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Preface

It has been more than 15 years since the publication of the second edition of Applied
Reliability. We continue to receive positive feedback from old users, and each year, hun-
dreds of engineers, quality specialists, and statisticians discover the book for the first
time and become new fans. So, why a third edition? There are always new methods and
techniques that update and improve upon older methods, but that was not the primary
reason we felt the need to write a new edition. In the past 15 years, the ready availability
of relatively inexpensive, powerful, statistical software has changed the way statisticians
and engineers look at and analyze all kinds of data. Problems in reliability that were once
difficult and time consuming for even experts can now be solved with a few well-chosen
clicks of a mouse. Additionally, with the quantitative solution often comes a plethora of
graphics that aid in understanding and presenting the results.

All this power comes with a price, however. Software documentation has had diffi-
culty keeping up with the enhanced functionality added to new releases, especially in
specialized areas such as reliability analysis. Also, in some cases, different well-known
software packages use different methods and output different answers. An analyst needs
to know how to use these programs effectively and which methods are the most highly
recommended. This information is hard to find for industrial reliability problems.

The third edition of Applied Reliability was written to fulfill this software documenta-
tion need for reliability analysts. We chose two popular software packages that are well
maintained, supported, and frequently updated: Minitab and SAS JMP. Minitab is popular
in universities and JMP is widely used within leading high-technology companies. Both
packages have extensive capabilities for reliability analysis and graphics that improve
with every new release.

In addition, we included solutions using spreadsheet programs such as Microsoft Excel
and Oracle OpenOffice Calc. With a little formula programming, spreadsheet functions
can solve even very difficult reliability problems. Spreadsheet methods cannot easily pro-
duce custom, specialized reliability graphics, however, and are included primarily because
they are so widely available and surprisingly powerful.

Unfortunately, producing detailed examples using software has many pitfalls. We would
generate graphics of screenshots and describe how to obtain specific platforms and run
analyses only to have a new release of either JMP or Minitab come out, which looked and
operated somewhat differently. Even spreadsheet mechanics change with new releases.
We frequently had to go back and redo problem solutions to remain current with updates.

Finally, we realized that our readers would inevitably see panels and screens coming
from later releases of these software packages that might differ slightly from the screen-
shots shown in our text. However, it is likely that the basic methods and approaches will
remain the same for a long time. Many of the suggestions we made to software develop-
ers based on methods described in the second edition are now a part of these packages or
will be in future releases. Two examples are the very useful defect model (incorporated
in JMP release 9) and the ability to input negative frequencies when analyzing truncated
data (already in JMP 8).

We stated in the preface to the second edition: “Our goal remains that the text be applica-
tion oriented, with numerous practical examples and graphical illustrations.” Statements
of theory and useful equations are essential building blocks, but what the industrial

xiii



xiv Preface

reliability analyst needs to know is how to apply these building blocks to numerically
solve typical problems. The new edition has more than 150 worked-out examples, many
done with both JMP and Minitab and even spreadsheet programs. Along with these exam-
ples, there are nearly 300 figures, and hundreds of exercises and additional problems at
the end of each chapter. We also took the opportunity to add new material throughout.
Sometimes, this new material increased the level of difficulty, and we chose to put this
material in appendices at the end of several chapters.

Since many of the examples, exercises, and problems use lengthy spreadsheets or work-
sheets of failure data, we have many of these files on the publisher’s website for the book.
These data sets, in Excel, JMP, or Minitab format, can be accessed via the “Downloads
& Updates” tab on the book’s web page at http://www.crcpress.com/product/isbn/
9781584884668. Data sets are organized by book chapter and given a name either mentioned
in the text or based on the number of the example, exercise, or problem to which they
relate. There is also a directory containing Excel templates that can be used to find maxi-
mum likelihood solutions for Weibull and lognormal multistress, life test, or field data.
There are even templates incorporating the defect model or for testing equal slopes or
equal parameters across several cells of data.

Another powerful software package not used in the text deserves mention: SPLUS, with
the addition of Bill Meeker’s SPLIDA (SPLUS Life Data Analysis) downloadable front end,
which offers graphics and analysis capabilities that can also be used successfully on many
of the data sets in the third edition.

Finally, we gratefully acknowledge the comments and suggestions made by our
colleagues who provided feedback on the sections of the second edition and/or reviewed
draft copies of many prepublication chapters of the third edition. In particular, we appre-
ciate the comprehensive suggestions and critiques offered by Wayne Nelson, Doug
Montgomery, Judy Koslov, Bill Heavlin, Ed Russell, Ken Stephens, Leon Lopez, and the
many users of the text.


http://www.crcpress.com
http://www.crcpress.com

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 1.10

Figure 1.11
Figure 1.1A
Figure 1.2A
Figure 1.3A
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10

Histogram of fuse breakdown measurements...........c.cccccocoeeieviirnniiicnnnnnn. 4
Plot of PDF cumulative frequency function ...........cccceevevceininicnnicnccnnnn, 5
Plot of PDF for the exponential distribution ...........cccooovviviiinicniinn, 6
CDF for exponential distribution..........ccoevoveiiiiiiiciiiccccc, 7
EDF for fuse data .......c.cccooveeieiiiiiiccecc 8
Minitab histogram of fuse data..........cccccooeiviiiiiiii, 9
The uniform PDE ..o, 20
The CDF for the uniform distribution..........cccooevviiiiiii, 20
Beta density fuUnCtions ..........cccoooveueiiiiciieiic 22
Mean and Sigma do not tell us enough. These four distributions

have the same mean and standard deviation.............ccccoeoeeveiiniiinnnne, 23
Simulating ordered random variables............ccccovvriiiiiiiiiii, 25
Spreadsheet table for experiment.............cccccoecueuiiiiiiiciciiceecceenes 26
Derived spreadsheet table for step chart..........c.cocoooeriiiiiiiin, 26
SEEP CRATT ... 27
Cumulative distribution function ..........cccooveeiiinii, 30
Bathtub curve for failure rates............ccoooeeveiiiiiiiii e, 36
Example of component failure data.........c..cooeeoieiniiiii, 37
Readout data........ooveeieiiiiicieiic e 42
The exponential distribution failure rate /(f) ... 48
Histogram of memory chip failure data .........c.cccoooeriiiiii, 51
Piecewise approximation of actual failure rate..........c...ccocoeeviiiinnnnnn, 54
Memory chip data histogram compared to f(t) shape..........ccccccoerrririnnennn. 58
[lustration of D} and D;, statistics for KS test .......ccccccvveevinnecccnnnccne. 63
JMP histogram of test data.........cccceeueiiiiiiiiiiiiie 65
Empirical distribution function plot and KSL D-statistics.........cc...cccvuue.. 65
Minitab exponential analysis of failure times..........c.ccocooeveiiniiiiiinncnnnn. 66
JMP exponential analysis of failure times ...........ccccceeeeniiiiiniiine 66
Spreadsheet columns for evaluating the product 7 X k.;_y.cocevevevrveviieicnnnn. 74

X0



XVi

Figure 3.1A
Figure 3.2A
Figure 3.3A
Figure 3.4A
Figure 3.5A

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.1A
Figure 4.2A

Figure 4.3A
Figure 4.4A
Figure 4.5A
Figure 4.6A
Figure 4.7A
Figure 4.8A
Figure 4.9A

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

List of Figures

Spreadsheet entries to determine sample Size ........cccccooovereiiniiiiiinieicnnn, 79
Spreadsheet entries to determine test length ..., 80
Spreadsheet entries to determine number of failures allowed.................... 81
Spreadsheet entries for KS goodness-of-fit test............cccccoeeiiiiiiiiinnns 82
Empirical distribution function and exponential CDF model

(mean time to fail = 100).......ccveireririiiriineee e 83
WEIDUIL CDF ..ottt 91
WEIDULL PDF......ooiiiiiiiiiiiieecieccrecete ettt 91
Weibull failure rate (hazard rate) .........coccceveevecinccininniceecccee 92
JMP data table for exact times, censored data analysis ..........c..cccceeeunnnn 103
Inputs for JMP Fit Parametric Survival analysis—exact times.................. 104
JMP Weibull MLEs for Exercise 4.5 exact times, censored data................. 104
JMP data table for interval data from Exercise 4.5 ......ccccccecevevinrireeneennne. 105
Inputs for JMP Fit Parametric Survival analysis—interval data................ 105
JMP Weibull MLEs for Exercise 4.5 interval data.........c.ccccocevvvecviereeiennne. 106
JMP data table for exact times treated as interval data........c.cccccecerrencuencns 106
Minitab analysis for exact times, right-censored data analysis................. 107
Minitab analysis inputs for interval data..........cccccooevviiiiiiiiiiiis 108
Genweibest spreadsheet with interval data from Example 4.5 ................. 114
Solver entries for MLE analysis of the filled-in

Genweibest spreadsheet ............ccoccceiiiiiiiiiiccceee 115
Genweibest spreadsheet after solver finds MLEs...........c.ccccccceviininninins 116
Genweibest solution for MLEs based on truncated data.........c.c.eeveueunee. 117
First iteration—the starting point is the MLE solution spreadsheet......... 118
Solver run (first iteration)........c.coeeveuerieirieineiric e 118
Second iteration run of Goal Seek .........c.coveueinnieiiirnnieiinnccecee 119
Second iteration run Of SOLVET...........occcirrieieinnieiciineecereeeeeeeree e 119

Start of fourth iteration confirming convergence

when there is N0 change ..o 120
The normal distribution PDF...........cccccoiiiniiniiniiniincceeeceeneeee 124
The normal distribution CDEF .........ccccoveieiiiinneiiinciirseeeeeee 124
Plot of data from Table 5.2 ......cccccoeereireineincireeeee e 133

Relationship of lognormal distribution to normal distribution................ 136



List of Figures

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.1A
Figure 5.2A
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7

Figure 6.8
Figure 6.9
Figure 6.10

Figure 6.11

Figure 6.12
Figure 6.13

Figure 6.14

Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19
Figure 6.20

xvii
The lognormal distribution PDF ..........ccccocooiiiiice, 137
The lognormal distribution CDF.............cccooviiiiiiiii 138
The lognormal distribution failure rate ............cccccoceeeeeiiiiiiiiicene 139
Minitab inputs and output for Table 5.5 data........cccoooeviiiiiiiine, 143
JMP inputs and output for Table 5.5 data.........ccccceeieiiiiiiiiciicce 144
Minitab input and output screens for lognormal interval data ................ 145
JMP input and output screens for interval data............cccccceeviiiiiiiinnnen. 146
Genlnest.xls after converging to MLEs for Table 5.5 data .........ccccccceeueeee. 150
Excel solution for interval data to obtain lognormal MLEs...................... 151
Straight line plot.........ccooiiiiii e 154
Regression line eXxample ..........ccccccviiiiiiiiiiiiiiiccccccceeieeennes 155
JMP regression eXample ...........ccccvviiiiiiiniinniii s 158
Minitab regression eXxample...........c.coooirieiiiiiiiiiiiiic e 159
Ideal gas law PlOt .......cuoviiiiiiiicc e, 160
Ideal gas law plot using rectification ...........cccccceeueiiiiirvniiiiiiiiiciicne 160
Exponential probability plot of Table 6.2 data, exact times,
Median TanKS.......cooiiiiiii e 166
Minitab probability plot of Table 6.2 data........c.c.cccovevvririiiiiiiiicices 166
Exponential model fit to data, exact times, LS MTTF estimate.................. 168
Exponential probability plot, exact times, 90% confidence
limits on transformed CDF ..........ccccooviiiiiiiiic e 169
Exponential probability plot, exact times, 90% approximate
confidence limits on failure time quantiles .............ccccceceueeiinniiicnnnnnns 170
Exponential probability plot, readout data............ccooeeiiiiiiiiiin, 172
Exponential probability plot of readout data with approximate
90% pointwise confidence limits on time f...........ccccoceiiiiiiiiiiiiicaes 174
Exponential CDF plot of readout data with approximate 90%
pointwise confidence limits on time ........ccccooevveiiiiiinnnece 174
Weibull probability plot, exact times............cooveeiirinininiinininiccceees 177
JMP output Weibull model analysis, exact times ...........cccooeirriiicnnn 179
Minitab output Weibull model analysis, exact times...........c.c.ccccoeueviinnee, 180
Lognormal probability plot, exact times, 71 = 600...........ccccooeuereiiiriiiininnne, 183
Extrapolation to T, in lognormal probability plot ..o, 184
EDF plot with 90% confidence level band.............cccoooiiiiiiiiiiins 186



xviii

Figure 7.1

Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10

Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14

Figure 7.15
Figure 7.16
Figure 7.17
Figure 7.18
Figure 7.19
Figure 7.20
Figure 7.21
Figure 7.22
Figure 7.23
Figure 7.24
Figure 7.25

Figure 7.26

Figure 7.27
Figure 7.1A

List of Figures

Eight units on stress: six failures and two censored

(UNIES 2 ANA 4) +vetiete et 194
Nonparametric survival and CDF curves..........ccccceiieiiiiiicniiinnns 195
CDF and two-sided 95% confidence limits............cccccevuvuriiiiiiiiiininns 198
JMP dialog box for exact data example ..........ccccoeeiiiiiiiieicciccee 199
JMP output for exact data example...........ccoeevviviininiiinii 200
JMP save estimates table for exact data example..........ccccoooeriiinn 200
Minitab dialog box for exact data example............cccoeeiiiiiiiiiiicicine, 201
Minitab summary output for exact data example...........cccccooeiiiinins, 202
Minitab graph for exact data example...........ccccooovviiiiiiiiiiiiiiiis 203
Minitab spreadsheet for readout example, censoring at

beginning of interval ..o 206
Minitab dialog boxes for readout data example.............ccccooeeeiiiriiiiinnnn, 206
Minitab output for readout example, actuarial estimate...............cccceoceu. 207
JMP dialog box for readout example ............ccccoeiiiiiiiiiiiiiiie 208
JMP output for readout example, assuming censoring at

beginning and end of interval ... 208
Minitab worksheet (partial) for Table 7.1 data..........ccccccovvvviiiiiiiinnns 211
Minitab output (partial) actuarial table and failure plot............ccc............. 212
INUMDET at TISK ..ovviiiiiiiiiciccc 216
Cumulative failure distribution...........cccoeeiiiiiiiiiiiiis 216
Plot of CDF estimate versus time for left-censored data ..............ccccceeeu 219
JMP data table and output for left-censored data in Table 714.................. 219
Minitab output and graph for left-censored data in Table 714 .................. 220
Disk drive data CDF plot........cccccciiiiiiiiiiiiiiiiccccccccccccciees 222
Current status data table and analysis output in JMP ..............ccooeiinninn, 222
Current status data table and analysis output in Minitab...............cc......... 223

