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Preface

Applied Nonparametric Statistical Methods first appeared in 1989. Major de-
velopments in computing, especially for exact permutation tests, inspired a
revised second edition in 1993. The third edition in 2001 reflected not only
further advances in computing, but a widening of the scope of nonparametric
or distribution-free methods and a tendency for these to merge with, or to
be used in conjunction with, techniques such as exploratory data analysis,
robust estimation and semiparametric methods. This trend has continued,
being evident especially in computer intensive methods to deal with both
intractable analytic problems and in processing large data sets.

This new edition reflects these developments while retaining features that
have met a continuing positive response from readers and reviewers.

Nonparametric methods are basically tools for statistical analyses, but data
collection and the interpretation of analyses are interrelated parts of the statis-
tician’s role. As in the third edition we comment, where appropriate, on all
these aspects, some of which do not always receive the attention they deserve
in undergraduate mainstream or in service courses in statistics.

Our approach is midway between a bare description of techniques and a
detailed exposition of the theory, often illustrating key practical points by
examples. We keep mathematics to the minimum needed for a clear under-
standing of scope and limitions.

We have two aims. One is to provide a textbook for those making first
contact with nonparametric methods at the undergraduate level. This may be
in mainstream statistics courses, or in service courses for students majoring in
other disciplines. The second is to make the basic methods readily available to
specialist workers, managers, research and development staff, consultants and
others working in various fields. Many of them may have an understanding of
basic statistics but only a limited acquaintance with nonparametric methods,
yet feel these may prove useful in their work. The format we have adopted
makes the book suitable not only as a class text, but also for self-study or use
as a reference manual.

To meet our aims the treatment is broad rather than deep. We believe
this to be a fruitful approach at the introductory stage. Once one has a broad
overview of nonparametrics a more advanced study of topics of special interest
becomes appropriate. Because fields of interest will vary from person to person,
this second phase is best tackled by attending courses on, or referring to the
literature that deals in depth with, aspects of particular interest. We give

ix
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references to books and papers where more advanced treatments of many
topics can be found.

Popular features of earlier editions are retained, including a formal structure
for most examples, lists of potential fields of application and a selection of
exercises at the end of each chapter.

There has been a substantial reordering of topics and new material has
been added. The former Chapter 1 has been split into two, with consequent
renumbering of later chapters. Chapter 1 now gives a brief summary of some
relevant general statistical concepts, while Chapter 2 introduces ideas basic to
nonparametric or distribution-free methods. The new Chapters 3 to 7 broadly
cover the content of the former Chapters 2 to 6, but with many changes in
emphasis and removal of some material on designed experiments to a new
Chapter 8, and some on analysis of survival data to an extended treatment in
Chapter 9. Designed experiments, particularly those with a factorial treatment
structure, are handled in an up-to-date way in Chapter 8. Chapters 10 to 14
are revisions of the former Chapters 7 to 11. Chapter 15 is new and introduces
a few of the many important modern developments, most of the applications
being computer intensive.

As in earlier editions we have not included tables of quantiles, critical values,
etc. relevant to basic nonparametric procedures. Modern software has made
many of these somewhat redundant, but those who need such tables will find
them in many standard collections of statistical tables. We give references as
needed to relevant specialized tables. Solutions to selected exercises are given
in an appendix.

We are grateful to many readers and reviewers of the earlier editions who
have made constructive comments about content and treatment of particu-
lar topics. Their input triggered several major changes in the present edition.
We thank Edgar Brunner and Thomas P. Hettmansperger for drawing our
attention to a number of papers dealing with interactions in a nonparametric
context, and Joseph Gastwirth for alerting us to many recent practical de-
velopments and Nick Cox for providing a Stata program for simulating runs
distributions. We renew thanks to those whose assistance was acknowledged
in earlier editions — to Jim McGarrick for useful discussions on physiological
measurements — to Professor Richard Hughes for advice on the Guillain–
Barré syndrome — to Timothy P. Davis and Chris Theobald who supplied
data sets for examples. We are grateful to Cyrus Mehta and Cytel Software
for providing us with complementary software and manuals for StatXact 7
and to Shashi Kumar for help with technical problems with embedding fonts
in diagrams.

P. Sprent
N.C. Smeeton



CHAPTER 1

SOME BASIC CONCEPTS

1.1 Basic Statistics

We assume most readers are familiar with the basic statistical notions met
in introductory or service courses in statistics of some 20 hours duration.
Nevertheless, those with no formal statistical training should be able to use
this book in parallel with an introductory statistical text. Rees (2000) adopts
a straightforward approach. Some may prefer a more advanced treatment, or
an introduction that emphasizes applications in a discipline in which they are
working.

Readers trained in general statistics, but who are new to nonparametric
methods will be familiar with some of the background material in this chapter.
However, we urge them at least to skim through it to see where we depart
from conventional treatments, and to learn how nonparametric procedures
relate to other approaches. We explain the difference between parametric and
nonparametric methods and survey some general statistical notions that are
relevant to nonparametric methods. We also comment on good practice in
applied statistics.

In Chapter 2 we use simple examples to illustrate some basic nonparametric
ideas and introduce some statistical notions and tools that are widely used in
this field. Their application to a range of problems is covered in the remaining
chapters.

