Applied Reliability Third Edition

Paul A. Tobias David C. Trindade

Applied Reliability Third Edition

Applied Reliability Third Edition

Paul A. Tobias David C. Trindade

CRC Press is an imprint of the Taylor & Francis Group an **informa** business A CHAPMAN & HALL BOOK CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

International Standard Book Number: 978-1-58488-466-8 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright hold-ers if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Tobias, Paul A.

Applied reliability / Paul A. Tobias and David C. Trindade. -- 3rd ed. p. cm.

Summary: "This popular book is an easy-to-use guide that addresses basic descriptive statistics, reliability concepts, the exponential distribution, the Weibull distribution, the lognormal distribution, reliability data plotting, acceleration models, life test data analysis and systems models, and much more. The third edition includes a new chapter on Bayesian reliability analysis and expanded, updated coverage of repairable system modeling. Taking a practical and example-oriented approach to reliability analysis, it also provides detailed illustrations of software implementation throughout using several widely available software packages. Software and other files are available for download at www. crcpress.com"-- Provided by publisher.

Summary: "It's been over 15 years since the publication of the 2nd edition of Applied Reliability. We continue to receive positive feedback from old users, and each year hundreds of engineers, quality specialists, and statisticians discover the book for the first time and become new fans. So why a 3rd edition? There are always new methods and techniques that update and improve upon older methods, but that was not the primary reason we felt the need to write a new edition. In the last 15 years, the ready availability of relatively inexpensive, powerful, statistical software has changed the way statisticians and engineers look at and analyze all kinds of data. Problems in reliability that were once difficult and time consuming for even experts now can be solved with a few well-chosen clicks of a mouse. Additionally, with the quantitative solution often comes a plethora of graphics that aid in understanding and presenting the results. All this power comes with a price, however. Software documentation has had difficulty keeping up with the enhanced functionality added to new releases, especially in specialized areas such as reliability analysis. Also, in some cases different well-known software packages use different methods and output different answers. An analyst needs to know how to use these programs effectively and which methods are the most highly recommended. This information is hard to find for industrial reliability problems"-- Provided by publisher.

Includes bibliographical references and index.

ISBN 978-1-58488-466-8 (hardback) 1. Reliability (Engineering) 2. Quality control--Statistical methods. I. Trindade, David C. II. Title.

TA169 T63 2011 620'.00452--dc22

2011011223

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

Preface		xiii
List of Fig	gures	xv
List of Ta	bles	xxvii
List of Ex	amples	xxxi
1. Basic	c Descriptive Statistics	1
1.1	Populations and Samples	1
1.2	Histograms and Frequency Functions	2
1.3	Cumulative Frequency Function	5
1.4	The Cumulative Distribution Function and the Probability	
	Density Function	6
1.5	Probability Concepts	9
1.6	Random Variables	
1.7	Sample Estimates of Population Parameters	
1.8	How to Use Descriptive Statistics	22
1.9	Data Simulation	23
1.10	Summary	25
Appe	endix 1A	
	1.1A Creating a Step Chart in a Spreadsheet	
Prob	lems	27
2. Relia	ability Concepts	
2.1	Reliability Function	29
2.2	Some Important Probabilities	
2.3	Hazard Function or Failure Rate	
2.4	Cumulative Hazard Function	33
2.5	Average Failure Rate	34
2.6	Units	35
2.7	Bathtub Curve for Failure Rates	
2.8	Recurrence and Renewal Rates	
2.9	Mean Time to Failure and Residual Lifetime	
2.10	Types of Data	41
	2.10.1 Exact Times: Right-Censored Type I	
	2.10.2 Exact Times: Right-Censored Type II	42
	2.10.3 Readout Time or Interval Data	42
	2.10.4 Multicensored Data	42
	2.10.5 Left-Censored Data	43
	2.10.6 Truncated Data	43
2.11	Failure Mode Separation	45
2.12	Summary	45
Prob	lems	46

3.	Expo	nential	Distribution	
	3.1	Expon	ential Distribution Basics	
	3.2	The M	ean Time to Fail for the Exponential	51
	3.3	The Ex	ponential Lack of Memory Property	
	3.4	Areas	of Application for the Exponential	53
	3.5	Expon	ential Models with Duty Cycles and Failure on Demand	
	3.6	Estima	tion of the Exponential Failure Rate λ	
	3.7	Expon	ential Distribution Closure Property	
	3.8	Testing	g Goodness of Fit: The Chi-Sauare Test	
	3.9	Testing	g Goodness of Fit: Empirical Distribution Function Tests	
		3.9.1	D-Statistics: Kolmogorov–Smirnov	63
		3.9.2	W ² -Statistics: Cramer–von Mises	64
		3.9.3	A ² -Statistics: Anderson–Darling	64
	3.10	Confid	lence Bounds for λ and the MTTF	
	3.11	The Ca	ase of Zero Failures	
	3.12	Planni	ng Experiments Using the Exponential Distribution	
	3.13	Simula	ating Exponential Random Variables	75
	3.14	The Tv	vo-Parameter Exponential Distribution	
	3.15	Summ	arv	77
	Appe	endix 3/	\	78
		3.1A	Test Planning via Spreadsheet Functions	78
		0,111	Determining the Sample Size	78
			Determining the Test Length Using Spreadsheet Functions	80
			Determining the Number of Allowed Failures via	
			Spreadsheet Functions	81
		32A	EDF Goodness-of-Fit Tests Using Spreadsheets	81
		0.211	KS Test	81
	Prob	lems		
4 .	Weib	ull Dis	tribution	
	4.1	Empiri	ical Derivation of the Weibull Distribution	
		4.1.1	Weibull Spreadsheet Calculations	90
	4.2	Proper	ties of the Weibull Distribution	90
	4.3	Extren	ne Value Distribution Relationship	95
	4.4	Areas	of Application	96
	4.5	Weibu	ll Parameter Estimation: Maximum Likelihood	
		Estima	ition Method	98
	4.6	Weibu	Il Parameter Estimation: Linear Rectification	110
	4.7	Simula	ating Weibull Random Variables	111
	4.8	The Th	nree-Parameter Weibull Distribution	112
	4.9	Goodr	ness of Fit for the Weibull	113
	4.10	Summ	ary	113
	Appe	endix 4/	ł	114
	- •	4.1A	Using a Spreadsheet to Obtain Weibull MLEs	114
		4.2A	Using a Spreadsheet to Obtain Weibull MLEs for	
			Truncated Data	116
		4.3A	Spreadsheet Likelihood Profile Confidence Intervals for	
			Weibull Parameters	116
	Prob	lems		

5.	Norn	nal and	l Lognormal Distributions	
	5.1	Norm	al Distribution Basics	
	5.2	Applic	cations of the Normal Distribution	
	5.3	Centra	al Limit Theorem	
	5.4	Norm	al Distribution Parameter Estimation	
	5.5	Simula	ating Normal Random Variables	
	5.6	Logno	ormal Life Distribution	
	5.7	Prope	rties of the Lognormal Distribution	
	5.8	Logno	ormal Distribution Areas of Application	
	5.9	Logne	ormal Parameter Estimation	
	5.10	Some	Useful Lognormal Equations	
	5.11	Simula	ating Lognormal Random Variables	
	5.12	Summ	nary	
	Appe	endix 5/	A	
		5.1A	Using a Spreadsheet to Obtain Lognormal MLEs	
		5.2A	Using a Spreadsheet to Obtain Lognormal MLEs	
			for Interval Data	
	Probl	lems		
6.	Relia	bility l	Data Plotting	
	6.1	Prope	rties of Straight Lines	
	6.2	Least	Squares Fit (Regression Analysis)	
	6.3	Rectif	ication	
	6.4	Proba	bility Plotting for the Exponential Distribution	161
		6.4.1	Rectifying the Exponential Distribution	
		6.4.2	Median Rank Estimates for Exact Failure Times	
		6.4.3	Median Rank Plotting Positions	
		6.4.4	Confidence Limits Based on Rank Estimates	
		6.4.5	Readout (Grouped) Data	
		6.4.6	Alternative Estimate of the Failure Rate and Mean Life	
		6.4.7	Confidence Limits for Binomial Estimate for	
			Readout Data	
	6.5	Proba	bility Plotting for the Weibull Distribution	
		6.5.1	Weibull Plotting: Exact Failure Times	
		6.5.2	Weibull Survival Analysis via JMP	
		6.5.3	Weibull Survival Analysis via Minitab	
	6.6	Proba	bility Plotting for the Normal and Lognormal	
		Distril	butions	
		6.6.1	Normal Distribution	
		6.6.2	Lognormal Distribution	181
	6.7	Simul	taneous Confidence Bands	
	6.8	Summ	nary	
	Appe	endix 64	A	
		6.1A	Order Statistics and Median Ranks	
	Probl	lems		191
7	Anal	vsis of	Multicensored Data	193
	7.1	Multic	rensored Data	
		7.1.1	Kaplan–Meier Product Limit Estimation	

	7.2	Analy	sis of Interval (Readout) Data	203
		7.2.1	Interval (Readout) Data Analysis in JMP and Minitab	205
		7.2.2	Minitab Solution	206
		7.2.3	JMP Solution	206
	7.3	Life Ta	able Data	209
	7.4	Left-T	runcated and Right-Censored Data	213
	7.5	Left-C	ensored Data	217
	7.6	Other	Sampling Schemes (Arbitrary Censoring: Double and	
		Overla	apping Interval Censoring)—Peto-Turnbull Estimator	220
		7.6.1	Current Status Data	220
	7.7	Simul	taneous Confidence Bands for the Failure	
		Distri	bution (or Survival) Function	223
		7.7.1	Hall-Wellner Confidence Bands	224
		7.7.2	Nair Equal Precision Confidence Bands	229
		7.7.3	Likelihood Ratio-Based Confidence Bands	229
		7.7.4	Bootstrap Methods for Confidence Bands	229
		7.7.5	Confidence Bands in Minitab and JMP	230
	7.8	Cumu	lative Hazard Estimation for Exact Failure Times	231
	7.9	Johnse	on Estimator	233
	Sumi	nary		
	Appe	endix 7.	A	
	11	7.1A	Obtaining Bootstrap Confidence Bands Using a	
			Spreadsheet	235
	Prob	lems	*	239
8.	Phys	ical Ac	celeration Models	241
	8.1	Accele	erated Testing Theory	241
	8.2	Expor	ential Distribution Acceleration	243
	8.3	Accele	eration Factors for the Weibull Distribution	244
	8.4	Likeli	hood Ratio Tests of Models	256
	8.5	Confi	lence Intervals Using the LR Method	258
	8.6	Logno	ormal Distribution Acceleration	
	8.7	Accele	eration Models	
	8.8	Arrhe	nius Model	
	8.9	Estim	ating ΔH with More than Two Temperatures	
	8.10	Eyring	g Model	273
	8.11	Other	Acceleration Models	279
	8.12	Accol		281
		Accele	eration and Burn-In	
	8.13	Life To	eration and Burn-In est Experimental Design	
	8.13 8.14	Life To Summ	eration and Burn-In est Experimental Design ıary	283
	8.13 8.14 Appe	Life To Summ Summ	eration and Burn-In est Experimental Design 1ary A	281 283 284 285
	8.13 8.14 Appe	Life To Summ Endix 8. 8.1A	eration and Burn-In est Experimental Design ary A An Alternative JMP Input for Weibull Analysis of High-Stress	281 283 284 285
	8.13 8.14 Appe	Life To Summ endix 8. 8.1A	eration and Burn-In est Experimental Design ary A An Alternative JMP Input for Weibull Analysis of High-Stress Failure Data	281 283 284 285 285
	8.13 8.14 Appe	Life To Summ endix 8. 8.1A 8.2A	eration and Burn-In est Experimental Design ary A. An Alternative JMP Input for Weibull Analysis of High-Stress Failure Data Using a Spreadsheet for Weibull Analysis of High-Stress	
	8.13 8.14 Appe	Life To Summ endix 8. 8.1A 8.2A	eration and Burn-In est Experimental Design ary A. An Alternative JMP Input for Weibull Analysis of High-Stress Failure Data Using a Spreadsheet for Weibull Analysis of High-Stress Failure Data	281 283 284 285 285
	8.13 8.14 Appe	Life To Summ endix 8. 8.1A 8.2A 8.3A	eration and Burn-In est Experimental Design ary A. An Alternative JMP Input for Weibull Analysis of High-Stress Failure Data Using a Spreadsheet for Weibull Analysis of High-Stress Failure Data Using A Spreadsheet for MLE Confidence Bounds for	281 283 284 285 285 285
	8.13 8.14 Appe	Life To Summ endix 8. 8.1A 8.2A 8.3A	eration and Burn-In est Experimental Design A An Alternative JMP Input for Weibull Analysis of High-Stress Failure Data Using a Spreadsheet for Weibull Analysis of High-Stress Failure Data Using A Spreadsheet for MLE Confidence Bounds for Weibull Shape Parameter	
	8.13 8.14 Appe	Life To Summ endix 8. 8.1A 8.2A 8.3A 8.3A 8.4A	eration and Burn-In est Experimental Design A An Alternative JMP Input for Weibull Analysis of High-Stress Failure Data Using a Spreadsheet for Weibull Analysis of High-Stress Failure Data Using A Spreadsheet for MLE Confidence Bounds for Weibull Shape Parameter Using a Spreadsheet for Lognormal Analysis of the	
	8.13 8.14 Appe	Accele Life To Summ endix 8. 8.1A 8.2A 8.3A 8.3A 8.4A	eration and Burn-In est Experimental Design A An Alternative JMP Input for Weibull Analysis of High-Stress Failure Data Using a Spreadsheet for Weibull Analysis of High-Stress Failure Data Using A Spreadsheet for MLE Confidence Bounds for Weibull Shape Parameter Using a Spreadsheet for Lognormal Analysis of the High-Stress Failure Data Shown in Table 8.5	