Spreadsheet showing the calculations for determining the
Hall-Wellner confidence bands for the first 18 observations
iN Table 7.20.......oiiiiie e 227

Kaplan—-Meier F(t) estimate and Hall-Wellner 90% confidence
bands: linear (H-W), log (H-W LT), and logit (H-W LG)
EraANSIOIMALIONS. c...eveeiiciiricieiciet ettt 228

JMP output showing Nair 95% EP confidence bands .............ccccccceennin. 231

Partial table for capturing “max” of bootstrap runs ...........cccccccevrirnnnes 237



List of Figures

Figure 7.2A
Figure 7.3A
Figure 7.4A
Figure 7.5A
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure 8.12

Figure 8.13

Figure 8.14

Figure 8.15
Figure 8.16

Figure 8.17

Figure 8.18
Figure 8.19
Figure 8.20
Figure 8.21
Figure 8.22
Figure 8.23
Figure 8.24
Figure 8.25

xix
Dialog box for creating a data table .............ccoooiiiii, 237
One-way data table with varying max values..........c.ccocoooriiiicinnnn, 237
Bootstrap 90% confidence bands............cccccceeveiiiiiiniiiiiiicceeene 238
CDF estimate and 90% bootstrap confidence bands ............c.cccccoveiiiacn, 238
Worksheet for the data in Table 8.2..........ccccccoviviiiiniiiiiici 246
Weibull probability plot in worksheet.............cooviinnininnnees 247
Worksheet using indicator variables .........ccoooiiiiiiii 248
Portion of data analysis summary output ...........cccoooeeieiiiiiiiiieee, 249
Minitab output for LS analysis of the data in Table 8.2 ............c.ccccccceeeeei. 249
Minitab Weibull plot of the data in Table 8.2..........cccccccooviriiniiiine, 250
Partial Minitab worksheet for the data in Table 8.2............c.c....ccoooiil, 250
Minitab Weibull plot of the data in Table 8.2: equal slopes...............c........ 251
JMP-7 data table for analysis of the data in Table 8.2 .............ccccccccceenneeee. 252
JMP-7 reliability/survival screen inputs .............cccocoeeieiciciiniiiccce 252
JMP-Weibull plot and MLEs for the data cells of Table 8.2........................ 253
JMP data table for common-slope analysis of the data in
Table 8.2 using indicator variables.............ccccccceiiiiinniiiiiccecee 254
JMP fit parametric survival model screen inputs for
common-slope analysis of the data in Table 8.2............cccccccooiiiiiiinnnns 254
JMP fit parametric survival model screen outputs for
common-slope analysis of the data in Table 8.2...........cccccooooiiiinl, 255
Region for finding lognormal parameter confidence limits....................... 258
JMP output for Weibull parameter likelihood confidence
limits for data in Table 8.2 ...........ccccceiiiiiiiiices 259
Lognormal plot—cumulative percent failure data
from Table 8.5 ......ccoviiiiiiiiii 262
Lognormal plot (COMMON SIOPE) ......cocveuuveuiieieirieieieicieieieieeeeeeeeeeeeeeeeees 262
JMP analysis for calculating same-slope MLEs ..........ccccccccceuiiiiiiniiinnnne. 264
JMP analysis results with same slope..........cccoooiiiiiii 265
Arrhenius plot using LS estimates............ccooovoeiiiniiiiiniiiccce, 270
Minitab inputs for Arrhenius—Weibull fit.........cccccccooeiiiiiiiiiiiiins 270
Minitab Arrhenius-Weibull analysis output.........cccccoceviiiiiiiiiiiine, 271
JMP Arrhenius-Weibull analysis entry screens ...........ccoooeeercieininnnnnn 272
JMP Arrhenius-Weibull analysis results...........cccccccocoeeiiiiiiiciicenee 272



XX

Figure 8.26

Figure 8.27

Figure 8.28

Figure 8.29

Figure 8.30
Figure 8.31
Figure 8.32
Figure 8.33
Figure 8.34
Figure 8.35
Figure 8.1A
Figure 8.2A

Figure 8.3A
Figure 8.4A
Figure 8.5A
Figure 8.6A
Figure 8.7A
Figure 8.8A
Figure 8.9A
Figure 8.10A
Figure 8.11A

Figure 8.12A

Figure 8.13A
Figure 8.14A

Figure 9.1
Figure 9.2
Figure 9.3

Figure 9.4

List of Figures

JMP worksheet for Arrhenius—power relationship—

lognormal model ............c.oooiiii e, 275
JMP inputs for Arrhenius—power relationship-

lognormal model ........ccccoiiiiiiiie 276
JMP results for Arrhenius—power relationship—lognormal

MOl fit .o 276
JMP dialog to estimate survival probabilities for Arrhenius—

power relationship—lognormal model fit ..........cccooviniininnnniens 277
JMP survival analysis at possible use conditions .........cccccccevireieiiinnnnan 277
Minitab inputs for Arrhenius power law analysis ..........ccccccoooiiinninn, 278
Minitab plots for Arrhenius power law analysis...........ccccoeeeiiiiiieinienne, 278
Minitab results of accelerated life-test analysis ...........ccccoeeeviiiininicnnnn, 279
Minitab results of accelerated life-test predictions..........c.cccocoeeciuiiicnaes 279
Minitab input box for accelerated life-test prediction..........ccccceceeeerenenne 280
JMP inputs for analysis of the data in Table 8.2............ccccooevieiiininnnne 286
Analysis results for the data in Table 8.2 (MLEs assuming

€qUAL SIOPES) ... e 286
Excel spreadsheet for calculating MLEs of individual cells....................... 287
Excel spreadsheet for calculating MLEs assuming a common shape.......288
Using Goal Seek confidence bound calculations..........cccoeveiiiiinnnncae. 289
Solver example for confidence limit calculations..........cccccccceveiirincnnnns 290
Excel spreadsheet for calculating MLEs of individual cells....................... 291
Excel spreadsheet for calculating MLEs of same-sigma cells.................... 292
Spreadsheet confidence bound calculation for common sigma................. 292
Solver screen for confidence bound calculation..........ccccccceeviviiiiiinnnnns 293
Excel spreadsheet fit for Arrhenius—Weibull model............cccccccccevinniins 293
Spreadsheet calculation of Arrhenius—power relationship

model parameter esStimates .........cccceueueururieieieieiririeieceeeee e 294
Spreadsheet for calculating use CDFs and confidence bounds................. 295
Goal Seek and Solver inputs for calculating profile

likelihood MItS......cocviviiiiiiiiiiciiiic 296
Arrhenius step stress data schematic ..o, 302
Plot of step stress data for AH = 0.5, 0.86, and 1.0..........cccceerrviirniininnnnnn. 303

Spreadsheet for calculating step stress interval widths under
Arrhenius acceleration...........oooviiiiiieiiiiiii e 304

Spreadsheet for calculating step stress Arrhenius lognormal MLEs........ 305



List of Figures

Figure 9.5

Figure 9.6

Figure 9.7

Figure 9.8

Figure 9.9

Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13
Figure 9.14
Figure 9.15
Figure 9.16
Figure 9.17
Figure 9.18
Figure 9.19
Figure 9.20
Figure 9.21
Figure 9.22
Figure 9.23
Figure 9.24
Figure 9.25
Figure 9.26

Figure 9.27
Figure 9.1A
Figure 9.2A
Figure 9.3A
Figure 9.4A

Figure 9.5A
Figure 9.6A
Figure 9.7A

xXi
Spreadsheet for calculating step stress Arrhenius/power law
WEeIDULL MILES........coiiiiiiiiiiiiiiicicicee e 307
Degradation data extrapolation to failure times.............cccooooeiiiinn, 309
Projected degradation failure times, 105°C...........ccoocoeiiiiiiiiiiiiiiee, 312
Projected degradation failure times, 125°C...........cccoooiiiiiiiiiiiiice, 312
JMP spreadsheet for the plant/process field reliability data...................... 315
Fit parametric survival screen for plant/process reliability data.............. 316
JMP analysis results for plant/process reliability data............c.ccccooeennnen 317
Minitab spreadsheet for the plant/process field reliability data............... 318
Minitab regression with life data screen for plant/process data............... 318
Minitab regression with life data output for plant/process data.............. 319
Lognormal probability plot of 15 out of 100 .......c.cccceeueivieiiiiiiniiiiceine 323
Lognormal probability plot of 15 out of 18 ........cccevivviiiiiiiiiiiicicee 323
JMP data table for defect model analysis of the Example 9.5 data............. 325
JMP nonlinear analysis entry SCreen............cccoceueueuiuiuiicieiiiciccnecicieenenenens 326
JMP nonlinear analysis platform control screen............cccccceueveueiviriiicnennne. 326
MLE:s for Example 9.5 defect model data........cccoooovriiiiiiiiinie, 327
Before and after panels for P =1 for the nonlinear analysis...................... 328

Excel spreadsheet for MLE fitting of lognormal defect model data.......... 329
Defect model, multistress cell data.......c.covuveevieeiieeerieciieeceeeeeceeceee e 330
JMP MLEs for one cell Weibull defect analysis............ccocoeeiiiiiiciinnnna 332
Excel MLE fitting of defect model data inputted as truncated data.......... 334

JMP table showing defect model data inputted as

truncated data ..o 334
JMP fitting of defect model data inputted as truncated data..................... 335
JMP data table for analysis of Example 9.2 Arrhenius step stress data....336
Formula for Weibull, one cell, defect model.........c.cooveviiviiiviiciiiiieciens 337
Formula for Weibull, three cells, defect model .........cccooovvvviieiiciniiiinnn, 338
Formula for Weibull, effective delta temperature

acceleration, defect MOdel ...........oooviviiiiiieeeeeeeeeeeeeeeee e 338
EXCEL spreadsheet for the plant process field reliability data ................. 339
Solver screen for the plant/process field reliability data............c.ccccccec... 340

JMP negative log-likelihood column formula for the
lognormal defect model...........ccccooiiiiiiiiiiiiiiii 340



xxii

Figure 9.8A
Figure 9.9A
Figure 9.10A

Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8
Figure 10.9
Figure 10.10
Figure 10.11
Figure 10.12
Figure 10.13
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8
Figure 11.9

Figure 11.10
Figure 11.11
Figure 11.12
Figure 11.13
Figure 11.14
Figure 11.15
Figure 12.1

List of Figures

Formula for Weibull, one cell, defect model............cccccooiiiiiiiiiinnn 341
Formula for Weibull, three cells, defect model. ...........cccccoevviviiiinnnnnn, 341
Formula for Weibull, effective delta temperature

acceleration, defect MOl ...........ooovieiiiiiiiiicceeeeeeeeee e 342
Five-component system diagram.........ccccocovveieininiiiiciiiniceecee, 354
Reduced five-component system diagram..........cccocoeeviioiriniiiceininnnnn, 354
Fully reduced five-component system diagram ............cccccocovverriiininrcinnnns 354
Six-component system diagrams..........ccccvvviieiiiiiiiiiiiien 355
Backup COMPONENLS ......c.c.cueviiiiiiiiiiiiciciieicieieee e 355
Backup components with switch..........ccocooiiil 355
Equivalent diagram of system with working switch ... 356
Bridge structure system diagram..........cccccceviiiiiiiiniiie 357
Equivalent to bridge structure system diagram ............ccccoeeeiriinnininnne, 358
Minimal cut analysis of bridge structure diagram ..........cccccooooeeiininn, 359
Example 10.10 system diagram...........ccocoeueueiiiieieiiiiiicieicceece e 359
General reliability algorithm failure rate example...........ccccccoeeverecnnene 361
Failure rate before and after burn-in.............cccooccoeiiiiiiiiiiiiiicnes 364
Binomial distribution..........ccccceeiiiiiiiiiiiiii 374
CDF for binomial distribution. ..., 375
Binomial data analysis in JMP ... 381
JMP binomial confidence interval calculation ..........ccccoeevevienieiecieieeennne. 381
Binomial CDF 71=4, p = 0.5...c.cooiiiicc e 383
Input for Fisher’s exact in Minitab .........c.ccoooiiiiiii, 390
Output for Fisher’s exact in Minitab .........ccccccceeeiiiiinnniiinciieeene 390
Operating characteristic CUIVE .........ccccceuriiiiiiiiiiiiiiicicicccccceae 397
Operating characteristic curves for different

ACCEPLANCE NUMDETS ...ttt 397
Operating characteristic curves for different sample sizes.............cccc...... 398
AOQ curve With AOQL ......ooviiiiieeeeeeeeee ettt e 399
Spreadsheet set-up for determining acceptance sampling plan................ 401
LTPD versus sample size for different acceptance values.................c........ 404
Three-sigma control chart for binomial proportions...........cccceeevviiinnnn, 411
Cumulative count CONIOl.........cccoevvieieiiiiiiiiiiic 412