1.1.1 Parametric and Nonparametric Methods

The word statistics has several meanings. It is used to describe a collection
of data, and also to designate operations that may be performed with that
primary data. The simplest of these is to form descriptive statistics. These
include the mean, range, or other quantities to summarize primary data, as
well as preparing tables or pictorial representations (e.g., graphs) to exhibit
specific facets of the data. The scientific discipline called statistics, or statistical
inference, uses observed data — in this context called a sample — to make
inferences about a larger potentially observable collection of data called a
population. We explain the terms sample and population more fully in Section
1.2

We associate distributions with populations. Early in their careers statistics
students meet families of distributions such as the normal and binomial where

1



2 SOME BASIC CONCEPTS

individual members of the family are distinguished by assigning specific values
to entities called parameters.

The notation N(μ, σ2) denotes a member of the normal, or Gaussian, family
with mean μ and variance σ2. Here μ and σ are parameters.

The binomial family depends on two parameters, n and p, where n is the
total number of observations and p is the probability associated with one
of two possible outcomes at any observation. Subject to certain conditions,
the number of occurrences, r, where 0 ≤ r ≤ n, of that outcome among n
observations, has a binomial distribution with parameters n and p. We call
this a B(n, p) distribution.

Given a set of independent observations, called a random sample, from
some population with a distribution that is a member of a family such as the
normal or binomial, parametric statistical inference is often concerned with
testing hypotheses about, or estimation of, unknown parameters.

For a sample from a normal distribution the sample mean is a point (i.e., a
single value) estimate of the parameter μ. Here the well-known t-test provides
a measure of the strength of the evidence provided by a sample in support of
an a priori hypothesized value μ0 for the distribution, or population, mean.
We may also obtain a confidence interval, a term we explain in Section 1.4.1,
for the “true” population mean.

When we have a sample of n observations from a B(n, p) distribution with
p unknown, if the event with probability p is observed r times an appropriate
estimate of p is p̂ = r/n. We may want to assess how strongly sample evidence
supports an a priori hypothesized value p0, say, for p, or to obtain a confidence
interval for the population parameter p.

Other well-known families of distributions include the uniform (or rectan-
gular), multinomial, Poisson, exponential, gamma, beta, Cauchy and Weibull
distributions. This list is not exhaustive and you may not be, and need not
be, familiar with all of them.

It may be reasonable on theoretical grounds, or on the basis of past exper-
ience, to assume that observations come from a particular family of distrib-
utions. Also experience, backed by theory, suggests that for many measure-
ments inferences based on the assumption that observations form a random
sample from some normal distribution may not be misleading, even if the
normality assumption is incorrect. A theorem called the central limit theorem
justifies such a use of the normal distribution especially in what are called
asymptotic approximations. We often refer to these in this book.

Parametric inference may be inappropriate or even impossible. For exam-
ple, records of examination results may only give the numbers of candidates
in banded and ordered grades designated Grade A, Grade B, Grade C, etc.
Given these numbers for pupils from two different schools, we may want to
know if they indicate a difference in performance between those schools that
might be attributed to different methods of teaching, or to the ability of one
school to attract more able pupils. There is no obvious family of distributions
that provides our data, and there are no clearly defined parameters about
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which we can make inferences. Two terms are in common use for the type of
inferences we may then make. They are either described as nonparametric or
as distribution-free. There is sometimes an incorrect belief among nonstatis-
ticians that these terms refer to the data.

There is not unanimity among statisticians in their use of the terms non-
parametric and distribution-free. This is of no great consequence in practice,
and to some extent simply reflects historical developments.

There is not even universal agreement about what constitutes a parameter.
Quantities such as μ, σ2 appearing in the density functions for the normal
family are unquestionably parameters. The term is often used more widely to
describe any population characteristic within a family such as a mean, median,
moment, quantile, or range. In Chapter 8 and elsewhere we meet situations
where we have observations composed of a deterministic and random element
where we want to estimate constants occuring in the deterministic element.
Such constants are also sometimes called parameters.

In nonparametric, or distribution-free, methods we often make inferences
about parameters in this wider sense. The important point is that we do not
assume our samples are associated with any prespecified family of distrib-
utions. In this situation the name distribution-free is more appropriate if we
are still interested in parameters in the broader senses mentioned above.

Some procedures are both distribution-free and nonparametric in that they
do not involve parameters even in the broader use of that term. The above
example involving examination grades falls into this category.

Historically, the term nonparametric was in use before distribution-free be-
came popular. There are procedures for which one name is more appropriate
than the other, but as in many areas of statistics, terminology does not always
fit procedures into watertight compartments. A consequence is the spawning
of hybrid descriptions such as asymptotically distribution-free and semipara-
metric methods. There is even some overlap between descriptive statistics and
inferential statistics, evident in a practice described as exploratory data anal-
ysis, often abbreviated to EDA. We shall see in Section 2.4, and elsewhere,
that sensible use of EDA may prove invaluable in selecting an appropriate
technique, parametric or nonparametric, for making statistical inferences.

Designating procedures as distribution-free or nonparametric does not mean
they are assumption free. In practice we nearly always make some assumptions
about the underlying population distribution. For example, we may assume
that it is continuous and symmetric. These assumptions do not restrict us to
a particular family such as the normal, but they exclude both discrete and
asymmetric distributions. Given some data, EDA will often indicate whether
or not an assumption such as one of symmetry is justified.

Many nonparametric or distribution-free procedures involve, through the
test statistic, distributions and parameters (often the normal or binomial dis-
tributions). This is because the terms refer not to the test statistic, but to the
fact that the methods can be applied to samples from populations having dis-
tributions only specified in broad terms, e.g., as being continuous, symmetric,
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identical, differing only in medians, means, etc. The distribution of the app-
ropriate test statistic is the same no matter what the population distribution
may be, providing only that it satisfies the broad-term specification. There is
a grey area between what is clearly distribution-free and what is parametric
inference. Some of the association tests described in Chapters 12 and 13 fall
in this area.

