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in this subject would probably gain much from reading this book, although
some may find it difficult.
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Introduction

This book is definitely not a book on mathematics. It is a book on the use
of symmetries, mainly described by the techniques of Lie groups and Lie
algebras. Although no proofs of theorems and the like are given, except
in special cases, the ideas are very firmly based on a lifetime of lecturing
experience.
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1

Symmetries and Conservation Laws

You may already be familiar with the ideas of conserved quantities, such as
charge in electromagnetism, but it will not hurt to go through this once more,
and there may be students for whom it is quite new. Since we are dealing with
elementary particles, we may as well think of conserved numbers carried on
particles, and indeed we will start with the charge e on the proton. If we
consider the charge of the electron (—e), which carries electric currents, what
do we mean by “it is conserved” and what consequences might this have? We
might as well, for simplicity, start with the problem in classical physics and
turn to quantum mechanics later. Well, the first thing is that it cannot simply
vanish or appear. Of course it can vanish by having equal but opposite charges
annihilate it (producing, for example, the photons of light), or it can appear
in the reverse of this. All other conserved quantities such as energy, and
linear and angular momentum must be conserved—in our picture carried on
the photons. Already we see that this must happen at the same time and at
the same spatial point, but this is natural when the charges are carried on the
particles.

You may well be familiar with the idea of conservation of charge being
associated with the four divergence of the current carrying that charge. Calling
j* the current carried by an electron (of charge (—)e) we can write

97" =0. (1.1)
Then we have
dpot +V.j =0 (1.2)

where p is the time component of j* and j is the spatial part of this current.
If we integrate over a fixed volume we find

0
a—';) + flow of current normally into the volume

— flow of current normally out of the volume = 0. (1.3)

This means that the rate of increase of charge in the volume is equal to the rate
of flow of charge into the volume minus the rate of flow out of the volume. A
very natural feature of the model we use is where the charges are carried on the

DOI: 10.1201/9781439895207-1 1



2 Group Theory for the Standard Model of Particle Physics and Beyond

particles. Of course, this concept needs slight changing in the world of special
relativity where there is apparent contraction of lengths and dilation of times
in different reference frames. Similarly in quantum mechanics further modi-
fications are needed, which are yet further changed in quantum field theory.
But we are getting too far ahead of ourselves. Let us ask what symmetries have
to do with these conservation laws as our title of this chapter suggests. There
is a theorem by E. Noether [1] to the effect that this is precisely what happens.
It is not appropriate to prove this theorem at this stage, but it is very pow-
erful and extends to all types of description of the physics discussed earlier.
(Students note that Noether was a woman doing important work of this type
at a time when there were nowhere near as many women working in science.)

The point that is necessary to understand at this stage is that all conserved
quantities in physics are linked to symmetries in this way. We shall meet
examples of this later. The mathematics underlying this structure is that of
group theory, both discrete groups and continuous groups as described by Lie.
But for the moment we move on to simple examples in the next two chapters.

Lagrangian and Hamiltonian Mechanics

Although it has been made clear that the reader is expected to be competent
in quantum field theory, an exception is made at this point to be sure that the
readers really can cope.

It is one of those curious quirks of history that long before quantum theory
was developed this version of classical mechanics established a framework
that was capable of treating both fields and particles in both classical and
quantum aspects. You are strongly urged to read Chapter 19 of Volume Il of The
Feynman Lectures on Physics [2] as an introduction to the deep and fascinating
approach to physics in terms of the “principle of least action,” if you have not
met it previously. We shall approach the topic in a more pedestrian manner
than Feynman, partly because I am not so brave a teacher and partly because
I want to get you calculating for yourself as soon as possible. It is my firm
belief that the best way to get on top of a subject like this is to lose your fear
of it by getting your hands dirty and actually doing the real calculations in
detail yourself.