Dot plot of repair pattern..........cccocevieiiieiiiciiic e 419



List of Figures

Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 12.9
Figure 12.10
Figure 12.11
Figure 12.12
Figure 12.13

Figure 12.14
Figure 12.15
Figure 12.16
Figure 12.17
Figure 12.18
Figure 12.19
Figure 12.20
Figure 12.21
Figure 12.22
Figure 12.23
Figure 12.24

Figure 12.25
Figure 12.26

Figure 12.27
Figure 12.28
Figure 12.29
Figure 12.30
Figure 12.31

xxiii
Cumulative Plot ..., 420
Interarrival times versus system age ............ccocoeeveieerueieiieccieeiccee e, 421
Recurrence rate versus System age .........c.coceceeveiereieieieieieieieceeeeee 421
Lognormal probability plot..........ccccouoiiiiiiii e, 422
CDF model fit versus observed...........cccooviiiiiiiniiiiiiiiiiiiieene 423
Event plot of repair histories for five systems ............ccccccceiiiiiiiinnnnns 425
Repair history (cumulative plots) for five systems .........cccccoveerieeicnnen, 426
Repair history for two Systems..........cccceveiiiiiiiiiiiiiiiiiiiiiicccns 426
Repair history for five SyStems .........cccccvuviiiiiiciiiiiiiiiiiiiiciccice 427
Mean cumulative repair function ..o, 428
Spreadsheet method for estimating the MCF ..., 429
Spreadsheet method for estimating the MCF and naive
confidence HMitS........ccceuiiiiiiiiiiiiiiiiii 431
MCF and 95% naive confidence limits...........cccccovviiiiiniiiniiiiiiiina, 431
JMP data table for recurrence analysis.........cccccccocucueccueciccceeccieeenenen 432
JMP dialog box for recurrence analysis ..........ccccccceeiieiiicicniiicicicicee, 432
JMP output for recurrence analysis ..........cccocoeeiiiiimeieiiiicieccceee 433
Minitab data worksheet for repairable system analysis ............ccccoceveuinens 434
Minitab dialog boxes for repairable system analysis............ccccceeueurrirnnnns 434
Minitab output for analysis of five repairable systems...............cc............. 435
MCF comparison between East and West Coast locations......................... 437
MCFs for East and West Coast locations............cccooveueiiiicceininiicinicnne, 437
MCEF differences between East and West Coast locations................cc....... 438
JMP plot of MCF difference between East and West
Coast 10CAtIONS ......cvcveviiiiiicic 439
Partial spreadsheet for time to kth repair ..o, 443
Gamma distribution CDF for time to kth repair,
MTBF = 1000 hoUTS .....c.oviviiiiiiiiiiiiciiiccc e 444
Spreadsheet example for spare parts determination............ccccceeeueveurunnnne 445
Alternating renewal Process...........ccceiiiiiiiiiiiiiccce 453
Markov two-state model...........ccccoviiiiiiiiiiiiii 454
Partial spreadsheet for 10 HPP systems with MTBF =1000....................... 456
Cumulative plots of 10 simulated HPP systems with MTBF = 1000
(censored at 10,000 NOUTS) ....c.cvveuirreirieieieieieieieteteteteetete sttt eeeens 457



XXiv

Figure 12.32

Figure 12.33

Figure 12.1A
Figure 12.2A
Figure 12.3A
Figure 12.4A
Figure 13.1
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 13.8
Figure 13.9
Figure 13.10
Figure 13.11
Figure 13.12
Figure 13.13
Figure 13.14
Figure 13.15
Figure 13.16
Figure 13.17
Figure 13.18
Figure 13.19
Figure 13.20

Figure 13.21
Figure 13.22
Figure 13.23
Figure 14.1

List of Figures
Superposition of renewal processes for system of
three coOMPONENts ..., 458
System of ¢ components viewed as a superposition of
FENEWAl PIOCESSES .....cuviiiiiiiiiccicie et 459
Spreadsheet setup for variance estimates...........cccccceriiiiiiiiiiiinnnns 463
Calculations for variance estimates..............cococeueioioiceieiiiicceecce, 464
MCEF variance, standard error, and confidence limits........ccccceeevviieneeennns 465
Possible outcomes for time differences in renewal estimation.................. 467
Dot plot of repair pattern...........ccooeiioiiiiiiiiic e, 472
Cumulative plot (improving trend).............ccooeieioiiiiiie, 472
Interarrival times versus system age (improving trend) ..........ccccceoeeucee. 473
Dot plot of repair pattern...........ccooeiioiiiiiiiiic e, 473
Cumulative plot (degrading trend) ............coooiiiniiiiiiiiiiie, 473
Interarrival times versus system age (degrading trend)...........cc.ccccco.ce.... 474
Power law model rectification ..o 475
Exponential model rectification ...........cccoooiiin, 476
Exponential model fit.........ccoooiiiiiiii e 476
Average repair rates versus time (renewal data)...........ccccevviiiiiiinnns 479
Average repair rates versus time (iImproving).........cc.cocoeeeeeeiiceenecnnnn, 479
Average repair rates versus time (degrading) ..........ccccooeriiiiiiiiinnn, 479
Cumulative plot of repair data..........ccooeeeiiiiiiii, 485
Interarrival times versus system age ............ccocoeueveieireieiiiccieeice e, 486
Cumulative plot of MLE model fit to system data...........cccocoooeiiiiininn, 495
Spreadsheet setup for applying SOLVER routine (MLE parameters)....... 495
Spreadsheet showing SOLVER results .........ccccocoooiiiiiiiiriiiiee, 495
Cumulative plot of MLE model fit to system data...........cccocoooeiiiiininn, 496
Cumulative plot of HPP and NHPP models fit to system data.................. 499
Duane plot of cumulative MTBF versus cumulative time with least
SQUATES LINE.....ouiiiiiiicii e 503
Duane plot with modified MLE lines...........ccccooouoioimniniiiiciecceeee, 509
Duane plot of software cumulative MTBEF estimates.............ccccccceiiunanns 511
Excel trendline dialog boX..........cccceuiiiiiiiiiiiicc e 512

Bayesian gamma prior and posterior from Example 14.1............cccccceueenne 522



List of Figures

Figure 14.2
Figure 14.3
Figure 14.4
Figure 14.5
Figure 14.6

XXV
Calling up Goal Seek..........cooviiiiiiiiiiic e 525
Using Goal Seek to find the gamma prior a parameter a .......................... 525
Calculating the gamma prior b parameter b...........cccoovveereieniiiccieininnnn, 526
Bayesian beta prior and posterior from Example 14.6...........ccccccceuvuvininnnns 531
Prior and posterior densities from Example 14.7............ccccooooiiiiinninnne, 535



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

List of Tables

Table 1.1
Table 1.2
Table 1.3
Table 1.4
Table 1.5
Table 3.1
Table 3.2
Table 3.3
Table 3.4

Table 3.5

Table 3.6
Table 3.7
Table 3.1A

Table 3.2A

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.1A

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 6.1
Table 6.2

Sample Data on 100 FUSES ........ccccceuiuiiiiiiiiiiiiiiiiccicccceccccecccceene 3
Frequency Table of Fuse Data .........c.cccccocuiiiiiiiiiiiiiiicceccccccccceennes 3
Cumulative Frequency Function for Fuse Data ........c..cccccooeiiiiiiniiiniinne 5
Possible Outcomes for DIIVeS .......c.ccccueeuieeeieicieceeieecceeceeeeeieieenenes 13
Properties of Distributions Used in Reliability Studies............cccccocoeeenin.. 19
Equivalent Failure Rates in Different Units...........cccooooveiiiiinnn, 48
Sample Data of Equivalent Month of Memory Chip Failure........................ 50
Frequency Table of Memory Chip Data ........c.cccccoeeeiiiiiiiiiiccicceenns 50
Chi-Square Goodness-of-Fit Worksheet for the

Memory Chip Data.........cccoeueieiiiiiic 61
Spreadsheet Functions for k-Factors for Confidence Limits on

the Exponential Failure Rate...........cccccccooiiiiiiiiiiiccccccccenes 69
Exponential Zero Failure Estimates.........c.ccccccceiiiiiiiiiiiiiiccccccnenes 70
Summary of Exponential Distribution Properties ...........ccccccccoceiiiinnnes 78
Percentage Points for Modified Kolmogorov D*-Statistics for

F(£) KKNOWT ottt e 83
Percentage Points for Modified Kolmogorov D*-Statistics

(Mean UNKNOWI) .....oieuiieeiieiirieiertetniet ettt et ettt sttt sbeea 84
Solution to Example 4.1 ........cccccoiiiiiiiiiiiiiiiccce 89
Weibull Distribution Properties............cccccooviiiiiiiiiiiiiiiicccccccnns 92
Weibull Formulas SUMMATIY........cccooiiiiiiiiiiiiiiccccccccines 94
32 Field Failure Times from 101 Burned-In Components..............ccccceuevuu. 109
Adjustment Constants for L for Computing Likelihood

Profile Intervals.........cccoiiiiiiiiiiiii s 117
Standard Normal CDF Values ..........cccccccoviiiiniiiiiiiiiccccccce 126
Example 5.3 Worksheet ..........cccccoviiiiiiiiiiiiiicccce 133
Results of Simulation Example (1000 Iterations per Cp)....cocevvveveiincenn. 135
Lognormal Formulas and Properties ............ccccoeeeeennieiinniniceeeene 139
Life Test Failure Data (20 Units on Test) .....cccccevveererininenenieieieseieieeenes 150
LINEST OUtpuL....ccooviiiiiiiciiiccc s 157

Failure Times of 20 Components under Normal Operating
Conditions (Time in HOUTS) ...c.coeovreviriiniiiniiincinec e 164



xxviii

Table 6.3

Table 6.4

Table 6.5

Table 6.6
Table 6.7
Table 6.8
Table 6.9
Table 6.10
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 7.5
Table 7.6
Table 7.7

Table 7.8

Table 7.9

Table 7.10
Table 7.11
Table 7.12
Table 7.13

Table 7.14
Table 7.15
Table 7.16
Table 7.17
Table 7.18

Table 7.19

List of Tables

Probability Plot Values, Exponential Distribution, Exact

TiMES (1= 20) ..veveuiieeereieeeieiet ettt ettt 165
90% Confidence Interval Estimates, Exponential Distribution,

Exact Failure Times (1 = 20)......ccceeeerieireinieinicireirieinieeeieeee e 169
Probability Plotting Values, Exponential Distribution,

Readout Data (11 = 100)........ccreirieririeninienieeneereet ettt et 171
Readout Data (1 = 100), 90% Pointwise Confidence Limits .........c.ccccceueeu.. 173
Weibull Example, Exact Times (11 = 20) ........ccccccoiiiiiiiiiiiiiccccaes 176
Lognormal Example, Exact Times (11 = 600).........ccccoeeuniiiiniiiiiiciene, 183
Percentage Points for Modified Kolmogorov D*-Statistics........c.ccccoccuc..... 185
Failure Times with EDF and 90% Confidence Band Limits ........c..c.cc.c...... 186
Product Limit Estimated Survival Probabilities .........c..cccoceevereencneenee 195
Variance and Standard Error Estimates.........cccccccecviiciiinncinncciene 196
Two-Sided 95% Confidence Limits.........ccceveereeneinicineiineincenceeeneeienes 198
JMP Data Table for Exact Data Example ...........cccocooooiiiiiiiiiie 199
Minitab Worksheet for Exact Data Example..........ccccocoooioiiiiiiiiniinne, 201
Summary of Readout (Interval) Data ..........ccccccoviiiiiiiiiiiiiiiis 204
Joint Risk and Product Limit Estimates for Readout (Interval)

Data with Losses Occurring Randomly ...........c.coooiiiiiiiie, 205
JMP Data Tables for Readout Example, Censoring Occurring

at Beginning and at End of Interval...........cccccoooiiiiiiis 207
Table of CDF Estimates for Readout Example, Random

Censoring within Intervals..........ccccccceeeiiiiiiiiieeeceeeeeeeeee 208
Survival Data from Six-Week Reliability Study ...........cccooreiiiiiinnnn, 210
Life Table (Actuarial) Estimation of Failure Probabilities .............cccuenuene. 210
Table of Stress Results for 20 Units.........cccveeveineineninenincnecneeneeseeenes 214
Partial Table of Ordered Ages of Entry, Failure, or Censored to

Determine Number at RisK .......c.cccovreirinnicinnecinecnnecereneeceee 215
Table of Observed Times to Failure ..........coccveoivicinecininniniicccceeee 217
Analysis of Left-Censored Data .........ccccceueueieeiniiciniiciccccceeeeee 218
Analysis of Left-Censored Data ...........cccoveiiiiiiiiiiiniiciccees 218
Disk DIive Data......cocovueiriiiriieiiieiiieinietneenetneeteieteve et 221
Percentiles of Distribution of Kolmogorov Do Statistes ..o 225