1.1.2 The Use of Nonparametric Methods

Some parametric tests do not depend critically on the correctness of an assum-
ption that samples come from a distribution in a particular family. They are
then described as robust. Robustness is by no means a universal property of
parametric tests. Because they require fewer assumptions for their validity,
nonparametric methods are usually more robust than their parametric coun-
terparts.

Nonparametric methods are often the only ones available for data that
simply specify order (ranks) or counts of the number of events, or of individ-
uals, in various categories.

In most statistical problems, no matter whether parametric or nonpar-
ametric methods are appropriate, what we can deduce depends on what
assumptions can validly be made. An example illustrates this.

Example 1.1

Two machines produce metal rods. For each, 2.5 percent of all rods produced have
a diameter exceeding 30 cm.

This condition is met if the first machine produces items having a normal distrib-
ution with mean 27mm and standard deviation 1.53 mm. This is because, for any
normal distribution, 2.5 percent of all items have a diameter at least 1.96 standard
deviations above the mean, so 2.5 percent exceed 27 + 1.96 × 1.53 ≈ 30.

The condition is also met if the second machine produces items with diam-
eters uniformly distributed between 20.25 and 30.25 mm (i.e., with mean diame-
ter 25.25 mm). Once again the condition that 2.5 percent have diameters exceeding
30mm is met. This follows because any interval between 20.25 and 30.25 mm of
width 0.25 mm contains a proportion 1/40 (i.e., 2.5 percent) of total production.

This uniform distribution is unlikely to be met in practice in this context, but
the example shows that we may have the same proportion of defectives in two
populations, yet each has a different mean and their distributions do not even belong
to the same family. We consider a more realistic situation involving different means
in Exercise 1.1

If we make an additional assumption that distributions of diameters for each
machine differ, if at all, only in their means, then if we know the proportion over
30mm in samples of, say, 200 from each machine, we could test whether the means
can reasonably be supposed to be identical. The test would not be efficient. It would
be better to measure the diameter of each item in smaller samples, and then use an
appropriate test.
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Means and medians are widely used to indicate where distributions are
centred. Both are formally described as measures of centrality or measures
of location. Not all distributions have a mean, but all have a median. If the
mean exists, the mean and the median have the same value for a symmetric
distribution. Their values differ for asymmetric, or skew, distributions. The
Cauchy distribution is a well-known example of a symmetric distribution that
has no mean. It has a well-defined median, this being zero for the standard
Cauchy distribution.

Tests and estimation procedures for measurement data are often about
centrality measures, e.g.,
• Is it reasonable to suppose that a sample comes from a population with a

prespecified mean or median?
• Do two samples come from populations whose means differ by at least 10?
• Given a sample, what is an appropriate estimate of the population mean

or median? How good is that estimate?
Variation or spread or dispersion is often of interest also. Buyers of new cars

or computers want not only a good average performance but also consistency,
i.e., not too much variation in performance from item to item of the same
brand. Each buyer expects his or her purchase to perform as well as those of
other buyers of that model. Success of a product often depends upon personal
recommendations, so mixed endorsements — some glowing, others warning of
niggling faults — are not good publicity.

Dispersion is often measured by variance or by standard deviation, but
these may not exist for all distributions. Also, they are not well suited on
their own to describe, or compare, the spread of skew distributions. There are
parametric and nonparametric methods for assessing spread or variability.

In other situations we want to assess how well data conform to some hypo-
thesized population distribution function, the approriate test being one for
goodness of fit. Tests of association or correlation are also of considerable
interest.

Nonparametric techniques may be the only ones available when we have
limited information. We may want to test if it is reasonable to assume that
weights of a large batch of items have a prespecified median, 2mg, say, when
all we know is how many items in a sample of n weigh more than 2 mg. If
it were difficult, expensive, or impossible to get exact weights, an available
nonparametric approach may be cost effective.

Simple nonparametric methods are also useful when data are in some sense
incomplete, like those in Example 1.2.

Example 1.2

In medical studies the progress of patients is often monitored for a limited time after
treatment; this may be anything from a few weeks to 5 or 6 years. Dinse (1982) gives
data for survival times in weeks for 10 patients with symptomatic lymphocytic non-
Hodgkin’s lymphoma. The precise survival time is not known for one patient who
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was alive after 362 weeks. The observation for that patient is said to be censored.
Survival times in weeks were

49 58 75 110 112 132 151 276 281 362∗

The asterisk denotes the censored observation.
Is it reasonable to suppose that these data are consistent with a median survival

time of 200 weeks? Censored observations cause problems in many parametric tests,
but in Example 2.2 we use a simple nonparametric test to show there is no strong
evidence against the hypothesis that the median is 200. For that interpretation to
be meaningful, and useful, we have to assume the data are a random sample from
some population of patients with the disease.

To confirm that the median might well be 200 is not in itself very helpful. It
would be more useful if we could say that the data imply that it is reasonable to
assert that the median survival time is between 80 and 275 weeks, or something
of that sort. This is what confidence intervals (Section 1.4.1) are about. In
the original study Dinse was interested, among other things, in whether the
median survival times differed between symptomatic and asymptomatic cases.
He used this sample and another for 28 asymptomatic cases to compare the
survival time distributions in more detail. In this second sample 12 of the 28
observations were censored at values of 300 or more. We show in Example 9.1
that, on the basis of his data, there is strong evidence that the medians for
symptomatic and for asymptomatic cases are different. These data were also
considered by Kimber (1990).