Contents

		8.5A	Using a Spreadsheet for MLE Confidence Bounds for the	
			Lognormal Shape Parameter	291
		8.6A	Using a Spreadsheet for Arrhenius–Weibull Model	293
		8.7A	Using a Spreadsheet for MLEs for Arrhenius–Power	
			Relationship Lognormal Model	294
		8.8A	Spreadsheet Templates for Weibull or Lognormal MLE Analysis	296
	Probl	ems		297
9.	Alter	native	Reliability Models	301
	9.1	Step S	tress Experiments	
	9.2	Degra	dation Models	
		921	Method 1	308
		922	Method 2	309
	93	Lifetir	ne Regression Models	313
	9.5	The Pr	roportional Hazarde Model	320
	7.1	0/1	Proportional Hazards Model Assumption	320
		9.4.1	Properties and Applications of the Propertional	
		9.4.2	Froperties and Applications of the Proportional	220
	0.5	Defeat	Hazards Model	320
	9.5	Defect	Subpopulation Models	321
	9.6	Summ	lary	335
	Appe	endix 9/		335
		9.1A	JMP Solution for Step Stress Data in Example 9.1	335
		9.2A	Lifetime Regression Solution Using Excel	336
		9.3A	JMP Likelihood Formula for the Defect Model	342
		9.4A	JMP Likelihood Formulas for Example 9.7 Multistress	
			Defect Model Example	342
	Probl	ems		342
10.	Syste	m Failu	ure Modeling: Bottom-Up Approach	345
	10.1	Series	System Models	345
	10.2	The Co	ompeting Risk Model (Independent Case)	346
	10.3	Paralle	el or Redundant System Models	348
	10.4	Stand	by Models and the Gamma Distribution	350
	10.5	Comp	lex Systems	352
	10.6	Systen	n Modeling: Minimal Paths and Minimal Cuts	356
	10.7	Gener	al Reliability Algorithms	360
	10.8	Burn-I	n Models	362
	10.9	The "E	Black Box" Approach: An Alternative to Bottom-Up Methods	365
	10.10	Summ	arv	367
	Probl	ems		
	11021			
11	Oual	ity Cor	trol in Reliability: Applications of Discrete Distributions	369
	11 1	Sampl	ing Plan Distributions	369
	11.1	11 1 1	Permutations and Combinations	370
		11 1 2	Permutations and Combinations via Spreadsheat Functions	370
		11.1.2	The Rinomial Distribution	3/ 1
		11.1.3	The Dinomial Distribution	
		11.1.4	Cumulative Dinomial Distribution	3/4
		11.1.5	Spreadsneet Function for the binomial Distribution	375
		11.1.6	Kelation of Binomial Distribution to Beta Distribution	376

	11.2	Nonparametric Estimates Used with the Binomial Distribution	377
	11.3	Confidence Limits for the Binomial Distribution	
	11.4	Normal Approximation for Binomial Distribution	379
	11.5	Confidence Intervals Based on Binomial Hypothesis Tests	
	11.6	Simulating Binomial Random Variables	382
	11.7	Geometric Distribution	
	11.8	Negative Binomial Distribution	
	11.9	Hypergeometric Distribution and Fisher's Exact Test	386
		11.9.1 Hypergeometric Distribution	
		11.9.2 Fisher's Exact Test	387
		11.9.3 Fisher's Exact Test in JMP and Minitab	389
	11.10	Poisson Distribution	391
	11.11	Types of Sampling	393
		11.11.1 Risks	394
		11.11.2 Operating Characteristic Curve	395
		11.11.3 Binomial Calculations	395
		11.11.4 Examples of Operating Characteristic Curves	396
	11.12	Generating a Sampling Plan	400
		11.12.1 LTPD Sampling Plans	402
	11.13	Minimum Sample Size Plans	406
	11.14	Nearly Minimum Sampling Plans	406
	11.15	Relating an OC Curve to Lot Failure Rates	407
	11.16	Statistical Process Control Charting for Reliability	410
	11.17	Summary	414
	Probl	ems	414
		chib	111
10	D	inchia Constante Deut I. Niener anne trije Angelanie and	111
12.	Repa	irable Systems Part I: Nonparametric Analysis and	417
12.	Repa Rene	irable Systems Part I: Nonparametric Analysis and wal Processes	417
12.	Repa Rene 12.1	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems	417 417 417
12.	Repa Rene 12.1 12.2	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process	417 417 417 419
12.	Repa Rene 12.1 12.2 12.3	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process Analysis of a Sample of Repairable Systems	417 417 419 424
12.	Repa Rene 12.1 12.2 12.3	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process Analysis of a Sample of Repairable Systems 12.3.1 Solution Using Spreadsheet Methods	417 417 419 424 428 428
12.	Repa Rene 12.1 12.2 12.3 12.4	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process Analysis of a Sample of Repairable Systems 12.3.1 Solution Using Spreadsheet Methods Confidence Limits for the Mean Cumulative Function (Exact Age Data)	417 417 419 424 428 430 430
12.	Repa Rene 12.1 12.2 12.3 12.4	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process Analysis of a Sample of Repairable Systems 12.3.1 Solution Using Spreadsheet Methods Confidence Limits for the Mean Cumulative Function (Exact Age Data) 12.4.1 True Confidence Limits	417 417 419 424 428 430 430
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6	irable Systems Part I: Nonparametric Analysis and wal Processes. Repairable versus Nonrepairable Systems. Graphical Analysis of a Renewal Process. Analysis of a Sample of Repairable Systems. 12.3.1 Solution Using Spreadsheet Methods. Confidence Limits for the Mean Cumulative Function (Exact Age Data) 12.4.1 True Confidence Limits. Nonparametric Comparison of Two MCF Curves.	417 417 419 424 428 430 430 435 440
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process Analysis of a Sample of Repairable Systems 12.3.1 Solution Using Spreadsheet Methods Confidence Limits for the Mean Cumulative Function (Exact Age Data) 12.4.1 True Confidence Limits Nonparametric Comparison of Two MCF Curves Renewal Processes	417 417 419 424 428 428 430 430 435 440
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6 12.7	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process Analysis of a Sample of Repairable Systems 12.3.1 Solution Using Spreadsheet Methods Confidence Limits for the Mean Cumulative Function (Exact Age Data) 12.4.1 True Confidence Limits Nonparametric Comparison of Two MCF Curves Renewal Processes Homogeneous Poisson Process	417 417 419 424 428 428 430 430 435 440 441
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6 12.7	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process Analysis of a Sample of Repairable Systems 12.3.1 Solution Using Spreadsheet Methods Confidence Limits for the Mean Cumulative Function (Exact Age Data) 12.4.1 True Confidence Limits Nonparametric Comparison of Two MCF Curves Renewal Processes Homogeneous Poisson Process 12.7.1 Distribution of Repair Times for HPP	
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process Analysis of a Sample of Repairable Systems 12.3.1 Solution Using Spreadsheet Methods Confidence Limits for the Mean Cumulative Function (Exact Age Data) 12.4.1 True Confidence Limits Nonparametric Comparison of Two MCF Curves Renewal Processes Homogeneous Poisson Process 12.7.1 Distribution of Repair Times for HPP MTBF and MTTF for a Renewal Process	417 417 419 424 428 430 430 435 440 441 442 446 446
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10	irable Systems Part I: Nonparametric Analysis and wal Processes	417 417 419 424 428 428 430 430 435 440 441 442 446 450
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process Analysis of a Sample of Repairable Systems 12.3.1 Solution Using Spreadsheet Methods Confidence Limits for the Mean Cumulative Function (Exact Age Data) 12.4.1 True Confidence Limits Nonparametric Comparison of Two MCF Curves Renewal Processes Homogeneous Poisson Process 12.7.1 Distribution of Repair Times for HPP MTBF and MTTF for a Renewal Process MTTF and MTBF Two-Sample Comparisons Availability	417 417 419 424 428 428 430 430 435 440 441 442 446 450 453 453
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process Analysis of a Sample of Repairable Systems 12.3.1 Solution Using Spreadsheet Methods Confidence Limits for the Mean Cumulative Function (Exact Age Data) 12.4.1 True Confidence Limits Nonparametric Comparison of Two MCF Curves Renewal Processes Homogeneous Poisson Process 12.7.1 Distribution of Repair Times for HPP MTBF and MTTF for a Renewal Process MTTF and MTBF Two-Sample Comparisons Availability Renewal Rates	417 417 419 424 428 420 430 430 430 435 440 441 442 446 450 455 455
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process Analysis of a Sample of Repairable Systems 12.3.1 Solution Using Spreadsheet Methods Confidence Limits for the Mean Cumulative Function (Exact Age Data) 12.4.1 True Confidence Limits Nonparametric Comparison of Two MCF Curves Renewal Processes Homogeneous Poisson Process 12.7.1 Distribution of Repair Times for HPP MTBF and MTTF for a Renewal Process MTTF and MTBF Two-Sample Comparisons Availability Renewal Rates Simulation of Renewal Processes	417 417 419 424 428 428 428 428 428 428 428 428 428 425 455 456 456
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process. Analysis of a Sample of Repairable Systems 12.3.1 Solution Using Spreadsheet Methods Confidence Limits for the Mean Cumulative Function (Exact Age Data) 12.4.1 True Confidence Limits. Nonparametric Comparison of Two MCF Curves Renewal Processes Homogeneous Poisson Process 12.7.1 Distribution of Repair Times for HPP MTBF and MTTF for a Renewal Process MTTF and MTBF Two-Sample Comparisons Availability Renewal Rates Simulation of Renewal Processes Superposition of Renewal Processes	417 417 419 424 428 420 425 440 441 442 445 455 455 455 455 455
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15	irable Systems Part I: Nonparametric Analysis and wal Processes	
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15	irable Systems Part I: Nonparametric Analysis and wal Processes	
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15	irable Systems Part I: Nonparametric Analysis and wal Processes. Repairable versus Nonrepairable Systems	417 417 419 424 428 430 430 435 440 441 442 446 455 455 456 457 458 462 462
12.	Repa Rene 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15 Appe	irable Systems Part I: Nonparametric Analysis and wal Processes Repairable versus Nonrepairable Systems Graphical Analysis of a Renewal Process. Analysis of a Sample of Repairable Systems 12.3.1 Solution Using Spreadsheet Methods Confidence Limits for the Mean Cumulative Function (Exact Age Data) 12.4.1 True Confidence Limits. Nonparametric Comparison of Two MCF Curves Renewal Processes Homogeneous Poisson Process. 12.7.1 Distribution of Repair Times for HPP MTBF and MTTF for a Renewal Process. MTTF and MTBF Two-Sample Comparisons Availability. Renewal Rates. Simulation of Renewal Processes Superposition of Renewal Processes CDF Estimation from Renewal Data (Unidentified Replacement) Summary	417 417 419 424 428 428 428 428 428 428 428 425 440 455 455 455 455 455 455 455 458 452 462 462 462

		12.3A	Alternative Approach for Estimating CDF Using the	
			Fundamental Renewal Equation	
	Probl	ems	-	
13.	Repa	irable S	Systems Part II: Nonrenewal Processes	
	13.1	Graph	ical Analysis of Nonrenewal Processes	
	13.2	Two M	Iodels for a Nonrenewal Process	474
	13.3	Testin	g for Trends and Randomness	
		13.3.1	Other Graphical Tools	
	13.4	Laplac	e Test for Trend	
	13.5	Revers	se Arrangement Test	
	13.6	Combi	ining Data from Several Tests	
	13.7	Nonho	omogeneous Poisson Processes	
	13.8	Model	s for the Intensity Function of an NHPP	
		13.8.1	Power Relation Model	
		13.8.2	Exponential Model	
	13.9	Rate o	f Occurrence of Failures	
	13.10	Reliab	ility Growth Models	500
	13.11	Simula	ation of Stochastic Processes	512
	13.12	Summ	hary	515
	Probl	ems		515
14.	Baye	sian Re	liability Evaluation	517
	14.1	Classi	cal versus Bayesian Analysis	
		14.1.1	Bayes' Formula, Prior and Posterior Distribution	
			Models, and Conjugate Priors	518
		14.1.2	Bayes' Approach for Analysis of Exponential Lifetimes	519
	14.2	Classie	cal versus Bayes System Reliability	
		14.2.1	Classical Paradigm for HPP System Reliability Evaluation	
		14.2.2	Bayesian Paradigm for HPP System Reliability Evaluation	522
		14.2.3	Advantages and Disadvantages of Using Bayes' Methodology .	522
	14.3	Bayesi	an System MTBF Evaluations	
		14.3.1	Calculating Prior Parameters Using the 50/95 Method	
		14.3.2	Calculating the Test Time Needed to Confirm an	
			MTBF Objective	
	14.4	Bayesi	an Estimation of the Binomial <i>p</i>	
	14.5	The N	ormal/Normal Conjugate Prior	
	14.6	Inform	native and Noninformative Priors	533
	14.7	A Surv	vey of More Advanced Bayesian Methods	536
	14.8	Summ	nary	
	Appe	endix 14	1A	538
		14.1A	Gamma and Chi-Square Distribution Relationships	538
	Probl	ems		538
An	swers	to Sele	ected Exercises	541
Ref	erenc	es		
Ind	ex			

Preface

It has been more than 15 years since the publication of the second edition of *Applied Reliability*. We continue to receive positive feedback from old users, and each year, hundreds of engineers, quality specialists, and statisticians discover the book for the first time and become new fans. So, why a third edition? There are always new methods and techniques that update and improve upon older methods, but that was not the primary reason we felt the need to write a new edition. In the past 15 years, the ready availability of relatively inexpensive, powerful, statistical software has changed the way statisticians and engineers look at and analyze all kinds of data. Problems in reliability that were once difficult and time consuming for even experts can now be solved with a few well-chosen clicks of a mouse. Additionally, with the quantitative solution often comes a plethora of graphics that aid in understanding and presenting the results.

All this power comes with a price, however. Software documentation has had difficulty keeping up with the enhanced functionality added to new releases, especially in specialized areas such as reliability analysis. Also, in some cases, different well-known software packages use different methods and output different answers. An analyst needs to know how to use these programs effectively and which methods are the most highly recommended. This information is hard to find for industrial reliability problems.

The third edition of *Applied Reliability* was written to fulfill this software documentation need for reliability analysts. We chose two popular software packages that are well maintained, supported, and frequently updated: Minitab and SAS JMP. Minitab is popular in universities and JMP is widely used within leading high-technology companies. Both packages have extensive capabilities for reliability analysis and graphics that improve with every new release.

In addition, we included solutions using spreadsheet programs such as Microsoft Excel and Oracle OpenOffice Calc. With a little formula programming, spreadsheet functions can solve even very difficult reliability problems. Spreadsheet methods cannot easily produce custom, specialized reliability graphics, however, and are included primarily because they are so widely available and surprisingly powerful.

Unfortunately, producing detailed examples using software has many pitfalls. We would generate graphics of screenshots and describe how to obtain specific platforms and run analyses only to have a new release of either JMP or Minitab come out, which looked and operated somewhat differently. Even spreadsheet mechanics change with new releases. We frequently had to go back and redo problem solutions to remain current with updates.