JN
Critical Values of dy ,_, for H-W Confidence Bands
When Ky (Fax) < O75 ittt ane 225

max



List of Tables

Table 7.20
Table 7.21

Table 7.22
Table 7.23
Table 7.24
Table 7.25

Table 7.26
Table 7.27
Table 7.1A

Table 7.2A
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 8.6
Table 8.7
Table 8.1A
Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 9.5
Table 11.1
Table 11.2
Table 11.3
Table 11.4
Table 11.5
Table 11.6
Table 11.7
Table 11.8

xxix
Failure and Censor Times for Primary Mechanism (N =50)..........ccccco.... 226
Hall-Wellner 90% Confidence Bands—Untransformed and
with Log and Logit Transformations............cccceeeeuiieiiceiniciiicicece 228
Cumulative Hazard Calculation ...........cccccceeeiiiiiiiiics 232
Cumulative Hazard Calculation for Exact Failure Times Example.......... 233
Multicensored Results............cccooviiiiiiiiiiiiiiiiice 234
Possible Outcomes for 1 = 5, FSFSF, Assuming Possible
Eventual Suspension Failures...........ccccccoceciiiiiiniiiiiiinnicceccccceeeeeae 234
Mean Order Numbers and Median Ranks..........cccooooeviinininninnn, 234
Mean Order Numbers Using Johnson Formula...........c.ccccccccoviiiinnnns 235
Original Data, CDF Estimate, Standard Error,
and Hall-Wellner Terms..........cccccoveuiiviinininiiiiiiniiccencceeecceecnne 236
One Bootstrap Run of Data in Table 7Z1A ........cccccccoiiiniiiiiiiiiiene 236
General Linear Acceleration Relationships..........cccccccevviiiiiiniiiiinnnns 242
Weibull Temperature—Stress Failure Data.........ccccoevvveveieieiicciiicccn 246
Weibull Least Square Parameter Estimates.............cccoeiiiiiiiiiiinnans 247
Experimental Design MatriX........ccoovoiimiiiiiiiiiiccccc e 261
Lognormal Stress-Failure Data...........cccooeuiiiiiiiiiiiie 261
Lognormal Stress Cell Parameter Estimates ..........cccocooiiiiinn, 263
Summary of Arrhenius—Weibull Data Analysis.........c.ccccooviiiiiiiiniicinnns 273
Spreadsheet TEeMPlates...........cccceeueuiueieieiriieieieieeeeceeee e 297
Arrhenius Step Stress Example ........ccccccoeiiiiiiiiiiiiiiicecceeene 303
Degradation Data..........cccccceiieiiiiiiiiiiiiiicceceeecceeeeee e 311
Summary of Shipment and Failure Data ...........cccocoooviiiiciiiiiinnn, 314
Negative Log-Likelihood Values for Different Models..............cccccceuvuenns 332
Step Stress Data for Problem 9.1 .........cccoovoiiiiiiie, 343
Binomial Cumulative Distribution Function: n =4, p=.5......ccccccccceeiiine 382
Cumulative Probability..........c.cooooiiiiii e, 384
Contingency Table 1 for Fisher’s Exact Test .........c.ccoooooiiiiiiiiicns, 388
Contingency Table 2 for Fisher’s Exact Test ..........ccccooeeiiiiiiiiiiine, 388
JMP Data Table......cccoceeiiiiiiiiiisieeeeee ettt 389
Fisher’s Exact Test ReSULLS .....cccoviiiiiiiiiiiiiiiiiicccccce 389
Matrix of Possible ChoiCes...........cocvuviiiimiiiiiiiiiiiiiccc e 394

Binomial Probability Calculations for Sample of Size
=50 and P =0.02.....ccccouimiiimiiiiini e 396



XXX

Table 11.9

Table 11.10
Table 11.11
Table 11.12
Table 11.13
Table 12.1
Table 12.2
Table 12.3
Table 12.4
Table 12.5

Table 12.6

Table 12.7

Table 12.8
Table 12.9
Table 12.10
Table 12.1A
Table 13.1
Table 13.2

Table 13.3
Table 13.4
Table 13.5
Table 13.6
Table 13.7

Table 13.8

Table 13.9
Table 14.1
Table 14.2

List of Tables

Probability of Three or Less Failures in Sample of Size n = 50

for Various Lot Percent Defective Values..........ccccccevvviiiiiiiiiniiins 396
LTPD Sampling PLans .........ccccooiiioiiinieece e 403
LTPD Evaluation ........cccccouviiiiiiiiiiiiiiiiiiciicicicce s 405
Spreadsheet for Nearly Minimum Sampling Plans..........cccccoooiiiininn, 407
Minimum Sample Sizes for Zero Rejects at Various Probabilities............ 413
Repair Age Histories (HOUIS) .......cccoooiiuriiiiiiiiic e 425
Repair Histories for Four Machines..............ccooooii, 429
Repair Histories for Services at Two Different Data Centers.................... 436
Repair Histories for Two Locations..............ccoceueiiiiniiiiiiiccce, 439
One-Sided Lower Confidence Bound Factors for the MTBF
(Failure-Censored Data) ........c.ccveereirieninieninienieenieeneeneeseee et 447
One-Sided Lower Confidence Bound Factors for the MTBF
(Time-Censored Data)........ccveeereirieirieineinenieeneeseeesee ettt 448
One-Sided Upper Confidence Bound Factors for the MTBF

(Failure of Time-Censored Data) .........ccccoverirerieeneineeneineenieencenieeenene 448
Test Length Guide ......c.cooviiiii e 449
Failure Times in HOUTS ........ccccovviiiiiiiiiiiiiiiiiciiccccccccc 451
Different Availability Levels........ccccocooriiiie, 454
Repair Histories for Five Systems .........cccccoooiiiiiiiiiiice, 463
Probability of R Reversals by Chance for n=4 ..o, 484
Critical Values of R,, % of the Number of Reversals for the

Reverse Arrangement Test ...........cccooeiiiiiiiiiiiiii, 484
Steps for Fisher’s Composite Test ........cccooioiiiiiiiiiicicce, 487
Critical Values for Goodness-of-Fit Test ...........cccccccoviiiiiiiiiiiiiins 492
Repair History in Hours (Simulated Data: 2 = 0.25 and b = 0.50)............... 492
Transformed Repair Times.........ccccoovoiiiiiiiiiiiiic e 494
R; and R, Values to Multiply MTBF Estimate and Obtain

Confidence Bounds (Test Ends at rth Fail) ......cccoccceveeininncniincinicinecee 506
P, and P, Values to Multiply MTBF Estimate and Obtain

Confidence Bounds (Test Ends at Time T) .......cccoueeevueeerenveneeineeniecnienennee 507
Results of Software Evaluation Testing...........ccccooeieiiiiiciiiiiece, 510
Bayesian Paradigm: Advantages and Disadvantages..............cccccoeceueeence, 523
Beta Distribution Parameters...........cccccoovieiiiiiiiniiiiiiiiiiicccns 531



List of Examples

Example 1.1
Example 1.2
Example 1.3
Example 1.4
Example 1.5
Example 1.6
Example 1.7
Example 1.8
Example 1.9
Example 1.10
Example 2.1
Example 2.2
Example 2.3
Example 2.4
Example 2.5
Example 2.6
Example 2.7
Example 2.8
Example 2.9
Example 3.1
Example 3.2
Example 3.3
Example 3.4
Example 3.5
Example 3.6
Example 3.7
Example 3.8
Example 3.9
Example 3.10

Automobile Fuse Data........ccccoveeiiniiieiiiiniiccircceecteeee s 1
Conditional Probabilities.........cccccccvveeininiereiininiccirreceeeeceeeeeeenes 12
Total Probabilities ........cccoeeueeiririecininieiciireccirecee s 14
Bayes” RULE .......couiiiiciiiicccee s 14
Bayes’ Rule Applied to Misclassified Items ...........ccccooeveiviininiiiineninnns 15
Probability Expression for CDF ...........ccccoooiiiiiiiiieccecees 16
The Uniform Distribution........ccccevveirieirieineinierereeeeeeeseeeseee e 20
The Beta DistribUtion ........ccccvviecininiecininieccincctneeeeeeeeeeeeeeees 21
Data SIMUIAtioN......c.c.euiviririeiiirieicciccecc e 24
Data SIMUIAtiON......c.c.euivirieieiiiriicciecrece e 25
Life Distribution Calculations ............cccceveeecinnecoinnecinecceeeeeeene 30
System Reliability ........cccccoceiiiiiiiiiiiiicicccccccceeennes 32
Failure Rate Calculations. ........cccivivieucininieiciiininiccireceeeeceeeeneenees 35
Estimating the CDF, Reliability Function, and AFR..........ccccccccoovninines 37
Residual MTTEF(Tj)) Calculation.........coeceveeerieinieninieninieineeeeeeieseee e 39
Multicensored Experimental Data .........ccccoovevriiiiniiceiiiiicneccees 44
Multicensored Field Failure Data.........cccocoeueeeinniciinnecinneccneccne 44
Left-Truncated Data.........ccceeerriecinnieicinineccineectseeeeeee s 44
Left- and Right-Censored Data............ccccoeueviiiiiiiiiicicicccces 44
Exponential Probabilities............cccccoooiiiiiiiiiiiiccecccce 48
Constant Failure Rate.........c.ccoveeinniecinnieiccineccnneeeeseeeeeeeneeees 49
Exponential Data.........ccooveviiiiiiiiieiic 49
Mean Time t0 Fail ......cccoooiiiniiiiiccicccccece s 52
Piecewise Exponential Approximation ..........ccccccevvvveerniniicnniiiiccenennns 54
Failure Rate and MTTF ......cccooviiiiiieciirccreeeeeeeeeeeee s 57
Chi-Square Goodness Of Fit.........cccccccciiiiiiiiiiiiiiicccccenes 61
Goodness-of-Fit Tests Based on EDF Statistics.......ccocoveeinvecicininiencnne. 64
Confidence Bounds fOr A ........occininieieinineieiiinrccineeeeseeeeeeeneees 69
Zero Failures EStimation........c.cocccccevveeinineccinniccinecceeceeeeees 70

xxxi



XXX11

Example 3.11
Example 3.12
Example 3.13
Example 3.14
Example 3.15
Example 3.16
Example 3.17
Example 3.18
Example 3.1A

Example 3.2A
Example 3.3A
Example 3.4A
Example 4.1
Example 4.2
Example 4.3
Example 4.4
Example 4.5
Example 4.6
Example 5.1
Example 5.2
Example 5.3
Example 5.4
Example 5.5
Example 5.6

Example 5.7

Example 5.8
Example 6.1
Example 6.2
Example 6.3
Example 6.4
Example 6.5

List of Examples

Confidence Bounds on MTTF ........cccoeoiniiiniiniinincncneeeeeseeee 70
Choosing Sample SiZes .........c.coieieiiiiciiiiiice s 72
Choosing the Test TIMES........cccccceiiiiiiiiiiiiiiiies 73
Choosing Pass/Fail Criteria .........cccocoeiiiiiiiiiiiiiiciccccccccas 73
Minimum Sample SiZes ..........cccoriieiiiiiiiiie 74
Minimum Test TIMES ....cc.ccveiriririniierireecteecceeeeee e 74
Simulating Exponential Data ..........c.cooooiiiiiii 76
Fitting a Two-Parameter Exponential Model to Data............cccccccceueunees 76
Determining the Sample Size Using Goal Seek

(Example 3.12 revisited) ..o 79
Choosing the Test TIMES.........cccccciiiiiiiiiiiiiice 80
Choosing Pass/Fail Criteria ........ccccoooiiiiiiiiiiiiiiiiciccccccceas 81
KIS TOSE ettt e 82
Weibull Properties ... 89
Weibull Closure Property ... 93
Rayleigh Radial EITor........cooooviiiiiiiiicecc s 97
MLE for the Exponential............cccooeuiiiiiiiiic 99
Weibull MLE Parameter EStimation ..........cccoecevernernenncnnenecnieeen 102
Weibull MLE Parameter Estimation: Left-Truncated Data.................... 109
Normal Distribution Calculations..........c.coeoeveereinennennininenecneeene 125
Root-Mean—Square Example ..........cccooooieuiiiiiinieiiiiceeccec 128
Censored Normal Data .......cocccevveireireniiineieceeeeeeeeee e 132
Simulation of C,, DiStribution ..........cccceeceveeneinernennenineeeeeeeee 134
Lognormal Properties..........c.oooceeiiiciiiiiiicecccccecc e 137
Lognormal MLEs and Likelihood Profile Confidence

Limits: Exact Times of Failure.........cccocooeiviininiinincceeceeee 142
Lognormal MLEs and Likelihood Profile Confidence

Limits: Interval Data.......c.cccceeerieineinieiniecnencceseeseeeese e 144
Lognormal Calculations ............ccoeeeiiiiiiiiicccec 147
Linear EQUAtioNS .........ccciiiiiiiii 154
Regression Line.........ccooiiiiiiiiiiiiccccc s 156
Linear RectifiCation.........coeceveirieirieninieieiiecie ettt 160
Probability Plots for Exponential Distribution..........c.c.cccoooiiiiinnii 164

Weibull Probability Plotting: Exact Times ............ccccooeeiiiiiiiiiicicenes 176



List of Examples

Example 6.6
Example 6.7
Example 6.1A

Example 6.2A

Example 7.1

Example 7.2
Example 7.3
Example 7.4
Example 7.5
Example 7.6
Example 7.7
Example 7.1A
Example 8.1
Example 8.2
Example 8.3
Example 8.4
Example 8.5
Example 8.6
Example 8.7
Example 8.8