1.1.3 Historical Notes

The first chapter of the Book of Daniel records that on the orders of Nebuchad-
nezzar certain favoured children of Israel were to be specially fed on the king’s
meat and wine for 3 years. Reluctant to defile himself with such luxuries,
Daniel pleaded that he and three of his brethren be fed instead on pulse for
10 days. After that time the four were declared “fairer and fatter in flesh
than all of the children which did eat the portion of the king’s meat”. This
evidence was taken on commonsense grounds to prove the superiority of a diet
of pulse. Throughout this book we illustrate how we test evidence like this
more formally to justify this commonsense conclusion. The biblical analysis
is informal, but it contains the germ of a nonparametric, as opposed to a
parametric, test. Be warned though that the commonsense conclusion may
not be justified here. Daniel and his three brethren may already have been
fairer and fatter before the “experiment” began!

John Arbuthnot (1710) observed that in each of the 82 years from 1629
to 1710 the number of males christened in London exceeded the number of
females. He regarded this as strong evidence against the probability of a male
birth being 1/2. The situation is somewhat akin to observing 82 heads in 82
consecutive tosses of a coin.
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Francis Galton (1892) developed a measure — which he termed a cen-
tisimal scale — to assess agreement between patterns (categorical data) on
corresponding fingertips on left and right hands.

Karl Pearson (1900) proposed the well-known, and sometimes misused, chi-
squared goodness-of-fit test applicable to any discrete distribution, and C.
Spearman (1904) defined a rank correlation coefficient (see Section 10.1.3)
that bears his name.

Systematic study of nonparametric inference dates from the 1930s when
attempts were made to show that even if an assumption of normality stretched
credulity, then at least in some cases making it would not greatly alter con-
clusions. This stimulated work by R.A. Fisher, E.J.G. Pitman and B.L. Welch
on randomization or permutation tests, which were then too time consuming
for general use. That problem has been overcome with appropriate statistical
software, but we shall see later that the raw-data permutation tests proposed
by these writers have practical limitations, although the concept is of consid-
erable theoretical interest.

Other developments in the 1930s include work by Friedman (1937), Smirnov
(1939) and others.

About the same time it was realized that observations consisting simply of
preferences or ranks could be used in permutation tests to make some infer-
ences without too much computational effort. A few years later F. Wilcoxon
and others showed that, even if we have precise measurements, we sometimes
lose little useful information by ranking them in increasing order of magnitude
and basing analyses on these ranks. Indeed, when assumptions of normality
are not justified, analyses based on ranks, or on some transformation of them,
may be the most efficient available. They often enjoy the characteristic we
have already referred to as robustness, and which we describe more fully in
Chapter 14.

From the 1940s nonparametric methods became practical tools either when
data were by nature ordinal (ranks or preferences), or as reasonably effic-
ient methods that reduced computation even when measurements were avail-
able, providing those measurements could be replaced by ranks. At that time
hypothesis testing was usually easy, the more important interval estimation
described in Section 1.4 was not. This difficulty was overcome by Hodges and
Lehmann (1963).

In parallel with the above advances, techniques relevant to counts were
developed. Counts often represent numbers of items in categories that may be
either ordered, e.g., examination grades, or nominal (i.e., unordered), e.g., in
psychiatry characteristics like depression, anxiety, psychosis, etc.

Many advanced and flexible nonparametric methods are tedious because
they involve repeated performance of simple calculations, something comput-
ers do well.

The dramatic postwar development of feasible, but until recently often
tedious to carry out, nonparametric procedures was described in Noether
(1984), but much has happened since then.
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Another line of development has been in the use of the computer intensive
procedures of jack-knifing introduced by Quenouille (1949), and the even-
more widely used bootstrapping introduced by Efron (1979). The latter has
both parametric and nonparametric versions.

Computers have revolutionized our approach to data analysis and to stat-
istical inference. Hopes, often ill-founded, that data would fit a restricted
mathematical model with few parameters, and emphasis on simplifying con-
cepts such as linearity, have often been replaced by the use of robust methods
and by EDA to investigate different potential models. These are areas where
nonparametric methods sometimes have a central role. Generalized linear mod-
els described by McCullagh and Nelder (1989) at the theoretical level, and by
Dobson (2001) at the practical level, often blend parametric and nonparamet-
ric approaches.

Whereas the initial developments in nonparametric methods were inspired
by problems arising in small samples, interest in recent years has turned to
their use in extracting information from very large data sets, an aspect we
touch upon in Chapter 15.

Nonparametric procedures are in no sense preferred methods of analysis
for all situations. A strength is their applicability where there is insufficient
theory or data to justify, or to test compatibility with, specific distributional
models. At a more sophisticated level they are also useful, for example, in
finding or estimating trends in large data sets. Such trends may be difficult
to detect due to the presence of disturbances usually referred to as “noise”.

Recent important practical developments have been in computer software
(Section 2.6) to carry out permutation and other nonparametric tests. Results
for these may be compared with those given by asymptotic theory, which, in
the past, was often used where its validity was dubious.

Since the 1990s there have been many important advances in the use of
nonparametric methods in designed experiments, particularly those involving
factorial structures or repeated observations on individuals or other experi-
mental units. An introduction to these develpments is given in Chapter 8.

