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diagnostics and therapy, the field still lacks a comprehensive imaging 
book that describes state-of-the-art biophotonics imaging approaches 
intensively developed in recent years. Addressing this shortfall, Advanced 
Biophotonics: Tissue Optical Sectioning presents contemporary 
methods and applications of biophotonics imaging. Gathering research 
otherwise scattered in numerous physical, chemical, biophysical, and 
biomedical journals, the book helps researchers, bioengineers, and 
medical doctors understand major recent bioimaging technologies and 
the underlying biophotonics science.

Well-known international experts explore a variety of “hot” biomedical 
optics and biophotonics problems, including the use of photoacoustic 
imaging to investigate the molecular and cellular processes in living 
systems. The book also covers Monte Carlo modeling, tissue optics and 
tissue optical clearing, nonlinear optical microscopy, various aspects 
of optical coherence tomography, multimodal tomography, adaptive 
optics, and signal imaging.

With 58 color images, this book represents a valuable contribution to the 
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Preface

Photonics is the science and technology of generation, manipulation, and detection of light. The

field uses the quantum-like particles of light, i.e., the photons, instead of electrons to transmit,

process, and store information. Biophotonics is recently emerged from the applications of photonics

in the fields of biology and medicine. The invention of lasers in the 1960s revolutionized photonics,

and made rapid technological advancements that produced useful tools, such as bar code scanners,

CD players and laser pointers that are already playing an important part in our daily life. The

fluorescence microscope is the first taste of the power of biophotonics that brought us the important

molecular information within cells in almost all biological laboratories. Today, biophotonics is

widely regarded as the key science upon which the next generation of clinical tools and biomedical

research instrumentation will be based. Although nature has used the principle of biophotonics to

harness light for photosynthesis, it wasn’t until about 10 years ago that a substantial translation of

photonics technologies to biological applications began to transform medical and life sciences.

The knowledge of biophotonics essentially includes the fundamentals of many interdisciplinary

fields and how they are uniquely related to each other. Researchers and students who are interested

in biophotonics should have a solid understanding of the physics of light, and the engineering of

devices and instruments that are used to generate, modify, and manipulate light. On the other hand,

they must also understand the fundamentals of biology and medicine, such as the molecular and

cellular processes that occur in living systems to properly and meaningfully utilize the biophotonics

techniques to address their biological questions. Healthy and diseased tissues have differing biolog-

ical processes in different states; thus, it is also important to have a fundamental understanding of

pathophysiology, and common disease states such as cancer, cardiovascular disease, neurodegener-

ative disease, and infectious disease, to name just a few.

Although still “young,” biophotonics is now steadily becoming an important discipline that in-

vestigates fundamental principles and develops new optical technology for the interaction of light

or photons with biological organisms, tissues, cells, and molecules. One of the most important

elements in this discipline is the rapid developments of innovative bio-imaging technologies that

brought us the opportunities to visualize tissue organization, biochemical compositions, and func-

tional information about tissue without any harm to its native state. The light with wavelengths be-

tween visible and near-infrared ranges is highly scattered within a turbidmedium, such as biological

tissue. Therefore, the bio-imaging methods that attempt to form images from light passing through

tissue can be classified into two categories—ballistic (minimally scattered) optical microscopy and

diffuse (multiply scattered) optical tomography. The former provides fine resolution but with a shal-

low imaging depth in tissue—up to about 1–2 mm, as defined by the optical diffusion limit. The

representative technologies in this category include confocal microscopy, multiphoton microscopy,

optical coherence tomography, and others.

When incident photons reach their diffusion limit, most of them have undergone tens of scat-

tering events, making the ability to focus the light extremely difficult. Fortunately, diffuse optical

tomography can effectively utilize the multiply scattering photons to provide an image that repre-

sents information centimeters into tissue, albeit with poor spatial resolution—roughly about one-

third of the imaging depth. However, randomized paths of the diffuse photons render the image

reconstruction mathematically ill-posed. It still remains a challenge for pure optical imaging to

attain fine spatial resolution at depths beyond the optical diffusion limit. Until recently, photoacous-
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tic imaging has been developed to break this limitation, in which the researchers innovatively use

photon-absorption in tissue that can be converted into ultrasonic waves, which are scattered much

less. For this, we have seen impressive progress over just the last few years that has manifested the

power of photoacoustic imaging to investigate the molecular and cellular processes that occur in

living systems.

Currently, there are a number of professional books (including edited) that were published by

different publishers, which describe methods and techniques of biophotonics imaging for medical

diagnostics and therapy. Many of them are devoted to specific topics of biomedical optics such as

tissue optics, confocal, nonlinear microscopy (including multiphoton microscopy), optical coher-

ence tomography, and others. There is still a lack of a comprehensive imaging book that describes

advanced biophotonics imagingmethods and techniques intensively developed in recent years, a gap

that this current book tries to address. We believe that this assembled book is the next step in pre-

senting contemporary advances in biophotonics imaging and will allow researchers, bioengineers,

and medical doctors to be acquainted with major recent bioimaging technologies that apply bio-

photonics science and technology, which are dispersed in numerous journals of physical, chemical,

biophysical, and biomedical profiles.

It is, however, impossible to present all imaging techniques that use the photonics science and

technology to address biological and medical questions, particularly when this field is still rapidly

evolving and novel imaging methods are constantly conceptualized. The editors hope that this book

will be useful for researchers, practitioners, and professionals in the field of biophotonics, and can be

used by scientists or professionals in other disciplines, such as laser physics and technology, fiber

optics, spectroscopy, materials science, biology, and medicine. Graduate and also undergraduate

students specializing in biomedical physics and engineering, biomedical optics and biophotonics

will also find this book a useful resource.

This book represents a valuable contribution by well-known experts in the field of biomedical

optics and biophotonics with their particular interest in a variety of “hot” biophotonics problems.

We greatly appreciate the cooperation and contributions of all authors in the book, who have done

great work in the preparation of their chapters.

We would like to thank all those authors and publishers who freely granted permissions to re-

produce their copyrighted works. We are grateful to Dr. John Navas, Senior Editor, Physics, of

Taylor & Francis/CRC Press, for his idea to publish such a book, valuable suggestions, and help on

preparation of the manuscript. We are also very much thankful to Professor Vladimir L. Derbov,

Saratov State University, for preparation of the camera-ready manuscript and help in the technical

editing of the book.

Ruikang K. Wang

Valery V. Tuchin



The Editors

Ruikang K. Wang, PhD, is Professor of Bioengineering with the University of Washington, Seat-
tle. After two years postdoctoral research training at Glasgow, Scotland, he joined as a Lecturer,

and then, Senior Lecturer in Bioimaging Science with Keele Medical School, England. In 2002, he

became a chair professor in Biomedical Optics at Cranfield University, England, where he created

and directed the Biophotonics and Imaging Laboratory. In 2005, he joined Oregon Health and Sci-

ence University, Oregon, where he was Professor of Biomedical Engineering and the Director of the

Biophotonics and Imaging Laboratory. He is author and co-author of more than 200 peer-reviewed

journal articles, one monograph in optical information processing, as well as 12 book chapters. He

is a fellow of the Optical Society of America and a fellow of the International Society for Optics and

Photonics (SPIE). His current research interests include biophotonics and imaging, optical coher-

ence tomography, optical microangiography, and their applications in neurology, ophthalmology,

dermatology and cancer.

Valery V. Tuchin, PhD, holds the Optics and Biophotonics Chair and is a Director of Research-
Educational Institute of Optics and Biophotonics at Saratov State University, Head of Laboratory

on Laser Diagnostics of Technical and Living Systems, Inst. of Precise Mechanics and Control,

RAS, and FiDiPro Professor (Finland Distinguished Professor) of Optoelectronics and Measure-

ment Techniques Laboratory, University of Oulu, Finland. His research interests include bio-

photonics, biomedical optics and laser medicine, physics of optical and laser measurements. He

has authored more than 300 peer-reviewed papers and books, including his latest, Tissue Optics:

Light Scattering Methods and Instrumentation for Medical Diagnosis (PM166, SPIE Press, second

edition, 2007), Dictionary of Biomedical Optics and Biophotonics (PM217, SPIE Press, Belling-

ham, WA, 2012), and three volume Handbook of Biophotonics (Wiley-VCH Verlag GmbH & Co.

KGaA, Weinheim, 2011-2012. Eds.: J. Popp, V.V. Tuchin, A. Chiou, and S.H. Heinemann). He

has been awarded Honored Science Worker of the Russian Federation and SPIE Fellow, and is a

Vice-President of the Russian Photobiology Society. In 2007 he was awarded the SPIE Educator

Award.

xv





List of Contributors

Jennifer Kehlet Barton

Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona

Chao-Wei Chen

Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland

Yu Chen

Fischell Department of Bioengineering, University of Maryland, College Park, Maryland

Kenny F. Chou

Department of Bioengineering and Human Photonics Lab, University of Washington, Seattle, Washington

Riccardo Cicchi

National Institute of Optics - National Research Council (INO-CNR), Florence, Italy; European Laboratory

for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy

Ryan L. Coe

Department of Bioengineering and Human Photonics Lab, University of Washington, Seattle, Washington

David J. Cuccia

Modulated Imaging Inc., Irvine, California

Andrea Curatolo

Optical+Biomedical Engineering Laboratory (OBEL), School of Electrical, Electronic and Computer En-

gineering, The University of Western Australia, Crawley, Western Australia, Australia

Susan M. Daly

Department of Physics & Energy, University of Limerick, Ireland

Alexander Doronin

The Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, New Zealand

Jacque Duncan

Department of Ophthalmology, University of California, San Francisco, California

Anthony J. Durkin

Beckman Laser Institute and Medical Clinic, University of California, Irvine, California

Nirmalya Ghosh

Department of Physical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata,

Mohanpur, West Bengal, India

xvii



xviii Advanced Biophotonics: Tissue Optical Sectioning

Christopher A. Girkin

Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama

Zijian Guo

Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis,

St. Louis, Missouri

Timothy R. Hillman

Former address: Optical+Biomedical Engineering Laboratory (OBEL), School of Electrical, Electronic and

Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia

Shuliang Jiao

Department of Ophthalmology, University of Southern California, Los Angeles, California

Brendan F. Kennedy

Optical+Biomedical Engineering Laboratory (OBEL), School of Electrical, Electronic and Computer En-

gineering, The University of Western Australia, Crawley, Western Australia, Australia

David Layden

Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada

Martin J. Leahy

Tissue Optics and Microcirculation Imaging Group, School of Physics, National University of Ireland,

Galway, Ireland

Qingming Luo

Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong

University of Science and Technology, Wuhan, China; Key Laboratory of Biomedical Photonics of Ministry

of Education, Huazhong University of Science and Technology, Wuhan, China

Amaan Mazhar

Beckman Laser Institute and Medical Clinic, University of California, Irvine, California

Igor Meglinski

The Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, New Zealand

Michael G. Meyer

VisionGate Inc., Phoenix, Arizona

Qin Miao

Department of Bioengineering and Human Photonics Lab, University of Washington, Seattle, Washington

Vasilis Ntziachristos

Institute for Biological and Medical Imaging and Chair for Biological Imaging, Helmholtz Zentrum München

and Technische Universität München Ingolstädter Neuherberg, Germany
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1.1 Introduction

Nowadays optical diagnostics (OD) and photonics-based imaging techniques strongly influence

a number of fields including biomedicine, environmental, automotive, combustion, material and life

science, etc. [1–3]. OD as well as x-ray, computer tomography, ultrasound imaging, and magnetic

resonance are the examples of technologies that have emerged from physics and engineering and

have had a significant impact on medical diagnostics and clinical practice [4, 5]. OD encompasses

a range of modalities, all of which rely on detecting and analyzing the changes of laser/optical

radiation due to interaction with the matter/biological tissues. OD systems and experimental pho-

tonics technologies have been significantly improved with the new developments in fiber optics,

laser delivery/detection systems [6], Charge Coupled Device (CCD), and therefore become avail-

able for various medical and biological applications [2, 5, 7]. Thus, nowadays a number of new

OD technologies successfully contribute to healthcare in many medical specialties: dermatology,

ophthalmology, oncology, gynecology, gastroenterology, neonatology, etc. [2, 8].

Modern research trends are focused on making medical diagnostics cheaper, faster and conse-

quently more productive by applying new optical techniques incorporated with fast computer algo-

rithms to process and analyze the data in real time. Conceptual design, further optimization and/or

modification of the particular experimental OD systems requires careful selection of multiple tech-

nical parameters, including intensity, laser beam profile, coherence, polarization, wavelength of

incident laser/optical radiation; size, position, numerical aperture, sensitivity of the detector. An

1
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Figure 1.1: Schematic presentation of the major models used to describe optical radiation transfer

in turbid media [9–22]. Dashed lines show the relations between different approaches.

estimation of how the spatial and temporal structural alterations in biological tissues can be distin-

guished by variations of these parameters is also required.

Various aspects of optical radiation propagation within highly scattering randomly inhomoge-

neous media have been extensively covered in numerous modeling and theoretical studies. These

models are tightly related to the structure of the medium and can be separated into two basic cate-

gories: stochastic computational and deterministic models (Fig. 1.1).

In Electromagnetic Theory propagation of electromagnetic waves through a spatially varying
medium, such as tissue, are described by Maxwell’s equations [14, 23, 24]. Maxwell’s equations

are part of fundamental laws of physics and rigorously treat the radiation transfer or transfer of

energy of electromagnetic waves.

The description of multiple scattering of optical radiation in the framework of electromagnetic

theory employs continuous and discrete models of tissue (Fig. 1.2). In the continuous model, tissue

is considered as a random medium whose permittivity ε(r, t) fluctuates randomly as ε2(r, t) with
the position about a mean value ε1, i.e. ε(r, t) = ε1+ ε2(r, t). Continuous model combined with
electromagnetic theory based on Maxwell’s equations could be very effective to study light propa-

gation in biological tissue. However, due to the complex and highly disordered structure of tissues,

the defining ε(r, t) becomes extremely complicated. There have been a number of non-successful
attempts to apply this model in the field of tissue optics, except a possibility of determination of

refractive indices of various tissues [25]. Therefore, the relevance of electromagnetic theory within

tissue optics lies mainly in the study of influence of morphological features of tissue components

on distribution of scattered light.

Another modeling approach is based on presenting tissues as an ensemble of discrete scatter-

ing and absorbing particles (see Fig. 1.2 b). In this approach, each local center of scattering and

absorption corresponds to a statistical average over physically small volume that is a statistical av-

erage over several acts of scattering and absorption in cell micro-structure. This theoretical model

is well suited for description of light propagation in suspensions of scattering particles (e.g., micro-

spheres). The spatial distribution of light is then obtained by adding the fields, by employing an

idea of field perturbation, as a first approximation to the unperturbed single scattering theory [14].

This approach, however, does not lead to solvable equations for practical problems.

Mie computations are mainly realistically performed in order to compute the scattering properties

of calibration suspensions of latex spheres [26] and tissue phantoms [26, 27], rather than defining the

scattering properties of tissues. Mie theory has serious limitations when applied to describe multiple

light scattering by a group of cells in tissue. Perhaps scattering of light in diluted blood samples is
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Figure 1.2: Schematic presentation of different tissue models of biological tissues: (a) with ran-

dom spatial and/or temporal fluctuations of refractive index, (b) an ensemble of randomly distributed

scattering and absorbing centers and (c) an ensemble of scattering centers in an absorbing contin-

uum.

one of the few exceptions [2, 28]. Alternative techniques used for simulation of scattering of light

on a single particle, e.g., red blood cell [2] are the T-matrix or the extended boundary method based

on expansion into spherical harmonics with various boundary conditions, i.e. expressed in terms of

integrals over the particle surface of electric and magnetic currents, the method of moments, WKB

(Wentzel, Kramers, Brillouin) [14] and RGD approximations.

Radiative transfer is a model describing photon transport in a random scattering medium. The

uses of transport theory span across a number of disciplines, including atmospheric and ocean ra-

diative transfer, astrophysics, geophysics and others. The central equation, the radiative transfer

equation (RTE) (1.1), mathematically expresses a macroscopic energy balance and describes the

statistical average transport of photons and their energy through the turbid medium [14, 29].1
v

∂
∂ t| {z }
1

+ s·∇
|{z}
2

+ (µs+µa)


| {z }

3

L(r,s, t) = µs
I

4π

p

s,s0

L

r,s0, t


dΩ0

| {z }
4

+Q(r,s, t)

| {z }
5

, (1.1)

where L(r,s, t) is the radiance (the average power flux density at point r in the direction s within a
unit solid angle at time t), µs and µa are the optical scattering and absorption coefficients, p(s,s0)
is the scattering phase function, Q(r,s, t) is the radiant source function, and v is the speed of light
propagation in the medium.

RTE is the equivalent to the equation of Boltzmann’s kinetic theory of gases and to the equation

of neutron transport theory [30]. The theory is heuristically derived by considering the energy

balance of incoming, outgoing, absorbed, scattered, and emitted light of an infinitesimal volume

element. It deals with the description of intensity propagation through a scattering medium. The

medium is assumed to be homogeneous with constant characteristics of scattering and absorption

and containing discrete, bounded regions of absorption and scattering inhomogeneities (see Fig. 1.2

b). Light propagation is envisioned as a stream of photons. A fundamental peculiarity of radiative

transfer theory is that intensity of light is only considered, and the method simply ignores the wave

phenomena. To enable the correlation between the radiometric, measurable quantities provided by

the transport theory and the field characteristics given by electromagnetic theory, it has been proved

that RTE can be regarded as an approximate reformulation of Maxwell’s equations for a random

medium under certain premises [14, 31].