Example 8.9

Example 8.10
Example 8.11
Example 8.1A

Example 8.2A

Example 9.1
Example 9.2
Example 9.3
Example 9.4

xxxiii
Lognormal Probability Plot.........c.ccccouoiiiiiiiccc 182
EDF and Simultaneous Confidence Bounds Calculation....................... 185
Order Statistics for Exponential Distribution..........ccccooeviiiiiiinnnnn 189
Confidence Limits on Order Statistics for Exponential
DASEIIDULION. ... 190
Kaplan-Meier Product Limit Estimates for Exact Failure
Time Data......cooeveiiee e 194
Actuarial Life Table Estimation ..........ccccccovvviiiininiininiiiii 209
Left-Truncated Data..........cccccovuriiiiiiiiiniiiiiiiiiiiccs 214
Left-Censored Data..........cccoviuiiiiieiieiiciiiccccec s 217
Current Status Data .........ccccoeveiiiiiiiiiii 221
Estimating F(f) with H-W Confidence Bounds...........ccccccceviiiinnnnns 226
Cumulative Hazard Plotting ..o 232
Bootstrap Confidence Interval Calculation...........cccocovvvviiniiniinnnnnn 235
Acceleration Factors for Exponential Distribution ...........cccccocooeeeiii 244
Weibull Analysis of High-Stress Failure Data...........cccccccoooiiiiiiinans 245
Weibull Likelihood Equal-Shapes Test...........ccccccoiiiiiiiiiiiiiicnns 257
Confidence-Bound Calculation for a Common Weibull Slope ............. 259
Lognormal Stress-Failure Data...........cccccceeiiiiiiiiiiiiiiiiiiiiccene 260
Calculation of Acceleration Factor Given AH ..........cccoocovviiinininicnnnn 268
Estimating AH from Two Temperature Stress Cells of Data.................. 268
Arrhenius Model Analysis Using Both Regression
and MLE Methods .........cccooiiiiiiiiccs 269
MLE Analysis of the Six-Stress Cells Given in Example 8.5.................. 274
Calculating Needed Burn-In Time..........cccccceueuiieicininiiiiiiniceens 282
Life Test Experimental Design.........cccccovviiviiiiiiiiiiiiccccs 284
Weibull Likelihood Equal-Shapes Test...........ccccoouoiiiiiiiiiiiii 287
Confidence Bound Calculation for a Common Weibull Slope.............. 288
An Arrhenius Step Stress Experiment..........ccccccoeeeviiiinniiiiennns 302
An Arrhenius, Power Law Step Stress Experiment..........cccccocvvviiunnne 306
Degradation Data ANalysis .........cccooeiiiiiiiiiicic 311

Lifetime Regression Used to Estimate the Reliability
Effects of Vintage and Plant of Manufacture and
Their SigNificance ..........cccceiiiiiiiiice 314



XXX1V

Example 9.5
Example 9.6
Example 9.7
Example 9.8
Example 9.1A
Example 10.1
Example 10.2
Example 10.3
Example 10.4
Example 10.5
Example 10.6

Example 10.7
Example 10.8
Example 10.9
Example 10.10
Example 10.11

Example 10.12
Example 10.13
Example 10.14
Example 10.15
Example 11.1
Example 11.2
Example 11.3
Example 11.4
Example 11.5
Example 11.6
Example 11.7
Example 11.8
Example 11.9
Example 11.10

List of Examples
Defect Model........ocoiiiiiiiiiiicicccce e 322
Maximum Likelihood Estimation for the Defect Model ....................... 324
Multistress Defect Model Example .........cccocoooriiiiiiiiiiicnc 329
Defect Model Data Treated as Truncated Data..........cccccoovevririiiinnnnnn 333
JMP’s Nonlinear Modeling Platform ... 335
Series SYSTEMS .....ccccviviviiiiiiiiiiic 346
Bottom-Up Calculations .........cccceeeurieiiieiiiniiiiceececceeeeeeeeeeas 347
Redundancy Improvement...........ccovueuieinininininiciieeecc s 348
Maximizing Reliability Using Redundancy ...........cccocoeevvireiiinnnnan 349
Standby Model ... 351
Expected Lifetime of k-Out-of-n System of Independent
Exponentially Distributed Components ...........c.cccooreeniiiciiiinnnn 353
Complex System Reduction (Five Components) .........c.cccoevrueieiiirunnnne 354
Complex System Reduction (Six Components)..........cccceeeerurueieinirunnnnn 354
Minimal Path ANalysis .......ccccooiiiiiiiiiii 357
Minimal Cut Set ANalysis.......cccooieieieiiiiiiiiiic e 358
Minimal Path Analysis When “k-Out-of n”
BlOCKS ATE PreSent .....c.ccovuiuiuiiririiieiiieiciciieieicce e 359
General Reliability Algorithm .........ccccccoeeiiiiiiiicceee 361
Burn-In Model ..o 363
Black Box Testing L.........cccccociiiiiiiiiiiicccciccccccccccnes 366
Black Box Testing IL........cccccceeiiiiiiiiiriiieceeeecieeeeeeeeeeeeeeeeeeeeeenes 366
Binomial Calculations.........cccoeviieiiiiiiiiiiiniiiiiiiccs 373
Binomial pmf......ccccoiiiiiiiii 374
Shortcomings of the Normal Approximation...........ccccceeeuvviveueennnnns 379
Score Confidence Intervals..........cccoceeviiviiiiiiiiiiiiis 380
Simulation of System Reliability...........ccccccceiiiiiiiiiiiiiiciicns 383
Geometric Distribution........cccoeeeveeiiiiiiiccc 384
Negative Binomial Distribution............ccoooiiiii 385
Hypergeometric Distribution ... 386
Poisson Distribution .........cccceiiiiiiiiiiiic 391

Confidence Limits for Expected Value of a
Poisson Distribution ..........ccceueiiiieiiiiic 393



List of Examples

Example 11.11
Example 11.12
Example 11.13
Example 12.1
Example 12.2
Example 12.3
Example 12.4

Example 12.5
Example 12.6
Example 12.7
Example 12.8
Example 12.9
Example 12.10
Example 12.11
Example 12.12

Example 12.13

Example 12.14
Example 12.15

Example 12.1A
Example 12.2A

Example 13.1
Example 13.2
Example 13.3
Example 13.4
Example 13.5
Example 13.6
Example 13.7
Example 13.8
Example 13.9
Example 13.10
Example 13.11

XXXV
Poisson Confidence Limits .........cccccceueiiiiiiiiiiiiiiiiiiiiiiiiccccces 393
Sampling Plan for Accelerated Stress, Weibull Distribution .................... 409
Cumulative Count Control Charts for Low PPM..........ccccccovniniiinnnnnn 411
The Mean Cumulative FUNCtion..........cccoovvviviiiiiiiics 427
Naive Confidence Limits for the MCF ...........cccoooovniiiiinin 430
Correct Approximate Confidence Limits for the MCF........................... 430
Comparison of MCFs for Servers at Two Different
Datacenters.........ccceueeieiiieieieeieece e 436
HPP Probability EStimates ...........ccccceeieiiiniiiiiiiiiiicccececceeens 441
HPP Estimates in Terms of the MTBE............ccccccovviinni 442
Time to kth Repair for HPP Process........cccccoeiiiiiiiiiiiiiiicccccenes 443
Spare Parts for an HPP........ccccocoiiiiiiiiicccccccceeeae 444
Memoryless Property of the Poisson Process..........ccccccceuvuvviiiiicnnnnns 445
Confidence Bounds on the Population MTBF for an HPP ........................ 449
Test Length Guide for an HPP .........ccccooiiiiiiiiiiicccccee 449
Likelihood Ratio Test for Comparison of Two

Exponential MTTFs (Nonrepairable Components)............ccccceueueueunnnne 451
Likelihood Ratio Test for Comparison of Two HPP

MTBEFs (Repairable SYStems) ..........ccceeueueieieiriiiiiiieiciceicceeeeceeeeeens 452
Simulation of 10 Time-Censored HPPs..........ccccooovviviiniiniiinniiccnnn 456
Renewal Data Calculation of CDF.........ccccocooiriiniinicecce 461
The CoX F-Test ..o 466
Renewal Data Calculation of CDF.........cccccccoviiiiiiiiiciccn 468
Laplace Test for Trend versus a Poisson Process...........cccccoviiiiiinnans 481
Reverse Arrangement Test..........ccccoeveviiiiiiiiiiiiiiiii, 485
Fisher’s Composite Test.........cccovuieieiiiniiiiiccecce e 487
Nonhomogeneous Poisson Process.............ccooveueieiiceieiniicciccccee 488
NHPP with Power Relation Intensity ............ccccccceeeenieivvniiinnnns 491
NHPP with Exponential Intensity Model.............cccooiiiiiinnn 498
Duane Reliability Growth Estimation ............ccccooeeiiiiniiiiicice 502
Confidence Bounds and Modified MLEs............cccccccoeiiiiiiiiiiiinans 505
Power Relationship Model Reliability Growth .........cccccooiiiiin 508
Software Reliability Improvement............ccccoecueeenniiininiiiieens 510

Simulating an NHPP with Power Relation Intensity ............ccccccceeeee. 513



XXXV

Example 13.12

Example 14.1
Example 14.2
Example 14.3
Example 14.4
Example 14.5

Example 14.6
Example 14.7
Example 14.8

Example 14.9

List of Examples
Simulating the First Six Repair Times for NHPP with
Specified Power Relation Model............ccooouoiiiiii 514
Lower MTBF Bounds Using a Bayesian Gamma Prior .............cccoc...... 521
Calculating Prior Parameters Using the 50/95 Method.......................... 525
Calculating a Bayesian Test Time .........cccocooooiiiiiiiiiic 526
A Minimum Bayesian Testing Time Calculation.............cccccocoeverninnin 527
Using Engineering Judgment to Arrive at Bayesian
Prior Parameters..........cccooiiiiiiiiciiicicccc 528
MTBF Estimate after Test Is RUN ... 529
Bayesian Estimation and Credibility Intervals for p.........cccccccceeeiii 530
Bayesian Estimation and Credibility Intervals for the
Lognormal T5p.....ccceuiieiiiiiiiiiiiiiiiiiiicici 532

Using an Improper Noninformative Prior for Exponential
Fail TEMES ... s 534



1

Basic Descriptive Statistics

One of the most useful skills that a reliability specialist can develop is the ability to convert
amass (mess?) of data into a form suitable for meaningful analysis. Raw numbers by them-
selves are not useful; what is needed is a distillation of the data into information.

In this chapter, we discuss several important concepts and techniques from the field
of descriptive statistics. These methods are used to extract a relevant summary from col-
lected data. The goal is to describe and understand the random variability that exists in
all measurements of real world phenomena and experimental data. These concepts and
techniques are basic and are applied to reliability data throughout the book.

The topics we cover include populations and samples; frequency functions, histograms,
and cumulative frequency functions; the population cumulative distribution function
(CDF) and probability density function (PDF); elementary probability concepts, random
variables, population parameters, and sample estimates; theoretical population shape
models; and data simulation.

1.1 Populations and Samples

Statistics is concerned with variability, and it is a fact of nature that variation exists. No
matter how carefully a process is run, an experiment is executed, or a measurement is
taken, there will be differences in repeatability due to the inability of any individual or
system to completely control all possible influences. If the variability is excessive, the study
or process is described as lacking control. If, on the other hand, the variability appears
reasonable, we accept it and continue to operate. How do we visualize variability in order
to understand if we have a controlled situation?
Consider the following example:

EXAMPLE 1.1 AUTOMOBILE FUSE DATA

A manufacturer of automobile fuses produces lots containing 100,000 fuses rated at 5A. Thus, the
fuses are supposed to open in a circuit if the current through the fuse exceeds 5A. Since a fuse
protects other elements from possibly damaging electrical overload, it is very important that fuses
function properly. How can the manufacturer be assured that the fuses do indeed operate cor-
rectly and that there is no excessive variability?

Obviously, he cannot test all fuses to the rated limit since that act would destroy the product he
wishes to sell. However, he can sample a small quantity of fuses (say, 100 or 200) and test them to
destruction to measure the opening point of each fuse. From the sample data, he could then infer
what the behavior of the entire group would be if all fuses were tested.

In statistical terms, the entire set or collection of measurements of interest (e.g., the
blowing values of all fuses) define a population. A population is the entire set or collection
of measurements of interest.
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Note that a population may be finite, as in the case of a fuse lot, or it may be infinite, as
occurs in a manufacturing process where the population could be all product of a specific
type that has been or could ever be produced in a fabricating area.

The sample (e.g., the 100 or 200 fuses tested to destruction) is a subset of data taken from
the population. A sample is a subset of data from the population. The objective in taking a
sample is to make inferences about the population.

Note that reliability data commonly exists in one of two forms. In variables data, the
actual measurement of interest is continuous, such as time in minutes, length in inches,
or temperature in degrees Celsius. In attributes data, the measurements are quantified
into discrete categories such as pass or fail, go or no go, in spec or out of spec, small or
medium or large, and so on. Attributes data includes counts, proportions, and percent-
ages. Although both types of data are discussed in this text, applications and analysis of
attributes data is treated extensively in Chapter 11.

In the fuse data example, we record variables data, but we could also transform the same
results into attributes data by stating whether a fuse opened before or after the 5A rating.
Similarly, in reliability work one can measure the actual failure time of an item (variables
data) or record the number of items failing before a fixed time (attributes data). Both types of
data occur frequently in reliability studies. In Chapter 3, Sections 3.10-3.12, we will discuss
such topics as choosing a sample size, drawing a sample randomly, and the “confidence” in
the data from a sample. For now, however, let’s assume that the sample has been properly
drawn and consider what to do with the data in order to present an informative picture.

1.2 Histograms and Frequency Functions

In stating that a sample has been randomly drawn, we imply that each measurement or
data point in the population has an equal chance or probability of being selected for the
sample. If this requirement is not fulfilled, the sample may be “biased” and correct infer-
ences about the population might not be possible.

What information does the manufacturer expect to obtain from the sample measure-
ments of 100 fuses? First, the data should cluster about the rated value of 5A. Second, the
spread in the data (variability) should not be large, because the manufacturer realizes that
serious problems could result for the users if some fuses blow at too high a value. Similarly,
fuses opening at too low a level could cause needless repairs or generate unnecessary
concerns.

The reliability analyst randomly samples 100 fuses and records the data shown in
Table 1.1. It is easy to determine the high and low values from the sample data and see that
the measurements cluster roughly about the number 5. Yet, there is still difficulty in grasp-
ing the full information contained in this set of data.

Let’s apply the following procedure:

1. Find the range of the data by subtracting the lowest from the highest value. For this
set, the range is 546 — 4.43 =1.03.

2. Divide the range into ten or so equally spaced intervals such that readings can
be uniquely classified into each cell. Here, the cell width is 1.03/10 = 0.10, and we
choose the starting point to be 4.395, a convenient value below the minimum of
the data and carried out one digit more precise than the data to avoid any confu-
sion in assigning readings to individual cells. Note that the terms “bin,” “class,”
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or “cell” are used interchangeably in the literature and also by statistical software
programs to denote one of these equally spaced intervals.