1.2 Populations and Samples

When making statistical inferences a key assumption is often that observations
are a random sample from some population. That assumption is essential to
the strict validity of many inferential procedures, although properties such
as robustness may allow its relaxation in some, but not all, circumstances.
Specification of the population may or may not be precise. If we select 20
books at random from 100,000 volumes in a library, and record the number
of pages in each book in the sample, then inferences made from the sample
about the mean, or median, number of pages per book apply strictly only
to the population of books in that library. If the library covers a wide range
of fiction, nonfiction and reference works it is reasonable to assume that any
inferences apply, at least approximately, to a wider population of books. This
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might be all books published in the United Kingdom, or the United States,
or wherever the library is situated. However, if the books in the library are
all English language books, inferences may not apply to books in Chinese or
in Russian.

If units are selected without replacement, a random sample of size n from a
finite population is one where every possible sample of that size has an equal
probability of selection. If sampling is with replacement a random sample is
one where each item is independently selected with equal probability. This
implies that if we arrange the sampled units in the order in which they are
selected each possible ordered sample may be obtained with equal probability.

More often, data form samples that may be expected to have the essential
properties of a random sample from a vaguely specified population. For ex-
ample, if a new diet is tested on pigs and we measure weight gains for 20
pigs at one agricultural experimental station, we might assume that these are
something like a random sample from all pigs of that or similar breeds raised
under such conditions. This qualification is important. Inferences might apply
widely only if the experimental station adopted common farming practices
and if responses were fairly uniform for many breeds of pig. This may not be
so if the experimental station chose an unusual breed, adopted different hus-
bandry practices from those used on most pig farms, or if the 20 pigs used in
the experiment were treated more favourably than is usual in other respects
such as being kept in specially heated units during the experiment.

The abstract notion of random sampling from an infinite population (imp-
licit in most inference based upon normal distribution theory) often works
well in practice, but is never completely true. At the other extreme there are
situations where the sample is essentially the whole population. For example,
at the early stages of testing a new drug for treating a rare disease there may
be just, say, nine patients available for the test and only four doses of the
drug. One might choose at random the four patients from nine to receive the
new drug. The remaining five are untreated, or may be treated with a drug
already in use. Because of the random selection, if the drug has no effect, or
is no better than one currently in use, it is unlikely that a later examination
would show that the four patients receiving the new drug had responded better
than any of the others. This is possible, but it has a low probability, which we
can calculate on the assumption that the new drug is ineffective or is no better
than the old one. If the drug is beneficial, or better than that currently in use,
the probability of better responses among those treated with it is increased.
In Example 2.1 in Section 2.1 we formulate an appropriate nonparametric test
for this situation.

Because of the many ways data may be obtained we need to consider care-
fully the validity and scope of inferences. The ten patients for whom survival
times were measured in Example 1.2 came from a study conducted by the East-
ern Co-operative Oncology Group in the U.S., and represented all patients af-
flicted with symptomatic lymphocytic non-Hodgkin’s lymphoma available for
that study. In making inferences about the median or other characteristics of
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the survival time distribution, it is reasonable to assume these inferences are
valid for all patients receiving similar treatment and who are alike in other rel-
evant characteristics, e.g., with a similar age distribution. The patients in this
study were all male, so it would be unwise to infer, without further evidence,
that the survival times for females would have the same distribution.

Fortunately, the same nonparametric procedures are often valid whether
samples are from an infinite population, a finite population, or when the
sample is the entire relevant population. What is different is how far these
inferences can be generalized. The implications of generalizing inferences is
described for several specific tests by Lehmann (1975, 2006, Chapters 1–4).

In Section 1.1.1 we referred to a set of n independent observations from some
normal distribution. In this situation independence implies, though this is not
a definition of independence, that the value taken by any one observation tells
us nothing about, and does not influence, the values of other observations.
More formally, the probability that an observation lies in any small interval
(x, x + δx) is f(x)δx where f(x) is the probability density function of the
relevant member of the normal distribution family. This notion extends to
samples from any continuous distribution where f(x) is the relevant probabil-
ity density function.

The concept of observations being independent is an important, and by
no means trivial, requirement for the validity of many statistical inference
procedures.

1.3 Hypothesis Testing

Estimation, a topic we consider in Section 1.4, is often a key aim of a statistical
analysis. Estimation may be explained in terms of testing a range of hypoth-
eses, so we need to understand testing even though it is a technique that, in
the view of many statisticians, tends to be overused and is even sometimes
misused.

We assume familiarity with simple parametric hypothesis tests such as the
t-test and chi-squared test, but we review some fundamentals and discuss
changes in emphasis made possible by modern computer software. Until such
software became widely available hypothesis testing nearly always required
the use of tables.

Given a sample of n independent observations from a population having a
normal distribution with unknown mean μ the t-test has a fundamental role
in making inferences about μ. In the light of the central limit theorem the
normality assumption may be somewhat relaxed.

We specify a null hypothesis, H0, that μ has a specified value μ0 and an
alternative hypothesis, H1, that it has some other value. Formally, this is
stated as:

Test H0: μ = μ0 against H1: μ �= μ0. (1.1)



HYPOTHESIS TESTING 11

The t-test is based on a statistic, t, that is a function of the sample values
calculated by a formula given in introductory general statistics textbooks. The
classic procedure was to use tables to compare the magnitude, without regard
to sign, of the calculated t, often written |t|, with a value tα given in tables,
the latter chosen so that when H0 was true

Pr(|t| ≥ tα) = α. (1.2)

In practice α nearly always took one of the values 0.05, 0.01 or 0.001. These
probabilities are often expressed as equivalent percentages, i.e., 5, 1 or 0.1,
and are widely known as significance levels. Use of these particular levels was
dictated, at least in part, by available tables. In this traditional approach if one
obtained a value of |t| ≥ tα, the result was said to be significant at probability
level α, or at the corresponding 100α percent level. The levels 0.05, 0.01 and
0.001 were often referred to respectively as “significant”, “highly significant”
and “very highly significant”. If significance at a particular level was attained,
one spoke of rejecting the hypothesis H0 at that level. If significance was not
attained the result was described as not significant and H0 was said to be
accepted.