Suppose we have a one-dimensional system—yes, it is going to be the
harmonic oscillator. We shall call the displacement from equilibrium g(t)
rather than x(f) because later on we shall want “displacements of the fields”
at various points x and we do not wish to confuse the “displacements” with
the spatial positions. Then Newton’s second law is replaced by the Euler—
Lagrange [3] equation

daL oL

5 (1.4)
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where 4 is the time derivative of q. The Lagrangian, L, is the difference
between the kinetic energy (T) and the potential energy (V), that is,

L(g,g)=T-V (1.5

and is to be regarded as a function of the independent variables g4 and 4 for
the purposes of partial differentiation. For the harmonic oscillator with mass
m and spring constant k we have

V= 71 =5 (1.6)
where »? = £. So that

L — %qz _ ’”T“ﬂ 2 (1.7)
and the Euler-Lagrange equation yields

d, . 5

7(mi) = —mawq (1.8)
and we retrieve

i =—o’q (1.9)

as expected.

Now that we have a little experience with this formalism, we can take a look
at the principle of least action. You will have noticed perhaps that the concept
of force (which was primary in Newton’s approach) has become secondary to
the idea of potential. The least action principle makes the equation of motion
itself something that is derived from the minimization of the action

tr )
S:/ti L(g, q)dt (1.10)

where t; and t; are initial and final times. The principle postulates that the
actual path (often alternatively called trajectory) followed by the particle is
that which minimizes S. Imagine that, given L as an explicit function of g
and g, you evaluate S for a few paths. These are just fictitious paths and none
of them is likely to be the Newtonian one. I have drawn the three from the
problem on the g—t diagram in Figure 1.1.

These must start and finish at the same places and times. According to the
principle, only if one of these coincides with the Newtonian path will the
value of S be the minimum possible. You need a calculus approach to get a
general answer. Notice, however, S is a function of the function g(t). We say
itis a “functional” of g (t). We need to find the particular function, go(t), that
minimizes S.

Suppose there is a small variation §q(t) in a path g(t) from q(t;) to q(¢y).
When q(t) = qo(t), the variation 85 caused by this change §g must vanish.
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(ii)
(iii)

11/20

FIGURE 1.1
q-t diagram.

Now we can work out the change of action for any path as

tr /9L oL
55:/ (—8 —|——,)dt
PN 7 9q
/9L d oL d oL
= =8+ — | = |~ = | == | 89 ) dt
/ (aq “dt[aq} dt[aq} ")d

tr oL  d oL oL ¥
= (% T [ED’”* [WL

where we used 8§ = %Sq in the second step. But we are considering paths
with fixed end points, so that 8q(t;) = 0 = 8q(ts) for any variation, and the

final term vanishes. Hence, since § S must vanish for arbitrary §q, we need

doL oL

dtog  oq’
which retrieves the Euler-Lagrange equation of motion. The solution of this
is the go(t), which gives the path actually followed by the particle.

As we shall see later, this formalism is well suited to treat systems of the
many (indeed infinitely many) linked dynamical variables found in field
theories. But the transition from classical to quantum mechanics is made more
transparent by considering the Hamiltonian formulation. The idea, in the first
place, is to find a change in variables (from g and §) which will replace the
second order Euler-Lagrange equation by two linked first order equations.
This piece of magic is performed by introducing

)

=5 (1.11)

p

as a “generalized momentum conjugate to the generalized coordinate q.”
(When g is a Cartesian coordinate, p will frequently be the usual linear
momentum, as we shall see.) Then the Hamiltonian is introduced by the
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Legendre transformation

H(q, p)=pq - L@, 9) (1.12)
and the Euler-Lagrange equation is replaced by the pair of equations
oH
= — 11
=3 (1.13)
oH
p=——o, 1.14
P="% (1.14)

which are known as Hamilton’s canonical equations. To get a feel for this for-
mulation we return to our old friend the harmonic oscillator. From Equation
(1.7) we see that

oL

= — = y 1.].
% mq, (1.15)

p

which is reassuring, and we can then see that from Equation (1.12)

2m 2
B p?  me? ,
T 2m 2

is the form of the Hamiltonian in the new variables. Notice that the Hamilto-
nian is the total energy, T + V. This is a very general feature, and provided
that time does not appear explicitly then

dH oH oH  oHoH oH[ oH
= — ' =0, (1.16)

Gttt Ty T | g
which reflects energy conservation. In the present case the equations of mo-
tion, Equations (1.13) and (1.14), yield

j=- (1.17)

p = —maw’q (1.18)

when Equation (1.16) is used directly. The first of these reconfirms the defini-
tion of the momentum, and on substitution into the second retrieves Equation
(1.9) as the second order equation of motion. It turns out, however, to be in-
structive to solve the first order Equations (1.17) and (1.18) directly. Consider
the linear combination

) , (1.19)

1 1
A= —x/ ]
ﬁ(x mw+zpm
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which is so designed that
A= —iwA (1.20)
A=geTiet (1.21)

as the obvious solution, where a is constant. Taking the complex conjugate of
Equation (1.19), we immediately find

1 1 . .
x=—(A+ A% = ae @t 4 greiety, 1.22
me( ) ,—me( ) (1.22)

which is equivalent to the previous solution.