. Increment the starting point by multiples of the cell width until the maximum

value is exceeded. Thus, since the maximum value is 5.46, we generate the numbers
4.395, 4.495, 4.595, 4.695, 4.795, 4.895, 4.995, 5.095, 5.195, 5.295, 5.395, and 5.495. These
values represent the endpoints or boundaries of each cell, effectively dividing the
range of the data into equally spaced class intervals covering all the data points.

. Construct a frequency table as shown in Table 1.2, which gives the number of times

a measurement falls inside a class interval.

. Make a graphical representation of the data by sketching vertical bars centered at

the midpoints of the class cells with bar heights proportionate to the number of
values falling in that class. This graphical representation shown in Figure 1.1 is
called a histogram.

A histogram is a graphical representation in bar chart form of a frequency table or frequency
distribution. The vertical axis in a histogram may represent the actual count in a cell, or it
may state the percentage of observations of the total sample that occur in a cell. Also, the
range here is divided by the number 10 to generate a cell width, but any convenient number

TABLE 1.1
Sample Data on 100 Fuses
4.64 4.95 5.25 5.21 4.90 4.67 4.97 4.92 4.87 5.11
4.98 493 4.72 5.07 4.80 4.98 4.66 443 4.78 4.53
4.73 5.37 4.81 5.19 4.77 4.79 5.08 5.07 4.65 5.39
5.21 5.11 5.15 5.28 5.20 4.73 5.32 4.79 5.10 4.94
5.06 4.69 5.14 4.83 4.78 4.72 5.21 5.02 4.89 5.19
5.04 5.04 4.78 4.96 4.94 5.24 5.22 5.00 4.60 4.88
5.03 5.05 494 5.02 4.43 491 4.84 4.75 4.88 4.79
5.46 5.12 5.12 4.85 5.05 5.26 5.01 4.64 4.86 4.73
5.01 4.94 5.02 5.16 4.88 5.10 4.80 5.10 5.20 5.11
4.77 4.58 5.18 5.03 5.10 4.67 5.21 4.73 4.88 4.80

TABLE 1.2

Frequency Table of Fuse Data

Cell Boundaries Number in Cell

4.395-4.495 2

4.495-4.595 2

4.595-4.695 8

4.695-4.795 15

4.795-4.895 14

4.895-4.995 13

4.995-5.095 16

5.095-5.195 15

5.195-5.295 11

5.295-5.395 3

5.395-5.495 1

Total count 100
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FIGURE 1.1
Histogram of fuse breakdown measurements.

(usually between 8 and 20) may be used. Too small a number may not reveal the shape
of the data and too large a number can result in many empty cells and a flat-appearing
distribution. Sometimes, a few tries are required to arrive at a suitable choice.

There is a useful Excel spreadsheet function called FREQUENCY that will generate a
frequency table such as that shown in Table 1.2. Say the 100 fuse breakpoints are entered
into column A, cells A1-A100, and the 12 cell boundaries, starting with 4.395 and ending
with 5495, are entered into column B, cells B1-B12. Next, we highlight (click and drag)
into an empty column, say C, 13 blank rows in cells C1-C13. Then we type in the func-
tion = FREQUENCY(A1:A100,B1:B12). The expression is evaluated as a matrix operation by
pressing the keys Ctrl+Shift+Enter together instead of pressing just Enter alone. This action
produces the Table 1.2 frequencies in rows C2-C12 (C1 contains counts up to 4.395 and C13
contains counts after 5.495). The FREQUENCY function in OpenOffice software works the
same way, except that a semicolon is used between arguments instead of a comma.

EXERCISE 1.1
Use Excel or OpenOffice to generate the frequencies given in Table 1.2, using the Table 1.1
sample data and the same interval endpoints as used in Table 1.2.

In summary, the histogram provides us with a picture of the data from which we can
intuitively see the center of the distribution, the spread, and the shape. The shape is impor-
tant because we usually have an underlying idea or model as to how the entire popula-
tion should look. The sample shape either confirms this expectation or gives us reason to
question our assumptions. In particular, a shape that is symmetric about the center, with
most of the observations in the central region, might reflect data from certain symmetric
distributions such as the normal or Gaussian distribution. Alternatively, a nonsymmetric
appearance would imply the existence of data points spaced farther from the center in one
direction than in the other, which could lead to the consideration of a distribution, such as
a Weibull or lognormal.

For the data presented in Example 1.1, we note that the distribution appears reasonably
symmetric. Hence, based on the histogram and the way the ends of the distribution taper
off, the manufacturer believes that values much greater or much less than about 10% of the
central target are not likely to occur. This variability is accepted as reasonable.
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1.3 Cumulative Frequency Function

There is another way of representing the data that can be very useful. By reference to
Table 1.2, let us accumulate the number of observations less than or equal to each upper
cell boundary as shown in Table 1.3. This representation of the data is called a cumulative
frequency function.

The graphical rendering of the cumulative frequency function is shown in Figure 1.2.
Note that the cumulative frequency distribution is never decreasing—it starts at zero and
reaches the total sample size. It is often convenient to represent the cumulative count in
terms of a fraction or percentage of the total sample size used. In that case, the cumulative

TABLE 1.3

Cumulative Frequency Function for Fuse Data

Number of Observations
Upper Cell Boundary (UCB) Less than or Equal to UCB

4.495 2
4.595 4
4.695 12
4.795 27
4.895 41
4.995 54
5.095 70
5.195 85
5.295 96
5.395 99
5.495 100

100 +
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FIGURE 1.2
Plot of cumulative frequency function.
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frequency function ranges from 0 to 1.00 in fractional representation or 0% to 100% in per-
centage notation. In this text, we often employ the percentage form.

Table 1.3 and Figure 1.2 show that the cumulative frequency curve is obtained by sum-
ming the frequency function count values. This summation process will be generalized by
integration when we discuss the population concepts underlying the frequency function
and the cumulative frequency function in Section 1.4.

1.4 The Cumulative Distribution Function and
the Probability Density Function

The frequency distribution and the cumulative frequency distribution are calculated from
sample measurements. Since the samples are drawn from a population, what can we state
about this population? The typical procedure is to assume a mathematical formula that
provides a theoretical model for describing the way the population values are distributed.
The sample histograms and the cumulative frequency functions are the estimates of these
population models.

The model corresponding to the frequency distribution is the PDF denoted by f(x),
where x is any value of interest. The PDF may be interpreted in the following way: f(x)dx
is the fraction of the population values occurring in the interval dx. In reliability work, we
often have the failure time ¢ as the variable of interest. Therefore, f(f)dt is the fraction of
failure times of the population occurring in the interval dt. A very simple example for f(t)
is the exponential distribution, given by the equation

fih=ke™, 0<t<eo
where A is a constant. The plot of f(t) is shown in Figure 1.3. The exponential distribution

is a widely applied model in reliability studies and forms the basis of Chapter 3.

SO 4

X

Al 4

FIGURE 1.3
Plot of PDF for the exponential distribution.
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The cumulative frequency distribution similarly corresponds to a population model
called the CDF and is denoted by F(x). The CDF is related to the PDF via the relationship

F@= [ fdy

where y is the dummy variable of integration. F(x) may be interpreted as the fraction of
values less than or equal to x in the population. Alternatively, F(x) gives the probability
of a value less than or equal to x occurring in a single random draw from the population
described by F(x). Since in reliability work we usually deal with failure times, t, which are
nonnegative, the CDF for population failure times is related to the PDF by

Fi)= [ iy

For the exponential distribution,

¢ t
F(t)= le‘kydy =—eM] =1-e™
0

0

The CDF for the exponential distribution is plotted in Figure 1.4.

When we calculated the cumulative frequency function in the fuse example, we worked
with grouped data (i.e., data classified by cells). However, another estimate of the popu-
lation CDF can be generated by ordering the individual measurements from smallest to
largest, and then plotting the successive fractions

n

123
nlnln/"'l

F(t) A

100% |F—————————————————— -

FIGURE 1.4
CDF for exponential distribution.
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FIGURE 1.5
EDF for fuse data.

versus the ordered data points. Such a representation is called the empirical distribution
function (EDF) and is shown in Figure 1.5 for the data from the fuse example. Note that
the EDF steps up by 1/n at each data point and remains constant until the next point. The
advantage of using the EDF instead of grouping the data is obviously that all data points
are pictured; the disadvantage is that more computational effort is involved. However,
spreadsheet software can easily perform the calculations and plotting. See Appendix 1A
for a method to create step charts using spreadsheet plots. Since F(x) is a probability, all the
rules and formulas for manipulating probabilities can be used when working with CDFs.
Some of these basic rules are described in Section 1.5.

EXERCISE 1.2

For the data in Table 1.1, construct a frequency table using 4.395 as the starting point
and 0.2 as the interval width. Create a histogram of this frequency table. Compare it to
Figure 1.1.

EXERCISE 1.3
Using the results from Exercise 1.2, construct a cumulative frequency table and create a
plot of the cumulative frequency function. How does it compare to Figure 1.2?

EXERCISE 1.4

Take columns 2, 5, and 8 (left to right) from Table 1.1, for a total of 30 data points. Assume
a random sample, arrange the points in order from smallest to largest, and plot the EDF.
Compare to Figure 1.5.

EXERCISE 1.5

The histogram shown in Figure 1.1 was generated using JMP software. Use the JMP
Analyze, Distribution platform and the data set shown in Table 1.1 (FuseDatajmp
at the “Downloads & Updates” tab of the web page for this book at http://www
.crepress.com/product/isbn/9781584884668) to generate a histogram. The result may
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Histogram of fuse data
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FIGURE 1.6
Minitab histogram of fuse data.

be somewhat different based on a JMP default choice for the number of bins. If so,
use the “hand” cursor to change the number of bins until the same histogram as
shown in Figure 1.1 is obtained. Next, use the histogram spreadsheet function of Excel
(in Tools, Data Analysis) to obtain a histogram. The Table 1.1 data set for spreadsheet
use is FuseData.xls. In order to get the exact same graph shown in Figure 1.1, input bin
numbers starting with 4.495 and increasing in steps of 0.1 to 5.495. Finally, use Minitab
to get the histogram shown in Figure 1.6 (one must change the default number of bins
from 12 to 11).

NOTE: There is nothing “wrong” or “misleading” with obtaining dissimilar histograms
from different software programs. It is up to the analyst to vary the bin numbers and loca-
tions to obtain one of many reasonable (although varying) views of the data. For example,
the default output histogram from Minitab is shown in Figure 1.6.

1.5 Probability Concepts

In the classical sense, the term probability can be thought of as the expected relative
frequency of occurrence of a specific event in a very large collection of possible outcomes.
For example, if we toss a balanced coin many times, we expect the number of occurrences
of the event “heads” to comprise approximately half of the number of outcomes. Thus, we
say the probability of heads on a single toss is 0.5, 50%, or 50-50. It is typical to express
probabilities either as a fraction between 0 and 1 or as a percentage between 0% and 100%.

There are two very useful relations often invoked in probability theory. These rules
relate to the occurrence of two or more events. In electrical engineering terms, we are
defining “and” and “or” relations. The first rule states that if P(A) is the probability of event
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A occurring and P(B) is the probability of event B occurring, then the probability of events
A and B occurring simultaneously, denoted P(AB), is

P(AB)=P(A)P(B|A)
or
P(AB)= P(B)P(A|B)
where P(A|B) designates the “conditional” probability of A given that event B has occurred.
Let’s explain conditional probability further. We imply by the terminology that one event
may be affected by the occurrence of another event. For example, suppose we ask what the
probability is of getting two black cards in a row in successive draws from a well-shuffled

deck of cards, without replacing the first card drawn. Obviously, the probability of the first
card being a black card (call this event A) is

favorable outcomes 26 _

P(A) =

N | =

total outcomes 52

The probability of the second card being a black card (event B) changes depending on
whether or not the first card drawn is a black card. If yes, then the probability of the second
card being a black card is

25
P(B|A)=a

Therefore, the probability of two successive black cards is
P(AB)= P(B)P(A|B)
125
251
_ B
102

Two events, A and B, are said to be independent if the occurrence of one does not affect
the probability of the other occurrence. The formal definition states that two events A and
B are independent if and only if

P(AB) = P(A)P(B)

This expression is sometimes referred to as the multiplication rule for the probability of
independent events occurring simultaneously. In general, the probability of independent
events occurring is just the product of the individual probabilities of each event. For exam-
ple, in the card situation, replacing the first card drawn and reshuffling the deck will make
event B independent of event A. Thus, the probability of two successive black cards, with
replacement and reshuffling between draws, is

2626
52 52
1

4

P(AB) = P(A)P(B) =
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Similarly, the probability of simultaneously getting a 6 on one roll of a die and an ace in
one draw from a deck of cards, apparently independent events, is

14

- b
78

The extension of these conditional probability principles to three or more events is
possible. For example, the rule for the joint probability of three events, A, B and C, is

P(ABC)= P(A)P(B|A)P(C|AB)
For independent events, the formula becomes
P(ABC) = P(A)P(B)P(C)

The second important probability formula relates to the situation in which either of two
events, A or B, may occur. The expression for this “union” is

P(AUB) = P(A)+ P(B)— P(AB)
If the events are independent, then the relation becomes
P(AUB) = P(A)+ P(B) - P(A)P(B)
The last term in the above expressions corrects for double counting of the same out-
comes. For example, what is the probability of getting either an ace (event A) or a black
card (event B) in one draw from a deck of cards? The events are independent (see Exercise

1.6.), and therefore

P(AUB) = P(A)+ P(B)— P(A)P(B)

_4 .26 426
52 52 5252

_14_ 7

52 13

Note that the term P(A)P(B) subtracts out the probability for black aces. This probability
has already been counted twice, once in the P(A) term and once in the P(B) term.