This is unfortunate terminology giving — especially to nonstatisticians —
the misleading impression that nonsignificance implies that H0 is true, while
significance implies it is false.

To illustrate the point that traditional acceptance of a null hypothesis does
not imply that H0 is true, suppose that students over 18 years may study at
a certain university. Most of the undergraduate courses run for three years,
and the majority of the students go to university straight from school at age
18. However, on the courses there are some mature students aged 25 or more,
making the overall mean age of the undergraduate students equal to 23. An
external investigator who is unaware of the presence of these mature students
specifies a null hypothesis H0 that the mean undergraduate student age is
21; this null hypothesis is clearly untrue. However, suppose a sample of 50
undergraduates is selected and the mean age of these students is exactly 21
years. Because the sample mean is equal to the null hypothesis mean, the
P -value for the test will be P = 1, the greatest possible value. It might then
be tempting to deduce that H0 is true, as the evidence is highly suggestive.
However, this would be an incorrect conclusion.

The rationale behind the test (1.1) is that if H0 is true, then values of t near
zero are more likely than large values of t, either positive or negative. Large
values of |t| are more likely under H1 than under H0. It follows from (1.2) that
if we perform a large number of such tests on different independent random
samples when H0 is true we shall, in the long run, incorrectly reject H0 in a
proportion α of these. Thus, if α = 0.05 we would reject the null hypothesis
when it were true in the long run in 1 in 20 tests, i.e., in 5 percent of all tests.

The traditional approach is still common, especially in certain areas of law,
medicine and commerce, or to conform with misguided policy requirements of
some scientific and professional journals.
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Figure 1.1 (a) A fixed level approach to significance testing and (b) assessment based
on strength of evidence where some flexibility in interpretation may be allowed for
P -values close to 0.05.

Modern statistical software lets us do something more sensible, though by
itself still far from satisfactory. The output from any good computer program
for a t-test relevant to (1.1) gives the exact probability of obtaining, when H0

is true, a value of |t| equal to, or greater than, that observed. In statistical
jargon this probability is called a P -value. It may be used as a measure of the
strength of evidence against H0 provided by the data — the smaller P is, the
stronger is that evidence.

When we decide what P -values are sufficiently small for H0 to seem imp-
lausible, we may speak formally of rejecting H0 at the exact 100P percent
significance level. This avoids the difficulty that rigid application of the 5 per-
cent significance level leads to the unsatisfactory situation of H0 being rejected
for a P -value of 0.049, but accepted for the slightly larger P -value of 0.051.
Figure 1.1 compares the traditional “fixed level” approach to significance, with
the more flexible assessment based on strength of evidence using a P -value.

A serious difficulty still remains. This is that with small data sets one may
never observe sufficiently small P -values to justify rejection of H0 even when it
is not true. For instance, suppose a coin is tossed 5 times to test the hypothesis

H0: the coin is fair,

against
H1: the coin is biased.

i.e., is either more likely to fall heads, or more likely to fall tails.
In 5 tosses the strongest evidence against H0 is associated with the outcomes

5 heads or 5 tails. Under H0 the probability, P , of getting one of these outcomes
is given by the sum of the probabilities of r = 0 or r = 5 “heads” for a binomial
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B(5, 0.5) distribution. The probability of each is (0.5)5, so P = 2 × (0.5)5 =
0.0625. This is the smallest attainable P -value when n = 5 and p = 0.5, so
we never reject H0 at a conventional P = 0.05 level whatever the outcome of
the 5 tosses — even if the coin is a double-header. That the experiment is too
small is the only useful information given by the P -value in this example.

The situation is different if we increase the experiment to 20 tosses and get
20 heads or 20 tails. This weakness of hypothesis testing, together with the
perpetration of myths, such as equating accepting a hypothesis to proof that
it is true, has led to justified criticism of what is sometimes called the P -value
culture. Krantz (1999) and Nelder (1999) both highlight dangers arising from
inappropriate use of, and misunderstandings about, the meaning of a P -value.
We draw attention also to an ethical danger in Section 1.5.

Real-world policy decisions are often based on the outcome of statistical
analyses. To appreciate the implications of either a formal rejection of, or a
decision not to reject H0, at a given significance level we need further concepts.
Suppose we decide to reject H0 whenever a P -value is less than some fixed
value P0, say. This means that if, in all cases where we do so H0 is true, we
would in the long run reject it in a proportion P0 of those cases.

Rejection of H0 when it is true is an error of the first kind, or Type I error.
A P -value tells us the probability that we are making an error of the first kind
by rejecting H0.

In a t-test, if we reject H0 whenever we observe a P ≤ P0 we do so when k is
such that when H0 holds, Pr(|t| ≥ k) = P0. Such values of t define a critical,
or rejection, region of size P0. Using a critical region of size P0 implies we
continue to regard H0 as plausible if |t| < k.

If we follow this rule we shall sometimes (or as we saw above for the 5
coin tosses, in extreme cases, always) continue to regard H0 as plausible even
though, in fact, H1 may be true. Continuing to accept H0 when H1 is true is
an error of the second kind, or Type II error. Let β denote the probability of
a Type II error.