Finally, we realized that our readers would inevitably see panels and screens coming from later releases of these software packages that might differ slightly from the screenshots shown in our text. However, it is likely that the basic methods and approaches will remain the same for a long time. Many of the suggestions we made to software developers based on methods described in the second edition are now a part of these packages or will be in future releases. Two examples are the very useful defect model (incorporated in JMP release 9) and the ability to input negative frequencies when analyzing truncated data (already in JMP 8).

We stated in the preface to the second edition: "Our goal remains that the text be application oriented, with numerous practical examples and graphical illustrations." Statements of theory and useful equations are essential building blocks, but what the industrial reliability analyst needs to know is how to apply these building blocks to numerically solve typical problems. The new edition has more than 150 worked-out examples, many done with both JMP and Minitab and even spreadsheet programs. Along with these examples, there are nearly 300 figures, and hundreds of exercises and additional problems at the end of each chapter. We also took the opportunity to add new material throughout. Sometimes, this new material increased the level of difficulty, and we chose to put this material in appendices at the end of several chapters.

Since many of the examples, exercises, and problems use lengthy spreadsheets or worksheets of failure data, we have many of these files on the publisher's website for the book. These data sets, in Excel, JMP, or Minitab format, can be accessed via the "Downloads & Updates" tab on the book's web page at http://www.crcpress.com/product/isbn/ 9781584884668. Data sets are organized by book chapter and given a name either mentioned in the text or based on the number of the example, exercise, or problem to which they relate. There is also a directory containing Excel templates that can be used to find maximum likelihood solutions for Weibull and lognormal multistress, life test, or field data. There are even templates incorporating the defect model or for testing equal slopes or equal parameters across several cells of data.

Another powerful software package not used in the text deserves mention: SPLUS, with the addition of Bill Meeker's SPLIDA (SPLUS Life Data Analysis) downloadable front end, which offers graphics and analysis capabilities that can also be used successfully on many of the data sets in the third edition.

Finally, we gratefully acknowledge the comments and suggestions made by our colleagues who provided feedback on the sections of the second edition and/or reviewed draft copies of many prepublication chapters of the third edition. In particular, we appreciate the comprehensive suggestions and critiques offered by Wayne Nelson, Doug Montgomery, Judy Koslov, Bill Heavlin, Ed Russell, Ken Stephens, Leon Lopez, and the many users of the text.

List of Figures

Figure 1.1	Histogram of fuse breakdown measurements	4
Figure 1.2	Plot of PDF cumulative frequency function	5
Figure 1.3	Plot of PDF for the exponential distribution	6
Figure 1.4	CDF for exponential distribution	7
Figure 1.5	EDF for fuse data	8
Figure 1.6	Minitab histogram of fuse data	9
Figure 1.7	The uniform PDF	20
Figure 1.8	The CDF for the uniform distribution	20
Figure 1.9	Beta density functions	22
Figure 1.10	Mean and Sigma do not tell us enough. These four distributions have the same mean and standard deviation	23
Figure 1.11	Simulating ordered random variables	25
Figure 1.1A	Spreadsheet table for experiment	
Figure 1.2A	Derived spreadsheet table for step chart	
Figure 1.3A	Step chart	
Figure 2.1	Cumulative distribution function	
Figure 2.2	Bathtub curve for failure rates	
Figure 2.3	Example of component failure data	
Figure 2.4	Readout data	42
Figure 3.1	The exponential distribution failure rate $h(t)$	
Figure 3.2	Histogram of memory chip failure data	
Figure 3.3	Piecewise approximation of actual failure rate	54
Figure 3.4	Memory chip data histogram compared to <i>f</i> (<i>t</i>) shape	58
Figure 3.5	Illustration of D_n^+ and D_n^- statistics for KS test	63
Figure 3.6	JMP histogram of test data	65
Figure 3.7	Empirical distribution function plot and KSL D-statistics	65
Figure 3.8	Minitab exponential analysis of failure times	66
Figure 3.9	JMP exponential analysis of failure times	66
Figure 3.10	Spreadsheet columns for evaluating the product $r \times k_{r_1-\alpha}$	74

Figure 3.1A	Spreadsheet entries to determine sample size	79
Figure 3.2A	Spreadsheet entries to determine test length	80
Figure 3.3A	Spreadsheet entries to determine number of failures allowed	81
Figure 3.4A	Spreadsheet entries for KS goodness-of-fit test	82
Figure 3.5A	Empirical distribution function and exponential CDF model (mean time to fail = 100)	83
Figure 4.1	Weibull CDF	91
Figure 4.2	Weibull PDF	91
Figure 4.3	Weibull failure rate (hazard rate)	92
Figure 4.4	JMP data table for exact times, censored data analysis	103
Figure 4.5	Inputs for JMP Fit Parametric Survival analysis—exact times	104
Figure 4.6	JMP Weibull MLEs for Exercise 4.5 exact times, censored data	104
Figure 4.7	JMP data table for interval data from Exercise 4.5	105
Figure 4.8	Inputs for JMP Fit Parametric Survival analysis—interval data	105
Figure 4.9	JMP Weibull MLEs for Exercise 4.5 interval data	106
Figure 4.10	JMP data table for exact times treated as interval data	106
Figure 4.11	Minitab analysis for exact times, right-censored data analysis	107
Figure 4.12	Minitab analysis inputs for interval data	108
Figure 4.1A	Genweibest spreadsheet with interval data from Example 4.5	114
Figure 4.2A	Solver entries for MLE analysis of the filled-in Genweibest spreadsheet	115
Figure 4.3A	Genweibest spreadsheet after solver finds MLEs	116
Figure 4.4A	Genweibest solution for MLEs based on truncated data	117
Figure 4.5A	First iteration—the starting point is the MLE solution spreadsheet	118
Figure 4.6A	Solver run (first iteration)	118
Figure 4.7A	Second iteration run of Goal Seek	119
Figure 4.8A	Second iteration run of Solver	119
Figure 4.9A	Start of fourth iteration confirming convergence when there is no change	1 2 0
Figure 5.1	The normal distribution PDF	124
Figure 5.2	The normal distribution CDF	124
Figure 5.3	Plot of data from Table 5.2	133
Figure 5.4	Relationship of lognormal distribution to normal distribution	136

Figure 5.5	The lognormal distribution PDF	137
Figure 5.6	The lognormal distribution CDF	138
Figure 5.7	The lognormal distribution failure rate	139
Figure 5.8	Minitab inputs and output for Table 5.5 data	143
Figure 5.9	JMP inputs and output for Table 5.5 data	144
Figure 5.10	Minitab input and output screens for lognormal interval data	145
Figure 5.11	JMP input and output screens for interval data	146
Figure 5.1A	GenInest.xls after converging to MLEs for Table 5.5 data	150
Figure 5.2A	Excel solution for interval data to obtain lognormal MLEs	151
Figure 6.1	Straight line plot	154
Figure 6.2	Regression line example	155
Figure 6.3	JMP regression example	158
Figure 6.4	Minitab regression example	159
Figure 6.5	Ideal gas law plot	160
Figure 6.6	Ideal gas law plot using rectification	160
Figure 6.7	Exponential probability plot of Table 6.2 data, exact times, median ranks	166
Figure 6.8	Minitab probability plot of Table 6.2 data	166
Figure 6.9	Exponential model fit to data, exact times, LS MTTF estimate	168
Figure 6.10	Exponential probability plot, exact times, 90% confidence limits on transformed CDF	169
Figure 6.11	Exponential probability plot, exact times, 90% approximate confidence limits on failure time quantiles	170
Figure 6.12	Exponential probability plot, readout data	172
Figure 6.13	Exponential probability plot of readout data with approximate 90% pointwise confidence limits on time <i>t</i>	174
Figure 6.14	Exponential CDF plot of readout data with approximate 90% pointwise confidence limits on time <i>t</i>	174
Figure 6.15	Weibull probability plot, exact times	177
Figure 6.16	JMP output Weibull model analysis, exact times	179
Figure 6.17	Minitab output Weibull model analysis, exact times	180
Figure 6.18	Lognormal probability plot, exact times, $n = 600$	183
Figure 6.19	Extrapolation to T_{50} in lognormal probability plot	184
Figure 6.20	EDF plot with 90% confidence level band	186

Figure 7.1	Eight units on stress: six failures and two censored (units 2 and 4)	194
Figure 7.2	Nonparametric survival and CDF curves	195
Figure 7.3	CDF and two-sided 95% confidence limits	198
Figure 7.4	JMP dialog box for exact data example	199
Figure 7.5	JMP output for exact data example	200
Figure 7.6	JMP save estimates table for exact data example	
Figure 7.7	Minitab dialog box for exact data example	
Figure 7.8	Minitab summary output for exact data example	
Figure 7.9	Minitab graph for exact data example	
Figure 7.10	Minitab spreadsheet for readout example, censoring at beginning of interval	206
Figure 7.11	Minitab dialog boxes for readout data example	
Figure 7.12	Minitab output for readout example, actuarial estimate	
Figure 7.13	JMP dialog box for readout example	
Figure 7.14	JMP output for readout example, assuming censoring at beginning and end of interval	208
Figure 7.15	Minitab worksheet (partial) for Table 7.1 data	211
Figure 7.16	Minitab output (partial) actuarial table and failure plot	212
Figure 7.17	Number at risk	216
Figure 7.18	Cumulative failure distribution	216
Figure 7.19	Plot of CDF estimate versus time for left-censored data	219
Figure 7.20	JMP data table and output for left-censored data in Table 7.14	219
Figure 7.21	Minitab output and graph for left-censored data in Table 7.14	
Figure 7.22	Disk drive data CDF plot	222
Figure 7.23	Current status data table and analysis output in JMP	222
Figure 7.24	Current status data table and analysis output in Minitab	223
Figure 7.25	Spreadsheet showing the calculations for determining the Hall–Wellner confidence bands for the first 18 observations in Table 7.20	227
Figure 7.26	Kaplan–Meier <i>F</i> (<i>t</i>) estimate and Hall–Wellner 90% confidence bands: linear (H-W), log (H-W LT), and logit (H-W LG) transformations	228
Figure 7.27	JMP output showing Nair 95% EP confidence bands	
Figure 7.1A	Partial table for capturing "max" of bootstrap runs	

Dialog box for creating a data table	237
One-way data table with varying max values	237
Bootstrap 90% confidence bands	238
CDF estimate and 90% bootstrap confidence bands	238
Worksheet for the data in Table 8.2	246
Weibull probability plot in worksheet	247
Worksheet using indicator variables	248
Portion of data analysis summary output	249
Minitab output for LS analysis of the data in Table 8.2	249
Minitab Weibull plot of the data in Table 8.2	250
Partial Minitab worksheet for the data in Table 8.2	250
Minitab Weibull plot of the data in Table 8.2: equal slopes	251
JMP-7 data table for analysis of the data in Table 8.2	252
JMP-7 reliability/survival screen inputs	252
JMP–Weibull plot and MLEs for the data cells of Table 8.2	253
JMP data table for common-slope analysis of the data in Table 8.2 using indicator variables	254
JMP fit parametric survival model screen inputs for common-slope analysis of the data in Table 8.2	254
JMP fit parametric survival model screen outputs for common-slope analysis of the data in Table 8.2	255
Region for finding lognormal parameter confidence limits	258
JMP output for Weibull parameter likelihood confidence limits for data in Table 8.2	259
Lognormal plot—cumulative percent failure data from Table 8.5	262
Lognormal plot (common slope)	262
JMP analysis for calculating same-slope MLEs	264
JMP analysis results with same slope	265
Arrhenius plot using LS estimates	270
Minitab inputs for Arrhenius–Weibull fit	270
Minitab Arrhenius–Weibull analysis output	271
JMP Arrhenius-Weibull analysis entry screens	272
JMP Arrhenius-Weibull analysis results	272
	Dialog box for creating a data table

Figure 8.26	JMP worksheet for Arrhenius-power relationship- lognormal model	275
Figure 8.27	JMP inputs for Arrhenius–power relationship– lognormal model	276
Figure 8.28	JMP results for Arrhenius-power relationship-lognormal model fit	276
Figure 8.29	JMP dialog to estimate survival probabilities for Arrhenius- power relationship-lognormal model fit	277
Figure 8.30	JMP survival analysis at possible use conditions	277
Figure 8.31	Minitab inputs for Arrhenius power law analysis	278
Figure 8.32	Minitab plots for Arrhenius power law analysis	278
Figure 8.33	Minitab results of accelerated life-test analysis	279
Figure 8.34	Minitab results of accelerated life-test predictions	279
Figure 8.35	Minitab input box for accelerated life-test prediction	280
Figure 8.1A	JMP inputs for analysis of the data in Table 8.2	286
Figure 8.2A	Analysis results for the data in Table 8.2 (MLEs assuming equal slopes)	286
Figure 8.3A	Excel spreadsheet for calculating MLEs of individual cells	287
Figure 8.4A	Excel spreadsheet for calculating MLEs assuming a common shape	288
Figure 8.5A	Using Goal Seek confidence bound calculations	289
Figure 8.6A	Solver example for confidence limit calculations	290
Figure 8.7A	Excel spreadsheet for calculating MLEs of individual cells	2 91
Figure 8.8A	Excel spreadsheet for calculating MLEs of same-sigma cells	292
Figure 8.9A	Spreadsheet confidence bound calculation for common sigma	292
Figure 8.10A	Solver screen for confidence bound calculation	293
Figure 8.11A	Excel spreadsheet fit for Arrhenius-Weibull model	293
Figure 8.12A	Spreadsheet calculation of Arrhenius–power relationship model parameter estimates	294
Figure 8.13A	Spreadsheet for calculating use CDFs and confidence bounds	295
Figure 8.14A	Goal Seek and Solver inputs for calculating profile likelihood limits	296
Figure 9.1	Arrhenius step stress data schematic	302
Figure 9.2	Plot of step stress data for $\Delta H = 0.5, 0.86$, and 1.0	303
Figure 9.3	Spreadsheet for calculating step stress interval widths under Arrhenius acceleration	304
Figure 9.4	Spreadsheet for calculating step stress Arrhenius lognormal MLEs	305