When events A and B are mutually exclusive or disjoint, that is, both events cannot occur
simultaneously, then P(AB) =0, and

P(AUB) = P(A) + P(B)

Furthermore, if both events are exhaustive in that at least one of them must occur when
an experiment is run, then

P(AUB)=P(A)+P(B)=1
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Thus, event A is the complement of event B. Event B can be viewed as the nonoccurrence
of A and designated as event A. Hence, the probability of occurrence of any event is equal
to one minus the probability of occurrence of its complementary event. This complement
rule has important applications in reliability work because a component may either fail
(event A) or survive (event A), resulting in

P(Failure) = 1- P(Survival)

As another example, we note that the event “at least one occurrence” and the event “zero
occurrences” are mutually exclusive and exhaustive events. Therefore, the probability of
at least one occurrence is equal to 1 — probability of no occurrences.

An extension to three or more events is also possible. For three events A, B, and C, the
formula is

P(AUBUC) = P(A) + P(B) + P(C) — P(AB) — P(BC) — P(AC) + P(ABC)

For independent events, the relation becomes

P(AUBUC) = P(A)+ P(B) + P(C) - P(A)P(B)
~P(B)P(C) - P(A)P(C) + P(A)P(B)P(C)

For mutually exclusive, exhaustive events, we have
P(AUBUC)=P(A)+P(B)+ P(C)=1

For four events, we begin by adding the four single-event probabilities. Then, we sub-
tract the six possible probabilities of two events occurring simultaneously. Next, we add
back in the four possible probabilities of three events occurring simultaneously. Finally,
we subtract the probability of all four events occurring simultaneously. This “in and out”
procedure works for any number of events, and the total number of terms in the final
expression when there are n events will be 2" — 1.

EXAMPLE 1.2 CONDITIONAL PROBABILITIES

A tricky word problem that appears often in many forms can be stated as follows: A computer
hack visits the surplus store and sees two similar hard drives displayed. The sign says, “Specially
Reduced: 50-50 Chance of Working.” He asks the dealer whether the hard drives operate prop-
erly. The dealer replies “at least one of them is working.” What is the probability that both drives
are functional? Does the probability change if the dealer says “the one on the left works”?

SOLUTION

The first question asks for the probability that both drives work, given that at least one is working,
that is, P(both work | at least one works). Let A be the event “both drives work” and let B be the
event “at least one drive works.” We want the P(A|B). From our conditional probability formula,
we can rewrite the expression as follows:

P(A|B):P7
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TABLE 1.4
Possible Outcomes for Drives
No Dealer Information At Least One Works Left Drive Works
Left Drive Right Drive Left Drive Right Drive Left Drive Right Drive
\4 W W W \ \
4 N W N W N
N W N W
N N

Probability that both drives work
1/4 1/3 1/2

Now P(AB) is the probability that both drives work (event A) and at least one drive works
(event B). This joint event is actually the same as the probability of event A alone since event A
includes event B; that is, if both drives work, then at least one works. Therefore, P(AB) = P(A) =
(10.5][0.5]) = 0.25, assuming the drives are independent. Since the event B “at least one drive
works” and the event “both drives are not working” are mutually exclusive and exhaustive events,
the denominator P(B) = P(at least one works) = 1 — P(both not working) = 1 — (0.5)(0.5) = 0.75.
Hence, the desired probability is P(A|B) = (0.25)/(0.75) = 1/3.

This result surprises many individuals who incorrectly assume that the conditional probability of
two working drives given at least one works should be 1/2, instead of the correct answer 1/3, since
they reason that the other disk drive is equally likely to work or not work. However, the sample
space of possible outcomes is listed in Table 1.4.

With no dealer information, there are four equally likely outcomes: (work, work), (work, not
work), (not work, work), and (not work, not work), for the left and right drives, respectively.
Thus, the probability is only 1/4 that both drives work. When we are told that at least one drive
works, we eliminate the outcome (not work, not work). Therefore, we have only three equally
likely outcomes remaining: (work, work), (work, not work), and (not work, work). Consequently,
the probability that both drives work has increased from 1/4 to 1/3 with the added data.
Alternatively, the probability that at least one of the drives does not work has decreased from
3/4 to 2/3.

On the other hand, if the dealer points out the working drive (maybe he did not have the time
to test both drives), the probability that both drives work does change. Let event A be “both drives
work” and C be “the left drive works.” Now, P(A|C) = (0.5)/(1) = 0.5. In this case, there are only
two possible outcomes (work, work) and (work, not work), where the first position indicates the
left drive, and only one outcome of the two has both drives working.

For a set of events, Ey, E,, ..., E;, that are mutually exclusive and exhaustive, another use-
ful relationship, sometimes called the law of total probabilities, applies. Any event A can be
written as follows:

k
P(A)= Y P(A|E,)P(E;)
j=1

In words, P(A) is the weighted average of conditional probabilities, each weighted by
the probability of the event on which it is conditioned. This expression is often easier to
calculate than P(A) directly.
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EXAMPLE 1.3 TOTAL PROBABILITIES

A computer manufacturer purchases equivalent microprocessor components from three differ-
ent distributors. The assembly of each computer utilizes one microprocessor, randomly chosen
from an in-house inventory. Typically, the inventory consists of 30% of this component type from
distributor A, 50% from distributor B, and 20% from distributor C. Historical records show that
components from distributors A and C are twice as likely to cause a system failure as those from
distributor B. The probability of system failure with component B is 0.5%. What is the probability
that a computer system will experience failure?

SOLUTION

Since there are three distributors and we randomly chose a component from one of the distribu-
tors, we have three mutually exclusive and exhaustive events. The theorem of total probability is
the basis for the solution:

P(failure) = P(failure|distributor A)P(distributor A) + P(failure |distributor B) P(distributor B)
+ P(failure|distributor C)P(distributor C)
= 2(.005)(.3) + (.005)(.5) + 2(.005)(.2)
=.0075 or.75%

A final key probability formula, known as Bayes’ rule, allows us to “invert” conditional
probabilities, that is, determine which one of the conditioning events E; is likely to have
occurred, given that event A has occurred. Again, for a set of mutually exclusive and
exhaustive events, E,,E,,...,E;, Bayes’ rule states that

pE )= HETE)

ZP(A|E].)P(E,.)

j=1
Note that by the law of total probabilities, the denominator of this expression is just P(A).

EXAMPLE 1.4 BAYES’ RULE

The probability that a batch of incoming material from any supplier is rejected is 0.1. Typically,
material from supplier S, is rejected 8% of the time, from supplier S,, 15%, and S;, 10%. We know
that 50% of the incoming material comes from §,, 20% from supplier S,, and 30% from S;. Given
that the latest lot of incoming material is rejected, what is the probability the supplier is 5,2

SoLuTioN
Let A denote the event that the batch is rejected. Then, by Bayes’ rule,

_PAISIP(S) _ (0.08)(0.5) o4

PSIA P(A) (0.08)(0.5)+(0.15)(0.2) +(0.1)(0.3)

In this example, the starting (i.e., before we know the batch is rejected) probability of the event S,
is 0.5. This knowledge is sometimes referred to as the “a priori” probability of S,. After the batch
rejection, Bayes’ rule allows us to calculate the new (conditional) probability of S, as .4. The result
is sometimes called the a posteriori probability of §,.
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EXAMPLE 1.5 BAYES’ RULE APPLIED TO MISCLASSIFIED ITEMS

Assume we perform a test on a component to check for a specific defect. Historically, 1% of the
components have this defect. Based on a detailed analysis of previous results, 95% of the com-
ponents with the defect are detected, but 8% of the components without the defect are wrongly
categorized as defective. If a component is classified as defective, what is the probability that the
component actually has the defect? What is the probability that a component with a negative test
has the defect?

SOLUTION

We first solve this problem by an approach using simple average calculations. Consider a test of
2000 components. On the average, 1%, or 20, of the total components will have the defect. Of
those with the defect, 95%, or 19, will be caught. However, of the 1980 without the defect, 8%,
or 158, will have a false positive and be called defective. Therefore, 19 out of the 19 + 158 = 177
classified as defective will have the defect, and the probability of actually having the defect and
a positive test result is 19/177 = 11%. This result shows that it may be a good idea to do a more
extensive retest of rejected components and recover from the false positives. Also, the probability
of having the defect and a negative test result is 1/(1000 — 177) = 1/1823 = .055%, which is about
1/18 of the prior probability. Next, we get the same result using the Bayes’ rule formula. Let A
denote a positive test and £, denote a defective unit. Also, let £, represent a unit with no defect.
We want

P(E,| A) = P(E,AYP(A) = P(A|E)P(E)IP(A|E)DP(E,) + P(A|E,)P(E,)]
=.95(.01)1.95(.01)+.08(.99)] = .0095/.0887 = 11%

Let B = negative result. The probability of having the defect E, given a negative result of B is

P(E,| B) = P(E,B)YP(B) = P(B| E,)P(E)YIP(B| E,)P(E,) + P(B| E,)P(E,)]
=.05(.01)1.05(.01) +.92(.99)] = .0005/.9113 = .055%

EXERCISE 1.6

From a well-shuffled deck of cards, let drawing an ace event A and let drawing a black
card be event B. Determine P(AB), the probability of getting a black ace in a single draw,
and show that events A and B are independent.

EXERCISE 1.7

Three assembly plants produce the same parts. Plant A produces 25% of the volume
and has a shipment defect rate of 1%. Plant B produces 30% of the volume and ships
1.2% defectives. Plant C produces the remainder and ships 0.6% defectives. Given that a
component picked at random from the warehouse stocked by these plants is defective,
what are the probabilities that it was manufactured by plant A or B or C?

EXERCISE 1.8

An electronic card contains three components: A, B, and C. Component A has a prob-
ability of .02 of failing in 3 years. Component B has a probability of .01 of failing in
3 years and component C has a probability of .10 of failing in 3 years. What is the prob-
ability that the card survives 3 years without failing? What assumptions were made for
this calculation?

15
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1.6 Random Variables

In reliability studies, the outcome of an experiment may be numerical (e.g., time to failure
of a component) or the result may be other than numerical (e.g., type of failure mode asso-
ciated with a nonfunctional device). In either case, analysis is made possible by assigning
a number to every point in the space of all possible outcomes—-called the sample space.
Examples of assigning numbers are as follows: the time to failure is assigned the elapsed
hours of operation, and the failure mode may be assigned a category number 1, 2, and so
on. Any rule for assigning a number creates a random variable. A random variable is a
function for assigning real numbers to points in the sample space.

The practice is to denote the random variable by a capital letter (X, Y, Z, etc.) and the real-
ization of the random variable (i.e., the real number or piece of sample data) by the lower
case letter (x, y, z, etc.). Since this definition appears a bit abstract, let us consider a simple
example using a single die with six faces, each face having one to six dots. The experiment
consists of rolling the die and observing the upside face. The random variable is denoted
X, and it assigns numbers matching the number of dots on the side facing up. Thus, (X =x)
is an event in the sample space, and X = 6 refers to the realization where the face with six
dots is the side up. It is also common to refer to the probability of an event occurring using
the notation P(X = x). In this example, we assume all six possible outcomes are equally
likely (fair die), and therefore, P(X =x)=1/6 forx=1,2,3,4,5, or 6.

EXAMPLE 1.6 PROBABILITY EXPRESSION FOR CDF

The CDF F(x) can be defined as F(x) = P(X < x), that is, F(x) is the probability that the random vari-
able X has a value less than or equal to x. Similarly, the survival function can be defined as S(x) =
1 - F(x) = P(X > x).

1.7 Sample Estimates of Population Parameters

We have discussed descriptive techniques such as histograms to represent observations.
However, in order to complement the visual impression given by the frequency histogram,
we often employ numerical descriptive measures called parameters for a population and
statistics for a sample. These measures summarize the data in a population or sample and
also permit quantitative statistical analysis. In this way, the concepts of central tendency,
spread, shape, symmetry, and so on take on quantifiable meanings.

For example, we state that the frequency distribution is centered about a given value.
This central tendency can be expressed in several ways. One simple method is just to
cite the most frequently occurring value, called the mode. For grouped data, the mode is
the midpoint of the interval with the highest frequency. For the fuse data in Table 1.1, the
mode is 5.05.

Another procedure involves selecting the median, that is, the value that effectively divides
the data in half. For individual readings, the n data points are first ranked in order, from
smallest to largest, and the median is chosen according to the following algorithm: the
middle value if n is odd, and the average of the two middle values if n is even.

Alternatively, for data that has already been grouped or binned (Table 1.2), the median
occurs in the interval for which the cumulative frequency distribution registers 50%; that
is, a vertical line through the median divides the histogram into two equal areas. For
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grouped data with n points, to get the median, one first determines the number of observa-
tions in the class containing the middle measurement 7/2 and the number of observations
in the class to get to that measurement. For example, for the fuse data in Table 1.3, n = 100,
and the middle value is the 50th point, which occurs in the class marked 4.895 to 4.995
(width 0.1). There are 41 data points before the interval and 13 points in this class. We must
count 9/13 of the interval width to get to the median. Hence, the median is

4.895 + (9) x0.1=4.964
13

(In reliability work, it is common terminology to refer to the median as the T, value for
time to 50% failures.)

The most common measure of central tendency, however, is called the arithmetic mean
or average. The sample mean is simply the sum of the observations divided by the number
of observations. Thus, the mean, denoted by X, of 1 readings is given by the statistic

Xi+ X, + X5 +--4+ X,
n

X:

=

This expression is called a statistic because its value depends on the sample measure-
ments. Thus, the sample mean will change with each sample drawn, which is another
instance of the variability of the real world. In contrast, the population mean depends on
the entire set of measurements, and thus it is a fixed quantity, which we call a parameter.
The sample mean X estimates the population mean . We also mention here a notation
common in statistics and reliability work. A parameter estimate is commonly denoted by
a caret () over the parameter symbol. Thus, (i is an estimate of the population mean p and
here [i = X.