The probability of a Type II error depends in part on the true value of μ,
if indeed it is not equal to μ0. Intuition correctly suggests that the more μ
differs from μ0, the more likely we are to get large values of |t|, i.e., values in
the critical region, so that β decreases as |μ − μ0| increases.

If we decrease P0 (say from 0.03 to 0.008) our critical region becomes
smaller, so that for a given μ �= μ0 we increase β because the set of values of t
for which we accept H0 is larger. Another factor affecting β is the sample size,
n. If we increase n we decrease β for a given μ and P0. Thus β depends on
the true value of μ (over which we have no control) and the value of n and of
P0 determining the size of the critical region. We often have some flexibility
in the choice of n and P0. We have framed our argument mainly in terms of
the t-test statistics, but it generalizes to other test statistics.

Despite obvious limitations, P -values used constructively have a basic role in
statistical inference. In Section 1.4 we show that a null hypothesis that specifies
one single value of a parameter is usually one of many possible hypotheses that
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are not contradicted by the sample evidence. Donahue (1999) and Sackrowitz
and Samuel-Cahn (1999) discuss various distributional properties of the P -
value that relate indirectly to uses we discuss here and in Section 1.4.

Fixing the probability of an error of the first kind, whether we denote it by
the conventional symbol α, or the alternative P0, does not determine β. We
want β to be small because, in the t-test for example, we want the calculated
t-value to be in the critical region when H0 is not true. The probability 1− β
is the probability of getting a t-value in the critical region when H0 is not
true. It is called the power of the test; we want this to be large. For samples
from a normal distribution and all choices of n, P and for any μ, the t-test is
more powerful than any other hypothesis test of the form specified in (1.1).

The historical choice of significance levels 5, 1 and 0.1 percent as the basis
for tables was made on the pragmatic grounds that one does not want to make
too many errors of the first kind. It would be silly to choose a significance level
of 50 percent, for then we would be equally likely to accept or to reject H0

when it were true. Even with conventional significance levels, or other small
P -values, we may often make errors of the second kind if a test has low power
for one or more of these reasons:

• The true μ is close to the value specified in H0.
• The sample size is small.
• We specify a very small P -value for significance.
• Assumptions required for the test to be valid are violated.

In later chapters we consider for some tests the often nontrivial problem of
determining how big a sample is needed to ensure reasonable power to achieve
given objectives.

Using small P -values in place of traditional 5, 1 and 0.1 percent significance
levels gives more freedom in weighing evidence for or against a null hypothesis.
Remembering that P = 0.05 corresponds to the traditional 5 percent signifi-
cance level long used as a reasonable watershed, one should not feel there is
strong evidence against a null hypothesis if P is substantially greater than
0.05. However, values of P not greatly exceeding 0.05 often point at least to
a case for further studies. In particular, a need for larger experiments.

In this book we shall usually discuss the evidence for or against hypotheses
in terms of observed P -values, but in some situations where it is appropriate
to consider a hypothetical fixed P -value we use for this the notation α with an
implication that we regard any observed P -value less than that α as sufficient
evidence to prefer H1 to H0. Fixed levels comply with certain long-established
conventions, and may be necessary for comparisons of the power of different
procedures.

The test in (1.1) is called a two-tail test because the critical region consists
both of large positive and large negative values of the statistic t. To be more
specific, large positive values of t usually imply μ > μ0 and large negative
values of t imply μ < μ0.
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Specification of H0 and H1 is determined by the logic of a problem. Two
other common choices are

(i) Test H0: μ = μ0 against H1: μ > μ0. (1.3)
(ii) Test H0: μ ≤ μ0 against H1: μ > μ0. (1.4)

Both lead to a one-tail (here right or upper-tail) test, since in each case when
the t-test is relevant large positive values of t favour H1, whereas a small
positive value, or any negative value, indicates that H0 is more likely to hold.
The modifications to a one-tail test if the inequalities in (1.3) or (1.4) are
reversed are obvious. The critical region then becomes the left, or lower, tail.

For example, if the amount of a specified impurity in 1000 g ingots of zinc
produced by a standard process is normally distributed with a mean of 1.75 g
and it is hoped that a steam treatment will remove some of this impurity
we might steam-treat a sample of 15 ingots and determine the amount of
impurity left in each ingot. If the steam is free from the impurity, the treatment
cannot increase the level. Either it is ineffective or it reduces the impurity. It
is therefore appropriate to test

Test H0: μ = 1.75 against H1: μ < 1.75.

If ingots had an unknown mean impurity level, but a batch is acceptable only
if μ ≤ 1.75, an appropriate test would be

Test H0: μ ≤ 1.75 against H1: μ > 1.75.

Use of a one-tail test is only justified if it is appropriate to the logic of the
problem, as it is in the illustrations just given. It is not appropriate in the
situation pertaining in (1.1).

For the t-test some computer packages give a P -value appropriate for a
one-tail test, e.g., Pr(t ≥ tP ) = P . Because the distribution of t is symmetric,
one doubles this probability to obtain P for a two-tail test. The doubling of
one-tail probabilities to give the corresponding two-tail test P -value or signif-
icance level applies in other parametric tests such as the F -test for equality of
variance based on samples from two normal populations, but in these cases the
two relevant subregions are not symmetric about the mean. However, in many
applications where relevant statistics have a chi-squared or an F -distribution
a one-tail (upper-tail) test is appropriate.

A common misconception is that a low P -value indicates a departure from
the null hypothesis that is of practical importance. We show why this is not
necessarily true in Section 1.4.2.

1.4 Estimation

1.4.1 Confidence Intervals

The sample mean is widely used as a point estimate of the population distrib-
ution mean if that mean exists. The sample mean varies between samples, so
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we need a measure of the precision of this estimate. A confidence interval is
one such measure.