The left-hand and the right-hand sides of (1.1) accounts for photon leaving and entering a small

volume element of a medium. In order of appearance, the first term describes the time variation
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in a number of photons in the volume, the second term gives the loss of photons in the direction

s, escaping the observed volume through its boundary surfaces, the third term accounts for photon

absorption and scattering out of initial direction s. The forth term defines photons gained by scat-

tering process from any directions s0 into the direction s. Q(r,s, t) is a number of photons produced
by an external light source. This concludes macroscopic energy conservation for a small medium

volume. There is a growing interest in validity of RTE for light propagation in biological media and

comprehensive reviews of the mathematical solution of RTE are given elsewhere [30, 32, 33].

Integro-differential equations with analytical solutions are often solved numerically by conver-

sion to a system of a linear algebraic equations suitable for numerical solution [2, 14, 34]. The

accuracy of the solution depends on the actual number of discretization terms considered. To do

this, the radiance L(r,s) (time-dependence is omitted here for brevity) is represented only by its
value at discrete values of independent variables. The integration and differentiation operators are

replaced by their discrete counterparts, differences and summation. For example, to approximate the

angular distribution of the specific intensity, the direction variable is discretized at N values in the

RTE. The set of directions is determined by the selected quadrature method. Historically this was

not rigorously derived from the transport equation, but was derived using heuristic arguments. Two-

flux, or so-called Kubelka-Munk theory [35, 36], and four-flux theories have been used extensively

for this purpose. The two-flux theory relates the propagation of opposing light fluxes to scattering

and absorption coefficients of a medium. The two-flux model is inadequate for describing a colli-

mated beam incident to a tissue surface. In this case, the four-fluxmodel is utilized, where the fluxes

separate into collimated flux (forward and backward) and a diffuse flux (forward and backward). A

further refinement of the four-flux theory can be obtained by considering fluxes in more directions.

To take into account the effect of finite collimated beam, two more radial fluxes are added, one

directed inwards and the other outwards from the main axes of the collimated beam. An example

of using the discrete ordinate method for imaging reconstruction in optical diffuse tomography is

given in [37].

Alternatively, the discretization can be performed in terms of N small solid angles (cones) qual-

ified by cosine of angles between the initial direction of photon packets and direction of scattering,

µi = cos(s · s0). The phase function is then substituted by a redistribution matrix with elements,
h(µi,µ j), corresponding to the fraction of incident light in a cone µi, which is scattered into a cone
µ j.
The adding-doubling method is based on this discretization for a slab of tissue, thin along the

z-axis and of infinite extent in the xy-plane [38]. The thickness of the slab should be also small

so that the integration of the radiance along z-axis can be approximated by its average at the top

and bottom of the layer. This is imperative to be able to solve the discrete, azimuthally averaged

transport equation:

µi
∂L(z,µi)

∂ z
+(µs+µa)L(z,µi) =

= µs
N

∑
j=1

ϖ j [h(µi,µ j)L(z,µ j)+h(µi,−µ j)L(z,−µ j)]. (1.2)

Here, the weighting factors ϖ j are determined by a selected integration procedure. The equation

(1.2) can be solved via integration over the thickness, z1− z0 = ∆z, of a thin slab:

µi [L(z1,µi)−L(z0,µi)]+ (µs+µa)∆zL1/2(µi) =

= µs∆z
N

∑
j=1

ϖ j


h(µi,µ j)L1/2(µ j)+h(µi,−µ j)L1/2(−µ j)


, (1.3)

where L1/2(µi) = 1/2(L(z0,µi)+L(z1,µi)) is the average of radiance at the top and the bottom of

the slab. The results are expression dependent on the radiance at the top z0 and bottom z1, of the
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slab, which consequently are the only parameters to be determined. The adding-doubling method

is thus mainly used to compute the reflectance and transmittance rather than the fluence inside. The

results for a slab, which is twice as thick as the initial slab, are obtained by adding the contributions

from each individual slab. This is repeated until the actual physical thickness is reached. The

method provides a fast way to go from thin to very thick samples. It applies to problems with

inhomogeneous layers and anisotropic scattering.

A formal method to solve a differential equation is to find the solution to its homogeneous part and

expand the general solution in terms of the homogeneous solution obtained [30]. This eigenvector -

eigenvalue problem has for the transport equation been treated, but has never really been applied to

tissue optics. A simpler approach than using the rather complex eigenfunctions, would be to expand

the radiance using a well-known appropriate function series. Considering the angular distribution of

diffusely scattered light, a realistic choice of orthogonal expansion functions for the diffuse radiance

are spherical harmonics. For example, the HG phase function only depends on angle θ or rather

cosθ . An expansion of the phase function into spherical-harmonic function reduces to an expansion
into Legendre polynomials:

pHG (cosθ ) =
1

4π
1−g2

(1+g2−2gcosθ )3/2
=

N

∑
n=0

2n+1

4π
gnPn(cosθ ), (1.4)

where g is the anisotropy and the first Legendre polynomials defined as [39]:

P0(x) = 1, P1(x) = x,

P2(x) =
1

2


3x2−1


, P3(x) =

1

2


5x3−3x


.

(1.5)

A general expression for the phase function can be formulated as an expansion series in Legendre

polynomials Pn (s,s
0):

p

s,s0

=

∞

∑
n=0

2n+1

4π
bnPn(s,s

0), (1.6)

where bn are the expansion coefficients given by

bn =

I

4π

p

s,s0

Pn

s,s0

dΩ0. (1.7)

Legendre polynomials Pn(cosθ ) have proven to be well-suited to axial-symmetric tissue geome-
try [30, 40]. This implies that the radiance must first be separated into one primary, collimated part,

Lc, and one scattered (diffuse) part, Ld :

L(r,s) = Lc(r,s)+Ld(r,s). (1.8)

Note, that collimated radiance Lc is the collimated light that has not been scattered by the medium.

Thus, the collimated part fulfills Beer-Lambert’s law:

∂Lc(r,s)
∂ s

=−µtLc(r,s). (1.9)

The diffuse radiance Ld is the part of light that has been scattered at least once. Its angular distribu-

tion can be approximated by a truncated series of spherical-harmonic function (Legendre polyno-

mials). For Ld an equation of transfer is only different from the general transfer equation (1.1) in its

source term [40]. As collimated light is not scattered, its equation of transfer is equal to:
s·∇+(µs+µa)


Lc(r,s) =Qc (r,s) , (1.10)
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where Qc (r,s) is the collimated part of a light source Q(r,s). Typically, in major OD applications,

the light source is located at the surface of the medium (tissue). Thus, it is convenient to introduce

the boundary conditions: Qc (r,s) = 0.

The general RTE for the diffuse radiance Ld is found by substitution of (1.8) into equation of

transfer (1.1), and subtraction of (1.10) from the result:

[s·∇+(µs+µa)]Ld (r,s, t) = µs

I

4π

p

s,s0

Ld

r,s0

dΩ0+

+Qd (r,s)+µs
I

4π

p

s,s0

Lc

r,s0

dΩ0, (1.11)

Lc (r,s
0) is defined by (1.9), that makes the equation an analogue of the RTE for the total radiance L

(1.1) with an extra source term.

The angular distribution of the diffuse radiance Ld can be approximated by a truncated series

of Legendre polynomials. Expanding Ld(r,s) into Legendre series with the expansion coefficients
Ln(r) similar as it has been done to the phase function (1.6) and (1.7) and substituting it into the
(1.1) leads to

∞

∑
i=0

[s·∇+(µs+µa)] (2i+1)Li(r)Pi(s) =
µs
4π

∞

∑
j=0

∞

∑
k=0

(2 j+1)L j(r)(2k+1)bk×

×
I

4π

Pj(s
0)Pk(s

0)dΩ0+Qd (r,s)+µs

I

4π

p

s,s0

Lc

r,s0

dΩ0. (1.12)

The Legendre polynomials are orthogonal over (−1,1) with weighting function 1 and satisfy
Z 1

−1
Pi(x)Pj(x)dx=

2

2i+1
δi j. (1.13)

Thus, in (1.12) the integral over dΩ0 vanishes, when j 6= k:

∞

∑
i=0

[s·∇+(µs+µa−µsbi)] (2i+1)Li(r)Pi(s) =Qd (r,s)+

+µs
I

4π

p

s,s0

Lc

r,s0

dΩ0, (1.14)

and a set of differential equations is finally obtained by multiplying (1.14) by Pn(s). This is followed
by another integration over dΩ0. Subsequently, the addition theorem for Legendre polynomials is

employed. In the PN approximation, only N first terms of Legendre polynomial series are taken into

account that gives a system of N+ 1 coupled first-order differential equations [14, 29, 30, 34, 40].

The systems can be reduced to a system of coupled second-order differential equations. Finally, the

solution for unknowns Ln(r) can be found with the use of a finite-difference or finite-element code.
Diffusion approximation (also known as the P1 approximation of RTE solution) is an analytical

closed-form solution which is suitable for a number of particular problems in various OD applica-

tions. With additional assumption of negligible anisotropy in the source, the result is the pair of

coupled (time-dependent) equations [12, 14, 18, 34, 41]:
1

v

∂φ(r, t)
∂ t

+∇·J(r, t)+µaφ(r, t) = S(r, t),

1

v

∂J(r, t)
∂ t

+
1

3
∇φ(r, t)+µtrJ(r, t) = 0,

(1.15)
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where φ(r, t) and J(r, t) are the fluence rate and flux at (r, t), and S(r, t) is the photon source:

φ(r, t) =
I

4π

L(r,s0, t)dΩ0, J(r, t) =
I

4π

s0L(r,s0, t)dΩ0,

S(r, t) =
I

4π

Q(r,s0, t)dΩ0. (1.16)

The transport coefficient is defined as µtr = µ 0s+ µa, where µ 0s = µs(1− g) refers to the reduced
scattering coefficient. The diffusion equation is obtained by eliminating J between two equations
(1.15): 

1

v

∂
∂ t
−D∇2+µa


φ(r, t) = S(r, t), (1.17)

where D is the diffusion coefficient, defined as D= 1/3µtr.
The radiance in diffusion approximation is expressed as

L(r,s, t) =
1

4π
φ(r, t)+

3

4π
J(r, t)·s, (1.18)

whereas in most practical diagnostics problems the measurable quantity R(ρ , t) is the number of
photons that reach the unit area of a surface in a unit time at given source-detector separation ρ
and at given time t. R(ρ , t) defines the diffuse reflectance and is calculated as a current of detected
photons across the medium boundary [34, 41]:

R f (ρ , t) =−D∇φ(ρ ,z, t) · (−z)|z=0. (1.19)

The diffusion equation is a second-order differential equation and its solution is commonly con-

sidered for the partial-current boundary conditions, the zero-boundary conditions, and the extrap-

olated boundary conditions [42, 43, 44]. It has been demonstrated that the solution is more accu-

rate when applied to the reflectance as the integral of the radiance over the backward hemisphere

[42, 43]:

R(ρ , t) =
ZZ

2π


φ(ρ ,z, t)+3D

∂φ(ρ ,z, t)
∂ z


z=0

(1−RFres(θ ))
dΩ

4π
, (1.20)

where RFres(θ ) is the Fresnel reflection coefficient for incident light at angle θ relative to the normal
to the medium boundary. For the extrapolated boundary condition and having employed the method

of image sources to solve the diffusion equation for fluence rate φ within the medium lead to [45]:

φ(ρ ,z, t) =
v

(4πDvt)3/2
exp(−µavt)


exp


− (z− z0)

2+ρ2

4Dvt


−

− exp


− (z+ z0+2zb)

2+ρ2

4Dvt


. (1.21)

The first term is due to a point source at z0 = (µtr)−1 that results from the perpendicularly incident

collimated light, and the second one is due to a negative image source at−z0−2zb. The fluence rate
is set to zero at the extrapolated boundary located at zb

zb =
1+Re f f

1−Re f f
2D. (1.22)

Here, Re f f represents the fraction of photons that have been internally diffusely reflected at the

medium boundary.
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According to [42]:

Re f f ≡
Rφ +R j

2−Rφ +R j
.

Rφ ≡
π/2Z

0

2sinθ cosθRFres(θ )dθ , R j≡
π/2Z

0

3sinθ cos2 θRFres(θ )dθ . (1.23)

It is possible to regroup (1.20) and express it in terms of conventional expression for φ (1.21) and
R f (ρ , t) (1.19) [42, 43]:

R(ρ , t) =
1

2


1

2
− Rφ

2


| {z }

Cφ

φ(ρ , t)+
1

2
(1−R j)| {z }
C j

R f (ρ , t). (1.24)

The derivation of the diffusion equation as it has been shown above is not unique. Some other

approaches, all assuming isotropic scattering, such as a randomwalk, elementary kinetic theory (e.g.

[46]) are known. These approaches do not necessarily provide the same expression for the diffusion

coefficientD. There is a number of studies discussing an exact expression for D [41, 46, 47] as well

as a number of models have been proposed, trading off accuracy for computational ease [2]. The

main limitation of the diffusion approximation is that the distance between sources and detectors

should be much greater than the mean transport length so that enough scattering events occur to

generate a diffuse field [48, 49]. Additionally, the source and detector sizes must be small enough

as compared to the distance of their separation. The diffusion approximation is also not valid for

photons with short arrival time (“snake” or low-order scattering photons) to the detector [50].

Stochastic models are an alternative to deterministic models and have been developed to model
light transport in biological tissues [34, 51]. Stochastic methods proceed in a very different way

from deterministic methods. These methods involve modeling of individual photon interactions

either implicitly, i.e. by deriving the probability density functions for photons transitions. The

problem of light transport through a scattering medium like a biological tissue is considered to be

probabilistic in nature for two reasons. Firstly, at the level of individual photons, light scattering

is a probabilistic phenomenon governed by the laws of quantum mechanics. Secondly, considering

light intensities averaged over a larger number of photons, the nature of the scattering medium itself

is random due to the large variety in distribution, shape and orientation of the scattering centers.

Random walk theory (RWT) describes the statistical behavior of light propagation in scattering
medium, constrained along the elements of a discrete lattice. RWT is based on two assumptions:

the tissues continuum is replaced by a cubic lattice with a step size inversely proportional to the

scattering coefficient, and that photons move isotropically between adjacent lattice points which

significantly restricts the number of possible photon directions [52, 53]. The derived functions are

the joint probabilities that a photon emerges at distance ρ on surface after n lattice steps, where

ρ measures the axial distance from the point of insertion to the point of re-emission. For a finite

slab, one can derive the joint probabilities in reflection and transmission after taking into account

appropriate boundary and initial conditions. Time-dependent expressions have been derived for a

homogeneous scattering medium and are in a good agreement with the results of diffusion theory.

Anisotropy for the case of continuous-wave and time-resolved measurements for both reflectance

and transmission modes was introduced in [54]. The advantage of RWT is the ability to produce rel-

atively simple mathematical expressions for various quantities of interest such as diffuse reflectance

and transmittance. The disadvantage includes a constant lattice step, that makes difficult an appli-

cation of the model of a layered medium. All resulting restrictions, similar to those for the diffusion

approximation, are also valid for RWT.

Photon path-integral formalism The RTE describing light propagation can be interpreted as

a collection of photon paths taken by radiation as it travels in the medium, r(t). Thus, a path
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integral (PI) P[r(t)] is an integral over all such possible paths traveled by photons. Optical fields are
described using the concept of an ensemble of effective optical paths of partial contributions [55, 56,

57]. PI methods analytically find the most important paths and develop quantitative estimates based

on them. The multiple scattering contributions are only computed along the most probable paths

and the rest of the paths are dealt with implicitly via analytic integration of multiple scattering. This

technique has been experimentally verified [58]. The great virtue of the PI approach is the huge

computational saving it affords by making systematic, rather than random, searches through photon

histories. Hence, the PI formalism offers analytic solutions to the RTE without using the diffusion

approximation, and it is well suited to describing the propagation of both early-arriving and fully-

diffused photons. The number of studies on this subject is still quite limited [59, 60] and practical

implementations are confined to a few publications [55, 58].

1.2 Monte Carlo Method

The Monte Carlo (MC) method is a prominent example of stochastic methods that stand alone

when analytic approaches have difficulties in giving a satisfactory solution. In this probabilistic

technique, the trajectories of individual multiple scattered photons are traced through the media,

each interaction being governed by random processes of scattering and absorption. Due to the lack

of intrinsic constraints, facing the problem of combining computation complexity of light propaga-

tionmodel and ability to cope with the optical parameters of biological tissues, which are anticipated

to vary spatially and temporally as well as individually,MC technique is chosen as a primary tool for

modeling of optical radiation propagation in biological tissues by many researchers [2, 38, 61–69].

The basic assumption of MC is that the process of photon migration is considered as a sequence

of random non-correlated events or Markov process [61, 71, 72]. In case of light propagation this

means that the probability that a photon will change from its present state to another state is inde-

pendent of its previous states, i.e. it has no awareness of its previous history. For scattering, for this

to be true, the scattering particles will have to be distributed non-periodically (a regular lattice would

produce a diffraction pattern), and the light should be non-coherent so that interference effects are

typically ignored.