Figure 9.5	Spreadsheet for calculating step stress Arrhenius/power law Weibull MLEs
Figure 9.6	Degradation data extrapolation to failure times
Figure 9.7	Projected degradation failure times, 105°C
Figure 9.8	Projected degradation failure times, 125°C
Figure 9.9	JMP spreadsheet for the plant/process field reliability data
Figure 9.10	Fit parametric survival screen for plant/process reliability data
Figure 9.11	JMP analysis results for plant/process reliability data
Figure 9.12	Minitab spreadsheet for the plant/process field reliability data
Figure 9.13	Minitab regression with life data screen for plant/process data
Figure 9.14	Minitab regression with life data output for plant/process data
Figure 9.15	Lognormal probability plot of 15 out of 100
Figure 9.16	Lognormal probability plot of 15 out of 18
Figure 9.17	JMP data table for defect model analysis of the Example 9.5 data
Figure 9.18	JMP nonlinear analysis entry screen
Figure 9.19	JMP nonlinear analysis platform control screen
Figure 9.20	MLEs for Example 9.5 defect model data
Figure 9.21	Before and after panels for $P = 1$ for the nonlinear analysis
Figure 9.22	Excel spreadsheet for MLE fitting of lognormal defect model data
Figure 9.23	Defect model, multistress cell data
Figure 9.24	JMP MLEs for one cell Weibull defect analysis
Figure 9.25	Excel MLE fitting of defect model data inputted as truncated data
Figure 9.26	JMP table showing defect model data inputted as truncated data
Figure 9.27	JMP fitting of defect model data inputted as truncated data
Figure 9.1A	JMP data table for analysis of Example 9.2 Arrhenius step stress data 336
Figure 9.2A	Formula for Weibull, one cell, defect model
Figure 9.3A	Formula for Weibull, three cells, defect model
Figure 9.4A	Formula for Weibull, effective delta temperature acceleration, defect model
Figure 9.5A	EXCEL spreadsheet for the plant process field reliability data
Figure 9.6A	Solver screen for the plant/process field reliability data
Figure 9.7A	JMP negative log-likelihood column formula for the lognormal defect model

Figure 9.8A	Formula for Weibull, one cell, defect model	
Figure 9.9A	Formula for Weibull, three cells, defect model	
Figure 9.10A	Formula for Weibull, effective delta temperature acceleration, defect model	342
Figure 10.1	Five-component system diagram	
Figure 10.2	Reduced five-component system diagram	
Figure 10.3	Fully reduced five-component system diagram	354
Figure 10.4	Six-component system diagrams	
Figure 10.5	Backup components	
Figure 10.6	Backup components with switch	
Figure 10.7	Equivalent diagram of system with working switch	
Figure 10.8	Bridge structure system diagram	
Figure 10.9	Equivalent to bridge structure system diagram	
Figure 10.10	Minimal cut analysis of bridge structure diagram	
Figure 10.11	Example 10.10 system diagram	
Figure 10.12	General reliability algorithm failure rate example	361
Figure 10.13	Failure rate before and after burn-in	
Figure 11.1	Binomial distribution	374
Figure 11.2	CDF for binomial distribution	
Figure 11.3	Binomial data analysis in JMP	
Figure 11.4	JMP binomial confidence interval calculation	
Figure 11.5	Binomial CDF $n = 4$, $p = 0.5$	
Figure 11.6	Input for Fisher's exact in Minitab	
Figure 11.7	Output for Fisher's exact in Minitab	
Figure 11.8	Operating characteristic curve	397
Figure 11.9	Operating characteristic curves for different acceptance numbers	397
Figure 11.10	Operating characteristic curves for different sample sizes	
Figure 11.11	AOQ curve with AOQL	
Figure 11.12	Spreadsheet set-up for determining acceptance sampling plan	401
Figure 11.13	LTPD versus sample size for different acceptance values	404
Figure 11.14	Three-sigma control chart for binomial proportions	411
Figure 11.15	Cumulative count control	412
Figure 12.1	Dot plot of repair pattern	419

Figure 12.2	Cumulative plot	420
Figure 12.3	Interarrival times versus system age	421
Figure 12.4	Recurrence rate versus system age	421
Figure 12.5	Lognormal probability plot	422
Figure 12.6	CDF model fit versus observed	423
Figure 12.7	Event plot of repair histories for five systems	425
Figure 12.8	Repair history (cumulative plots) for five systems	426
Figure 12.9	Repair history for two systems	426
Figure 12.10	Repair history for five systems	427
Figure 12.11	Mean cumulative repair function	428
Figure 12.12	Spreadsheet method for estimating the MCF	429
Figure 12.13	Spreadsheet method for estimating the MCF and naive confidence limits	431
Figure 12.14	MCF and 95% naive confidence limits	431
Figure 12.15	JMP data table for recurrence analysis	432
Figure 12.16	JMP dialog box for recurrence analysis	432
Figure 12.17	JMP output for recurrence analysis	433
Figure 12.18	Minitab data worksheet for repairable system analysis	434
Figure 12.19	Minitab dialog boxes for repairable system analysis	434
Figure 12.20	Minitab output for analysis of five repairable systems	435
Figure 12.21	MCF comparison between East and West Coast locations	437
Figure 12.22	MCFs for East and West Coast locations	437
Figure 12.23	MCF differences between East and West Coast locations	438
Figure 12.24	JMP plot of MCF difference between East and West Coast locations	439
Figure 12.25	Partial spreadsheet for time to <i>k</i> th repair	443
Figure 12.26	Gamma distribution CDF for time to <i>k</i> th repair, MTBF = 1000 hours	444
Figure 12.27	Spreadsheet example for spare parts determination	445
Figure 12.28	Alternating renewal process	453
Figure 12.29	Markov two-state model	454
Figure 12.30	Partial spreadsheet for 10 HPP systems with MTBF = 1000	456
Figure 12.31	Cumulative plots of 10 simulated HPP systems with MTBF = 1000 (censored at 10,000 hours)	457

Figure 12.32	Superposition of renewal processes for system of three components	458
Figure 12.33	System of <i>c</i> components viewed as a superposition of renewal processes	459
Figure 12.1A	Spreadsheet setup for variance estimates	463
Figure 12.2A	Calculations for variance estimates	464
Figure 12.3A	MCF variance, standard error, and confidence limits	465
Figure 12.4A	Possible outcomes for time differences in renewal estimation	467
Figure 13.1	Dot plot of repair pattern	472
Figure 13.2	Cumulative plot (improving trend)	472
Figure 13.3	Interarrival times versus system age (improving trend)	473
Figure 13.4	Dot plot of repair pattern	473
Figure 13.5	Cumulative plot (degrading trend)	473
Figure 13.6	Interarrival times versus system age (degrading trend)	474
Figure 13.7	Power law model rectification	475
Figure 13.8	Exponential model rectification	476
Figure 13.9	Exponential model fit	476
Figure 13.10	Average repair rates versus time (renewal data)	479
Figure 13.11	Average repair rates versus time (improving)	479
Figure 13.12	Average repair rates versus time (degrading)	479
Figure 13.13	Cumulative plot of repair data	485
Figure 13.14	Interarrival times versus system age	486
Figure 13.15	Cumulative plot of MLE model fit to system data	495
Figure 13.16	Spreadsheet setup for applying SOLVER routine (MLE parameters)	495
Figure 13.17	Spreadsheet showing SOLVER results	495
Figure 13.18	Cumulative plot of MLE model fit to system data	496
Figure 13.19	Cumulative plot of HPP and NHPP models fit to system data	499
Figure 13.20	Duane plot of cumulative MTBF versus cumulative time with least squares line	503
Figure 13.21	Duane plot with modified MLE lines	509
Figure 13.22	Duane plot of software cumulative MTBF estimates	511
Figure 13.23	Excel trendline dialog box	512
Figure 14.1	Bayesian gamma prior and posterior from Example 14.1	522

Figure 14.2	Calling up Goal Seek	
Figure 14.3	Using Goal Seek to find the gamma prior <i>a</i> parameter <i>a</i>	
Figure 14.4	Calculating the gamma prior <i>b</i> parameter <i>b</i>	
Figure 14.5	Bayesian beta prior and posterior from Example 14.6	
Figure 14.6	Prior and posterior densities from Example 14.7	

List of Tables

Table 1.1	Sample Data on 100 Fuses	3
Table 1.2	Frequency Table of Fuse Data	3
Table 1.3	Cumulative Frequency Function for Fuse Data	5
Table 1.4	Possible Outcomes for Drives	13
Table 1.5	Properties of Distributions Used in Reliability Studies	
Table 3.1	Equivalent Failure Rates in Different Units	
Table 3.2	Sample Data of Equivalent Month of Memory Chip Failure	
Table 3.3	Frequency Table of Memory Chip Data	
Table 3.4	Chi-Square Goodness-of-Fit Worksheet for the Memory Chip Data	61
Table 3.5	Spreadsheet Functions for <i>k</i> -Factors for Confidence Limits on the Exponential Failure Rate	69
Table 3.6	Exponential Zero Failure Estimates	70
Table 3.7	Summary of Exponential Distribution Properties	
Table 3.1A	Percentage Points for Modified Kolmogorov <i>D</i> *-Statistics for <i>F(t)</i> Known	83
Table 3.2A	Percentage Points for Modified Kolmogorov <i>D</i> *-Statistics (Mean Unknown)	84
Table 4.1	Solution to Example 4.1	
Table 4.2	Weibull Distribution Properties	92
Table 4.3	Weibull Formulas Summary	94
Table 4.4	32 Field Failure Times from 101 Burned-In Components	109
Table 4.1A	Adjustment Constants for <i>L</i> for Computing Likelihood Profile Intervals	117
Table 5.1	Standard Normal CDF Values	
Table 5.2	Example 5.3 Worksheet	
Table 5.3	Results of Simulation Example (1000 Iterations per C_{pk})	
Table 5.4	Lognormal Formulas and Properties	
Table 5.5	Life Test Failure Data (20 Units on Test)	150
Table 6.1	LINEST Output	157
Table 6.2	Failure Times of 20 Components under Normal Operating Conditions (Time in Hours)	

xxviii

Table 6.3	Probability Plot Values, Exponential Distribution, Exact Times ($n = 20$)	165
Table 6.4	90% Confidence Interval Estimates, Exponential Distribution, Exact Failure Times ($n = 20$)	169
Table 6.5	Probability Plotting Values, Exponential Distribution, Readout Data (n = 100)	171
Table 6.6	Readout Data (<i>n</i> = 100), 90% Pointwise Confidence Limits	173
Table 6.7	Weibull Example, Exact Times (<i>n</i> = 20)	176
Table 6.8	Lognormal Example, Exact Times (<i>n</i> = 600)	
Table 6.9	Percentage Points for Modified Kolmogorov D*-Statistics	185
Table 6.10	Failure Times with EDF and 90% Confidence Band Limits	186
Table 7.1	Product Limit Estimated Survival Probabilities	195
Table 7.2	Variance and Standard Error Estimates	196
Table 7.3	Two-Sided 95% Confidence Limits	198
Table 7.4	JMP Data Table for Exact Data Example	199
Table 7.5	Minitab Worksheet for Exact Data Example	
Table 7.6	Summary of Readout (Interval) Data	
Table 7.7	Joint Risk and Product Limit Estimates for Readout (Interval) Data with Losses Occurring Randomly	205
Table 7.8	JMP Data Tables for Readout Example, Censoring Occurring at Beginning and at End of Interval	
Table 7.9	Table of CDF Estimates for Readout Example, Random Censoring within Intervals	208
Table 7.10	Survival Data from Six-Week Reliability Study	210
Table 7.11	Life Table (Actuarial) Estimation of Failure Probabilities	210
Table 7.12	Table of Stress Results for 20 Units	214
Table 7.13	Partial Table of Ordered Ages of Entry, Failure, or Censored to Determine Number at Risk	215
Table 7.14	Table of Observed Times to Failure	217
Table 7.15	Analysis of Left-Censored Data	218
Table 7.16	Analysis of Left-Censored Data	218
Table 7.17	Disk Drive Data	
Table 7.18	Percentiles of Distribution of Kolmogorov $\frac{d_{N,1-\alpha}}{\sqrt{N}}$ Statistics	
Table 7.19	Critical Values of $d_{N,1-\alpha}$ for H-W Confidence Bands When $K_N(t_{max}) < 0.75$	225

Table 7.20	Failure and Censor Times for Primary Mechanism ($N = 50$)	226
Table 7.21	Hall–Wellner 90% Confidence Bands—Untransformed and with Log and Logit Transformations	228
Table 7.22	Cumulative Hazard Calculation	232
Table 7.23	Cumulative Hazard Calculation for Exact Failure Times Example	233
Table 7.24	Multicensored Results	234
Table 7.25	Possible Outcomes for $n = 5$, FSFSF, Assuming Possible Eventual Suspension Failures	234
Table 7.26	Mean Order Numbers and Median Ranks	234
Table 7.27	Mean Order Numbers Using Johnson Formula	235
Table 7.1A	Original Data, CDF Estimate, Standard Error, and Hall–Wellner Terms	236
Table 7.2A	One Bootstrap Run of Data in Table 7.1A	236
Table 8.1	General Linear Acceleration Relationships	242
Table 8.2	Weibull Temperature–Stress Failure Data	246
Table 8.3	Weibull Least Square Parameter Estimates	247
Table 8.4	Experimental Design Matrix	261
Table 8.5	Lognormal Stress-Failure Data	261
Table 8.6	Lognormal Stress Cell Parameter Estimates	263
Table 8.7	Summary of Arrhenius–Weibull Data Analysis	273
Table 8.1A	Spreadsheet Templates	297
Table 9.1	Arrhenius Step Stress Example	303
Table 9.2	Degradation Data	311
Table 9.3	Summary of Shipment and Failure Data	314
Table 9.4	Negative Log-Likelihood Values for Different Models	332
Table 9.5	Step Stress Data for Problem 9.1	343
Table 11.1	Binomial Cumulative Distribution Function: $n = 4$, $p = .5$	382
Table 11.2	Cumulative Probability	384
Table 11.3	Contingency Table 1 for Fisher's Exact Test	388
Table 11.4	Contingency Table 2 for Fisher's Exact Test	388
Table 11.5	JMP Data Table	389
Table 11.6	Fisher's Exact Test Results	389
Table 11.7	Matrix of Possible Choices	394
Table 11.8	Binomial Probability Calculations for Sample of Size $n = 50$ and $p = 0.02$	396