For a discrete (i.e., countable) population, the mean is just the summation over all discrete
values where each value x; is weighted by the probability of its occurrence p;:

n= inpf

For a continuous population, the mean parameter is expressed in terms of the PDF
model as
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An alternate expression for the mean of a lifetime distribution is sometimes easier to
evaluate. The form of the equation, when a finite mean exists, is

u:I[l—F(t)]dt

(See Feller 1968, page 148, for a proof.)

A common practice in statistics is to refer to the mean for both discrete and continuous
random variables as the expected value of the random variable and use the notation E(X) =p
or E(T) = u. We occasionally use this terminology in this text.

Knowing the center of the distribution is not enough; we are also concerned about the
spread of the data. The simplest concept for variability is the range, the difference between
the highest and lowest readings. However, the range does not have very convenient sta-
tistical properties, and therefore, another measure of dispersion is more frequently used.
This numerical measure of variation is called the variance. The variance has certain statisti-
cal properties that make it very useful for analysis and theoretical work. The variance of a
random variable X is defined as the expected value of (X — p)?, that is, V(x) = E(X — uJ?). An
alternative formula is V(x) = E[X?] — pu2 For continuous data, the population variance for
common reliability analysis involving time is

In engineering terms, we see that the variance is the expected value of the second moment
about the mean.

The square root of the variance is called the standard deviation. The standard deviation is
expressed in the same units as the observations. The sample standard deviation is denoted
by s and the formula is

Since X is used in the formula rather than the population mean, statistical theory shows
that dividing by n — 1 gives a better (i.e., unbiased) estimate of the population variance
(denoted by 62 = 8?) than just dividing by n. Alternatively, we may state that one degree of
freedom has been taken to estimate the population mean W using X.

We have defined numerical measures of central tendency ()? , u) and dispersion (s?,62). It is
also valuable to have a measure of symmetry about the center and a measure of how peaked the
data is over the central region. These measures are called skewness and kurtosis, and are respec-
tively defined as expected values of the third and fourth moments about the mean, that is,

skewness: [, = E[(X —n)®]; kurtosis: p, = E[(X —p)*]

Symmetric distributions have skewness equal to zero. A unimodal (i.e., single peak) dis-
tribution with an extended right “tail” will have positive skewness and will be referred to
as skewed right; skewed left implies a negative skewness and a corresponding extended left
tail. For example, the exponential distribution in Figure 1.3 is skewed right. Kurtosis, on the
other hand, indicates the relative flatness of the distribution or how “heavy” the tails are.



Basic Descriptive Statistics 19

Both measures are usually expressed in relative (i.e., independent of the scale of measure-
ment) terms by dividing u3 by 6® and p* by c*. The kurtosis estimate is also offset by an
amount that goes to three as the sample size increases so that data from a normal population
has a kurtosis of approximately zero. Sample estimates are calculated using the formulas

" 3
) ;u,«—x)

(n-1(n-2) s

Skewness estimate =

D (-7
n(n-1) i=1 (n-1)

Kurtosis estimate = (n—1)(n—-2)(n—-3) s - (n-2)(n-3)

These formulas are used by the spreadsheet SKEW and KURT functions and also by
Minitab and JMP in their descriptive statistics platforms.

These various measures allow us to check the validity of the assumed model. Ott (1977)
shows applications to the normal distribution. Table 1.5 contains a listing of properties of
distributions frequently used in reliability studies.

The important statistical concept involved in sample estimates of population param-
eters (e.g., mean, variance, etc.) is that the population parameters are fixed quantities, and
we infer what they are from the sample data. For example, the fixed constant 8 in the
exponential model F(t) =1—e /%, where 6 = 1/, can be shown to be the mean of the distri-
bution of failure times for an exponential population. The sample quantities, on the other
hand, are random statistics that may change with each sample drawn from the population.

TABLE 1.5
Properties of Distributions Used in Reliability Studies

Rayleigh (Weibull with
Shape Parameter 2 and Extreme
Uniform Normal Weibull Exponential Lognormal Linear Failure Rate) Value

Symmetric  Yes Yes No No No No No
Bell-shaped No Yes No No No No No
Skewed No No Yes (right) Yes (right) Yes (right)  Yes (right) Yes (left)
Skew =0 Skew =0 Skew =2 Skew = 0.63 Skew =
-1.14
Kurtosis -1.8 0 6 0.26 24
Log datais No No No No Yes No No
symmetric
and bell-
shaped
Cumulative Straight  “S” Exponential
distribution line shaped curve

shape
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EXAMPLE 1.7 THE UNIFORM DISTRIBUTION

The uniform distribution is a continuous distribution with PDF for the random variable T given by

f(t)= 0,<t<0
() 62—61, 1 2

and zero elsewhere, where 8, and 6, are the parameters specifying the range of 7. The rectangu-
lar shape of this distribution is shown in Figure 1.7.

We note that f(¢) is constant between 8, and 6,. The CDF of T, denoted by F(t), for the uniform
case is given by

t-0
Ft)=—*%-
(0=4 "

Thus, F(t) is linear in t in the range @, <t <@,, as shown in Figure 1.8.

EXERCISE 1.9
Show that the uniform distribution has expected value E(t) = (61 + 92) / 2 and variance

2
0,-6,)
V()= L02-0)
(t)=""1,
fe)
1 -
¥, - K,
¥, X, t
FIGURE 1.7
The uniform PDF.
F(¢)
1 -
0, 0, t
FIGURE 1.8

The CDF for the uniform distribution.
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EXERCISE 1.10

The uniform distribution defined on the unit interval [0,1] is a popular and useful
model—so much so that the name uniform distribution is often taken to refer to this
special case. Find f(u), F(u), E(u), and V(u) for this distribution.

EXERCISE 1.11

Let F(t)=1—-(1+t)", 0<t<eo. This is a legitimate CDF that goes from 0 to 1 continu-
ously as f goes from 0 to . Find the PDF and the T, for this distribution. Try to calcu-
late the mean. (Hint: Use either integration by parts or the alternate formula given in the
text for calculating the mean.)

EXAMPLE 1.8 THE BETA DISTRIBUTION

The (standard) beta distribution, like the uniform distribution discussed in Exercise 1.10, is also
defined on the unit interval [0,1]. However, it is a far more flexible distribution and even includes
the uniform distribution as a special case. Its flexibility is one of the reasons it is an excellent
choice for modeling numbers between 0 and 1, such as probabilities or proportions.

For a random variable X having a beta distribution with parameters a > 0 and b > 0, the PDF in
the unit interval is given by

Xa—l(‘l — X)b—1

=" h

where B(a,b), in terms of gamma functions (see the discussion in Chapter 4 after Exercise 4.6), is

_ T@rb)
Bla, b =1 )
For a and b integers,
_(a=1Nb-1!
Ba,b) == i

where we use the factorial notation a! to represent a(a — 1)(a — 2)--1. Note that when a=b =1, the
beta distribution is the same as the uniform distribution on [0,1].

The CDF of the beta distribution is commonly called the incomplete beta function. For any
0 < x < 1, the incomplete beta function F(x) is given by

_[ya”‘ dy =1,(a,b)

Like the normal distribution (covered in Chapter 5), this integral cannot be written in closed
form. Tables of the incomplete beta function are available (Pearson 1968). However, both Excel
and OpenOffice provide the worksheet function BETADIST for the beta CDF. The arguments are
X, a, b, respectively. In Excel, for example, = BETADIST(0.5,2,3) returns the result 0.6875.

Figure 1.9 shows a variety of beta density functions for different values of the parameters
a and b. The incomplete beta function /,(a,b) is closely related to the binomial distribution, a key
distribution used in quality control and other sampling applications. This important relationship
will be covered in Chapter 10.

EXERCISE 1.12

Find the expected value (mean) for a random variable having a beta density function
defined on the unit interval, with parameters a and b. What relationship must these param-
eters have in order for the mean to be located in the center of the interval (or u=0.5)?

21
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37 a=2,b=6 a=6,b=2

0 0.25 0.5 0.75 1

FIGURE 1.9
Beta density functions.

1.8 How to Use Descriptive Statistics

At this point, it is important to emphasize some considerations for the analyst. No
matter what summary tools or computer programs are available, the researcher
should always “look” at the data, preferably in several ways. For example, many data
sets can have the same mean and standard deviation and still be very different—and
that difference may be of critical significance (see Figure 1.10 for an illustration of this
effect).

Generally, the analyst will start out with an underlying model in his mind based on the
type of data, where the observations came from, previous experience, familiarity with
probability models, and so on. However, after obtaining the data, it is necessary that the
analyst go through a verification stage before he blindly plunges ahead with his model.
This requirement is where the tools of descriptive statistics are very useful. Indeed, in
many cases we utilize descriptive statistics to help us choose an appropriate model right
at the start of our studies. Other useful graphical techniques include Boxplots, dot plots,
stem and leaf plots, 3D plots, and so on (see Chambers et al. 1983 for further information
on graphical analysis).

In this text, we focus on several key continuous distributions that are most applicable
to reliability analysis: the exponential, Weibull, normal, and lognormal distributions.
By learning what these distributions should look like, we can develop a yardstick to
measure our data for appropriateness to some model. Graphics (frequency histograms,
cumulative frequency curves) and summary values (mean, median, variance, skew-
ness, etc.) are the means by which the characteristics of distributions are understood. In
Chapter 6, we shall introduce other valuable descriptive procedures such as probability
plotting.
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0.5 1 11
0.4 4 0.8 1
0.3 1 0.6 4
0.2 0.4 1
0.1 1 0.2 1
0 T T T 1 0 T T 1
-1 0 1 2 3 0 2 4 6
1.4 7 0.5 7
1.2 04
1 -
05 0.3 -
06 A 02 -
0.4 1
0.1 -
0.2 1
G T T 1 0 T T T T 1
0 2 4 6 -4 -2 0 2 4 6
FIGURE 1.10

Mean and Sigma do not tell us enough. These four distributions have the same mean and standard deviation.

1.9 Data Simulation

Many different PDFs (and CDFs) exist, and reliability studies are often concerned with
determining what model is most appropriate for the analysis. In reliability work, one may
wish to simulate data from various distributions in order to do the following:

1. Determine percentiles of complicated distributions that are functions of common
distributions.

2. Evaluate the effectiveness of different techniques and procedures for analyzing
sample data.

3. Test the potential effectiveness of various experimental designs and sample size
selections.

4. Tllustrate statistical concepts, especially to understand the effects of variability
in data.
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Computer programs that will generate random variables from almost any desired distri-
bution are available. However, there is a simple and general technique that allows us to
produce what are called pseudorandom numbers from many common distributions. (The
term pseudorandom is used because a specific computer algorithm generates the numbers
to be as nearly random as possible.) To begin, we need a good table of random numbers or
we can use a spreadsheet function to generate random numbers.

For simplicity, we consider only distribution functions F(x) that are continuous and map
one-to-one onto the unit interval (0,1), that is, 0 < F(x) < 1. This class includes all the life
distributions discussed in this text. Let F (x) = u. Then, we can define an inverse function
F'(u)= x that provides the specific percentile corresponding to the CDF value in the unit
interval. For example, given F(x) =5, then F~' (.5) = the median, which is the 50th percen-
tile. F and its inverse have the following properties: F (F~ (1)) =u and F! (F(x))=x.

To generate a random sample x,x,,...,x, from F(x), first generate a random sample
Uy, Uy,..., u, from the uniform distribution defined on [0,1]. This procedure is done with
random numbers. For example, if a five-digit random number is obtained from a table
or a spreadsheet, divide the number by 100,000 to obtain a pseudorandom number from
the uniform distribution. (The spreadsheet function RAND() provides random numbers
directly in the unit interval)) Next, set x; = F' (1), x, =F ' (14,),...,x, = F ' (u,). It is easy to
show that the sample of xs is distributed according to the F(x) distribution. (See the hint to
Problem 1.4 at the end of this chapter.)

EXAMPLE 1.9 DATA SIMULATION

Let F(t) be the distribution given in Exercise 1.11. Generate a sample of five random times from
this distribution.

SOLUTION

We obtain F' by solving for t in Fit)=u=1-(1+)" to get t=u/(1-u)=F"(u). Next, we
use a random number generator via a spreadsheet function to obtain the uniform distribution
sample (0.880, 0.114, 0.137, 0.545, 0.749). Transforming each of these by F-' gives the values
t; =0.880 +(1-0.880)=7.333, t,=0.129, t,=0.159, t,=1.198, and t;=2.984. The sample
(ty,t,t5,t4,t5) is the desired random sample from F.

In a typical reliability experiment, # units are placed on stress, and the exact times to
failure are recorded. The successive failure times naturally occur in increasing order, that
is, the first failure time is less than the second failure time, the second is less than the
third, and so on. This property of ordered failure times is a key characteristic of reliability
work. In contrast, consider selecting #n individuals randomly and measuring, for example,
their weight or height. The successive observations will not necessarily occur in increas-
ing order. Consequently, in simulating random variables for reliability studies, one would
like the values arranged in increasing order. For a single set of simulated observations,
one could do a manual sort using the spreadsheet sort routine available under the menu
item Data. However, for repeated simulations (involved in Monte Carlo studies), a non-
manual procedure is desirable. In Excel (and OpenOffice), the spreadsheet function PER-
CENTILE(array, k) can be used. This function returns the kth percentile (where 0 <k <1) of
values in the range defined by the array. The trick is to choose the k values to be the (i — 1)
multiples of 1/(n — 1), where i = 1, 2,..., n is the failure count and 7 is the sample size. We
illustrate the procedure in the Example 1.10.