In case of radiative transfer in biological tissue, the MC method is a method to estimate the

exact solution of RTE. This is done by sampling the set of all possible paths of photon packets (or

photons) through the tissue. In a simple case the random paths of a large number of photon packets

are simulated. The expected value of a random or stochastic variable can be seen as the integral

over all possible values of that variable multiplied by their probabilities. Estimation of an expected

value using the MC method is thus a form of a numerical quadrature. Indeed, the RTE (stationary

form in a homogeneous medium) can be written as an integral equation [30]:

L(r,s) =

∞Z

R=0

exp(−µtrR)µs
Z

4π

p

s,s0

L(r−Rs,s0)dΩ0dR+

∞Z

R=0

exp(−µtrR)Q(r−Rs,s)dR. (1.25)

Here, the radiance L at position r in direction s originates from the light source and from the

radiance scattered elsewhere into direction s; R is a path length. The second term defines light in

direction s that originates from sourceQ at positions r−Rs, that survives the transfer from positions

r−Rs to position r, by factor exp(−µtrR). The first integral term represents light that has been
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Figure 1.3: The Cartesian coordinate system (XYZ) is employed to specify the position r of a
photon in the modeling medium: angles θ and ϕ are the polar and azimuth angles which define s,
the direction of photon packet propagation. s1, s2, s3 are the direction cosines.

scattered at positions r−Rs, from direction s0 into direction s, that also reached position r.

1.2.1 Implementation of Monte Carlo simulation

Photon packets propagate through scatteringmatter. The points where interactionswith thematter

occur are described by probability density function (pdf). If x is a variable that characterizes the

interaction (e.g. scattering angle or distance), its pdf p(x) is defined as:

∞Z

−∞

p(x)dx≡ 1 F(x) = P(x≤ a)≡
aZ

−∞

p(x)dx, (1.26)

whereF(x), 0≤F(x)≤ 1 is the cumulative probability function (cpdf). F(x) is equal to a probability
P(x≤ a) that a random variable x is less than a. By taking the inverse, F−1 the random samples can

then be obtained from this function by the use of random numbers ξ uniformly distributed between
0 and 1 according to [71]:

ξ =

xZ

−∞

p(x)dx → x= F−1(ξ ). (1.27)

There are also other techniques such as rejection sampling or table-lookup method that can be used

for the same purpose [71].

The photon’s phase space {r,s} is the collection of dynamic variables that describe the photon’s
absolute location in the medium referred to the coordinate system, r, and its direction, s, referred
back to fixed set of axes in the same coordinate system (Fig. 1.3). The coordinate system is usually

the one where the fixed components of the experiment resides. r represents the 3-component vector
r = (x,y,z), and s represents the 3-component vector s = (s1,s2,s3). The direction of incident

photons is specified by the initial polar angle θ and azimuthal angle ϕ and the components of the

vector s are often referred to the direction cosines, {s1,s2,s3}= {sinθ cosϕ ,sinθ sinϕ ,cosθ}.
A photon packet phase space can be supplemented with other variables, such as intensity, polar-

ization, etc. In simple MC simulation statistic weight of a photon packet is introduced into the phase

space to characterize the photon packet contribution to the variable of interest, e.g. reflectance or

transmittance.

In its phase space the photon packet is represented by the pdf, which is dependent on space

coordinates, direction cosines, and the statistical weight. The simulation is based on the modeling
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Figure 1.4: Schematic presentation of a photon packet propagation in a scattering medium. li is

the photon packet path length between i−1-th and i-th scattering centers located at ri−1 and ri. Unit
vectors si and si+1 define the direction of photon packet propagation prior to and straight after the
scattering event.

of a large number of possible trajectories of the photon packets from the site of the photons’ injection

into the medium (source) to the site, where the photons leave the medium (detector) (Fig. 1.4).

The pdf can be factorized as a product of three independent pdfs, i.e. the pdf of position, the

pdf of scattering, the pdf of importance, reflecting the physical fact that the spatial, directional and

importance distributions are mutually independent from each other. Hence, an individual trajectory

of a photon packet is modeled as a sequence of the following elementary simulations: i) generation

of photon path lengths, ii) simulation of scattering event, iii) reflections/refractions on the medium

boundaries, iv) absorption events, v) fluorescence events, vi) an act of Raman scattering, etc. for

particular OD applications. The initial and final states of the photons are entirely determined by the

source and the detector geometries and numerical apertures.

1.2.2 Transfer of a photon packet in the medium

Assume the trajectory of a photon packet consists of i points with coordinates given by rk, k= 1..i.
Given that a photon packet has a direction si and a distance li to travel, the new position ri is given
by:

ri = ri−1+ sili. (1.28)

The distance li (or l for brevity) is referred to a free path length, and is determined according to the

corresponding pdf.

l =− lnξ
µs

, (1.29)

where ξ is a uniformly distributed random number between 0 and 1.

Path length distribution p(l) can take on any positive values [72]:

p(l) = µt exp(−µt l) = µs exp(−µsl)exp(−µal)+µa exp(−µal)exp(−µsl), (1.30)

where µt = µs+ µa is the extinction coefficient. The first term in (1.30) describes photon scat-

tering, along with its reduction due to the absorption in a medium, exp(−µal). The second term
determines photon absorption in the medium. For the major OD applications, the main interest lies

in the detection of photon packets by a particular detector, rather than calculating the fraction of the

incident photons that have been absorbed in a medium. Factorizing the first term into the product

of the pdf of scattering, ps(l) and attenuation factor, exp(−µal), it is seen that the acts of scattering
and absorption can be modeled independently, i.e.:

p(l) = ps(l)exp(−µal) (1.31)
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and

ps(l) = µs exp(−µsl). (1.32)

The procedure of selection of l becomes more complicated if the medium is heterogeneous. Leaving

the problems associated with boundary interactions, the attention is drawn to variation of a free

path length of a photon packet due to transition into a region with different scattering coefficients.

Consider n regions with the scattering coefficients µsk, k = 1..n. If the photon packet crosses the
distances lk, in these regions, then the pdf (1.32) is defined as [71]:

ps(l) = µsj exp

"
−
 

j−1

∑
k=1

µsklk

!
−µsj

 
l−

j−1

∑
k=1

lk

!#
,

provided that
j−1

∑
k=1

lk ≤ l ≤
j

∑
k=1

lk.

(1.33)

Note that l j is a maximum possible distance that a packet can cross in the j-th region. Thus, the

path length selection can be carried out by determining j from the inequalities:

j−1

∑
k=1

µsk lk ≤− lnξ ≤
j

∑
k=1

µsk lk (1.34)

and then calculating

l =
j−1

∑
k=1

lk+
1

µsj

 
− lnξ −

j−1

∑
k=1

µsk lk

!
. (1.35)

The implementation of (1.35) is not straightforward as the distances lk are not known. Instead of

this, a step-by-step procedure is applied [69]. If a boundary demarcating a region of space with

different scattering coefficients the path length that the packet has traveled in the region k− 1 is

subtracted from the total path length l, i.e. l∗ = l− lk−1. Based on (1.35), the remaining step l
∗ to

be traveled in region k has to be converted in accordance with the new scattering coefficient:

l∗∗ = l∗
µs(k−1)
µsk

. (1.36)

This procedure repeats until the path length l∗∗ is not long enough to intersect the interface of the

adjacent layer. If a void region, i.e. µsk = 0, is encountered in the course of propagation, the photon

packet is moved directly to the next adjacent boundary following its direction.

The photon packet path length l to next interaction can be sampled by considering the medium as

uniform in terms of the local scattering coefficient. If the medium consists of inhomogeneities with

different scattering coefficients the photon packet is stopped at that boundary and its path length l is

truncated at that boundary. The next free path is taken from that boundary point with the scattering

coefficient being that of the region beyond the boundary. Other possible techniques can be found in

[71].

1.2.3 Scattering

Variations of refractive index are responsible for light scattering in tissues. The refraction varia-

tions are determined by the biochemical makeup of the tissue and will influence the amplitude of the

scattered light. In terms of tissue morphology, the relative size of organelles and cells with respect

to the wavelength of incident light affects the angular distribution of the scattered light. Increasing

difference in the index of refraction between the cell components and surrounding result in an in-

creasing scattering of the medium [2]. Mammalian cells range from 10 to 30 µm in diameter, and
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TABLE 1.1: The average cellular constituents and their scattering properties, collected from

[2] and references within.

Structure Diameter, µm n Shape Scattering proper-

ties
Red Blood Cell 8.5 1.40 disk Mie
Mitochondria 1 1.38-1.41 cylindrical Mie
Nucleus 7 1.39-1.47 spherical Mie
Lysosomes 0.25-0.8 spherical Mie
Endoplasmic reticu-

lum

few folded sheets Mie + Rayleigh

Microtubules & fila-

ments

1.5 Rayleigh

Golgi apparatus 1.5 Rayleigh
Cytosol 1.354

their internal organelles appear in a broad assortment of shapes and sizes. Table 1.1 lists the most

common cellular organelles inside mammalian cells.

Although the cytoplasmic components such as Golgi apparatus, lysosomes, endoplasmic reticu-

lum, mitochondria, etc., appear to be greatly different in their structure and organization [73, 74],

a few generalizations can be made: a) most of cytoplasmic organelles and inclusions are smaller

than 1 µm in size; b) they are not homogeneous bodies but rather complex structures. Typical

nuclei size ranges from 5 to 10 µm and like other cell organelles, nuclei are not a uniform object

and have a complex internal structure. The cell mainly contains an aqueous solution of electrolytes

and proteins, the cytoplasm, with an effective refractive index of approximately 1.38, while the cell

membrane and cell organelles are composed of phospholipid layers and proteins with refractive in-

dices in the range of 1.43-1.51 [25]. However, since the fraction of these higher refractive index

components is rather small, i.e. in the order of 5%, the effective cellular refractive index can be

estimated to∼ 1.40. When studying the spatial variations in the refractive index over a microscopic

scale such as the inside of a cell using a phase microscope, it is found that the cell membrane and the

nucleus are the components which are the dominant contributions to the cellular effective refractive

index; these are far more important than, for example, the mitochondria. This does not mean, how-

ever, that the membrane and the nucleus are the main scatterers in tissue. Apart from the refractive

index, parameters such as structure, size and concentration of the scattering object must also be

taken into account. For instance, the cell membrane has a thickness of only 5-10 nm and thus has

a relatively insignificant effect on the total light scattering from the cell, despite its high refractive

index. Instead, a high correlation between the reduced scattering coefficient and the mitochondrial

content has been found [75]. Tissues of high mitochondrial content exhibit high scattering coeffi-

cients. Light scattering from tissues with high concentrations of mitochondria such as liver tissue,

can to large extent (but far from completely) be attributed to this organelle despite its low refractive

index. The basic lipid bilayer membrane is about 9 nm in width. The refractive index mismatch

between lipid and the surrounding aqueous medium causes strong scattering of light. Folding of

lipid membranes presents larger size lipid structures which affect longer wavelengths of light. The

density of lipid/water interfaces within the mitochondria make them especially strong scatterers of

light. Lipid droplets inside the cells of adipose tissue have been shown to be a major contributor to

the cellular scattering, due to their high refractive index and high volume fraction (88%) in the cell

[75]. The strong scattering characteristics of lipid particles is further confirmed by the high correla-

tion found between the lipid content of liver tissue and the reduced scattering coefficient [76], when

the influence of the mitochondrial content has been compensated for.
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Apart from cellular components, connective tissue fibers are found to be responsible for scattering

[77, 78]. It was shown that scattering in neonatal skin is mostly dominated by Mie scattering from

cylindrical collagen fibers [79]. The refractive index of collagen has been measured to be between

1.46 and 1.55 [80]. Rayleigh scattering was also presented emerging mostly from collagen fibrils,

which are much smaller and do not bundle. S. Jacques [78] has attributed scattering of soft tissues in

the near-infrared region to membraneous structures that were modelled as spherical Mie scatterers

in 0.2–2 µm diameter range. Table 1.1 gives some insight into the nature of scattering from cellular

constituents.

Detailed theoretical information on the light scattering from specific cells and their organelles can

be obtained by utilizing the various methods based on electromagnetic theory [2, 81]. The general

results for such computations show that small scatterers, compared to wavelength, yield essentially

isotropic scattering, whereas particles of greater size exhibit more pronounced forward scattering.

Mie computations utilizing a cylindrical-particle model can also be applied to investigate the in-

fluence of the size of an elongated scattering object such as collagen fibers on the light scattering

[79]. Correspondingly, thin (compared to wavelength) fibers yield scattering with isotropic char-

acter, whereas enlargement, as observed for instance due to maturity of collagen fibers in neonatal

skin, increases the anisotropy and the scattering cross section.

Although contribution to the total cellular scattering from the nucleus is relatively small, changes

in its size and refractive index influences the angular distribution of the scattered light. RGD com-

putation of a layered sphere model with a particle size in the order of a lymphocyte (a type of

white blood cell) (∼ 8-10 µm), reveals that an increased nucleus diameter, at constant total cell
size, increases the forward scattering. This is supported by results of finite-difference time-domain

computations [82], however, the decrease of refractive index of either nucleus or the surrounding

cytoplasm causes a decrease in the forward scattering [82].

Experimental evidence supports the hypothesis that light scattering in biological tissues is ani-

sotropic with significant forward scattering, g ' 0.7–0.97 [83]. Goniometer measurements of a

number of animal model tissues indicate that g as a function of wavelength is approximately 0.9

with a tendency to increase with wavelength. Similar values of the anisotropy factor g in the range

of 0.7–0.95 for skin tissue in the visible spectral range have been reported in [84]. Forward-peaked

scattering functions for human stratum corneum and epidermis at ultraviolet and visible wavelengths

has been demonstrated in [85]. Values of g between 0.71 at 300 nm and 0.78 at 540 nm, varying

linearly with wavelength have been presented in [86]. With the full thickness epidermis, the distri-

bution of the transmitted light also peak, although less strongly than with stratum corneum.

It has been shown in [86] that a least squares fit identifies the Henyey-Greenstein (HG) phase

function as a good choice for describing scattering behavior in the stratum corneum. The HG

scattering phase function, an empirical approximation for Mie scattering from particles with a dis-

tribution of sizes [87], is defined as

pHG (cosθ ) =
1

4π
1−g2

(1+g2−2gcosθ )3/2
(1.37)

where θ is the scattering angle.
It should be pointed out that since the epidermis is very thin and because its micro-structure

composed of keratin fibers is analogous to the collagen fibers of the dermis, dermal scattering can

be used to approximate skin scattering. The refractive index ratio between stratum corneum and air

is about 1.51 [88–90]. This gives rise to surface scattering, which follows the Fresnel’s equations

[24] and is affected by the presence of folds in stratum corneum. The influence of stratum corneum

fold structure on the detected optical signal localization in biological tissues has been discussed in

[91].

The photon packet is scattered at the scattering center and a new direction of the packet is deter-

mined relative to the origin of photon direction (Figure 1.5). The coordinate system (XYZ) contains



Monte Carlo Method in Biophotonics and Biomedical Optics 15

Figure 1.5: A new direction defined in local coordinate system (X 0Y 0Z0) by the deviations in the

polar angle θ 0 and azimuthal angle ϕ 0 in terms of the coordinate system (XYZ). Unit vectors si and
si+1 define the direction of photon packet propagation prior to and straight after scattering.

the absolute initial direction si. New direction si+1 is originally defined in local coordinate system
(X 0Y 0Z0) by the deviations in the polar angle θ 0 and azimuthal angle ϕ 0, relative to the previous
direction. In the coordinate system (X 0Y 0Z0) a new direction si+1 is given by the direction cosines
{sinθ 0 cosϕ 0,sinθ 0 sinϕ 0,cosθ 0}. In XYZ a new direction si+1 and the corresponding direction
cosines {s1i+1,s2i+1,s3i+1} are defined as [61, 70, 92–94]:

s1s2
s3


i+1

=



s1is3iq
1− s23i

− s2iq
1− s23i

s1i

s2is3iq
1− s23i

s1iq
1− s23i

s2i

−
q
1− s23i 0 s3i


sinθ 0 cosϕ 0sinθ 0 sinϕ 0

cosθ 0

 , (1.38)

where si = {s1i,s2i,s3i} are the direction cosines before the i-th scattering. If |s3i| is too close to 1,
the photon is assumed not to deflect, and

s1s2
s3


i+1

=

sinθ
0 cosϕ 0

sinθ 0 sinϕ 0
s3i

|s3i| cosθ
0

 . (1.39)

The values of deviations are determined from the corresponding cpdfs: θ 0 = F−1θ 0 (ξ ) and ϕ
0 =

F−1ϕ 0 (ξ ) (see 1.27). The HG scattering phase function pHG is typically used. The phase function

is effectively the pdf of scattering and fulfills all requirements for pdf (1.27). pHG is factorized as

follows:

pHG = pθ 0(θ
0)pϕ 0(ϕ

0),

pθ 0(cosθ
0) =

1

2

1−g2

(1+g2−2gcosθ 0)3/2
, pϕ 0(ϕ

0) =
1

2π
. (1.40)

The cpdf of pθ 0(cosθ
0), Fθ 0(cosθ

0), is given by

Fθ 0(cosθ
0) =

1

2g

 
1−g2p

1+g2−2gcosθ 0
− (1−g)

!
(1.41)
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Figure 1.6: Reduced scattering coefficient of human skin (a) suggested in [79], where: 1 -

Rayleigh scattering, 2 - Mie scattering by collagen fibers, 3 - the combined Rayleigh and Mie

scattering; scattering properties of tissues used in the simulation (b), where: 1 - stratum corneum;

2 - living epidermis; 3 - papillary dermis; 4 - upper blood net dermis; 5 - reticular dermis; 6 - deep

blood net dermis; 7 - subcutaneous fat.

Applying transformation (1.27), the choice for cosθ 0 and ϕ 0 can be expressed as follows:

cosθ 0 =


1

2g

 
1+g2−


1−g2

1−g+2gξ

2!
, if g> 0

2ξ −1, if g= 0.

ϕ 0 = 2πξ .