Table 11.9	Probability of Three or Less Failures in Sample of Size $n = 50$ for Various Lot Percent Defective Values	396
Table 11.10	LTPD Sampling Plans	403
Table 11.11	LTPD Evaluation	405
Table 11.12	Spreadsheet for Nearly Minimum Sampling Plans	407
Table 11.13	Minimum Sample Sizes for Zero Rejects at Various Probabilities	413
Table 12.1	Repair Age Histories (Hours)	425
Table 12.2	Repair Histories for Four Machines	429
Table 12.3	Repair Histories for Services at Two Different Data Centers	436
Table 12.4	Repair Histories for Two Locations	439
Table 12.5	One-Sided Lower Confidence Bound Factors for the MTBF (Failure-Censored Data)	447
Table 12.6	One-Sided Lower Confidence Bound Factors for the MTBF (Time-Censored Data)	448
Table 12.7	One-Sided Upper Confidence Bound Factors for the MTBF (Failure of Time-Censored Data)	448
Table 12.8	Test Length Guide	449
Table 12.9	Failure Times in Hours	451
Table 12.10	Different Availability Levels	454
Table 12.1A	Repair Histories for Five Systems	463
Table 13.1	Probability of R Reversals by Chance for $n = 4$	484
Table 13.2	Critical Values of R_n , % of the Number of Reversals for the Reverse Arrangement Test	484
Table 13.3	Steps for Fisher's Composite Test	487
Table 13.4	Critical Values for Goodness-of-Fit Test	492
Table 13.5	Repair History in Hours (Simulated Data: $a = 0.25$ and $b = 0.50$)	492
Table 13.6	Transformed Repair Times	494
Table 13.7	R_1 and R_2 Values to Multiply MTBF Estimate and Obtain Confidence Bounds (Test Ends at <i>n</i> th Fail)	506
Table 13.8	P_1 and P_2 Values to Multiply MTBF Estimate and Obtain Confidence Bounds (Test Ends at Time T)	507
Table 13.9	Results of Software Evaluation Testing	510
Table 14.1	Bayesian Paradigm: Advantages and Disadvantages	523
Table 14.2	Beta Distribution Parameters	531

List of Examples

Example 1.1	Automobile Fuse Data	1
Example 1.2	Conditional Probabilities	12
Example 1.3	Total Probabilities	14
Example 1.4	Bayes' Rule	14
Example 1.5	Bayes' Rule Applied to Misclassified Items	15
Example 1.6	Probability Expression for CDF	16
Example 1.7	The Uniform Distribution	20
Example 1.8	The Beta Distribution	21
Example 1.9	Data Simulation	24
Example 1.10	Data Simulation	25
Example 2.1	Life Distribution Calculations	
Example 2.2	System Reliability	
Example 2.3	Failure Rate Calculations	35
Example 2.4	Estimating the CDF, Reliability Function, and AFR	
Example 2.5	Residual MTTF(T ₀) Calculation	
Example 2.6	Multicensored Experimental Data	44
Example 2.7	Multicensored Field Failure Data	44
Example 2.8	Left-Truncated Data	44
Example 2.9	Left- and Right-Censored Data	44
Example 3.1	Exponential Probabilities	
Example 3.2	Constant Failure Rate	
Example 3.3	Exponential Data	49
Example 3.4	Mean Time to Fail	
Example 3.5	Piecewise Exponential Approximation	54
Example 3.6	Failure Rate and MTTF	57
Example 3.7	Chi-Square Goodness of Fit	61
Example 3.8	Goodness-of-Fit Tests Based on EDF Statistics	64
Example 3.9	Confidence Bounds for λ	69
Example 3.10	Zero Failures Estimation	70

Example 3.11	Confidence Bounds on MTTF	70
Example 3.12	Choosing Sample Sizes	72
Example 3.13	Choosing the Test Times	73
Example 3.14	Choosing Pass/Fail Criteria	73
Example 3.15	Minimum Sample Sizes	74
Example 3.16	Minimum Test Times	74
Example 3.17	Simulating Exponential Data	76
Example 3.18	Fitting a Two-Parameter Exponential Model to Data	76
Example 3.1A	Determining the Sample Size Using Goal Seek (Example 3.12 revisited)	79
Example 3.2A	Choosing the Test Times	80
Example 3.3A	Choosing Pass/Fail Criteria	81
Example 3.4A	KS Test	82
Example 4.1	Weibull Properties	
Example 4.2	Weibull Closure Property	93
Example 4.3	Rayleigh Radial Error	97
Example 4.4	MLE for the Exponential	99
Example 4.5	Weibull MLE Parameter Estimation	102
Example 4.6	Weibull MLE Parameter Estimation: Left-Truncated Data	109
Example 5.1	Normal Distribution Calculations	
Example 5.2	Root-Mean-Square Example	
Example 5.3	Censored Normal Data	
Example 5.4	Simulation of C_{PK} Distribution	
Example 5.5	Lognormal Properties	
Example 5.6	Lognormal MLEs and Likelihood Profile Confidence Limits: Exact Times of Failure	142
Example 5.7	Lognormal MLEs and Likelihood Profile Confidence Limits: Interval Data	
Example 5.8	Lognormal Calculations	
Example 6.1	Linear Equations	
Example 6.2	Regression Line	
Example 6.3	Linear Rectification	160
Example 6.4	Probability Plots for Exponential Distribution	
Example 6.5	Weibull Probability Plotting: Exact Times	176

Example 6.6	Lognormal Probability Plot	182
Example 6.7	EDF and Simultaneous Confidence Bounds Calculation	185
Example 6.1A	Order Statistics for Exponential Distribution	189
Example 6.2A	Confidence Limits on Order Statistics for Exponential Distribution	190
Example 7.1	Kaplan–Meier Product Limit Estimates for Exact Failure Time Data	194
Example 7.2	Actuarial Life Table Estimation	209
Example 7.3	Left-Truncated Data	214
Example 7.4	Left-Censored Data	217
Example 7.5	Current Status Data	221
Example 7.6	Estimating <i>F</i> (<i>t</i>) with H-W Confidence Bounds	226
Example 7.7	Cumulative Hazard Plotting	232
Example 7.1A	Bootstrap Confidence Interval Calculation	235
Example 8.1	Acceleration Factors for Exponential Distribution	244
Example 8.2	Weibull Analysis of High-Stress Failure Data	245
Example 8.3	Weibull Likelihood Equal-Shapes Test	257
Example 8.4	Confidence-Bound Calculation for a Common Weibull Slope	259
Example 8.5	Lognormal Stress-Failure Data	260
Example 8.6	Calculation of Acceleration Factor Given ΔH	268
Example 8.7	Estimating ΔH from Two Temperature Stress Cells of Data	268
Example 8.8	Arrhenius Model Analysis Using Both Regression and MLE Methods	269
Example 8.9	MLE Analysis of the Six-Stress Cells Given in Example 8.5	274
Example 8.10	Calculating Needed Burn-In Time	282
Example 8.11	Life Test Experimental Design	284
Example 8.1A	Weibull Likelihood Equal-Shapes Test	287
Example 8.2A	Confidence Bound Calculation for a Common Weibull Slope	288
Example 9.1	An Arrhenius Step Stress Experiment	302
Example 9.2	An Arrhenius, Power Law Step Stress Experiment	306
Example 9.3	Degradation Data Analysis	311
Example 9.4	Lifetime Regression Used to Estimate the Reliability Effects of Vintage and Plant of Manufacture and Their Significance	314

Example 9.5	Defect Model	
Example 9.6	Maximum Likelihood Estimation for the Defect Model	
Example 9.7	Multistress Defect Model Example	
Example 9.8	Defect Model Data Treated as Truncated Data	
Example 9.1A	JMP's Nonlinear Modeling Platform	
Example 10.1	Series Systems	
Example 10.2	Bottom-Up Calculations	
Example 10.3	Redundancy Improvement	
Example 10.4	Maximizing Reliability Using Redundancy	
Example 10.5	Standby Model	
Example 10.6	Expected Lifetime of <i>k</i> -Out-of- <i>n</i> System of Independent Exponentially Distributed Components	
Example 10.7	Complex System Reduction (Five Components)	354
Example 10.8	Complex System Reduction (Six Components)	354
Example 10.9	Minimal Path Analysis	
Example 10.10	Minimal Cut Set Analysis	
Example 10.11	Minimal Path Analysis When <i>"k</i> -Out-of <i>n"</i> Blocks Are Present	
Example 10.12	General Reliability Algorithm	
Example 10.13	Burn-In Model	
Example 10.14	Black Box Testing I	
Example 10.15	Black Box Testing II	
Example 11.1	Binomial Calculations	
Example 11.2	Binomial pmf	
Example 11.3	Shortcomings of the Normal Approximation	
Example 11.4	Score Confidence Intervals	
Example 11.5	Simulation of System Reliability	
Example 11.6	Geometric Distribution	
Example 11.7	Negative Binomial Distribution	
Example 11.8	Hypergeometric Distribution	
Example 11.9	Poisson Distribution	
Example 11.10	Confidence Limits for Expected Value of a Poisson Distribution	

Example 11.11	Poisson Confidence Limits	
Example 11.12	Sampling Plan for Accelerated Stress, Weibull Distribution	
Example 11.13	Cumulative Count Control Charts for Low PPM	411
Example 12.1	The Mean Cumulative Function	
Example 12.2	Naive Confidence Limits for the MCF	430
Example 12.3	Correct Approximate Confidence Limits for the MCF	430
Example 12.4	Comparison of MCFs for Servers at Two Different Datacenters	436
Example 12.5	HPP Probability Estimates	
Example 12.6	HPP Estimates in Terms of the MTBF	
Example 12.7	Time to <i>k</i> th Repair for HPP Process	
Example 12.8	Spare Parts for an HPP	
Example 12.9	Memoryless Property of the Poisson Process	
Example 12.10	Confidence Bounds on the Population MTBF for an HPP	
Example 12.11	Test Length Guide for an HPP	
Example 12.12	Likelihood Ratio Test for Comparison of Two Exponential MTTFs (Nonrepairable Components)	
Example 12.13	Likelihood Ratio Test for Comparison of Two HPP MTBFs (Repairable Systems)	
Example 12.14	Simulation of 10 Time-Censored HPPs	456
Example 12.15	Renewal Data Calculation of CDF	
Example 12.1A	The Cox F-Test	
Example 12.2A	Renewal Data Calculation of CDF	
Example 13.1	Laplace Test for Trend versus a Poisson Process	
Example 13.2	Reverse Arrangement Test	
Example 13.3	Fisher's Composite Test	
Example 13.4	Nonhomogeneous Poisson Process	
Example 13.5	NHPP with Power Relation Intensity	491
Example 13.6	NHPP with Exponential Intensity Model	
Example 13.7	Duane Reliability Growth Estimation	
Example 13.8	Confidence Bounds and Modified MLEs	
Example 13.9	Power Relationship Model Reliability Growth	508
Example 13.10	Software Reliability Improvement	510
Example 13.11	Simulating an NHPP with Power Relation Intensity	513

Example 13.12	Simulating the First Six Repair Times for NHPP with Specified Power Relation Model	514
Example 14.1	Lower MTBF Bounds Using a Bayesian Gamma Prior	521
Example 14.2	Calculating Prior Parameters Using the 50/95 Method	525
Example 14.3	Calculating a Bayesian Test Time	526
Example 14.4	A Minimum Bayesian Testing Time Calculation	527
Example 14.5	Using Engineering Judgment to Arrive at Bayesian Prior Parameters	528
Example 14.6	MTBF Estimate after Test Is Run	529
Example 14.7	Bayesian Estimation and Credibility Intervals for <i>p</i>	530
Example 14.8	Bayesian Estimation and Credibility Intervals for the Lognormal T_{50}	532
Example 14.9	Using an Improper Noninformative Prior for Exponential Fail Times	534

Basic Descriptive Statistics

One of the most useful skills that a reliability specialist can develop is the ability to convert a mass (mess?) of data into a form suitable for meaningful analysis. Raw numbers by themselves are not useful; what is needed is a distillation of the data into information.

In this chapter, we discuss several important concepts and techniques from the field of descriptive statistics. These methods are used to extract a relevant summary from collected data. The goal is to describe and understand the random variability that exists in all measurements of real world phenomena and experimental data. These concepts and techniques are basic and are applied to reliability data throughout the book.

The topics we cover include populations and samples; frequency functions, histograms, and cumulative frequency functions; the population cumulative distribution function (CDF) and probability density function (PDF); elementary probability concepts, random variables, population parameters, and sample estimates; theoretical population shape models; and data simulation.

1.1 Populations and Samples

Statistics is concerned with variability, and it is a fact of nature that variation exists. No matter how carefully a process is run, an experiment is executed, or a measurement is taken, there will be differences in repeatability due to the inability of any individual or system to completely control all possible influences. If the variability is excessive, the study or process is described as lacking control. If, on the other hand, the variability appears reasonable, we accept it and continue to operate. How do we visualize variability in order to understand if we have a controlled situation?

Consider the following example:

EXAMPLE 1.1 AUTOMOBILE FUSE DATA

A manufacturer of automobile fuses produces lots containing 100,000 fuses rated at 5A. Thus, the fuses are supposed to open in a circuit if the current through the fuse exceeds 5A. Since a fuse protects other elements from possibly damaging electrical overload, it is very important that fuses function properly. How can the manufacturer be assured that the fuses do indeed operate correctly and that there is no excessive variability?

Obviously, he cannot test all fuses to the rated limit since that act would destroy the product he wishes to sell. However, he can sample a small quantity of fuses (say, 100 or 200) and test them to destruction to measure the opening point of each fuse. From the sample data, he could then *infer* what the behavior of the entire group would be if all fuses were tested.

In statistical terms, the entire set or collection of measurements of interest (e.g., the blowing values of all fuses) define a *population*. A population is the entire set or collection of measurements of interest.

Note that a population may be finite, as in the case of a fuse lot, or it may be infinite, as occurs in a manufacturing process where the population could be all product of a specific type that has been or could ever be produced in a fabricating area.

The *sample* (e.g., the 100 or 200 fuses tested to destruction) is a subset of data taken from the population. A sample is a subset of data from the population. The objective in taking a sample is to make inferences about the population.

Note that reliability data commonly exists in one of two forms. In *variables data*, the actual measurement of interest is continuous, such as time in minutes, length in inches, or temperature in degrees Celsius. In *attributes* data, the measurements are quantified into discrete categories such as pass or fail, go or no go, in spec or out of spec, small or medium or large, and so on. Attributes data includes counts, proportions, and percentages. Although both types of data are discussed in this text, applications and analysis of attributes data is treated extensively in Chapter 11.

In the fuse data example, we record variables data, but we could also transform the same results into attributes data by stating whether a fuse opened before or after the 5A rating. Similarly, in reliability work one can measure the actual failure time of an item (variables data) or record the number of items failing before a fixed time (attributes data). Both types of data occur frequently in reliability studies. In Chapter 3, Sections 3.10–3.12, we will discuss such topics as choosing a sample size, drawing a sample randomly, and the "confidence" in the data from a sample. For now, however, let's assume that the sample has been properly drawn and consider what to do with the data in order to present an informative picture.

1.2 Histograms and Frequency Functions

In stating that a sample has been randomly drawn, we imply that each measurement or data point in the population has an equal chance or probability of being selected for the sample. If this requirement is not fulfilled, the sample may be "biased" and correct inferences about the population might not be possible.

