
 computation can be obtained for a system consisting of n processors, a value
approaching n indicating an excellent utilization of the parallel computing
 environment. Even though the assumption here is serial or sequential computing, the
implications for parallel computing will be given at many places in the book. For
details on parallel computing, see Grama et al. (2003) and Scott et al. (2005).

Example 2.2

A firm needs to borrow $50,000 to undertake improvements in its existing
 facilities. For the repayment of the loan, the firm wishes to pay only $1000 each
month, beginning at the end of the first month after taking the loan, toward the
 principal and the interest. Considering possible interest rates as 8%, 10%, and 12%,
 determine the time required to pay off the loan for these three cases. Calculate the
time required and the future worth (FW), or the value on the day the repayment
is completed, of the money paid toward the loan. Also, determine the amount by
which the final payment must be reduced to pay off the loan exactly.

SOLUTION

Let x denote the percent interest rate, so that an annual compounding yields an
interest of x on $100. Then the annual interest on each dollar is x/100, denoted
by x1. Therefore, the FW of an amount P after n years is P(l + x1)n, due to this inter-
est which is compounded annually. Similarly, the present worth (PW), or the value
today, of an amount R paid at the end of n years is R/(l + x1)n. The concepts of
PW and FW are very important in economic analysis; see, for instance, Stoecker
(1989). First, we need to consider the PW of a series of uniform annual amounts
R, paid at the end of each year starting at the end of the first year. If n is the total
number of years, the PW of such a series of amounts is

PW =

+
+

+
+

+
+ +

+
R
x

R
x

R
x

R
x n() () () ()1 1 1 11

1
1

2
1

3
1

�

(2.2)

Basic	Considerations	in Computer	Methods	 37

The series can be summed up to give

PW =

+ −
+

R
x

x x

n

n

()
()

1 1
1

1

1 1
(2.3)

where x1 = x/100 (since x is given as a percent).
Equation 2.2 follows from the fact that the PW of an amount P paid at the end

of n years is given by PW = P/(l + x1)n and from the consideration of each lump-
sum annual payment to yield the given series. Now, if we consider monthly pay-
ments, the total number of payments become m, where m = 12n, and the interest
rate becomes xm, where xm = x/(12 × 100). Thus,

PW =

+ −
+

R
x

x x
m

m

m m
m

()
()

1 1
1

 (2.4)

The FW of this series of amounts is obtained by simply multiplying the PW by
(1 + xm)m. Therefore,

FW =

+ −
R

x
x
m

m

m

()1 1
 (2.5)

Now, R is given as $1000 and x as 8%, 10%, or 12%. We wish to compute the time,
in months m, needed to repay the loan, and the FW of the total payment. The PW
is $50,000. Thus, m is to be computed from Equation 2.4, and the FW may then be
obtained from Equation 2.5. The determination of m from Equation 2.4 is a root-
solving problem, which will be presented in Chapter 5. Here, we shall use a very
simple approach, since root-solving methods have not been discussed yet. For a
given value of xm, the value of m may be increased in steps of 1, starting with m = 1,
and the PW computed from Equation 2.4, until the value of $50,000 is reached.
The computation stops when PW exceeds this amount, since a fixed payment of
$1000 is made each month. In practice, the monthly payment is adjusted to an
appropriate value close to $1000, so that the loan is paid off exactly.

Figure 2.6 shows the algorithm to be employed, in terms of a flow chart.
The computational scheme is very simple for this problem and is based on a
 comparison between the PW of $50,000 and the sum of the series in Equation
2.4, employing an increasing number of terms m. Once the latter exceeds the PW,
the loan is paid off and the number of months needed is printed. Also, the FW, on
the date when the loan is paid off, of the total payment made is computed from
Equation 2.5. The PW of the total payment exceeds $50,000, and the last pay-
ment may be reduced to avoid this excess payment or the monthly payments may
be adjusted, as mentioned above. The FW of the loan is $50,000 (1 + xm)m, and if
this amount is subtracted from the computed FW of the payments, we obtain the
amount by which the final payment may be reduced to pay off the loan exactly.

A computer program may easily be developed on the basis of this algorithm.
Figure 2.7 presents a Fortran 77 program to give the logic and the various steps
indicated in the algorithm.

Figure 2.8 presents the numerical results obtained from such a program. The
inputs are entered and the print out gives the results, along with the input para-
meters to ensure that the correct values are being employed in the calculations.
As seen here, the number of months needed to repay the loan increases with

38	 Computer	Methods	for	Engineering	with	MATLAB®	Applications

the interest rate, as expected. Also, the FW increases. Note also that, since the
monthly payment is kept constant, the total payment is more than the loan. To
determine the amount needed to repay the loan exactly, subtract the FW of the
loan from the FW of the total payment. This amount is the overpayment and is
subtracted from the last month's payment of $1000 to obtain the reduction in the
final payment if the loan is to be paid off exactly.

2.3  NUMERICAL ERRORS AND ACCURACY

A very important consideration in the solution of a given mathematical, chemical,
physical, or engineering problem by computational methods is the accuracy of the
numerical results obtained. The true measure of inaccuracy, or error, in the numeri-
cal solution is the difference between the numerical and the exact, or analytical,
results. However, the analytical solution of the given problem is presumably not
available, making it necessary to solve it numerically. Thus, alternative methods for
estimating the errors involved and the accuracy of the numerical solution are needed.
The dependence of the errors on the various parameters associated with the numerical
procedure must also be determined, so that the accuracy of the solution may be
improved by varying these parameters.

Output
print results

Stop

Yes

No

Is
PW ≥ 50,000

?

Calculate FW,
calculate reduction

in final payment

m = m + 1

Start

Input data
R, x

Initialize
m = 1

Calculate
PW

FIGURE 2.6  Flow chart for the problem in economics considered in Example 2.2.