(1.42)

Note, any other scattering phase function can be used, instead of the HG function. If analytical

inversion, see (1.27) and (1.41), is not possible, then the table lookupmethod is invoked [71, 95, 96].

According to this method, points within equally probable intervals of the variable to be selected are

picked up randomly from a pre-calculated table of the inversed cpdf of the variable similar to (1.26).

The cpdf for the scattering angle θ 0 or rather cosθ 0 can be numerically constructed:

F(cosθ 0) =

cosθ 0Z

−1

p(cosθ )d cosθ , F(1) = 1. (1.43)

The inverted cpdf, icpd f =F−1(cosθ 0), containing values of cosθ 0, can be calculated and stored in
the array icpd f [k], k= 1..max(k). For all k the two values, cpd f [k−1] ·max(k) and cpd f [k] ·max(k)
that most closely correspond to the index value k are looked up in the array cpd f [k]. Notice that
max(cpd f [k]) = 1 and min(cpd f [k]) = 0 (1.26). Lagrange polynomial or any other and appropriate

interpolation technique is performed to find the best approximate value. Finally, the array icpd f [k]
filled with equally probable values of cosθ 0 obeying the assumed pdf, is constructed. The usage of
the table is straightforward.

A generated random number ξ is re-scaled to span over the entire array icpd f [k], i.e. simply
multiplied by max(k), and is used to find corresponding index k∗, such that k∗− 1 ≤ max(k)ξ ≤
k∗. Again, Lagrange interpolating polynomials are used to find the value cosθ 0 corresponding to
max(k)ξ .



Monte Carlo Method in Biophotonics and Biomedical Optics 17

The approximated scattering coefficients of human skin layers based on a combination of Mie

and Rayleigh theories are presented in Fig. 1.6 and were obtained from a number of sources ([2, 78,

79, 97, 98, 99]).

1.2.4 Absorption

There are two major assumptions which are used in the modeling of tissue absorption. The first

assumption is that absorption occurs at discrete sites corresponding to the position of scattering and

absorbing centers (see Fig. 1.2 b). The advantage of this method is that it is relatively easy to keep

the track of the absorbed dose in the tissue [63, 64, 69, 100]. Absorption is modeled by terminating

a photon packet in an unbiased way by comparing a random number with a single scattering albedo,
µs

µs+µa
. If a random number is less than albedo, scattering occurs, otherwise absorption takes place

[66]. However, this will result in a rapid death of a packet, and consequently long computational

time. To avoid this a photon packet is attributed with the statistical weight W [71]. During the

course of photon packet propagation, the weight W will be decreasing, that is understood as the

absorption.

We consider the model when absorption takes place along the path of the photon packet. This

approach corresponds to the tissues model presented by an ensemble of scattering centers in an

absorbing continuum. The same assumption has been favored in a number of studies, where the

optical radiation detected on the surface of the medium is of interest [67, 101, 102, 103, 104]. A

combination of both methods can be used to account absorption of discrete particles and absorbing

background [105]. The implication of this approach is that for the photons that have passed through

a heterogeneous medium with regions of different absorption coefficients, µak, k = 1..n.
Absorption is modeled in the similar manner (1.31), by attenuation of the statistical weight of a

photon packet:

Wd =W0 exp

 
−∑

k

µaklk

!
, (1.44)

where Wd is the weight of the detected photon packet, and W0 is the initial weight of the photon

packet, typically equal to 1. Intensity of the exiting radiation is given by:

Id = Iin exp

 
−∑

k

µaklk

!
, (1.45)

where Id is the intensity observed at detector, and Iin is the intensity of incident radiation, lk is the

total path length in the k-th region in the medium.

Thus, the photon packet represents a group of many photons, and is a part of photons initially

injected into the medium. At each point of the trajectory the weight of the group of photons is equal

to the number of unabsorbed photons which represents the probability to reach this point along the

trajectory. The statistical weightWd of each stored photon is counted by:

Wd =W0 (1−Rin)

"
M

∏
p=1

R∗

#
(1−Rout)exp

 
−∑

k

µaklk

!
. (1.46)

Notice that the absorption µak does not influence the photon histories. The separate simulation of
the scattering and absorption agrees with the Beer-Lambert law and allows the rapid recalculation of

the probing radiation intensity on the detector domain for a set of the medium absorption coefficients

without re-calculation of trajectories of photon packets.

Two major tissue layers are conventionally recognized as comprising human skin, i.e. epidermis

and dermis (Figure 1.7). The outer, most superficial, layer is the epidermis that varies relatively

little in thickness over most of the body, between 75 and 150 µm, apart from on the palms and foot
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Figure 1.7: Schematic presentation of human skin structure.

soles, where the thickness can be 0.5 mm [106]. The dermis lying beneath the epidermis is a dense

elastic connective tissue that constitutes the principal mass of the skin. There is a considerable

variation in the thickness of the dermis, an average thickness is 1–2 mm [107]. Underlying the skin

is subcutaneous (under-the-skin) tissue, or hypodermis, an average thickness is 1–2 mm.

For MC simulations the extended multi-layer skin model developed in [108] is used. Table 1.2

presents a summary of the typical optical properties of skin tissue layers collected from a number

of sources [68, 72, 84, 86, 88–90, 97, 99, 107, 109–116].

TABLE 1.2: Typical optical properties of human skin.

Skin layer µs, mm−1 µa, mm−1 g n t, µm.
1 Stratum corneum 80-100 0.1 0.8-0.9 1.5-1.55 10-20
2 Living epidermis 35-60 0.15 0.8-0.85 1.34-1.4 80-100
3 Papillary dermis 30-35 0.068 0.8-0.9 1.39 150-200
4 Upper blood net dermis 25-27 0.095 0.9-0.95 1.4 80-100
5 Reticular dermis 20-25 0.073 0.76-0.8 1.39-1.4 1150-1500
6 Deep blood net dermis 30-35 0.118 0.95 1.38-1.4 80-120
7 Subcutaneous fat 5-15 0.068 0.75-0.8 1.44 5000-6000

The absorption of skin layers takes into account concentration of blood (Cblood) in various vas-

cular beds, oxygen saturation (S), water content (CH2O), melanin fraction (Cmel), and is defined as

[108]:

µStrat.corneuma (λ ) = (1−CH2O)µbaselinea (λ )+CH2Oµ
water
a (λ ) (1.47)

µLivingepidermisa (λ ) = (1−CH2O)
h
Cmel(Bmelµmela (λ )+(1−Bmel)µ

ph.mel
a (λ ))+(1−Cmel)µbaselinea (λ )

i
+

+CH2Oµ
water
a (λ )

(1.48)
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Figure 1.8: Absorption coefficients of key skin tissues chromophores (a), where: 1 - oxy-

hemoglobin, 2 - deoxy-hemoglobin, 3 - water, 4 - eumelanin, 5 - pheomelanin, 6 - baseline; Ab-

sorption coefficients of the human skin layers (b) counted by equations (1.47), (1.48), (1.49).

µDermisa (λ ) = (1−CH2O)
h
(CbloodFHbFRBCHt)(Sµ

oxy
a (λ )+(1−S)µdeoxya (λ ))

i
+

+(1−CH2O)

(1−CbloodFHbFRBCHt)µbaselinea (λ )


+

+CH2Oµ
water
a (λ )

(1.49)

Here µamel(λ ) is the absorption coefficient of eumelanin, µaph.mel(λ ) is the absorption coeffi-
cient of pheomelanin, Bmel is the volume fraction of the blend between two melanin types, µaoxy(λ )
is the absorption coefficient of oxy-hemoglobin, µadeoxy(λ ) is the absorption coefficient of deoxy-
hemoglobin, µabaseline(λ ) is the absorption coefficient of other water-free tissues, Ht is the hemat-
ocrit, FHb is the volume fraction of hemoglobin, FRBC is the volume fraction of erythrocytes. The

absorption of the main skin chromophores and skin layers are summarized in Figure 1.8.

Blood and water content in the layers of human skin is presented in Table 1.3 and is collected

from a wide range of literature [72, 77, 107, 117–121].

Total hemoglobin volume fraction in blood γ is calculated assuming that hemoglobin is contained
in the erythrocytes only, i.e. γ = FHbFRBCHt. Here Ht = 0.45 is the hematocrit, the volume fraction
of packed red blood cells in the whole blood, FRBC = 0.25 is the volume fraction of erythrocytes in
the total volume of all blood cells, FHb = 0.99 is the volume fraction of hemoglobin in erythrocytes,
and oxygen saturation SO2 = 0.6 [99, 108].

TABLE 1.3: Volume fraction of blood

Cblood and waterCH2O in the dermal layers of

human skin.

Skin layer Cblood CH2O
1 Papillary dermis 0.04 0.5
2 Upper blood net dermis 0.3 0.6
3 Reticular dermis 0.04 0.7
4 Deep blood net dermis 0.1 0.7
5 Subcutaneous fat 0.05 0.7
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Figure 1.9: Schematic presentation of reflection and refraction of the photon packet at a planar

boundary: s is a direction unit vector of an incident photon packet, sR is a direction unit vector of
the reflected photon packet, sT is a direction unit vector of the transmitted/refracted photon packet.

1.2.5 Reflection and refraction

Fresnel reflection at the surface of an organ can be thought of as a macroscopic scattering, which

is dependent on the direction of incoming light relative to the tissue surface normal. The refractive

indices of a number of tissues have been measured and estimated to be in the range from 1.38 to

1.41 at 633 nm with an approximate decrease of 1% per 100 nm in the visible part of the spectrum

[88, 122]. However, subcutaneous tissue is an exception having a refractive index of approximately

1.44.

For light incident at small to intermediate angles on air-tissue and water-tissue interfaces, the

refractive indices of this order of magnitude result in Fresnel reflection in the order of about 4%

and less than 1%, respectively. However, for small source-detector separations the total effect is

considerable.

Therefore, on the media surface, a photon packet undergoes specular reflection and refraction

[24], which are taken into account by splitting the photon packet into the reflected and the transmit-

ted parts, the weights of which are attenuated as:

W =W0 (1−Rin)

"
M

∏
p=1

ℜ(ξ )

#
(1−Rout) , (1.50)

where W0 is the initial weight of the photon packet, M is the number of the photon packet re-

flections/refractions at the internal boundary interfaces, including total internal reflection from the

outer boundaries, Rin and Rout account for reflections on the medium/air boundary, when the photon

packet enters and leaves the medium respectively. Internal boundaries are treated differently from

the surface between the two scattering regions of media. The photon packet is kept as a whole and in

an unbiased manner decides if all of the photon packets are either reflected or transmitted. ℜ(ξ ) is
the Fresnel reflection coefficientℜ(ξ ) = R, when the packet is reflected, which occurs if ξ ≤ R, or

ℜ(ξ ) = 1−R, if it is transmitted into the medium 2, when ξ > R. R is defined as follows (Fig. 1.9):

R=



(n2−n1)
2

(n2+n1)
2

if θ1 = 0

1

2


sin2 (θ1−θ2)

sin2 (θ1+θ2)
+
tan2 (θ1−θ2)
tan2 (θ1+θ2)


if 0< θ1 < θcr

1 if θcr ≤ θ1 <
π
2

(1.51)

Either reflected or transmitted/refracted, the photon packet changes its direction that is accounted
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for by Snell’s law [24]. Since the azimuthal angle ϕ (Figure 1.9) does not change under either

reflection or refraction, in terms of the direction cosines transmission/refraction from a medium 1

into a medium 2 is equivalent to

s1s2
s3


T

=


s1

n1
n2

s2
n1
n2+

q
1− (1− s23)(

n1
n2
)2, if s3 ≥ 0

−
q
1− (1− s23)(

n1
n2
)2, if s3 < 0

 , (1.52)

and reflection is equivalent to s1s2
s3


R

=

 s1
s2

−s3

 . (1.53)

where s = {s1,s2,s3} is a direction unit vector of an incident photon packet, sT is a direction unit
vector of transmitted photon packet, sR is a direction unit vector of reflected photon packet. Note
that angles θ1 and θ2 are found from Snell’s law: n1 sinθ1 = n2 sinθ2, where n1 and n2 are the
refractive indices of the media 1 and 2, respectively. In transition from a medium with a higher

refractive index to one with a lower refractive index, total internal reflection occurs for angles larger

than the critical angle θcr = sin−1 n2
n1
.

Thus, given a photon packet position ri, its direction si and the proposed path length distance li,
the distance to the bounding interface is calculated from basic knowledge of geometry. A simple

plane interface only is considered in this chapter. However, the same approach can be applied for

almost any surface, including rough interfaces; see for example [93, 94].

The general equation for a plane of arbitrary orientation is:

n · (r−P0) = 0, (1.54)

where n is the unit normal to the plane, and P0 is a radius-vector of any point on the surface of the
plane. Inserting (1.28) in (1.54) and solving for li gives:

l∗i =−n · (ri−P0)

n · si , (1.55)

Thus, instead of the full distance li, the packet travels the distance l
∗
i to the interface or boundary,

where reflection or transmission occurs. Then the distance to the interface is subtracted from the

path length l∗∗i = li− l∗i . If the photon packet is reflected, it continues to move with the path length

l∗∗i in the direction given by sR, (1.53). Otherwise, it is transmitted in the direction given by sT ,
(1.52), with the path length l∗∗i that is scaled following the difference of scattering coefficients, see

(1.36).

An example of specular reflection and refraction simulated by MC for a semi-infinite medium

with the scattering coefficient µs = 30 mm−1 and a zero absorption, g= 0.9, n= 1.5 are presented
in Figure 1.10. All photon packets are injected perpendicularly into a homogeneous semi-infinite

medium at point (0,0,0). The statistical weight of singly-refracted photon packets were collected
as a function of the angle of exit, θt . Thus, W1 denotes the weight of refracted photon packets,

W1 = (1−R0)(1−R(θi)), where θi = cos−1 s3. R0 is the external specular reflection coefficient for

light incident normally at the medium/air interface from air. R(θi) is the internal specular reflection
coefficient for light incident at the medium/air interface. The excellent agreement is seen between

the calculated value of the Fresnel reflectance and the value produced by the MC simulation (see

Figure 1.10).

The discrete structure of the MC results is the result of a discrete representation of the Fresnel

reflection/refraction coefficients.
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Figure 1.10: Angular distribution of the weight of photon packets emerging from the medium

(n1 = 1.5) to another medium (n2 = 1.0). The triangles present the angular distribution ofW1 (MC).

The solid and dashed lines are the Fresnel reflectance coefficients (1−R0)(1−R(θi)) as a function
of the exit angle θt and the angle of incidence θi, respectively. Total internal reflection at the critical
angle θcr = sin−1 n2

n1
= 41.8◦ is clearly observed.

The refractive index mismatching at the external boundary results in Fresnel refraction and re-

flection [123]. To study the effect of mismatching, all the detected photons are grouped into three

categories with respect to the number of the photon packet interactions (reflections/refractions) at

the outer boundary. The first group,W1, is a fraction of the detected photon packets that are free of

boundary reflections (but may have possible total internal reflections), i.e. these photons have been

detected once they crossed the boundary (Figure 1.11).W2 is a fraction of the detected photons that

have been reflected off the boundary once before being detected. The third group,W3, consists of

all the other detected photon packets, i.e. those packets that have reflected off the boundary more

than once. The statistical weights of these photon packets are represented byW1,W2, andW3:

W1 =W
0

0 (1−R(θi)) ,

W2 =W
0

0 (1−R(θi))R(θi),

W3 =W
0

0

M

∑
k=3

(1−Rk(θi))
k−1

∏
j=1

R j(θi).

(1.56)

where W
0

0 =W0(1−Rin) and W0 is the initial weight of the photon packet, M is the number of

the photon packet reflections/refractions at the internal medium interfaces, including total internal

reflection from the outer boundaries, and Rin accounts for reflection, when the photon packet enters

the medium. Note that forW3 M ≥ 3 (see Eq. 1.50).

Spatial photon weight distributionsW1,W2,W3 versus radius of the detector area (rD) are demon-

strated in Figure 1.12 for a non-absorbing and absorbing media. The discrete structure of the sta-
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Figure 1.11: Schematic of reflections and refractions of photon packet interactions at the outer

boundary of a medium. W0 is the initial weight of a photon packet, Rin is the Fresnel coefficient of

the initial specular reflection. W
0

0 = (1−Rin)W0 is the photon packet weight after initial specular

reflection. R(θi) is the Fresnel reflection coefficient, and θi is the angle of incidence. W1 is a

fraction of the detected photon packets that are free of boundary reflections (except possible total

internal reflections), i.e. these photons are detected once they have crossed the boundary. W2 is a

fraction of the detected photons that have been reflected once off the boundary before being detected.

W3 consists of all the other detected photon packets, i.e. those packets that have reflected off the

boundary more than once.

Figure 1.12: Spatial photon weight distribution versus radius of the detector area (rD): (a) a non-

absorbingmedium (b) an absorbingmedium, µa= 0.01mm−1. The triangles (N) specify the weight
of the photon packets which have experienced one reflection/refraction event on the air-medium

boundary, diamonds (♦) represent the weight of the photon packets having acted on the medium
boundary twice, crosses (+) show the weight of the high order photon packets reflected/refracted

on the air-medium boundary. The optical properties of a semi-infinite highly scattering medium are:

µs = 30 mm−1, g= 0.9, n= 1.5.

tistical weight distribution has resulted from a discretization of the Fresnel reflection coefficient, is

clearly seen in Figure 1.12 (a), and is completely masked by absorption in Figure 1.12 (b).