What information does the manufacturer expect to obtain from the sample measurements of 100 fuses? First, the data should cluster about the rated value of 5A. Second, the spread in the data (variability) should not be large, because the manufacturer realizes that serious problems could result for the users if some fuses blow at too high a value. Similarly, fuses opening at too low a level could cause needless repairs or generate unnecessary concerns.

The reliability analyst randomly samples 100 fuses and records the data shown in Table 1.1. It is easy to determine the high and low values from the sample data and see that the measurements cluster roughly about the number 5. Yet, there is still difficulty in grasping the full information contained in this set of data.

Let's apply the following procedure:

- 1. Find the *range* of the data by subtracting the lowest from the highest value. For this set, the range is 5.46 4.43 = 1.03.
- 2. Divide the range into ten or so equally spaced intervals such that readings can be uniquely classified into each cell. Here, the cell width is $1.03/10 \approx 0.10$, and we choose the starting point to be 4.395, a convenient value below the minimum of the data and carried out one digit more precise than the data to avoid any confusion in assigning readings to individual cells. Note that the terms "bin," "class,"

or "cell" are used interchangeably in the literature and also by statistical software programs to denote one of these equally spaced intervals.

- 3. Increment the starting point by multiples of the cell width until the maximum value is exceeded. Thus, since the maximum value is 5.46, we generate the numbers 4.395, 4.495, 4.595, 4.695, 4.795, 4.895, 4.995, 5.095, 5.195, 5.295, 5.395, and 5.495. These values represent the endpoints or boundaries of each cell, effectively dividing the range of the data into equally spaced class intervals covering all the data points.
- 4. Construct a *frequency table* as shown in Table 1.2, which gives the number of times a measurement falls inside a class interval.
- 5. Make a graphical representation of the data by sketching vertical bars centered at the midpoints of the class cells with bar heights proportionate to the number of values falling in that class. This graphical representation shown in Figure 1.1 is called a *histogram*.

A histogram is a graphical representation in bar chart form of a frequency table or frequency distribution. The vertical axis in a histogram may represent the actual count in a cell, or it may state the percentage of observations of the total sample that occur in a cell. Also, the range here is divided by the number 10 to generate a cell width, but any convenient number

TABLE 1.1

Sample Data on 100 Fuses

-									
4.64	4.95	5.25	5.21	4.90	4.67	4.97	4.92	4.87	5.11
4.98	4.93	4.72	5.07	4.80	4.98	4.66	4.43	4.78	4.53
4.73	5.37	4.81	5.19	4.77	4.79	5.08	5.07	4.65	5.39
5.21	5.11	5.15	5.28	5.20	4.73	5.32	4.79	5.10	4.94
5.06	4.69	5.14	4.83	4.78	4.72	5.21	5.02	4.89	5.19
5.04	5.04	4.78	4.96	4.94	5.24	5.22	5.00	4.60	4.88
5.03	5.05	4.94	5.02	4.43	4.91	4.84	4.75	4.88	4.79
5.46	5.12	5.12	4.85	5.05	5.26	5.01	4.64	4.86	4.73
5.01	4.94	5.02	5.16	4.88	5.10	4.80	5.10	5.20	5.11
4.77	4.58	5.18	5.03	5.10	4.67	5.21	4.73	4.88	4.80

TABLE 1.2

Cell Boundaries	Number in Cell
4.395-4.495	2
4.495-4.595	2
4.595-4.695	8
4.695-4.795	15
4.795-4.895	14
4.895-4.995	13
4.995-5.095	16
5.095-5.195	15
5.195-5.295	11
5.295-5.395	3
5.395-5.495	1
Total count	100

FIGURE 1.1

Histogram of fuse breakdown measurements.

(usually between 8 and 20) may be used. Too small a number may not reveal the shape of the data and too large a number can result in many empty cells and a flat-appearing distribution. Sometimes, a few tries are required to arrive at a suitable choice.

There is a useful Excel spreadsheet function called FREQUENCY that will generate a frequency table such as that shown in Table 1.2. Say the 100 fuse breakpoints are entered into column A, cells A1–A100, and the 12 cell boundaries, starting with 4.395 and ending with 5.495, are entered into column B, cells B1–B12. Next, we highlight (click and drag) into an empty column, say C, 13 blank rows in cells C1–C13. Then we type in the function = FREQUENCY(A1:A100,B1:B12). The expression is evaluated as a matrix operation by pressing the keys Ctrl+Shift+Enter together instead of pressing just Enter alone. This action produces the Table 1.2 frequencies in rows C2–C12 (C1 contains counts up to 4.395 and C13 contains counts after 5.495). The FREQUENCY function in OpenOffice software works the same way, except that a semicolon is used between arguments instead of a comma.

EXERCISE 1.1

Use Excel or OpenOffice to generate the frequencies given in Table 1.2, using the Table 1.1 sample data and the same interval endpoints as used in Table 1.2.

In summary, the histogram provides us with a picture of the data from which we can intuitively see the center of the distribution, the spread, and the shape. The shape is important because we usually have an underlying idea or model as to how the entire population should look. The sample shape either confirms this expectation or gives us reason to question our assumptions. In particular, a shape that is symmetric about the center, with most of the observations in the central region, might reflect data from certain symmetric distributions such as the normal or Gaussian distribution. Alternatively, a nonsymmetric appearance would imply the existence of data points spaced farther from the center in one direction than in the other, which could lead to the consideration of a distribution, such as a Weibull or lognormal.

For the data presented in Example 1.1, we note that the distribution appears reasonably symmetric. Hence, based on the histogram and the way the ends of the distribution taper off, the manufacturer believes that values much greater or much less than about 10% of the central target are not likely to occur. This variability is accepted as reasonable.

1.3 Cumulative Frequency Function

There is another way of representing the data that can be very useful. By reference to Table 1.2, let us accumulate the number of observations less than or equal to each upper cell boundary as shown in Table 1.3. This representation of the data is called a *cumulative frequency function*.

The graphical rendering of the cumulative frequency function is shown in Figure 1.2. Note that the cumulative frequency distribution is never decreasing—it starts at zero and reaches the total sample size. It is often convenient to represent the cumulative count in terms of a fraction or percentage of the total sample size used. In that case, the cumulative

Cumulative Frequency Function for Fuse Data

Upper Cell Boundary (UCB)	Number of Observations Less than or Equal to UCB		
4.495	2		
4.595	4		
4.695	12		
4.795	27		
4.895	41		
4.995	54		
5.095	70		
5.195	85		
5.295	96		
5.395	99		
5.495	100		

TABLE 1.3

FIGURE 1.2 Plot of cumulative frequency function.

frequency function ranges from 0 to 1.00 in fractional representation or 0% to 100% in percentage notation. In this text, we often employ the percentage form.

Table 1.3 and Figure 1.2 show that the cumulative frequency curve is obtained by summing the frequency function count values. This summation process will be generalized by integration when we discuss the population concepts underlying the frequency function and the cumulative frequency function in Section 1.4.

1.4 The Cumulative Distribution Function and the Probability Density Function

The frequency distribution and the cumulative frequency distribution are calculated from sample measurements. Since the samples are drawn from a population, what can we state about this population? The typical procedure is to assume a mathematical formula that provides a theoretical model for describing the way the population values are distributed. The sample histograms and the cumulative frequency functions are the estimates of these population models.

The model corresponding to the frequency distribution is the PDF denoted by f(x), where *x* is any value of interest. The PDF may be interpreted in the following way: f(x)dx is the fraction of the population values occurring in the interval *dx*. In reliability work, we often have the failure time *t* as the variable of interest. Therefore, f(t)dt is the fraction of failure times of the population occurring in the interval *dt*. A very simple example for f(t) is the exponential distribution, given by the equation

$$f(t) = \lambda e^{-\lambda t}, \quad 0 \le t < \infty$$

where λ is a constant. The plot of f(t) is shown in Figure 1.3. The exponential distribution is a widely applied model in reliability studies and forms the basis of Chapter 3.

FIGURE 1.3 Plot of PDF for the exponential distribution.

The cumulative frequency distribution similarly corresponds to a population model called the CDF and is denoted by F(x). The CDF is related to the PDF via the relationship

$$F(x) = \int_{-\infty}^{x} f(y) dy$$

where *y* is the dummy variable of integration. F(x) may be interpreted as the fraction of values less than or equal to *x* in the population. Alternatively, F(x) gives the probability of a value less than or equal to *x* occurring in a single random draw from the population described by F(x). Since in reliability work we usually deal with failure times, *t*, which are nonnegative, the CDF for population failure times is related to the PDF by

$$F(t) = \int_{0}^{t} f(y) dy$$

For the exponential distribution,

$$F(t) = \int_{0}^{t} \lambda e^{-\lambda y} dy = -e^{-\lambda y} \Big]_{0}^{t} = 1 - e^{-\lambda t}$$

The CDF for the exponential distribution is plotted in Figure 1.4.

When we calculated the cumulative frequency function in the fuse example, we worked with grouped data (i.e., data classified by cells). However, another estimate of the population CDF can be generated by ordering the individual measurements from smallest to largest, and then plotting the successive fractions

$$\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, ..., \frac{n}{n}$$

FIGURE 1.4 CDF for exponential distribution.

FIGURE 1.5 EDF for fuse data.

versus the ordered data points. Such a representation is called the *empirical distribution function* (EDF) and is shown in Figure 1.5 for the data from the fuse example. Note that the EDF steps up by 1/n at each data point and remains constant until the next point. The advantage of using the EDF instead of grouping the data is obviously that all data points are pictured; the disadvantage is that more computational effort is involved. However, spreadsheet software can easily perform the calculations and plotting. See Appendix 1A for a method to create step charts using spreadsheet plots. Since F(x) is a probability, all the rules and formulas for manipulating probabilities can be used when working with CDFs. Some of these basic rules are described in Section 1.5.

EXERCISE 1.2

For the data in Table 1.1, construct a frequency table using 4.395 as the starting point and 0.2 as the interval width. Create a histogram of this frequency table. Compare it to Figure 1.1.

EXERCISE 1.3

Using the results from Exercise 1.2, construct a cumulative frequency table and create a plot of the cumulative frequency function. How does it compare to Figure 1.2?

EXERCISE 1.4

Take columns 2, 5, and 8 (left to right) from Table 1.1, for a total of 30 data points. Assume a random sample, arrange the points in order from smallest to largest, and plot the EDF. Compare to Figure 1.5.

EXERCISE 1.5

The histogram shown in Figure 1.1 was generated using JMP software. Use the JMP **Analyze, Distribution** platform and the data set shown in Table 1.1 (FuseData.jmp at the "Downloads & Updates" tab of the web page for this book at http://www.crcpress.com/product/isbn/9781584884668) to generate a histogram. The result may

18

FIGURE 1.6 Minitab histogram of fuse data.

be somewhat different based on a JMP default choice for the number of bins. If so, use the "hand" cursor to change the number of bins until the same histogram as shown in Figure 1.1 is obtained. Next, use the **histogram** spreadsheet function of Excel (in **Tools, Data Analysis**) to obtain a histogram. The Table 1.1 data set for spreadsheet use is FuseData.xls. In order to get the exact same graph shown in Figure 1.1, input bin numbers starting with 4.495 and increasing in steps of 0.1 to 5.495. Finally, use Minitab to get the histogram shown in Figure 1.6 (one must change the default number of bins from 12 to 11).

NOTE: There is nothing "wrong" or "misleading" with obtaining dissimilar histograms from different software programs. It is up to the analyst to vary the bin numbers and locations to obtain one of many reasonable (although varying) views of the data. For example, the default output histogram from Minitab is shown in Figure 1.6.

1.5 Probability Concepts

In the classical sense, the term *probability* can be thought of as the expected relative frequency of occurrence of a specific event in a very large collection of possible outcomes. For example, if we toss a balanced coin many times, we expect the number of occurrences of the event "heads" to comprise approximately half of the number of outcomes. Thus, we say the probability of heads on a single toss is 0.5, 50%, or 50–50. It is typical to express probabilities either as a fraction between 0 and 1 or as a percentage between 0% and 100%.

There are two very useful relations often invoked in probability theory. These rules relate to the occurrence of two or more events. In electrical engineering terms, we are defining "and" and "or" relations. The first rule states that if P(A) is the probability of event

A occurring and P(B) is the probability of event *B* occurring, then the probability of events *A* and *B* occurring simultaneously, denoted P(AB), is

$$P(AB) = P(A)P(B|A)$$

or

$$P(AB) = P(B)P(A|B)$$

where P(A|B) designates the "conditional" probability of A given that event B has occurred.

Let's explain conditional probability further. We imply by the terminology that one event may be affected by the occurrence of another event. For example, suppose we ask what the probability is of getting two black cards in a row in successive draws from a well-shuffled deck of cards, without replacing the first card drawn. Obviously, the probability of the first card being a black card (call this event *A*) is

$$P(A) = \frac{\text{favorable outcomes}}{\text{total outcomes}} = \frac{26}{52} = \frac{1}{2}$$

The probability of the second card being a black card (event *B*) changes depending on whether or not the first card drawn is a black card. If yes, then the probability of the second card being a black card is

$$P(B|A) = \frac{25}{51}$$

Therefore, the probability of two successive black cards is

$$P(AB) = P(B)P(A|B)$$
$$= \frac{1}{2} \frac{25}{51}$$
$$= \frac{25}{102}$$

Two events, *A* and *B*, are said to be *independent* if the occurrence of one does not affect the probability of the other occurrence. The formal definition states that two events *A* and *B* are independent *if and only if*

$$P(AB) = P(A)P(B)$$

This expression is sometimes referred to as the *multiplication rule* for the probability of independent events occurring simultaneously. In general, the probability of independent events occurring is just the product of the individual probabilities of each event. For example, in the card situation, replacing the first card drawn and reshuffling the deck will make event *B* independent of event *A*. Thus, the probability of two successive black cards, with replacement and reshuffling between draws, is

$$P(AB) = P(A)P(B) = \frac{26}{52}\frac{26}{52}$$

= $\frac{1}{4}$

Similarly, the probability of simultaneously getting a 6 on one roll of a die and an ace in one draw from a deck of cards, apparently independent events, is

$$P(AB) = \frac{1}{6} \frac{4}{52}$$
$$= \frac{1}{78}$$

The extension of these conditional probability principles to three or more events is possible. For example, the rule for the joint probability of three events, A, B and C, is

$$P(ABC) = P(A)P(B|A)P(C|AB)$$

For independent events, the formula becomes

$$P(ABC) = P(A)P(B)P(C)$$

The second important probability formula relates to the situation in which either of two events, *A* or *B*, may occur. The expression for this "union" is

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

If the events are independent, then the relation becomes

$$P(A \cup B) = P(A) + P(B) - P(A)P(B)$$

The last term in the above expressions corrects for double counting of the same outcomes. For example, what is the probability of getting either an ace (event *A*) or a black card (event *B*) in one draw from a deck of cards? The events are independent (see Exercise 1.6.), and therefore

$$P(A \cup B) = P(A) + P(B) - P(A)P(B)$$
$$= \frac{4}{52} + \frac{26}{52} - \frac{4}{52}\frac{26}{52}$$
$$= \frac{14}{52} = \frac{7}{13}$$

Note that the term P(A)P(B) subtracts out the probability for black aces. This probability has already been counted twice, once in the P(A) term and once in the P(B) term.