Quantum Mechanics

The passage to quantum mechanics in this formalism is facilitated by intro-
ducing the Poisson bracket notation. The Poisson bracket of any two functions
f and g, of g and p, is simply

_ofdg ofag

{f &= 3p  Ipn (1.23)

and we see that
{9, H} =4 (1.24)
{p H=p (1.25)

are alternative ways of writing Equations (1.13) and (1.14), the equations of
motion. Moreover, if F is any function of 4 and p, then

dF _ 9F N oF
dt — 9g' = ap
—aF{ H}—i—aF{ H} ={F, H} (1.26)
- aq q/ ap p/ - 7 .
while
{9.9}=0
{p,p}=0
{g.pp=1 (1.27)

follow directly from the definition (Equation (1.24)) of the Poisson bracket.
The transition to quantum mechanics is now effected by the correspondence
{a, B} — —i[a, B] = —i(&B — Ba) between the classical dynamical variables
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and their hatted quantum mechanical operator correspondences. (We use
“natural” units with i = 1.) In particular, Equation (1.27) yields

[, pHl =i (1.28)
expressing the Heisenberg uncertainty principle [5], and Equation (1.26) gives

dE()

— = —ilF (), H] (1.29)

as the Heisenberg equation of motion. The time dependence has been exhib-
ited to draw the reader’s attention to the fact that this is quantum mechanics
expressed in the Heisenberg picture [6], where states are time independent
but the dynamical variables contain the time dependence.

The alternative Schrodinger picture, in which the variables are time inde-
pendent, has the time dependence of state vectors given by the Schrodinger
equation

. .0
Hly(t) > = 1§|1/f(t) > (1.30)
with the formal solution
() > =e Hy > (1.31)

where we have identified the Schrodinger state at time zero with |(0) >
with |[¢ > the time independent Heisenberg state. Of course, Equation (1.31)
is just a unitary transformation between the two pictures, with

E(t) + B () = e () Fe B (t) (1.32)

as the corresponding transformation between operators. The important
feature of this is that

9, pl=1i (1.33)

follows immediately from Equation (1.28) as an expression of the uncertainty
principle in the Schrédinger picture. In quantum field theory we shall find
the Heisenberg picture very convenient.

In the quantum case we have the operator version of Equation (1.15)

R }AQ 2 )
2m 2 q ( )

Xt | mo? ,
o +T 4(t) (1.35)
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with Equation (1.32) giving trivially the equality of these alternate forms.
From the Heisenberg equation of motion (Equation (1.29)) we can easily see
that

p(t)

(1) = — (1.36)
m
p(t) = —ma?§(t) (1.37)
so that we get
§(t) = —ma?q (1) (1.38)

by combining these. Now, please notice that this is not just the classical equa-
tion of motion (Equation (1.9)) again. What Equation (1.38) tells us is the
behavior of the operator with time, not where the particle can be found. If
we take the expectation value of Equation (1.38) between (time independent)
Heisenberg states, then we learn that the mean position of the particle does
follow the classical path. This is very reassuring, but there will be quantum
fluctuations about the classical path, of course.

The Oscillator Spectrum: Creation and Annihilation Operators

This subtopic is of such central importance later that it deserves a section
all to itself. You have no doubt all been exposed to this material before, but
I want to stress the operator treatment that we shall see again in our field
theory. (If you already know this method, it will at least serve as a review and
to establish notation.)