Thus, the inclusion of boundaries/interfaces permits the development of applications in complex

multi-layered media with inclusions of inhomogeneities. These objects can be very simple, such

as a planar interface between two semi-infinite media or a collection of objects such as a complex

radiation source or detector. The technique to address both of these problems is essentially the same.

The position of a photon packet within the medium is identified by a region number (e.g. number
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of layer), its position, its direction towards the boundary, etc. Thus, when the new region number is

defined in the MC transport routine, it merely has to check whether or not the optical parameters of

the medium have changed and then take appropriate action.

1.3 Monte Carlo Modeling of Coherent Effects

Coherence is one of the fundamental parameters of laser radiation and characterizes the degree to

which the oscillating electromagnetic laser radiation maintains a near-constant phase shift in space

and time. Despite multiple scattering, coherent effects such as the coherent backscattering (CBS)

and spatial and temporal intensity correlations are observed due to the wave nature of light in various

dielectric media, such as colloid suspensions, liquid crystals and biological tissues [124–126]. This

has triggered active research in the field of optics during the past decades [11, 20, 127–131].

The stochastic MC techniques are widely employed in the studies of coherent effects in multiple

scattering randomly inhomogeneous media [127, 129–135].

1.3.1 Field correlation transfer

Let a medium occupy a half space z > 0, where z is the Cartesian coordinate normal to the

boundary. Field correlation transfer in a randomly inhomogeneous medium with temporal and

spatial fluctuations of the dielectric permittivity is described by the integral Bethe-Salpeter equation

[19, 136]:

bΓ(R2,R1, t |ks,ki) = k40
eG(ks−ki, t)δ (R2−R1)bI+

+ k40

Z
dR3

eG(ks−k23, t)bΛ(R2−R3)bΓ(R3,R1, t |k23,ki), (1.57)

where the fourth-rank tensor bΓ = Γβ1β2α1α2(R2,R1, t |ks,ki) is the propagator or the Green’s func-
tion of the Bethe-Salpeter equation. It describes the propagation of two complex-conjugated elec-

tromagnetic fields between a point R1 and a point R2. Notice that these fields arrive at R2 delayed

by the time t. Vectors ki and ks are the wave-vectors of incident and scattered plane waves, in-
dices α1α2 and β1β2 being polarization indices of the incident and scattered fields. |ki| = |ks| =
k = k0n, k0= 2π/λ is the wave-number, λ is the wavelength, and n = n1+ in2 is the refractive

index of the medium. The real part n1 determines the reflectivity mismatch at the medium bound-

ary. The imaginary part of n determines the photon mean free path length (2n2k0)
−1 = l. Vector

ki j = k(Ri−R j)|Ri−R j|−1 determines the wave-vector between Ri and R j.

The fourth-rank tensor bΛ(R)
Λαβµν(R) =

bI− R⊗R

R2


αµ

bI− R⊗R

R2


βν

exp(−R/l)
R2

(1.58)

is a direct product of the conjugated pair of the Green’s functions of Maxwell’s equations in a far-

field zone. It describes a transformation of a pair of fields with polarization µ and ν into a pair of
fields with polarization α and β as a result of a single scattering.

In a weak scattering limit λ  l, which usually fulfills in the dielectric media, eG(q, t) is a Fourier
transform of the permittivity correlation function:

eG(q, t) = 1

(4π)2

Z
drhδε(0,0)δε(r, t)iexp(−iqr). (1.59)
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An important statement in the multiple scattering problems, the so-called optical theorem relates

the single scattering cross section and the scattering length ls = µ−1s . In the Born approximation for

electromagnetic field the optical theorem takes the form:

l−1s = Γ−1R k40

Z
dΩs

eG0(ks−ki), (1.60)

where eG0(ks−ki) is the Fourier transform of the statistical correlator of the dielectric permittivity

fluctuations, ΓR = 2(1+ cos2 θ )−1 is a Rayleigh factor, cos2 θ is the square cosine of the scattering
angle θ between vectors ki and ks weighted by the single scattering cross section:

cos2 θ =

R
dΩs

eG0(ks−ki)cos
2 θsR

dΩs
eG0(ks−ki)

. (1.61)

Photon MFP l is given by
1

l
=
1

ls
+
1

la
, (1.62)

where la is the characteristic length absorption induced by inelastic scattering. For media investi-

gated la is much greater than l and, consequently, l/ls is close to 1.
The normalized correlation function of dielectric permittivity fluctuations is defined as:

p(ki−ks, t) =
eG(ki−ks, t)R eG(ki−ks,0)dΩs

. (1.63)

For t = 0, p(ki− ks, t) transforms into the scattering phase function p0(ki− ks) = p(ki− ks,0),
which describes the single scattering cross section.

Iterating the Bethe-Salpeter equation (1.57) and bearing in mind the optical theorem (1.60), one

obtains the series of scattering orders

bΓ(R2,R1, t|ks,ki) = ΓRl
−1
s p(ki−ks, t)δ (R2−R1)bI+Γ2Rl

−2
s p(ks−k21, t)×bΛ(R21)p(k21−ki, t)+Γ3Rl

−3
s

Z
dR3p(ks−k23, t)bΛ(R23)p(k23−k31, t)×bΛ(R31)p(k31−ki, t)+ ..., (1.64)

which is usually illustrated by ladder diagrams [137].

In the far-field zone the temporal field correlation function of the scattered radiation can be ex-

pressed as the sum of the non-coherent and interference components:

bCE(t |ks,ki ) = bC(L)(t |ks,ki )+ bC(V)(t |ks,ki ), (1.65)

where bC(L)(t |ks,ki ) represents the contribution of the ladder diagrams, which describe the non-
coherent component, and bC(V )(t |ks,ki ) is the interferential component observed in the backscat-
tering direction.

For normal incidence and almost backscattering direction, ladder and interferential components

of the temporal correlation function have the forms [138, 139]:

C
(L)
β1β2α1α2

(t |ks,ki) =
Z
dR1dR2Γβ1β2α1α2(R2,R1, t |ks,ki)×

× exp


− z1+ z2

l


, (1.66)
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and

C
(V)
β1β2α1α2

(t |ks,ki) =
Z
dR1dR2

"
Γβ1α2α1β2

 
R2,R1, t

 ks−ki
2

,
ki−ks
2

!
−

− k40
eG(ks−ki, t)δ (R2−R1)δα1β1δα2β2

#
exp


− z1+ z2

l
+ i(ks+ki)⊥· (R2−R1)⊥


, (1.67)

where subscript ⊥ denotes the component perpendicular to the normal to the medium boundary.

Clearly, for exact backscattering ks =−ki, the polarized component of the interferential contribu-
tion bC(V)(t |ks,ki) exactly equals the polarized component of the main, non-coherent contributionbC(L)(t |ks,ki) prior to subtracting the single scattering contribution. Depolarized components are
not equal.

The methods using light to study motions by means of speckle fluctuations have appeared with

numerous names over the years [140–146]. For particles that are undergoing random relative mo-

tion, e.g., Brownian motion, the phases of the individual scattered waves are changing randomly

and independently of the other scattered waves. The intensity at the detector will thus fluctuate.

The time scale of the intensity fluctuations is related to the rate at which the phase of the scattered

waves is changing and thus depends on the motion of the scattering particles and on the momentum

transfer q. The intensity fluctuations are more rapid at larger scattering angles and for faster moving
particles. The field correlation function is explicitly related to the motions within the sample under

study.

The non-coherent component defines the temporal field correlation function:

g1(t) =
C(L) (t |−ki, ki)
C(L) (0 |−ki, ki)

. (1.68)

CBS is an interferential enhancement of the average scattered intensity reflected off a disor-

dered scattering medium [138]. It originates from a two-wave constructive interference near exact

backscattering between waves traveling along a given scattering path and its time-reversed coun-

terpart. Physically, it is obvious that the effect will dephase rapidly away from backscattering. For

classical scatterers, bearing on general symmetry arguments valid in the absence of any magnetic

field, the CBS interfering amplitudes have been shown to have equal weights at exact backscattering

in the so-called parallel polarization channels [147]. In the linear-linear channel the incoming and

detected light fields have the same linear polarization. In the perpendicular channels, nothing en-

sures the equality of the two interfering amplitudes, and the contrast of the interference is decreased.

Notice that single scattering events require a separate treatment as direct and reversed paths coincide

in the backward direction and do not contribute to the CBS enhancement.

The interferential component (1.67) at t = 0 describes the CBS intensity peak:

ICBS(θs) =
C(V) (0 |ks, ki)
C(V) (0 |−ki, ki)

(1.69)

and its angular dependence.

1.3.2 Scalar field

As mentioned above, in the Born approximation the Bethe-Salpeter equation can be represented

as a series of scattering orders, which is equivalent to a series of the ladder diagrams. To develop

a general stochastic method for coherent effects modeling, a relation will be established between

the analytical procedure of the summation of successive terms of a ladder-diagram series and the

conventional MC technique.
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Figure 1.13: Stochastic trajectory of a photon between a point of sourceRS and a point of detector

RD. R1 and Rn are the points of the first and final scattering events. Vectors k j j−1 and k j+1 j are
wave-vectors before and after the j-th scattering event at R j, θ j is the angle between them.

First, let’s consider scalar fields. For a scalar field, a tensor bΛ(R) is transformed into a scalar
function Λ0(R)=R

−2 exp(−R/l), and the Rayleigh factor ΓR becomes equal to 1. The first term of

an iterative series (1.64) describes single scattering, second term – double scattering, etc.

The conventional MC method describes the propagation of optical radiation as a stochastic pro-

cess, which consists of one, two, ... n scattering events. The difference between iterative solution

(1.64) and conventional radiative transfer equation (1.1) is just a matter of how one writes them.

Indeed, in terms of numerical simulation, an extra term bΛ(R j j−1)p0(k j − k j−1) in eq. (1.64) is
equivalent to simulation of photon transport for a distance R = |R j−R j−1| in a direction k j. It is
very similar to how the conventionalMC method works. Indeed, as a results of the MC simulation a

stochastic trajectory of a photon appears. It has the origin at a pointR0 =RS followed by n sequent

points R1, R2, R3,..., Rn, which represents n scattering events, and a point RD, where the photon

packet is detected (Figure 1.13).

The difficulties associated with the iterative solution to the Bethe-Salpeter equation are that the

integrals over Ri cannot be factorized, i.e. integration over particular Ri cannot be performed in-

dependently from the rest or at least some of Ri. In numerical MC modeling a direction and the

length of the next photon step are determined in an unbiased way that helps to make this kind of

factorization.

Due to the way the phase function is defined, i.e.

Z
p0(ki−ks)dΩ= 1 (1.70)

the statistical weight of a photon packet does not change after scattering. In theoretical description,

this is granted by the optical theorem. Indeed,
R
Λ0(R)dR = 4π l, hence, the expansion parameter

of eq. (1.64) is equal to

l−1s

Z
dΩn

Z
dR j+1Λ0(R j+1−R j)p0(k j+1−k j) = l−1s l. (1.71)

In the absence of absorption, l−1s l is exactly equal to 1, that is the evidence of photon weight con-

servation. Notice that it is the close affinity of the expansion parameter l−1s l to 1, that brings about

all difficulties with the analytical solution of the Bethe-Salpeter equation. That is, the series (1.64)

does not converge if the finite number of the terms is involved in consideration.

Calculation of the temporal intensity correlation function with MC is similar to the diffuse re-

flectance simulation. However, after each scattering event, the direction of a photon packet is deter-

mined by a more generalized phase function p(k j−k j−1, t), which is dependent on the time delay
t.
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In most applications such as DWS [143, 144, 148], one studies temporal evolution of inhomo-

geneities within a medium and considers the Brownian mechanism of temporal decay of inhomo-

geneity fluctuations. Under these conditions, the temporal permittivity correlation function can be

represented as a product of the static correlator G(q,0) and exponential function (see eq. 1.63):

p(q, t)≈ p0(q)exp(−Dsq
2t), (1.72)

where Ds is a self-diffusion coefficient, and q = |q| is the wave vector transfer q = ki− ks, q =
2k sinθs/2.
Thus, to proceed from calculation of the intensity to calculation of the temporal field correlation

function one has to replace the phase function according to:

p0(k j−1−k j)→ p0(k j−1−k j)exp(−Ds|k j−1−k j|2t). (1.73)

In the diffusion approximation the momentum transfer is changed to its average:

exp
−Ds|k j−1−k j|2t

→ exp
−2(t/τ)(1− cosθs)

→ exp(−2(t/τ)(l/l∗)) , (1.74)

where τ = (Dsk
2)−1 is the characteristic time of scattering particle diffusion at distance comparable

to the wavelength, cosθs = g is the mean cosine of the scattering angle θs, and l∗ = ls(1− g)−1 is
the transport length.

Thus, in the MC simulation the temporal field correlation function is given by:

g1(t) =

Nph

∑
i=1

Wdi exp

 
−2 t

τ
ni

"
1− 1

ni

ni

∑
j=1

cosθ j

#!
, (1.75)

where ni is the number of scattering events experienced by the i-th photon packet,Wdi is its statistical

weight, and θ j is the scattering angle at the j-th scattering event.
If the interferential component (1.67) is to be modeled then, one notices that the sole difference

from the intensity of the non-coherent component (1.66) is a factor exp(ik⊥R⊥), where k⊥ = (ki+
ks)⊥ and R⊥ = (R1−R2)⊥. Due to the translational invariance of R⊥ in the xy plane, a factor

exp(ik⊥R⊥) can be substituted with a factor cos(k⊥R⊥). Thus, the MC simulation of the CBS

intensity can be realized in the following manner. First, one has to exclude the single scattering

from the detected signal, as it does not take part in interference. In the case of normal incidence

and a small backscattering angle θs, the statistical weight of the i-th photon packet, detected at the

outer boundary with the wave vector ks at the distance |(RS−R
(i)
D )⊥| from the source point RS,

is multiplied by a factor cos(q⊥(RS−R
(i)
D )⊥). The expression for the CBS intensity is a sum of

contributions from all detected photons:

ICBS(θs) =
Nph

∑
i=1

Wdi cos(k⊥(RS−R
(i)
D )⊥)(1−δni,1), (1.76)

where (1−δni,1) naturally excludes contribution from the singly scattered photons.

The CBS peak or enhancement factor is defined as

hCBS =
2I− Isingle

I
, (1.77)

where I is the non-coherent intensity (1.66) and Isingle is the intensity of the singly scattered photons.

1.3.3 Polarization

In the case of electromagnetic field, as opposed to scalar field, additional effort has to be made to

trace the direction of the electromagnetic field along the photon path that is given by the polarization
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vector. According to (1.58) it can be achieved if one calculates the results of n sequential operators

applied to the incident field [138]:

n

∏
j=1

bI− (R j+1−R j)⊗ (R j+1−R j)|R j+1−R j|−2

, (1.78)

assuming that the photon has experienced n scattering events.

For electromagnetic field, a phase space of a given photon is supplemented with the polarization

vector P. In general, P is a 3-vector and for linear polarization along x axis P(in) = (1;0;0).
Polarization of the electromagnetic field changes every time after the scattering event. Thus, after

each scattering event, when a new direction is determined, a new polarization vector P j+1 is related

to P j through transformation:

P j+1 =
bI− (R j+1−R j)⊗ (R j+1−R j)|R j+1−R j|−2


P j. (1.79)

Hence, after n scattering events (Fig. 1.13), when a photon packet is detected at a point RD the

polarization vector is given by:

P(out) =
n

∏
j=1

bI− (R j+1−R j)⊗ (R j+1−R j)|R j+1−R j|−2

P(in). (1.80)

If Wdi is the statistical weight of the detected “scalar” photon, the polarized and depolarized

intensities are defined by

Ipol = IXX =

Nph

∑
i=1

WdiP
2
i xΓ

ni
R ,

Idepol = IYX =

Nph

∑
i=1

WdiP
2
i yΓ

ni
R ,

(1.81)

where superscript (out) is omitted for brevity. Equations (1.81) describe the non-coherent contribu-

tion of ladder diagrams Iβα =C
(L)
ββαα(0 |ks,ki) (eq. 1.66). Notice that for the exact backscattering

direction, the Z component is exactly equal to zero.

In the MC simulation the following expressions are used for polarized and depolarized temporal

field correlation functions of the electromagnetic field:

g
(1)
pol(t) = g

(1)
XX (t) =

Nph

∑
i=1

WdiP
2
i xΓ

ni
R exp(−2

t

τ
ni(1− 1

ni

ni

∑
j=1

cosθ j)),

g
(1)
depol(t) = g

(1)
YX(t) =

Nph

∑
i=1

WdiP
2
i yΓ

ni
R exp(−2

t

τ
ni(1− 1

ni

ni

∑
j=1

cosθ j)),

(1.82)

where Piα is the polarization vector of the i-th photon with polarization α . Piα is a result of ni tensor
operators (1.78) applied to the initial polarization, and θ j is the scattering angle at the j-th scattering
event (Fig. 1.13).