When events *A* and *B* are mutually exclusive or disjoint, that is, both events cannot occur simultaneously, then P(AB) = 0, and

$$P(A \cup B) = P(A) + P(B)$$

Furthermore, if both events are exhaustive in that at least one of them must occur when an experiment is run, then

$$P(A \cup B) = P(A) + P(B) = 1$$

Thus, event *A* is the complement of event *B*. Event *B* can be viewed as the nonoccurrence of *A* and designated as event \overline{A} . Hence, the probability of occurrence of any event is equal to one minus the probability of occurrence of its complementary event. This *complement rule* has important applications in reliability work because a component may either fail (event A) or survive (event \overline{A}), resulting in

$$P(\text{Failure}) = 1 - P(\text{Survival})$$

As another example, we note that the event "at least one occurrence" and the event "zero occurrences" are mutually exclusive and exhaustive events. Therefore, the probability of at least one occurrence is equal to 1 – probability of no occurrences.

An extension to three or more events is also possible. For three events *A*, *B*, and *C*, the formula is

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC) - P(AC) + P(ABC)$$

For independent events, the relation becomes

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A)P(B) -P(B)P(C) - P(A)P(C) + P(A)P(B)P(C)$$

For mutually exclusive, exhaustive events, we have

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) = 1$$

For four events, we begin by adding the four single-event probabilities. Then, we subtract the six possible probabilities of two events occurring simultaneously. Next, we add back in the four possible probabilities of three events occurring simultaneously. Finally, we subtract the probability of all four events occurring simultaneously. This "in and out" procedure works for any number of events, and the total number of terms in the final expression when there are *n* events will be $2^n - 1$.

EXAMPLE 1.2 CONDITIONAL PROBABILITIES

A tricky word problem that appears often in many forms can be stated as follows: A computer hack visits the surplus store and sees two similar hard drives displayed. The sign says, "Specially Reduced: 50–50 Chance of Working." He asks the dealer whether the hard drives operate properly. The dealer replies "at least one of them is working." What is the probability that both drives are functional? Does the probability change if the dealer says "the one on the left works"?

SOLUTION

The first question asks for the probability that both drives work, given that at least one is working, that is, P(both work | at least one works). Let A be the event "both drives work" and let B be the event "at least one drive works." We want the P(A|B). From our conditional probability formula, we can rewrite the expression as follows:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

No Dealer Information		At Least	One Works	Left Drive Works		
Left Drive	Right Drive	Left Drive	Right Drive	Left Drive	Right Drive	
W	W	W	W	W	W	
W	Ν	W	Ν	W	Ν	
Ν	W	Ν	W			
Ν	Ν					
Probability that	both drives work					
1/4		1	1/3	1/2		

TABLE 1.4

Possible Outcomes for Drives

Now P(AB) is the probability that both drives work (event A) and at least one drive works (event B). This joint event is actually the same as the probability of event A alone since event A includes event B; that is, if both drives work, then at least one works. Therefore, P(AB) = P(A) = ([0.5][0.5]) = 0.25, assuming the drives are independent. Since the event B "at least one drive works" and the event "both drives are not working" are mutually exclusive and exhaustive events, the denominator P(B) = P(at least one works) = 1 - P(both not working) = 1 - (0.5)(0.5) = 0.75. Hence, the desired probability is P(A|B) = (0.25)/(0.75) = 1/3.

This result surprises many individuals who incorrectly assume that the conditional probability of two working drives given at least one works should be 1/2, instead of the correct answer 1/3, since they reason that the other disk drive is equally likely to work or not work. However, the sample space of possible outcomes is listed in Table 1.4.

With no dealer information, there are four equally likely outcomes: (work, work), (work, not work), (not work, work), and (not work, not work), for the left and right drives, respectively. Thus, the probability is only 1/4 that both drives work. When we are told that at least one drive works, we eliminate the outcome (not work, not work). Therefore, we have only three equally likely outcomes remaining: (work, work), (work, not work), and (not work, work). Consequently, the probability that both drives work has increased from 1/4 to 1/3 with the added data. Alternatively, the probability that at least one of the drives does not work has decreased from 3/4 to 2/3.

On the other hand, if the dealer points out the working drive (maybe he did not have the time to test both drives), the probability that both drives work does change. Let event *A* be "both drives work" and *C* be "the left drive works." Now, P(A|C) = (0.5)/(1) = 0.5. In this case, there are only two possible outcomes (work, work) and (work, not work), where the first position indicates the left drive, and only one outcome of the two has both drives working.

For a set of events, $E_1, E_2, ..., E_k$, that are mutually exclusive and exhaustive, another useful relationship, sometimes called the *law of total probabilities*, applies. Any event *A* can be written as follows:

$$P(A) = \sum_{j=1}^{k} P(A|E_j)P(E_j)$$

In words, P(A) is the weighted average of conditional probabilities, each weighted by the probability of the event on which it is conditioned. This expression is often easier to calculate than P(A) directly.

EXAMPLE 1.3 TOTAL PROBABILITIES

A computer manufacturer purchases equivalent microprocessor components from three different distributors. The assembly of each computer utilizes one microprocessor, randomly chosen from an in-house inventory. Typically, the inventory consists of 30% of this component type from distributor *A*, 50% from distributor *B*, and 20% from distributor *C*. Historical records show that components from distributors *A* and *C* are twice as likely to cause a system failure as those from distributor *B*. The probability of system failure with component *B* is 0.5%. What is the probability that a computer system will experience failure?

SOLUTION

Since there are three distributors and we randomly chose a component from one of the distributors, we have three mutually exclusive and exhaustive events. The theorem of total probability is the basis for the solution:

$$P(\text{failure}) = P(\text{failure} | \text{distributor } A)P(\text{distributor } A) + P(\text{failure} | \text{distributor } B) P(\text{distributor } B)$$
$$+ P(\text{failure} | \text{distributor } C)P(\text{distributor } C)$$
$$= 2(.005)(.3) + (.005)(.5) + 2(.005)(.2)$$
$$= .0075 \text{ or } .75\%$$

A final key probability formula, known as Bayes' rule, allows us to "invert" conditional probabilities, that is, determine which one of the conditioning events E_j is likely to have occurred, given that event *A* has occurred. Again, for a set of mutually exclusive and exhaustive events, $E_1, E_2, ..., E_k$, Bayes' rule states that

$$P(E_j|A) = \frac{P(A|E_j)P(E_j)}{\sum_{j=1}^{k} P(A|E_j)P(E_j)}$$

Note that by the law of total probabilities, the denominator of this expression is just P(A).

EXAMPLE 1.4 BAYES' RULE

The probability that a batch of incoming material from any supplier is rejected is 0.1. Typically, material from supplier S_1 is rejected 8% of the time, from supplier S_2 , 15%, and S_3 , 10%. We know that 50% of the incoming material comes from S_1 , 20% from supplier S_2 , and 30% from S_3 . Given that the latest lot of incoming material is rejected, what is the probability the supplier is S_1 ?

SOLUTION

Let A denote the event that the batch is rejected. Then, by Bayes' rule,

$$P(S_1 \mid A) = \frac{P(A \mid S_1)P(S_1)}{P(A)} = \frac{(0.08)(0.5)}{(0.08)(0.5) + (0.15)(0.2) + (0.1)(0.3)} = 0.4$$

In this example, the starting (i.e., before we know the batch is rejected) probability of the event S_1 is 0.5. This knowledge is sometimes referred to as the "a priori" probability of S_1 . After the batch rejection, Bayes' rule allows us to calculate the new (conditional) probability of S_1 as .4. The result is sometimes called the *a posteriori* probability of S_1 .

EXAMPLE 1.5 BAYES' RULE APPLIED TO MISCLASSIFIED ITEMS

Assume we perform a test on a component to check for a specific defect. Historically, 1% of the components have this defect. Based on a detailed analysis of previous results, 95% of the components with the defect are detected, but 8% of the components without the defect are wrongly categorized as defective. If a component is classified as defective, what is the probability that the component actually has the defect? What is the probability that a component with a negative test has the defect?

SOLUTION

We first solve this problem by an approach using simple average calculations. Consider a test of 2000 components. On the average, 1%, or 20, of the total components will have the defect. Of those with the defect, 95%, or 19, will be caught. However, of the 1980 without the defect, 8%, or 158, will have a false positive and be called *defective*. Therefore, 19 out of the 19 + 158 = 177 classified as defective will have the defect, and the probability of actually having the defect and a positive test result is 19/177 = 11%. This result shows that it may be a good idea to do a more extensive retest of rejected components and recover from the false positives. Also, the probability of having the defect and a negative test result is 1/(1000 - 177) = 1/1823 = .055%, which is about 1/18 of the prior probability. Next, we get the same result using the Bayes' rule formula. Let *A* denote a positive test and E_1 denote a defective unit. Also, let E_2 represent a unit with no defect. We want

$$P(E_1|A) = P(E_1A)/P(A) = P(A|E_1)P(E_1)[P(A|E_1)P(E_1) + P(A|E_2)P(E_2)]$$

= .95(.01)/[.95(.01) + .08(.99)] = .0095/.0887 = 11%

Let B = negative result. The probability of having the defect E_1 given a negative result of B is

$$P(E_1|B) = P(E_1B)/P(B) = P(B|E_1)P(E_1)/[P(B|E_1)P(E_1) + P(B|E_2)P(E_2)]$$

= .05(.01)/[.05(.01) + .92(.99)] = .0005/.9113 = .055%

EXERCISE 1.6

From a well-shuffled deck of cards, let drawing an ace event A and let drawing a black card be event B. Determine P(AB), the probability of getting a black ace in a single draw, and show that events A and B are independent.

EXERCISE 1.7

Three assembly plants produce the same parts. Plant A produces 25% of the volume and has a shipment defect rate of 1%. Plant B produces 30% of the volume and ships 1.2% defectives. Plant C produces the remainder and ships 0.6% defectives. Given that a component picked at random from the warehouse stocked by these plants is defective, what are the probabilities that it was manufactured by plant A or B or C?

EXERCISE 1.8

An electronic card contains three components: A, B, and C. Component A has a probability of .02 of failing in 3 years. Component B has a probability of .01 of failing in 3 years and component C has a probability of .10 of failing in 3 years. What is the probability that the card survives 3 years without failing? What assumptions were made for this calculation?

1.6 Random Variables

In reliability studies, the outcome of an experiment may be numerical (e.g., time to failure of a component) or the result may be other than numerical (e.g., type of failure mode associated with a nonfunctional device). In either case, analysis is made possible by assigning a number to every point in the space of all possible outcomes—called the *sample space*. Examples of assigning numbers are as follows: the time to failure is assigned the elapsed hours of operation, and the failure mode may be assigned a category number 1, 2, and so on. Any rule for assigning a number creates a random variable. A random variable is a function for assigning real numbers to points in the sample space.

The practice is to denote the random variable by a capital letter (X, Y, Z, etc.) and the realization of the random variable (i.e., the real number or piece of sample data) by the lower case letter (x, y, z, etc.). Since this definition appears a bit abstract, let us consider a simple example using a single die with six faces, each face having one to six dots. The experiment consists of rolling the die and observing the upside face. The random variable is denoted X, and it assigns numbers matching the number of dots on the side facing up. Thus, (X = x) is an event in the sample space, and X = 6 refers to the realization where the face with six dots is the side up. It is also common to refer to the probability of an event occurring using the notation P(X = x). In this example, we assume all six possible outcomes are equally likely (fair die), and therefore, P(X = x) = 1/6 for x = 1, 2, 3, 4, 5, or 6.

EXAMPLE 1.6 PROBABILITY EXPRESSION FOR CDF

The CDF F(x) can be defined as $F(x) = P(X \le x)$, that is, F(x) is the probability that the random variable X has a value less than or equal to x. Similarly, the survival function can be defined as S(x) = 1 - F(x) = P(X > x).

1.7 Sample Estimates of Population Parameters

We have discussed descriptive techniques such as histograms to represent observations. However, in order to complement the visual impression given by the frequency histogram, we often employ numerical descriptive measures called *parameters* for a population and *statistics* for a sample. These measures summarize the data in a population or sample and also permit quantitative statistical analysis. In this way, the concepts of central tendency, spread, shape, symmetry, and so on take on quantifiable meanings.

For example, we state that the frequency distribution is centered about a given value. This central tendency can be expressed in several ways. One simple method is just to cite the most frequently occurring value, called the *mode*. For grouped data, the mode is the midpoint of the interval with the highest frequency. For the fuse data in Table 1.1, the mode is 5.05.

Another procedure involves selecting the *median*, that is, the value that effectively divides the data in half. For individual readings, the *n* data points are first ranked in order, from smallest to largest, and the median is chosen according to the following algorithm: the middle value if *n* is odd, and the average of the two middle values if *n* is even.

Alternatively, for data that has already been grouped or binned (Table 1.2), the median occurs in the interval for which the cumulative frequency distribution registers 50%; that is, a vertical line through the median divides the histogram into two equal areas. For

grouped data with *n* points, to get the median, one first determines the number of observations in the class containing the middle measurement n/2 and the number of observations in the class to get to that measurement. For example, for the fuse data in Table 1.3, n = 100, and the middle value is the 50th point, which occurs in the class marked 4.895 to 4.995 (width 0.1). There are 41 data points before the interval and 13 points in this class. We must count 9/13 of the interval width to get to the median. Hence, the median is

$$4.895 + \left(\frac{9}{13}\right) \times 0.1 = 4.964$$

(In reliability work, it is common terminology to refer to the median as the T_{50} value for time to 50% failures.)