We seek a set of states |E,, >, n =0, 1,..., to serve as a complete basis in
which to expand any general state, and thus must solve the time independent
Schrédinger equation

HIE, > E,|E, > (1.39)

for the eigenvalues and eigenvectors. The Hamiltonian is given in Equation
(1.34) as

i=-— (q%+if9—> (1.40)

il = — (qm— ifo—) (1.41)
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as preferable dynamical variables. It is straightforward to see that

a'a

I
=
+
>
N
+
N |
=
RNy

= wata + % (1.42)
A = wia’ — ; (1.43)
so that
= %(m +aah) (1.44)
[a,a1]1=1 (1.45)
follow by adding and subtracting. Notice that (from Equation (1.42)),
(A 4" =wi'[a,a]
[H 4" = wa’ (1.46)
[H 4] = —wi. (1.47)

(In Equations (1.45)—(1.47) we now have the algebraic information in a suitable
form to find the spectrum. I urge you to do Problem 1.14 before continuing.)
We are now in a position to see exactly why @ and @' are so important. They
have the magical property in that they take you from one energy eigenstate
into another, rather than into some arbitrary linear combination of states. To
see this, consider the effect of the Hamiltonian on an eigenstate that has been
changed by the action of 41

HaY\E, > =(H a"1+a"H)|E, >
= (wd' +a"E,)|E, >

= (Ey+ w)d'|E, > (1.48)

so we see that 4'|E, > is indeed an eigenstate of H and (E, + w) is the
eigenvalue. In a similar way we can establish that 4|E,, > is an eigenstate
with (E, — w) as the eigenvalue this time. Of course, you cannot lower the
energy until it becomes negative, so there must be a ground state of lowest
energy Eo with

4|Ey > =0 (1.49)
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as its definition to maintain consistency. (Beware! In relativistic physics such
reasoning will not be true.) But here you can prove it. From Equation (1.42)
we see that

N 1
H|Ey>=0+ Ea)|E0 >

establishing Eg = j as the ground state (or zero point) energy. Then, by

raising, we see that the energy spectrum is
1
En=<n+§>a) n=0,1,... (1.50)

and the corresponding eigenstates are given by

atyr
|E, > = %uso > (1.51)

where the exact factor follows from the requirement
<E,E,>=1 (1.52)

of normalization. It is now natural to speak of a vacuum rather than a ground
state, and then to envisage the “creation of particles” (or “excitation of quanta”)
into that vacuum. Indeed if we define a number operator

N=a"a (1.53)

to conform to our notation in Equations (1.42) and (1.50), then the change of
notation to

Nin>=nn> (1.54)
Hn>=E,n>=n+1/2wn > (1.55)

becomes irresistible.

Coupled Oscillators: Normal Modes

Before we launch into an attack on the quantum field theory of infinitely many
degrees of freedom, it is probably sensible to try a finite number of variables.
Let’s start with the classical theory of two equal masses in a one-dimensional
space (e.g., in a straight slot on a horizontal table) tied together by a spring of
spring constant g, and tied to fixed points by springs of spring constant k.
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FIGURE 1.2
Three spring forces.

I'have in mind the picture in Figure 1.2, where g1 and g, are displacements
from equilibrium, and the Lagrangian takes the form

1 ., . 1.2, . 1
L = om(gi +43) — 5k(5 +42) — 58(72 = 1)’ (1.56)
if none of the springs are stretched or compressed in the equilibrium position.
You can think of this as a model of a (very) small solid. One advantage of the
Lagrangian approach is that we never have to introduce the forces in the

springs and then eliminate them again; constraints are handled very neatly
in this formalism. The Euler-Lagrange equations yield

sk g
f1=——qm+ a(‘h 1) (1.57)

. k g
g2 = —alh - E(QZ —q1), (1.58)

which are sufficiently simple that we do not need formal methods to solve
them. We spot the relevant combinations of variables by adding and subtract-
ing to obtain

k
(G1+G2) = —a(lh +42) (1.59)

k
(G2 — 1) = — <% + %) (92 — q1), (1.60)

which we recognize as uncoupled simple harmonic oscillators. The solutions
are then obvious. We have one normal mode of oscillation with frequency

w1 = \/g (1.61)

and Equation (1.60) is satisfied trivially by having the two displacements
equal. The second normal mode has frequency

o = |28 (1.62)
m

and Equation (1.59) is satisfied trivially by the two displacements being equal
but opposite in sense. The general solution is then obtained by superposition