1.3.4 Simulation of OCT images

The OCT signal in terms of probing depth z can be presented as an interference term of optical

signals coming from the sample and reference arms [149, 150]:

I(z) = (hIrihIsi)1/2Re{C(z, lc)} . (1.83)
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Here hIsi and hIri are the mean intensities returning from the sample and reference arms of the in-

terferometer,C(z, lc) is the normalized coherence function and lc is the coherence length of probing

radiation [151]:

lc =
2ln2

π
λ 2

∆λ
, (1.84)

where ∆λ is the full width at half maximum (FWHM) of the spectrum of source radiation. When

performing the MC simulation described above the OCT signal detected at the definite transversal

position of the probing beam (A-scan) is calculated for randomly polarized radiation as [152]:

I(z) = I0

Nph

∑
i=1

√
Wi cos


2π
λ
(2z−Li)


exp

 
−

2z−Li

lc

2!
, (1.85)

where Nph is the number of photons launched, I0 is a constant defined by instrumental properties

of the OCT system, Wi is the weight of i-th detected photon with optical pathlength Li and 2z is

the optical pathlength in the reference arm. If one neglects “speckle structure” of the OCT-signal

defined by the cosine item, the result can be presented as a superposition of envelopes of partial

detected photon contributions [153]:

I(z) = I0

Nph

∑
i=1

√
Wi exp

 
−

2z−Li

lc

2!
. (1.86)

In order to simulate the 2D OCT image consequent A-scans are simulated with the definite

transversal step in probing position. The total number of simulated A-scans and the transversal

step between them are predefined regarding the width (FWHM) of the probing beam diameter.

1.3.5 Simulation of polarization dependent OCT signal

Polarization of an electromagneticwave is typically described in framework of the Stokes-Mueller

or Jones formalism [23, 154]. Stokes-Mueller formalism was applied to study polarization in bire-

fringent turbid media for potential application to polarization-sensitive optical imaging [155]. The

experimental and numerical studies were carried out to observe the backscattering polarization pat-

terns presented in a form of the Mueller matrices [156, 157]. The residual polarization degree of the

backscattered light and its connection to the optical properties of the scattering medium was stud-

ied in [158]. To explore the possibility of retrieving the birefringence properties of layered tissue

with the depth-resolved polarization-sensitive OCT (PS-OCT) Jones formalism was implemented

to reduce long calculation time, typically required in the full Stokes-Mueller approach [159].

Schmitt et al. proposed a method for discriminating short and long path photons that is based

on the relationship between the polarization states of incident and forward scattered light [160].

Discussing coherent backscattering and its dependence on the state of polarization of an incident

linearly polarized light, Akkermans et al. assumed that for both states of polarization the corre-

sponding intensity can be represented as a product of the intensity of a scalar wave, which does

not depend on the polarization state, and a corresponding multiplicative factor (weighting function)

describing polarization transfer [138]. These factors are specific for a given polarization state and

generally depend on the properties of scattering particles, e.g. size, shape [161, 162]. The expres-

sion for the co- and cross-polarized intensities derived from the expression proposed in [162] has

been successfully used in [163], whereas the experimental results [164] proved the adequacy of the

Akkermans’ conjecture of time scales involved in the depolarization process of the backscattered

light. Consider a plane electromagnetic wave polarized in the x direction that enters the medium

along positive direction of z axis normal to the interface. By a co-polarized wave we understand

a linearly polarized scattered wave with the same orientation of polarization as the incident wave,
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and a cross-polarized wave is perpendicular to the incident wave direction of polarization [154].

Thus, waves scattered in xz and yz planes define co-polarized and cross-polarized components of

the scattered electromagnetic wave, respectively.

To account for the depolarization effect in PS-OCT images we adopted the polarization vector

formalism where the polarization is described in terms of a polarization vector ~P undergoing a se-
quence of transformations after each scattering event [154]. The trajectories of the polarized photons

are weighted in accordance with their polarization state. Within the far-field or Fraunhofer approx-

imation the polarization vector of the scattered wave ~Pi−1 is transformed upon the i-th scattering
event into ~Pi as [14, 138]:

~Pi =−~ei× [~ei×~Pi−1] = [Î−~ei⊗~ei]~Pi−1, (1.87)

where ~ei is the unit vector along the propagation direction between (i− 1)-th and i–th scattering
events. Note that although the expression is rigorously introduced for the case of pure Rayleigh

scattering, it can also be applied as the first approximation in case of Rayleigh-Gans-Debye (RGD)

scattering valid for soft scattering particles with the size comparable to or a few times larger than

the wavelength [14]. Namely, the size D of the particles should obey the relation (εr−1)D/λ 
1 where (εr−1) is the relative fluctuation of dielectric permittivity between the scatterer (e.g.,
cell component such as nucleus or mitochondria) and the surrounding medium (e.g., cytoplasm).

Typically in biotissues the value of (εr−1) is less than 0.1 [90] therefore RGD approximation

is quite reasonable for the particles with the sizes of units of λ which are characterized by non-

isotropic scattering phase function. At the same time, implementation for strongly scattering large

inclusions may lead to some discrepancy in the final results; however, this approximation can be

applied to qualitatively estimate the effects of depolarization in OCT images. Explicitly, the tensor

Si = [Î−~ei⊗~ei] is presented as

Si =

 1− e2iX −eiXeiY −eiXeiZ
−eiXeiY 1− e2iY −eiYeiZ
−eiXeiZ eiXeiZ 1− e2iZ

 . (1.88)

It guarantees that the electromagnetic field remains transversal experiencing the i-th scattering

event. The chain T(n) = SnSn−1...S1 of projection operators Si transforms the initial polarization
upon a sequence of n scattering events to the final polarization:

~Pn = SnSn−1...S1~P0. (1.89)

Consequently, propagation of co-polarized and cross-polarized components of the electromag-

netic field in the medium is described along the same trajectories obtained for the scalar field. The

vector nature of electromagnetic field can be taken into account by multiplying the statistical weight

of each trajectory by the square of the matrix element of tensor T(n): Txx(n) for co-polarized com-
ponent and Tyx(n) for cross-polarized one.
In order to link vector and scalar approaches in simulation of PS-OCT images it should be pointed

out that in accordance with the optical theorem [165] the scalar approach yields [136, 161]:

k40

Z
G(ki− ks)dΩs =

1

s
, (1.90)

whereas for the electromagnetic field [136, 163]:

k40

Z
G(ki− ks)dΩs =

2

1+ cos2θ

1

s
. (1.91)

Therefore, at every scattering event the multiplicative factor should be included:
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Γ=
2

1+ cos2θ
(1.92)

Finally, for linearly polarized probing radiation the expression (1.86) can be re-written separately

for co- and cross-polarized detected OCT signal:

Ico(z) = I0

Nph

∑
i=1

q
WiΓniTxx(ni)

2 exp

 
−

2z−Li

lc

2!
(1.93)

for co-polarized component and

Icross(z) = I0

Nph

∑
i=1

q
WiΓniTyx(ni)

2 exp

 
−

2z−Li

lc

2!
(1.94)

for cross-polarized one, where ni is the number of scattering events for i-th detected photon.

1.3.6 Termination

In order to keep the simulation time within reasonable bounds, a test based on prerequisite cut-off

criterion is performed after each photon interaction. If the statistical weightW of the packet is less

than a minimal value, typicallyWmin = 0.0001 or if the total number of scattering events exceeds the
maximum value Nmax scat = 10000 it is assumed that the packet no longer significantly contributes

to the detected signal and can be terminated. After a number of photon packets has been traced in

the medium (typically 109–1011), the parameters of interest are scored from the accumulated photon

histories.

1.4 Online Object Oriented Monte Carlo Computational Tool for the Needs
of Biomedical Optics

As one can see, due to a number of practical OD applications the MC model undergoes continu-

ous modifications and changes dedicated to inclusion of diverse properties of incident optical/laser

radiation, configuration of the sources and detectors, structure of the medium and the conditions of

light detection [99, 104, 108, 135, 137, 152, 153, 165–174]. Past attempts to unify these MC codes

are mainly based on the use of structured programming [175]. While structured programming has

been known for years, it limits the ability to handle a large code without decreasing its functionality

and manageability [176]. In practice, the increasing diversity of the MC applications results in a

substantial growth of the model’s source code and leads to the development of a set of separate MC

codes each dedicated to a particular purpose.

1.4.1 Object oriented concept of Monte Carlo modeling

To generalize, unify and implement MC modeling for a multi-purpose use in various biomedical

optics applications we apply the Object Oriented Programming (OOP) concept [177, 178]. The

OOP is widely used in mainstream application development and has been found extremely effective

in design of complex multi-parametric systems, providing a highly intuitive approach of program-

ming [176, 179]. The key features of OOP allow the MC to be separated into logical components,

described by objects.
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Thus, each photon packet has been defined as an object interacting with medium or medium com-

ponents also defined as objects. Splitting the medium into the objects allows developing the tissue

modelmore iteratively and uniformly. The distribution of scattering centers, macro-inhomogeneities,

such as blood vessels, tumors, aneurisms, etc. can be formed by combination of 3D elementary vol-

umes (objects) presenting spatial variations in the tissues. Moreover, actual structure of a biological

tissue can be imported into the model as an object (image) provided by OCT, Photo-Acoustic To-

mography (PAT), ultrasound, MRI, etc.

Utilizing the inheritance feature of OOP the smart hierarchy structure of the code has been created

to prevent creation of multiple classes for similar tasks. The hierarchy allows “allied” objects to

share variables and members, significantly reducing the amount of source code and paving the way

to extend and generalize theMC for variousOD applications. In addition, the variations of scattering

phase functions, such as Mie, Rayleigh and Henyey-Greenstein [171] have been defined using the

polymorphism feature of OOP that allows one to handle the modeling with no changes of the source

code.

Thus, the OOP approach significantly increases the efficiency of the model manageability and

provides superior opportunities to generalize MC to combine previously developedMC models as a

way to imitate a particular OD experiment taking into account various features of optical radiation

and light-tissue interaction. Schematically the structure of the generalized MC approach is shown

in Figure 1.14.

As one can see, first, by the selection of a certain application the parameters of the Source, De-

tector and Scattering medium are entered. Depending on the application, the objects are tuned to

the appropriate feature of light-tissue interaction and the simulation is performed. By completing,

the output data are prepared in the format utilized in the corresponding OD experiment/application.

The OOP MC version supports the estimation of sampling volume offered by a reflectance and/or

transmittance geometry (e.g. for fiber optic probe with a small mm source-detector spacing); sim-

ulation of reflectance or transmittance optical/near-infrared spectra of the multi-layered media like

human skin; modeling of skin color depending on volume fraction of melanin and blood, blood

oxygen saturation; modeling of OCT images with regards coherence and polarization properties of

probing light, imitation of spatial localization of skin tissue fluorescence excitation and simulation

of coherent effects of multiple scattering.

1.4.2 Graphics Processing Unit acceleration of the Monte Carlo model

Launching of a large number of photon packets (typically 109-1011) and computing their inter-

action with the medium and with the probe is a highly intensive computational process. Due to the

task intensity, processing time is always a significant issue in stochastic modeling, taking a few days

to complete at the standard CPU. To achieve supreme performance of simulation a number of pro-

gramming approaches and optimizations of algorithms have been used in the past, including parallel

and cluster computing [180, 181]. The recently developed parallel computing framework, known

as Compute Unified Device Architecture (CUDA), introduced by NVIDEA Corporation has been

applied. NVIDEA CUDA technology provides an unlimited access to computational resources of

the graphic card: processor cores, different types of memory (of various capacity and speed) making

the Graphics Processing Unit (GPU) a massive co-processor in parallel computations [180, 181].

We utilize the recent, introduced in 2010, CUDA generation, so-called architecture codename

Fermi. Designed for C/C++ development and easily integrated with the Microsoft Visual Studio

it makes parallel programming significantly easier, especially in terms of project management and

debugging. The latest CUDA generation supports most of the OOP features like creating classes,

inheritance, and polymorphism and keeps all dramatic performance gains of the CUDA computing

[177]. The OOP MC model has been developed using CUDA 4.1 C/C++ and supports multiple

GPUs, providing user’s interface and delivering the modeling output. The hardware is presented

by two Tesla M2090 / GeForce GTX 480 graphic cards with NVIDIA CUDA computing capability
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Figure 1.14: Schematic presentation of the generalized object-orientedMCmodel structure. Data

Input and selection of a particular application; Class objects represent exact experimental conditions

including source-detector geometry and configuration, medium structure, properties of incident ra-

diation, etc.

Figure 1.15: Schematic presentation of used GPU logically divided into hundreds of independent

cores allowing creation of thousands of lightweight parallel threads.

2.0 having up to 6.0 Tflops of computational power on board (single precision). The graphic chip

is logically divided into hundreds of CUDA cores (in our case up to 500 per card), schematically

presented in Figure 1.15. Therefore, it executes up to twenty thousand threads simultaneously,

without context switch performance losses and very fast (up to 4 Gbit/s) on-chip GDDR memory.

The graphic chip’s shared memory has been used to store the intermediate results; constant memory

is applied for data input, whereas the global memory is used to store parameters of photon objects

(e.g. path-length, state of polarization, outlet angles etc.). The tiling and cutoff techniques are used

to process large datasets and avoid memory bandwidth limitations [180, 181]. Such a design allows

simulating propagation of thousands (15 to 20 depending on application and detector parameters)

of photon objects in the medium simultaneously that provides an opportunity for direct imitation of

image or wave front transfer in the scattering medium or OCT image modeling.
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Figure 1.16: Schematic presentation of the key components of the onlineMC solution. The server

hosts a web front end, which accepts user simulation requests and retrieves results. The developed

components provide interoperability between the interactive user interface and GPUs.

Specially designed for 3D graphic applications mainly for computer games and professional soft-

ware designing this cutting edge graphic technology also incorporates a powerful set of instru-

ments applied for optimized simulation of object motion, rotation, reflection, ray-tracing, etc. The

NVIDEA CUDA provides GPU-accelerated mathematical libraries, such as CULA, CUBLAS -

Linear Algebra, CUFFT - Fast Furrier Transform, CURAND - Random Number Generators [182].

Their incorporation into MC allows speeding up the simulation of each photon packet up to 1000

times.

1.4.3 Online solution and web integration

A flow chart of the online solution is schematically presented on Figure 1.16.

The MC modeling server provides major hardware acceleration by CUDA supporting GPUs. The

developed server software consists of the web front end, management part, GPU-web integration

and the CUDA-based MC core described above.

The front end of the MC is developed by using Microsoft ASP.NET and Microsoft Silverlight

technologies [183–186]. Microsoft Silverlight is used for creation of a cross-platform lightweight

interactive interface to access a particular MC application [186], whereas ASP.NET is employed to

meet modern design and security requirements [185].

The management part of the MC modeling server consists of the Input / Output (I/O) and Load

Balancing systems. The I/O is created to accept and validate user credentials and online input of

modeling parameters; to log and store computation enquiries and output data into a server database;

to deliver the results of the simulation back to the front end. The I/O works in tandem with the

Load Balancing which allows one to manage the server load, monitor running simulations and

check the GPU availability. To make the online MC less vulnerable to common network threats

and overloads, the management part has been developed utilizing recently added .NET 4.0 features,

such asWindows Presentation Foundation (WPF) andWindows Communication Foundation (WCF)
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Figure 1.17: Schematic presentation of P2P O3MC implementation. Clients interact with the

O3MC web interface via a preferred web browser. The server accepts O3MC simulation re-

quests and keeps track of the participating peers. The P2P network consists of different computers

equipped with the CUDA-supporting GPUs: (1) a workstation with two GeForce GTX 480 GPUs

each 480 CUDA cores, 1540 Gigaflops of the peak single precision FPP / 85 Gigaflops double

precision FPP, 1536 GB of GDDR5 memory; (2) Thorlabs OCT imaging system workstation with

Quadro FX580 featuring 32 CUDA cores, 512 MB GDDR3 memory; (3) computational server

equipped with two Tesla M2090 GPUs each 512 CUDA cores, 1331 Gigaflops of the peak single

precision floating point performance (FPP) / 665 Gigaflops double precision FPP, 6 GB of GDDR5

memory; (4) Dell laptop with GeForce GT555M featuring 144 CUDA cores, 3072 GB GDDR3

memory. Images are adopted from manufacturer websites and/or have a free license.

[187, 188].

It should be pointed out that .NET solutions are executed in the Common Language Runtime

(CLR), the core of .NET [184]. Known as a safe managed programming environment the CLR has

no direct access to GPUs and other hardware resources. Therefore, to provide the interoperability

between the web front end and graphic cards the GPU-web integration component has been devel-

oped. The Component Object Model (COM) [189] and .NET interoperability have been used to

provide interaction between the binaries produced by C sharp and CUDA compilers. The proposed

solution allows multiple users to access GPU computational resources online within a reasonable

time (in a range from a few seconds to several minutes). The developed Online Object Oriented

MC (O3MC) computational tool is now available at www.biophotonics.ac.nz, and can be used for

various applications in biomedical optics as well as in biophotonics and optical engineering [177].
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1.4.4 Peer-to-Peer computing infrastructure for the Monte Carlo modeling tool

OOP and GPU implementations enable one to significantly speed up the MC simulation. How-

ever, due to the multi-user architecture of the online solution, concurrent simulations by multiple

clients could degrade performance of O3MC. For example, if one user accessing the O3MC can get

the results in 4.3 seconds on TESLAM2090 GPU, 100 users accessing O3MC at the same time can

be stacked in a queue and wait for 10-15 minutes. Therefore, in framework of further development

of a tool (available online at: www.biophotonics.ac.nz) to deal with the multi-user access we apply

a peer-to-peer (P2P) network. A typical P2P network consists of a set of computers, called nodes

or peers, which communicate and share their GPUs (Figure 1.17). The peers in a P2P network are

equal among each other, acting both as clients and servers [190]. This approach has gained a lot of

popularity in recent years, especially in terms of multimedia content delivery and communication

(e.g. BitTorrent, Skype, etc.). With current development we, for the first time to our knowledge,

apply a hybrid P2P network (Figure 1.17) utilizing different types of peers for MC simulation.