The most common measure of central tendency, however, is called the arithmetic *mean* or average. The sample mean is simply the sum of the observations divided by the number of observations. Thus, the mean, denoted by \overline{X} , of *n* readings is given by the statistic

$$\overline{X} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$$
$$= \frac{\sum_{i=1}^n X_i}{n}$$

This expression is called a *statistic* because its value depends on the sample measurements. Thus, the sample mean will change with each sample drawn, which is another instance of the variability of the real world. In contrast, the population mean depends on the entire set of measurements, and thus it is a fixed quantity, which we call a *parameter*. The sample mean \overline{X} estimates the population mean μ . We also mention here a notation common in statistics and reliability work. A parameter estimate is commonly denoted by a caret (^) over the parameter symbol. Thus, $\hat{\mu}$ is an estimate of the population mean μ and here $\hat{\mu} = \overline{X}$.

For a discrete (i.e., countable) population, the mean is just the summation over all discrete values where each value x_i is weighted by the probability of its occurrence p_i .

$$\mu = \sum_i x_i p_i$$

For a continuous population, the mean parameter is expressed in terms of the PDF model as

$$\mu = \int_{-\infty}^{\infty} x f(x) dx$$

For reliability work involving time, the population mean is

$$\mu = \int_{0}^{\infty} tf(t)dt$$

An alternate expression for the mean of a lifetime distribution is sometimes easier to evaluate. The form of the equation, when a finite mean exists, is

$$\mu = \int_{0}^{\infty} \left[1 - F(t) \right] dt$$

(See Feller 1968, page 148, for a proof.)

A common practice in statistics is to refer to the mean for both discrete and continuous random variables as the *expected value* of the random variable and use the notation $E(X) = \mu$ or $E(T) = \mu$. We occasionally use this terminology in this text.

Knowing the center of the distribution is not enough; we are also concerned about the spread of the data. The simplest concept for variability is the *range*, the difference between the highest and lowest readings. However, the range does not have very convenient statistical properties, and therefore, another measure of dispersion is more frequently used. This numerical measure of variation is called the *variance*. The variance has certain statistical properties that make it very useful for analysis and theoretical work. The variance of a random variable *X* is defined as the expected value of $(X - \mu)^2$, that is, $V(x) = E[(X - \mu)^2)$. An alternative formula is $V(x) = E[X^2] - \mu^2$. For continuous data, the population variance for common reliability analysis involving time is

$$V(t) = \sigma^2 = \int_0^{\infty} (t - \mu)^2 dt$$

In engineering terms, we see that the variance is the expected value of the second moment about the mean.

The square root of the variance is called the *standard deviation*. The standard deviation is expressed in the same units as the observations. The sample standard deviation is denoted by *s* and the formula is

$$s = \sqrt{\frac{\sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2}{n-1}}$$

Since \overline{X} is used in the formula rather than the population mean, statistical theory shows that dividing by n - 1 gives a better (i.e., unbiased) estimate of the population variance (denoted by $\hat{\sigma}^2 = s^2$) than just dividing by n. Alternatively, we may state that one degree of freedom has been taken to estimate the population mean μ using \overline{X} .

We have defined numerical measures of central tendency (\bar{X}, μ) and dispersion (s^2, σ^2) . It is also valuable to have a measure of symmetry about the center and a measure of how peaked the data is over the central region. These measures are called *skewness* and *kurtosis*, and are respectively defined as expected values of the third and fourth moments about the mean, that is,

skewness:
$$\mu_3 = E[(X - \mu)^3]$$
; kurtosis: $\mu_4 = E[(X - \mu)^4]$

Symmetric distributions have skewness equal to zero. A unimodal (i.e., single peak) distribution with an extended right "tail" will have positive skewness and will be referred to as skewed right; skewed left implies a negative skewness and a corresponding extended left tail. For example, the exponential distribution in Figure 1.3 is skewed right. Kurtosis, on the other hand, indicates the relative flatness of the distribution or how "heavy" the tails are. Both measures are usually expressed in relative (i.e., independent of the scale of measurement) terms by dividing μ^3 by σ^3 and μ^4 by σ^4 . The kurtosis estimate is also offset by an amount that goes to three as the sample size increases so that data from a normal population has a kurtosis of approximately zero. Sample estimates are calculated using the formulas

Skewness estimate =
$$\frac{n}{(n-1)(n-2)} \left(\frac{\sum_{i=1}^{n} (x_i - \overline{x})}{s} \right)^3$$

Kurtosis estimate =
$$\frac{n(n-1)}{(n-1)(n-2)(n-3)} \left(\frac{\sum_{i=1}^{n} (x_i - \bar{x})}{s} \right)^4 - 3 \frac{(n-1)^2}{(n-2)(n-3)}$$

These formulas are used by the spreadsheet SKEW and KURT functions and also by Minitab and JMP in their descriptive statistics platforms.

These various measures allow us to check the validity of the assumed model. Ott (1977) shows applications to the normal distribution. Table 1.5 contains a listing of properties of distributions frequently used in reliability studies.

The important statistical concept involved in sample estimates of population parameters (e.g., mean, variance, etc.) is that the population parameters are fixed quantities, and we infer what they are from the sample data. For example, the fixed constant θ in the exponential model $F(t) = 1 - e^{-t/\theta}$, where $\theta = 1/\lambda$, can be shown to be the mean of the distribution of failure times for an exponential population. The sample quantities, on the other hand, are random statistics that may change with each sample drawn from the population.

TABLE 1.5

Properties of Distributions Used in Reliability Studies

	Uniform	Normal	Weibull	Exponential	Lognormal	Rayleigh (Weibull with Shape Parameter 2 and Linear Failure Rate)	Extreme Value
Symmetric	Yes	Yes	No	No	No	No	No
Bell-shaped	No	Yes	No	No	No	No	No
Skewed	No Skew = 0	No Skew = 0	Yes (right)	Yes (right) Skew = 2	Yes (right)	Yes (right) Skew = 0.63	Yes (left) Skew = -1.14
Kurtosis	-1.8	0		6		0.26	2.4
Log data is symmetric and bell- shaped	No	No	No	No	Yes	No	No
Cumulative distribution shape	Straight line	"S" shaped		Exponential curve			

EXAMPLE 1.7 THE UNIFORM DISTRIBUTION

The uniform distribution is a continuous distribution with PDF for the random variable T given by

$$f(t) = \frac{1}{\theta_2 - \theta_1}, \quad \theta_1 \le t \le \theta_2$$

and zero elsewhere, where θ_1 and θ_2 are the parameters specifying the range of *T*. The rectangular shape of this distribution is shown in Figure 1.7.

We note that f(t) is constant between θ_1 and θ_2 . The CDF of *T*, denoted by F(t), for the uniform case is given by

$$F(t) = \frac{t - \theta_1}{\theta_2 - \theta_1}$$

Thus, *F*(*t*) is linear in *t* in the range $\theta_1 \le t \le \theta_2$, as shown in Figure 1.8.

EXERCISE 1.9

FIGURE 1.7 The uniform PDF.

Show that the uniform distribution has expected value $E(t) = (\theta_1 + \theta_2)/2$ and variance

FIGURE 1.8 The CDF for the uniform distribution.

EXERCISE 1.10

The uniform distribution defined on the unit interval [0,1] is a popular and useful model—so much so that the name uniform distribution is often taken to refer to this special case. Find f(u), F(u), E(u), and V(u) for this distribution.

EXERCISE 1.11

Let $F(t) = 1 - (1+t)^{-1}$, $0 \le t \le \infty$. This is a legitimate CDF that goes from 0 to 1 continuously as *t* goes from 0 to ∞ . Find the PDF and the T_{50} for this distribution. Try to calculate the mean. (Hint: Use either integration by parts or the alternate formula given in the text for calculating the mean.)

EXAMPLE 1.8 THE BETA DISTRIBUTION

The (standard) beta distribution, like the uniform distribution discussed in Exercise 1.10, is also defined on the unit interval [0,1]. However, it is a far more flexible distribution and even includes the uniform distribution as a special case. Its flexibility is one of the reasons it is an excellent choice for modeling numbers between 0 and 1, such as probabilities or proportions.

For a random variable *X* having a beta distribution with parameters a > 0 and b > 0, the PDF in the unit interval is given by

$$f(x) = \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)}$$

where B(a,b), in terms of gamma functions (see the discussion in Chapter 4 after Exercise 4.6), is

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

For a and b integers,

$$B(a,b) = \frac{(a-1)!(b-1)!}{(a+b-1)!}$$

where we use the factorial notation a! to represent $a(a - 1)(a - 2)\cdots 1$. Note that when a = b = 1, the beta distribution is the same as the uniform distribution on [0,1].

The CDF of the beta distribution is commonly called the *incomplete beta function*. For any 0 < x < 1, the incomplete beta function F(x) is given by

$$F(x) = \int_{0}^{x} \frac{y^{a-1}(1-y)^{b-1}}{B(a,b)} dy = I_x(a,b)$$

Like the normal distribution (covered in Chapter 5), this integral cannot be written in closed form. Tables of the incomplete beta function are available (Pearson 1968). However, both Excel and OpenOffice provide the worksheet function BETADIST for the beta CDF. The arguments are x, a, b, respectively. In Excel, for example, = BETADIST(0.5,2,3) returns the result 0.6875.

Figure 1.9 shows a variety of beta density functions for different values of the parameters a and b. The incomplete beta function $I_x(a,b)$ is closely related to the binomial distribution, a key distribution used in quality control and other sampling applications. This important relationship will be covered in Chapter 10.

EXERCISE 1.12

Find the expected value (mean) for a random variable having a beta density function defined on the unit interval, with parameters *a* and *b*. What relationship must these parameters have in order for the mean to be located in the center of the interval (or $\mu = 0.5$)?

1.8 How to Use Descriptive Statistics

At this point, it is important to emphasize some considerations for the analyst. No matter what summary tools or computer programs are available, the researcher should always "look" at the data, preferably in several ways. For example, many data sets can have the same mean and standard deviation and still be very different—and that difference may be of critical significance (see Figure 1.10 for an illustration of this effect).

Generally, the analyst will start out with an underlying model in his mind based on the type of data, where the observations came from, previous experience, familiarity with probability models, and so on. However, after obtaining the data, it is necessary that the analyst go through a verification stage before he blindly plunges ahead with his model. This requirement is where the tools of descriptive statistics are very useful. Indeed, in many cases we utilize descriptive statistics to help us choose an appropriate model right at the start of our studies. Other useful graphical techniques include Boxplots, dot plots, stem and leaf plots, 3D plots, and so on (see Chambers et al. 1983 for further information on graphical analysis).

In this text, we focus on several key continuous distributions that are most applicable to reliability analysis: the exponential, Weibull, normal, and lognormal distributions. By learning what these distributions should look like, we can develop a yardstick to measure our data for appropriateness to some model. Graphics (frequency histograms, cumulative frequency curves) and summary values (mean, median, variance, skewness, etc.) are the means by which the characteristics of distributions are understood. In Chapter 6, we shall introduce other valuable descriptive procedures such as probability plotting.

FIGURE 1.10

Mean and Sigma do not tell us enough. These four distributions have the same mean and standard deviation.

1.9 Data Simulation

Many different PDFs (and CDFs) exist, and reliability studies are often concerned with determining what model is most appropriate for the analysis. In reliability work, one may wish to simulate data from various distributions in order to do the following:

- 1. Determine percentiles of complicated distributions that are functions of common distributions.
- 2. Evaluate the effectiveness of different techniques and procedures for analyzing sample data.
- 3. Test the potential effectiveness of various experimental designs and sample size selections.
- 4. Illustrate statistical concepts, especially to understand the effects of variability in data.

Computer programs that will generate random variables from almost any desired distribution are available. However, there is a simple and general technique that allows us to produce what are called *pseudorandom numbers* from many common distributions. (The term *pseudorandom* is used because a specific computer algorithm generates the numbers to be as nearly random as possible.) To begin, we need a good table of random numbers or we can use a spreadsheet function to generate random numbers.

For simplicity, we consider only distribution functions F(x) that are continuous and map one-to-one onto the unit interval (0,1), that is, $0 \le F(x) \le 1$. This class includes all the life distributions discussed in this text. Let F(x) = u. Then, we can define an inverse function $F^{-1}(u) = x$ that provides the specific percentile corresponding to the CDF value in the unit interval. For example, given F(x) = .5, then $F^{-1}(.5) =$ the median, which is the 50th percentile. *F* and its inverse have the following properties: $F(F^{-1}(u)) = u$ and $F^{-1}(F(x)) = x$.

To generate a random sample $x_1, x_2, ..., x_n$ from F(x), first generate a random sample $u_1, u_2, ..., u_n$ from the uniform distribution defined on [0,1]. This procedure is done with random numbers. For example, if a five-digit random number is obtained from a table or a spreadsheet, divide the number by 100,000 to obtain a pseudorandom number from the uniform distribution. (The spreadsheet function RAND() provides random numbers directly in the unit interval.) Next, set $x_1 = F^{-1}(u_1), x_2 = F^{-1}(u_2), ..., x_n = F^{-1}(u_n)$. It is easy to show that the sample of x's is distributed according to the F(x) distribution. (See the hint to Problem 1.4 at the end of this chapter.)

EXAMPLE 1.9 DATA SIMULATION

Let F(t) be the distribution given in Exercise 1.11. Generate a sample of five random times from this distribution.

SOLUTION

We obtain F^{-1} by solving for t in $F(t) = u = 1 - (1+t)^{-1}$ to get $t = u/(1-u) = F^{-1}(u)$. Next, we use a random number generator via a spreadsheet function to obtain the uniform distribution sample (0.880, 0.114, 0.137, 0.545, 0.749). Transforming each of these by F^{-1} gives the values $t_1 = 0.880 \div (1 - 0.880) = 7.333$, $t_2 = 0.129$, $t_3 = 0.159$, $t_4 = 1.198$, and $t_5 = 2.984$. The sample $(t_1, t_2, t_3, t_4, t_5)$ is the desired random sample from *F*.

In a typical reliability experiment, n units are placed on stress, and the exact times to failure are recorded. The successive failure times naturally occur in increasing order, that is, the first failure time is less than the second failure time, the second is less than the third, and so on. This property of ordered failure times is a key characteristic of reliability work. In contrast, consider selecting n individuals randomly and measuring, for example, their weight or height. The successive observations will not necessarily occur in increasing order. Consequently, in simulating random variables for reliability studies, one would like the values arranged in increasing order. For a single set of simulated observations, one could do a manual sort using the spreadsheet **sort** routine available under the menu item **Data**. However, for repeated simulations (involved in Monte Carlo studies), a nonmanual procedure is desirable. In Excel (and OpenOffice), the spreadsheet function PER-CENTILE(array, k) can be used. This function returns the kth percentile (where $0 \le k \le 1$) of values in the range defined by the array. The trick is to choose the k values to be the (i - 1) multiples of 1/(n - 1), where i = 1, 2, ..., n is the failure count and n is the sample size. We illustrate the procedure in the Example 1.10.