The web server hosts the online MC tool user interface, accepts O3MC simulation requests from

clients and keeps track of the other nodes (Figure 1.17). The nodes are responsible for sharing the

information about currently queuing MC simulations, processing them on GPUs, uploading, down-

loading and hosting the outcomes (presented in a typical journal-paper format) among themselves

without the need of the central server. To develop the P2P Network (Figure 1.17) the recently intro-

duced P2P features of .NET 4.0 Windows Communication Foundation (WCF) [191] were applied.

This allows integrating the P2P Network with the Load Balancing part of O3MC as both are written

in managed code using .NET Framework APIs [177]. Thus, a number of MC simulations can be

executed simultaneously on peers without queuing. A specially developed load balancing procedure

manages the number of running applications and their distribution on peers/GPUs. Further devel-

opment of such a network worldwide could be a base for a computational platform for biomedical

optics and optical diagnostic community.

1.5 Results of Monte Carlo Simulation

1.5.1 Validation of the technique

To validate the MC model, presented in this chapter, the results of simulations were compared

to the predictions of the time-independent diffusion equation for a semi-infinite medium, given by

(1.24).

The results of the spatially resolved diffuse reflectance obtained by the MC model directly agree

with the results of the steady-state diffusion equation. Figure 1.18 presents a spatially resolved re-

flectance R(ρ) plotted as a function of the radial distance ρ , where R(ρ) =
R
∞

0 R(ρ , t)dt (see (1.24)).
In order to provide better visualization, the simulation was also carried out for the index-matched

and index-mismatchedmedium boundary and the results are presented in terms of natural logarithm

of the reflectance multiplied by the square of the radial distance ln

ρ2R(ρ)


(see Fig. 1.18 b).

Values of Rφ , R j, Re f f , Cφ , and C j for typical mismatches of refractive index on the medium

boundary are presented in Table 1.4.

Figure 1.19 (a) shows the comparison of time-resolved diffuse reflectance calculated by the dif-

fusion theory,R(t) =
R
∞

0 R(ρ , t)2πρdρ . Figure 1.19 (b) presents the time dependence of reflectance
for a given source-detector separation ρ = 5 mm, R(ρ , t), is calculated from the diffusion equation

(1.24) and is compared against the results of the MC simulation for a semi-infinite medium with the

optical parameters: µ 0s = 0.5 mm−1, µa = 0.02 mm−1, g= 0.92, n= 1.

Good agreement is obtained in all ranges of time. At least 10 scattering events are required
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(a) (b)

Figure 1.18: Comparison of the results from MC simulation and the diffusion theory for spa-

tially resolved reflectance from index-mismatched interface of semi-infinite medium: (a) spatially

resolved diffuse reflectance R(ρ), (b) a natural logarithm of the reflectance multiplied by the square

of the radial distance ρ , ln

ρ2R(ρ)


. The symbols show the results of the MC simulation, and the

solid lines are the results of the diffusion theory prediction. The optical parameters are: µs = 30

mm−1, µa = 0.01 mm−1, g= 0.9, n= 1.5 (•), and n= 1.05 (H).

TABLE 1.4: Rφ , R j, Re f f ,Cφ , andC j for the

refractive index n of a medium, air (nair = 1).

n Rφ R j Re f f Cφ C j

1 0 0 0 0.25 0.5
1.05 0.1056 0.0355 0.0731 0.2236 0.4822
1.37 0.5057 0.3636 0.4679 0.1236 0.3182
1.4 0.529 0.3888 0.4935 0.1178 0.3056
1.45 0.5645 0.4281 0.5326 0.1089 0.2859
1.5 0.5964 0.4644 0.5678 0.1009 0.2678
1.55 0.625 0.4979 0.5996 0.0937 0.251

to occur before a photon can be qualified as a diffuse photon. Indeed, after 75 ps a photon has

traveled approximately 23 mm, that for a medium of µ 0s = 0.5 mm−1 is equivalent to approximately

10 scattering events.

The results of MC modeling are also well agreed with the theoretical predictions for diffuse

reflectance and transmittance performed for an isotropic scattering slab [195]. The solution to the

diffusion equation for a finite slab was taken from [195], originally derived by [13]. Albedo a =
µs

µs+µa
was taken 0.9976, and two different optical thicknesses τ = 10, 20, have been considered,

where τ = (µs+µa)d and d is thickness of a slab (Figure 1.20).

Table 1.5 shows the values for transmittance and reflectance obtained by the MC model in com-

parison with data tabulated by van der Hulst [192], the results of the adding-doubling method

[194, 196], and the MC programs developed by van der Zee [193] and Wang et al. [69] for rel-

ative refractive index of 1, a set of four values for albedo a, and four values of a slab thickness for

each albedo, respectively.

Van der Hulst [192] obtained the values for the diffuse reflectance and transmittance, for a slab

illuminated with a collimated light source normally incident on the medium surface, by the doubling

method, which is a representative of an adding-doublingmethods family. This was done for the case
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(a) (b)

Figure 1.19: Comparison of the time-resolved results of the MC simulation with that of the dif-

fusion equation: (a) time resolved reflectance R(t), (b) time dependence at a source-detector sepa-
ration ρ = 5 mm, R(ρ , t).

Figure 1.20: Time resolved reflectance and transmittance from an isotropic scattering slab with

a plane wave pulse irradiation. Symbols are the MC results, lines are diffusion theory predictions.

R(10,20,∞) and T (10,20) are reflectance and transmittance for τ = 10, 20, and ∞. tc = c−1(µs+
µa)−1.

of isotropic and anisotropic scattering, where the HG scattering phase function is used. The values

are tabulated as a function of optical depth τ = (µs+ µa)d, and albedo a =
µs

µs+µa
as a parameter,

where d is the slab thickness. In all calculations ten MC simulations of 106 photon packets each

were completed to compute the average and the standard error of the total diffuse reflectance.

In Table 1.6 results are presented for the HG scattering phase function with g values of 0.5, 0.875,

and for albedo a= 0.9, 0.99. Good agreement can be seen for all these different cases. All digits in

the results are meaningful, however, the results of the van der Zee MC code are given with a varying

number of accurate digits since no better data have been available to the authors.

The verification of the total diffuse reflectance was carried out for a semi-infinite scattering

medium. The average and the standard error of the total diffuse reflectance were computed and com-

pared in the table below with prediction of analytical results of [197], results of the adding-doubling

method of [194], and that of the MC code (MCML) developed by [69] versus the developed MC.

The medium has the following optical parameters: µs = 9 mm−1, µa = 1 mm−1, g= 0.0 (isotropic
scattering), n= 1.5. The results are presented in Table 1.7.
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TABLE 1.5: Comparison of MC reflectance and transmittance simulations for an

isotropic scattering slab with the data tabulated by van der Hulst [192](vdH), van der Zee

[193] (vdZ) and Prahl [194] (P).

Optical depth Reflectance Transmittance
τ MC vdH vdZ P MC vdH vdZ P
a= 0.4
0.25 0.0356 0.0357 0.037 0.0356 0.8137 0.8136 0.812 0.8136
0.5 0.0554 0.0553 0.0524 0.0553 0.6576 0.6577 0.661 0.6577
1 0.0732 0.0734 0.0716 0.0734 0.4252 0.4250 0.426 0.4251
4 0.0832 0.0833 0.0837 0.0833 0.0272 0.0272 0.0272 0.0272
a= 0.8
0.25 0.0824 0.0824 0.0837 0.0824 0.8594 0.8594 0.858 0.8595
0.5 0.1402 0.1401 0.143 0.1401 0.7377 0.7378 0.734 0.7378
1 0.2108 0.2109 0.209 0.2108 0.5414 0.5414 0.544 0.5414
4 0.2842 0.2840 0.287 0.2840 0.0750 0.0751 0.0754 0.0751
a= 0.9
0.25 0.0965 0.0965 0.0975 0.0965 0.8733 0.8733 0.873 0.8733
0.5 0.1690 0.1690 0.165 0.1690 0.7655 0.7653 0.771 0.7654
1 0.2676 0.2674 0.266 0.2674 0.5915 0.5916 0.594 0.5916
4 0.4082 0.4081 0.408 0.4081 0.1286 0.1285 0.126 0.1285
a= 0.99
0.25 0.1101 0.1101 0.109 0.1101 0.8868 0.8867 0.886 0.8867
0.5 0.1991 0.1989 0.203 0.1989 0.7939 0.7940 0.790 0.7941
1 0.3331 0.3329 0.329 0.3329 0.6508 0.6509 0.655 0.6510
4 0.6452 0.6450 0.645 0.6450 0.2754 0.2755 0.276 0.2755

TABLE 1.6: Comparison of MC reflectance and transmittance simulations for an

anisotropic scattering slab, g= 0.5 and g= 0.875 with the data tabulated by van der Hulst
[192] (vdH), van der Zee [193] (vdZ) and Prahl [194] (P).

optical depth Reflectance Transmittance
τ MC vdH vdZ P MC vdH vdZ P
a= 0.9 g= 0.5
0.5 0.0720 0.0720 0.0739 0.0720 0.8672 0.8672 0.865 0.8672
1 0.1299 0.1298 0.129 0.1298 0.7390 0.7391 0.739 0.7391
4 0.2612 0.2612 0.262 0.2612 0.2505 0.2505 0.249 0.2505
a= 0.99 g= 0.5
0.5 0.0879 0.0879 0.0874 0.0878 0.9057 0.9057 0.906 0.9057
1 0.1706 0.1707 0.169 0.1707 0.8147 0.8145 0.816 0.8145
4 0.4700 0.4698 0.467 0.4698 0.4524 0.4527 0.455 0.4527
a= 0.9 g= 0.875
0.5 0.0125 0.0125 0.0110 0.0125 0.9354 0.9354 0.935 0.9354
1 0.0238 0.0238 0.0226 0.0238 0.8702 0.8701 0.869 0.8702
4 0.0658 0.0657 0.0650 0.0658 0.5212 0.5212 0.522 0.5212
a= 0.99 g= 0.875
0.5 0.0157 0.0157 0.0155 0.0157 0.9789 0.9789 0.979 0.9790
1 0.0327 0.0327 0.0322 0.0327 0.9558 0.9558 0.956 0.9558
4 0.1416 0.1417 0.140 0.1417 0.8003 0.8001 0.802 0.8002
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TABLE 1.7: Comparison of the total

diffuse reflectance given by analytical results

[197], results of the adding-doublingmethod

[194], and MCML [69] versus the developed

O3MC [177].

Source Rd error
Giovanelli [197] 0.2600 –
MCML [69] 0.25907 0.00170
Adding-doubling [194] 0.26079 0.00079
O3MC [177] 0.25957 0.00043

TABLE 1.8: Comparison of the total diffuse reflectance and

transmittance given by tabulated data [192], results of the

adding-doublingmethod [194], and MCML [69] versus the

developed O3MC [177].

Source Rd error Td error
Van der Hulst [192] 0.09739 – 0.66096 –
MCML [69] 0.09734 0.00035 0.66096 0.00020
Adding-doubling [194] 0.09711 0.00033 0.66159 0.00049
O3MC [177] 0.09741 0.00027 0.66096 0.00017

The columns Rd and error are the average and the standard error of the total diffuse reflectance.

The average values and error were computed similarly after ten MC simulations of 50000 photon

packets each. The medium has the following optical parameters: µs = 9 mm−1, µa = 1 mm−1,

g= 0.75 (anisotropic scattering), n= 1, and slab thickness d = 0.2 mm.

1.5.2 Comparison with the human skin diffuse reflectance spectrum and color mea-
sured in vivo

Skin diffuse reflectance spectra was simulated by the MC technique assuming a wavelength-

independent scattering coefficient for the different skin tissues and using the known wavelength

dependence of the absorption coefficients of main skin tissue absorbers, such as oxy- and deoxy-

hemoglobin, melanin and water (see Figure 1.8). The results of skin diffuse reflectance spectra,

measured in vivo by the experimental setup presented in Figure 1.21, have been used to com-

pare with the results of MC. The resulting images have been textured using a human skin surface

BRDF mask (see Fig. 1.23 and Fig. 1.24). Converting the spectral power distribution to the

CIE XYZ coordinates and then to the actual RGB-gamut color images is done using the standard

observer/tristimulus values utilizing D65 illuminant (Figure 1.22).

The absorption properties of skin tissues in the visible and NIR spectral region were estimated

by taking into account the anatomical structure of skin as determined from histology, including the

spatial distribution of blood vessels, water and melanin content. Reasonable estimates for oxygen

saturation (based on likely metabolic demand) and hematocrit are also included, although these

parameters are less well defined than the others as they cannot be determined from post-mortem

samples. It has been demonstrated that when a computational model of skin is used with reasonable

physical and structural parameters, as described above, the results of skin diffuse reflectance spectra

MC simulation are reasonably well-fitted with the results of in vivo skin spectra measurements [99].
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Figure 1.21: Schematic diagram of the experimental set-up. A stable white-light continuum is

generated using a large-area photonic crystal fiber and using the near-IR (650-1000 nm) portion

of this continuum (roughly, 0.7 W average power) for tissue illumination, while employing a TE-

cooled CCD camera (Andor, Inc.) attached to a spectrometer (Horiba, Inc.) for signal detection.

An 0.6-mm2-area multimode fiber bundle was used to collect light on the back of the tissue under

study. For all the described measurements, the signal was corrected for a background, normalized

to the incident light and averaged over 20-s to maximize the signal-to-noise-ratio.

Figure 1.22: The experimental results of transmittance spectra measured for fingernail (1), finger

(2), palm (3), wrist (4) and arm (5) in vivo (left), and corresponding chromaticity coordinates mea-

sured in vivo (crosses) and simulated by MC (circles) presented on the CIE 1931 color space (right,

represented as gray scale).

The results of the simulation are remarkably similar to the experimentally measured skin spectra in

the visible 450-600 nm. The difference in the results of the simulation and the experimental data in

the NIR spectral region are explained by the choice of the optical properties of the skin layers, i.e.

it was that the scattering properties of all skin layers (i.e. µs and g) are wavelength independent.
Thus, based on the transmittance spectra obtained for fingernail, palm, wrist and arm in vivo, the

chromaticity coordinates are calculated and the regularities of color variation are analyzed by MC

simulation. The spectral color composition of biological tissues can be used for express-analysis

of their functional physiological condition and identification of the most optimal conditions for

diagnostics and treatment.

1.5.3 Sampling volume

Figure 1.25 schematically presents an example of the medium with a fiber optic probe. Due

to multiple scattering in the medium, optical radiation is distributed within a certain region G (see
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Figure 1.23: The results of MC simulation of human skin spectra (left) and corresponding colors

(right, represented as gray scale) while varying the melanin content in Living epidermis.

Figure 1.24: The results of MC simulation of human skin spectra (left) and corresponding colors

(right, represented as gray scale) while varying the blood concentration in the layers from papillary

dermis to subcutaneous tissue.

Fig. 1.25). The region G and the features of the optical radiation distributed within the medium are

of predominant interest in dosimetry applications [90].

For OD applications, the spatial distribution of the detected signal (the sampling volume) J is of

greater importance. The sampling volume J is formed by the so-called effective optical paths, which

are those paths that photons have followed after being emitted at the source and ultimately received

by the detector (Fig. 1.25). These photons can traverse many different paths between the source and

the detector, some paths being more likely than others. Arridge [198] demonstrated that if repre-

sented as a function of a point r0 in the medium, the sampling volume J(r0) can be interpreted as the
measure (conditional pdf) of the sensitivity of a surface measurement to the interrogated volume of

a tissue located at the depth r0. If the region δV (r0) attenuates photons at rate α (due to absorption),

then the measurement is perturbed, and in the limit α→ 0, the rate change of the measurement with

the perturbation is given by J(rq,rm,r
0). Note, that only photons that originally passed through

δV (r0) could have contributed to the change in signal measurement. Hence J(rq,rm,r0) represents
a conditional pdf with the maximum value in the region, which is the most probable origin of the

detected signal.
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Figure 1.25: Diagram presenting the definition of sampling volume. G is the spatial distribution

within semi-infinite scattering medium: J (J ⊂ G) is the spatial distribution of the effective optical

paths, passed through a volume δV (r0) (∀r0 ∈ J), source (S), detector (D).

For experiments involving the backscattered intensity measurements J(r0) is defined as:

J(rq,rm,r
0) =

∂A(rq,rm)
∂µa(r0)

, (1.95)

where ∂µa(r0) is a perturbation of the absorption coefficient at a point r0. ∂A(rq,rm) is a perturba-
tion of attenuation A at a point rm of the detector, while the source of radiation is located at a point

rq [67, 198, 199]. Attenuation A is defined as

A(rq,rm) =− ln

I(rm)

I0(rq)


. (1.96)

Here, I0(rq) is the intensity of incident radiation at a point rq, I(rm) is the intensity of the detected
backscattered radiation at a point rm (see Fig. 1.25). Combining (1.95) and (1.96), J(rq,rm,r

0)
takes the form of

J(rq,rm,r
0) =− 1

I(rm)

∂ I(rm)
∂µa(r0)

. (1.97)

A short form of coordinate dependence of the sampling volume is used further in the text, i.e. J(r0)
instead of J(rq,rm,r

0).
Thus, the sampling volume J(r0) is defined as the gradient of the specific radiation flux, which

is registered by the detector, with respect to the absorption coefficient δV (r0) in the medium at

point r0, r0 ∈ G. As a function of r0, J(r0) characterizes the complete spatial distribution of the
detected optical radiation in the medium and is determined by the spatial distribution of the effective

optical paths. For a heterogeneous medium, which consists of several homogeneous components of

different optical properties, e.g. seven optically homogeneous layers of skin, the partial components

of the sampling volume Jk(r
0) are considered, as:

Jk(r
0) =− 1

I(rm)

∂ I(rm)
∂µak(r0)

. (1.98)

The sampling volume Jk(r
0) is equal to < L(r0)>, which is the mean “effective path length” of the

photons of optical radiation traveling through a small volume δV (r0) [67]. This gives a recipe for a
practical implementation of numerical calculation of the sampling volume.
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Figure 1.26: (See color insert.) The results of the MC simulation of detector depth sensitivity for

a particular optical probe for human skin while varying the separation between source (200 µm)
and detector (200 µm): (a) 0.0 µm, (b) 200 µm, (c) 300 µm, (d) 400 µm, (e) 600 µm, (f) 800
µm, (g) 1000 µm, respectively.

MC numerical simulation is the optimal technique for estimation of the pdf of the effective opti-

cal paths, i.e. the sampling volume. Once a photon packet is registered by the detector, its trajectory

from the source to the detector is weighted by the final statistical weight. Having divided the mod-

eling medium into pixels (e.g. 10µm×10µm×10µm) and following the trajectory of each photon
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Figure 1.27: Sampling volume J(x,z) for a highly scattering homogeneous medium: (a) µs = 10

mm−1; (b) µs = 26.6 mm−1; (c) µs = 100 mm−1. Other optical parameters are g= 0.9, µa = 0.01
mm−1, n= 1.4. The depth of focal plane z f = 300 µm.

packet from pixel to pixel, the sampling volume J(r0) in a pixel is accumulated as follows:

J(r0) =− 1

I(rm)

∂ I(rm)
∂µa(r0)

=

Nph

∑
i=1

li(r
0)Wdi(rm)

l0

Nph

∑
i=1

Wdi(rm)

. (1.99)

Here Wdi is the final weight of the i-th detected photon packet given by (1.46), Nph is the total

number of the detected photon packets, li(r
0) is a path length traversed by the i-th photon packet in

a pixel with a center at r0, l0 is the size of the pixel. Finally, the sampling volume is represented by a
2D cross section map J(x,z), where x is the horizontal axis and z is the depth direction. To determine
the path length li in a pixel, the algorithm based on the Cohen-Sutherland line clipping method is

implemented. The results of the sampling volume modeling for an optical probe for human skin

(see the parameters in Table 1.2) are shown in Figure 1.26.

The results of numerical simulation of the sampling volume J(x,z) for confocal probe [200, 201]
are presented in Fig. 1.27. The parameters were taken close to those of a typical confocal scheme

[202]. Optical parameters of the medium were estimated in accordance with experimental data

[203] that defines the maximum penetration depth of confocal probe.

As expected, when the depth of focal plane z f is less than 3-4mean photon path lengths l (µs≤ 10

mm−1 or l ≥ 100 µm), sampling volume J(x,z) reveals a distinct region at the depth of 300 µm,
where the majority of the detector photons have been focused. Increasing z f , the depth of focal

plane in the medium, up to about 8-20 mean photon path lengths l (µs = 26.6-40 mm−1 or l =
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25-37.5 µm) does not affect J(x,z) so that the general tendency for photon localization remains
unchanged. However, in this case the contrast of the image is expected to reduce because the central

focal spot has been enlarged (see Fig. 1.27 b). Increasing the depth of focal plane z f even further

(µs > 100 mm−1 or l < 1 µm) will result in a complete refocusing of the incident optical radiation,
though it is still well focused.

These results give a perception of how the signal detected during confocal probing localizes in the

homogeneous medium. They are also in agreement with the experimental data and the predications

of alternative modeling techniques [61, 204, 205].

1.5.4 Fluorescence

Earlier MC schemes of fluorescence modeling consist of the three simulation steps [206, 207,

208, 209]. First, the fluence rate distribution within a tissue volume is calculated by the standard

MC scheme [63, 69]. At the second step, spatial fluorescence distribution is obtained by multiplying

the fluence rate distribution by the intrinsic fluorescence profile, which is defined as the product of

the absorption coefficient of the fluorophore at the excitation wavelength and its quantum yield at

the emission wavelength. Finally, the detected fluorescence is calculated as the convolution of the

fluorescence source distribution throughout the tissue with the Green’s function. In the framework

of this model, the intensity of the simulated local fluorescence is proportional to the fraction of

the absorbed energy that is determined by the quantum yield of the fluorophore. The fluorescence

source distribution within the medium is mainly dependent on the fluence rate distribution. Crille

et al. [210] employed the MC fluorescence forward-adjoin model. This MC scheme utilizes the

solution of a transport equation both in forward (excitation photon) and in adjoin (fluorescent pho-

ton) calculations. The solution of the adjoin transport equation is obtained for those fluorescence

photons that contribute to the detected fluorescence signal.

Another scheme of an independent simulation of the fluorescence acts has been proposed [211].

In this approach, the emission of the fluorescence photons occurs at the scattering sites and the

quantum yield of a fluorophore γ serves as the fluorescence threshold probability (Figure 1.28

a). The intensity of simulated fluorescence is defined by the fraction of the absorbed radiation

Wi−1−Wi (see Fig. 1.28 a). In a more plausible model of fluorescence simulation [212, 213], the

fluorophore absorption µa f is separated from the total medium/layer absorption by the standard

rejection scheme based on the fluorophore absorption threshold Pa = (1− exp(−µa f li)) (Fig. 1.28
b). Here, the intensity of generated fluorescence is equal to the product of the quantum yield and

the intensity of the incident radiation, γWi−1. In this model, each photon packet produces only one

fluorescence photon. Both models have assumed that the fluorescence is emitted uniformly from

the scattering sites in random directions (see Fig. 1.28 a, b).

A possibility to incorporate in MC spatial distribution of fluorescence has been suggested in

[166, 214]. The fluorescence excitation is determined as:

Wem(r) =W (r)PaPρPγ , (1.100)

whereW (r) is the photon weight at a point r and is equal to the probability that the photon packet
has reached a point r = r(x,y,z) in the medium; Pa is the probability of the photon packet absorp-
tion at the i-th step; Pρ is the probability of absorption by the fluorophore non-uniformly distributed

within themedium; Pγ is the probability of the fluorescence excitation determined by the fluorophore

quantum yield γ . The probabilities Pa, Pρ , Pγ are calculated by the standard rejection scheme [72].
In contrast to the models [206–213] (Fig. 1.28 a and b), where fluorescence is emitted between scat-

tering events, following spatial distribution of fluorophores in tissues (Figure 1.29), e.g. collagen

distribution for autofluorescence [166, 214].

spatial distribution of the fluorophores is described as cos(kρ)cos(kz), where k = π/d; d is the
collagen fiber diameter; ρ = ρ(x,y) and z are the coordinates of a point in the medium. The non-
homogeneous distribution of fluorescence within the dermal layers is clearly illustrated in the ex-
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(a) (b)

Figure 1.28: Schematic representation of the MC fluorescence simulation: (a) the fluorescence

probability is determined by quantum yield γ of a fluorophore [211]; (b) each fluorescence event is
determined by the probability of the photon packet absorption Pa = (1− exp(−µa f li)) [212, 213].
Wi−1 andWi are the statistical photon weights at the (i− 1)-th and i-th steps of the photon packet;
µa f is the fluorophore absorption coefficient; li is the path length of a photon between the scattering
events; ξ (0≤ ξ ≤ 1) is the uniformly distributed random number used in the rejection scheme.

Figure 1.29: Schematic representation of the fluorescence modeling: Pa is probability of the pho-

ton packet absorption between two scattering sites Si−1 and Si; Pr is the probability of the absorption

by the fluorophore; Pγ is the probability of the fluorophore fluorescence determined by the fluo-

rophore quantum yield γ ; Pd = (1−Pγ) is the probability of dissipation determining a fraction of
absorbed energy exerted non-radiative relaxation through other mechanisms, e.g. thermal excitation

or phosphorescence, etc.; ρ(x,y,z) determines spatial fluorophore distribution within the medium.

Figure 1.30: The scanning electron micrograph taken from [215] shows the arrangement of col-

lagen fibers in the dermis (with permission). Fiber bundle diameters and density of packing in the

papillary dermis (PD) and reticular dermis (RD) are different. Collagen is organized in long, wavy

bundles, which vary in diameter from about 1-40 µm. Collagen bundles interweave in a complex
and random manner to form a three-dimensional irregular meshwork [107, 216].
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Figure 1.31: Experimental autofluorescence image of skin tissue section under illumination of

442 nm laser radiation. (Courtesy of Dr. H. Zeng, from [208]. With permission).

Figure 1.32: Two-dimensional distributions of the spatial depth sensitivity Q(x,z). The optical
parameters of skin layers were chosen for 488 nm. The fractions of fluorescence that are sensitive

to sensor and topical dermal layers are close. The diameter and numerical aperture of detector are

equal to D= 1000 µm and NA= 0.63; acceptance angle θd = sin−1(NA/n0) = 400.

perimental images of autofluorescence of human skin (Figure 1.31), whereas the distribution of

fluorophores in the stratum corneum and the epidermis seems to be homogeneous [208].

The fluorescence photons are emitted isotropically from the source points, which agrees with the

assumptions proposed in earlier works [206–213].

The spatial distribution of fluorescence excitation is accumulated as a set of coordinates (x,y,z)
and photonweightsWem. The fluorescence photons are emitted until the necessary number of photon

packets collected by a detector is achieved. The MC method is employed to propagate fluorescence

photons, however, new values of the optical parameters corresponding to emission wavelength are

used.

To express the sensitivity of a surface measurement (a detection system) to interrogated volume

of the tissue the detector depth sensitivity (the sampling volume) is employed. Here, the sampling

volumeQ(r) is defined as the gradient of fluorescent radiation density with respect to the absorption
coefficient of a small region of medium at the point r.
The described MC model has been applied to assess spatial distribution of both skin tissue aut-

ofluorescence and fluorescence excitation of the smart “tattoo” sensor layer. Optical parameters of

skin tissues used in the simulation are shown in [166, 214].

Additional MC simulation was carried out to illustrate how the localization of fluorescence ex-

citation and the sampling volume are affected by excitation at longer wavelength. For this case the
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Figure 1.33: Spatial distribution Wem(x,z) of the fluorescence excitation of the “tattoo” sensor
layer and autofluorescence excitation in human skin in the near infrared spectral region. Excitation

of autofluorescence in the dermal layers is highly (∼ 4-5 times) suppressed due to the low fluores-

cence efficiency of natural fluorophores in the near infrared spectral region. The main fluorescence

excitation is localized in the sensor layer. The modeled skin tissue’s optical properties were chosen

for 700 nm. The diameter of source is equal to 200 µm. The incident beam has a uniform geometry

profile.

(a) (b)

Figure 1.34: Spatial distribution of the fluorescence excitation for the refractive index matching

(n= 1.5): (a) - visible spectral region 488 nm; (b) - near infrared spectral region 700 nm.

modeled skin tissue’s optical properties were chosen for 700 nm. Due to the monotonically de-

creasing scattering of skin tissue with wavelength in the range 450-1100 nm [68, 114] the scattering

coefficients µs are reduced by a factor of 2–3, whereas the absorption coefficients of the skin layers
are taken to be a factor of ten less [90]. Scattering of the sensor layer was believed to be close to that

of the epidermis, while its absorption coefficient was taken unchanged, that presumed the usage of

the near infrared fluorophore [217]. The low fluorescence efficiency of endogenous fluorophores in

the near infrared spectral region [218] was simulated by their reduced absorption; quantum yields

of biotissues were kept unchanged.

The results of the simulation are presented in Figure 1.33. The results show that excitation of aut-

ofluorescence in the dermal layers is highly (∼ 4-5 times) suppressed due to the low fluorescence

efficiency of natural fluorophores in the near infrared spectral region [218] and the main fluores-

cence excitation is localized in the sensor layer. Nevertheless, the periodic structure of fluorescence

excitation in the dermal layers is still observed.

The MC technique has been applied for modeling the fluorescence excitation and assessing of
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the sampling volume within the skin. The simulation results show that the maximum of the fluo-

rescence excitation sources is localized in the topical dermal and in the “smart” sensor (“tattoo”)

layers. Spatial distribution of the fluorescence excitation within dermal layers demonstrates a good

correlation to experimental autofluorescence image of skin tissue. When moving to the near in-

frared spectral region, the fraction of the autofluorescence excitation is significantly reduced and

the sampled area is predominately localized in the “tattoo” sensor layer. Refractive index match-

ing at skin interface produces a remarkable enhancement of the sampling volume localization. The

maximum of the detector depth sensitivity is shifted to the “tattoo” sensor layer and moves away

from the stratum corneum and the epidermis. The simulations have revealed a general tendency

of optical/fluorescence measurements to localism in a small shallow volume in the “tattoo” sensor

layer. It is concluded that the results of this study accompanied by recent progress in biophoton-

ics can be beneficial to a number of applications aimed towards medical diagnostics and general

physiological studies.

1.5.5 Coherent effects and polarization

The MC method has been extensively used to simulate the coherent effects of multiple scattering

including temporal field correlation function, the CBS intensity and the helicity flip of circularly

polarized light [135, 137, 168, 169, 219–224]. For a semi-infinite isotropic, scattering, and non-

absorbing medium, the intensity of single and double scattered photons can be estimated analyti-

cally:

Isingle = l−1
Z
dz1

Z
dR2δ (R2−R1)exp(−2z1

l
) = 1/2,

Idouble = (4π)−1l−2
Z
dz1

Z
dR2Λ0(R2−R1)exp(− z1+ z2

l
) = ln

√
2,

(1.101)

where z1 and z2 are the distance from the scattering points. For isotropic scattering the phase

function p0(ki−ks) =
1
4π . Moreover, for isotropic scattering an exact Milne solution is available

that, for example, gives the ratio of the diffuse reflectance and intensity of the single scattered

photons I/Isingle = 8.455 [20]. Several MC simulations have been carried out to define the cut-off

criterion, i.e. the minimal weight, maximum number of scattering events, etc. Accuracy of not less

than 4 significant digits has been achieved for Nph = 105, Nmax scat = 5000, andWmin = 10−3.

The results of calculation of the temporal field correlation functions for scattering media with

different anisotropy factors g= 0,0.5 and 0.9 are presented in Figure 1.35. The optical properties of
a medium are: µs = 30 mm−1, µa = 0, n= 1. Thus, the transport of mean free path lengths (MFPs)

are l∗ = l/(1− g) = 33.3 µm, 66.6 µm and 333.3 µm for isotropic g = 0, intermediate = 0.5 and
highly anisotropic g= 0.9 scattering media. A semi-infinite medium and a slab of thickness L= l∗

are considered.

The obtained results (Fig. 1.35) are reasonably well described by the analytical formula derived

from the diffusion approximation [133, 148]:

g1 (τ) ∝
sinh(α [L+η1−η0])
sinh(α [L+2η1])

, (1.102)

where α = (3t/(τ l∗2))1/2, η0 = l∗ is the depth at which the incident light is completely diffused,
η1 ≈ (2/3)l∗ is the extrapolated boundary length. Since the influence of the factor of anisotropy g

decreases as a slab becomes thicker, there is a tendency for a better agreement between the results

of the MC simulation and predictions of the diffusion theory (Fig. 1.35). This was ascribed to the

diminishing role of lower order scattering events, which cannot be properly accounted for within

the diffusion theory. Nevertheless, the general tendency of independence on the anisotropy factor g

is as obvious for a semi-infinite medium as for a slab. Deviation from the expected linear decay at
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Figure 1.35: The normalized temporal field correlation functions g1(t) for backscattering radi-
ation versus (t/τ)1/2: semi-infinite medium (1), a slab of thickness L = l/(1− g) (2). Different
factors of anisotropy are considered () – isotropic g = 0, (•) – intermediate g = 0.5, and (4) –
high anisotropic g= 0.9. Dashed lines are approximation (1.102) for a semi-infinite medium and a

slab. The optical properties of a medium are: µs = 30 mm−1, µa = 0, n= 1.

some time is attributed to the effect of limited number of longer photon paths, which is a result of

finite computation time. In time, the contribution of longer paths diminishes, and the requirement

of a large number of long-path photons becomes less strict.

The CBS intensity peak is simulated for the same isotropic, intermediate and high anisotropy

semi-infinite scattering media. The results of the MC simulation for isotropic scattering show that

hCBS = 1.87, that agrees very well with the results derived from the generalized solution of the Milne

problem: hCBS = 1.88 [20]. In limit of g→ 1 the theory predicts hCBS → 2, that corresponds with

the results of the MC simulation hCBS = 1.99 for g= 0.9.
Expressed in terms of the dimensionless parameter q̃ = kl∗ sinθs, the simulated angular depen-

dence of the CBS exposes typical behavior, indicating that it is practically independent of anisotropy

(Fig. 1.36). The results of simulation are compared against the results predicted by the analytical

approach [225]:

I
(1)
CBS = exp(−γkl∗ sinθs) (1.103)

or in its linear approximation:

I
(2)
CBS = 1− γkl∗ sinθs, (1.104)

where γ ≈ 2 is the relative slope of the CBS decay (Fig. 1.36). The results of simulation also

indicate a universal decreasing trend, whereas the diffusion approximation predicts that the CBS

peak falls down with different slope values for different values of the anisotropy factor. Notice that

this dependence strongly disagrees with the predictions of the diffusion approximation [138]:

I
(di f f )
CBS ∝ 1−2

(1+ z∗)2

1+2z∗
kl∗ sinθs, (1.105)

which yields the slope γ(di f f )≈ 2.3 for g= 0 and γ(di f f ) ≈ 0.71 for g→ 1, where z∗= 0.71(1−g)−1
is the Milne extrapolation parameter [226]. To some extent, the results obtained also demonstrate