One way to describe a 100(1−α) percent confidence interval for a parameter
θ is to define it as the set of all values of θ for which, if any value in that set
were specified in H0, then the given data would lead to a P > α. This implies
that if a confidence interval includes the value of a parameter that is specified
in H0 there is no strong evidence against H0. On the other hand a value
specified in H0 that lies well outside that confidence interval indicates strong
evidence against H0.

Another common interpretation of a 100(1−α) percent confidence interval
is in terms of the property that if we form such intervals for repeated samples,
then in the long run 100(1 − α) percent of these intervals would contain (or
cover) the true but unknown θ. Confidence intervals are useful because:

• They tell us something about the precision with which we estimate a
parameter.

• They help us decide (a) whether a significant result is likely to be of practi-
cal importance or (b) whether we need more data before we decide whether
it is.

We elaborate on these points in Section 1.4.2.
A useful way of looking at the distinction between hypothesis testing and

estimation is to regard testing as answering the question:

• Given a hypothesis H0: θ = θ0 about, say, a parameter θ, what is the
probability (P -value) of getting a sample as or less likely than that obtained
if θ0 is indeed the true value of θ?

whereas estimation using a confidence interval answers the question:
• Given a sample, what values of θ are consistent with the sample data in

the sense that they lie in the confidence interval?

1.4.2 Precision Significance and Practical Importance

Example 1.3

Doctors treating hypertension are often interested in the decrease in systolic blood
pressure after administering a drug. When testing an expensive new drug they might
want to know whether it reduces systolic blood pressure by at least 20mm Hg. Such
a minimum difference could be of practical importance.

Two clinical trials (I and II) are carried out to test the efficacy of a new drug
(A) for reducing blood pressure. A third trial (III) is carried out with a second
new drug (B). Trial I involves only a small number of patients, but trials II and III
involve larger numbers. The 95 percent confidence intervals for mean blood pressure
reduction (mm Hg) after treatment at each trial are:

Drug A Trial I (3, 35)
Drug A Trial II (9, 12)
Drug B Trial III (21, 25)
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In each trial a hypothesis H0: drug does not reduce blood pressure would be rejected
at a 5 percent significance level since the confidence intervals do not include zero.
This implies strong evidence against H0. Trial I is imprecise; we would accept in
a significance test at the 5 percent level any mean reduction between 3 and 35
units. The former is not of clinical importance; the latter is. This small trial only
answers questions about the “significant” mean reduction with low precision. The
larger Trial II, using the same drug, indicates an average reduction between 9 and
12 units, a result of statistical significance, but not of clinical importance in this
context. Compared to Trial I, it has high precision. Other relevant factors being
unchanged, increasing the size of a trial increases the precision, this being reflected
in shorter confidence intervals. Trial III using drug B also has high precision. It tells
us the mean reduction is likely to be between 21 and 25 units, a difference of clinical
importance. Drug B appears to be superior to Drug A.

For a given test, increasing sample size increases the probability that small
departures from H0 may provide strong evidence against H0. The art of
designing experiments is to take enough observations to ensure a good chance
of detecting with reasonable precision departures from H0 of practical im-
portance, but to avoid wasting resources by taking so many observations that
trivial departures from H0 provide strong evidence against it. An introduction
to sample size calculation is given by Kraemer and Thiemann (1987) and it
is discussed with examples by Gibbons and Chakraborti (2004), by Hollander
and Wolfe (1999), by Desu and Raghavarao (2004) and in many other books
and articles. Practical design of experiments is best done with guidance from
a trained statistician although many statistical software packages include pro-
grams giving recommendations in specific circumstances. In later chapters we
show, for some tests, how to find sample sizes needed to meet specified aims.

Our discussion of hypothesis testing and estimation has used the frequen-
tist approach to inference. The Bayesian school adopts a different philosophy,
introducing subjective probabilities to reflect prior beliefs about parameters.
Some statisticians are firm adherents of one or other of these schools, but a
widely accepted view is that each has strengths and weaknesses and that one
or the other may be preferred in certain contexts. However, for the proce-
dures we describe sensible use of either approach will usually lead to similar
conclusions despite the different logical foundations, so for consistency we use
the frequentist approach throughout. For a reasoned argument for and against
each approach see Little (2006) and for a comprehensive and realistic review
of these and other approaches to inference Cox (2006) is recommended.

1.5 Ethical Issues

Ethical considerations are important both in general working practices (Gillon,
1986) and in the planning and conduct of investigations (Hutton, 1995). The
main principles are respect for autonomy, nonmaleficence, beneficence and
justice. Many research proposals need to be assessed by ethical committees
before being approved. This applies particularly in medicine, but increasing
attention is being given to ethical issues in environmentally sensitive fields
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like biotechnology and the social sciences, where questions of legal rights or
civil liberties may arise. The role of statistics and statisticians in what are
known as research ethics committees is discussed by Williamson et al (2000).
The related issue of the development of guidelines for the design, execution
and reporting of clinical trials is described by Day and Talbot (2000).

It is unacceptable to study some issues by allocating individuals to possible
groups at random. For instance, in a study of the effects of smoking on health,
one could not instruct individuals to smoke or to abstain from smoking. This
disregards the autonomy of the study participants. An individual’s choice of
whether to smoke or not must be respected, and an alternative type of study
planned to make this possible.

It is generally good practice to incorporate early stopping rules into a study.
If it becomes clear at an early stage of an investigation that a new treatment
is much better than the established alternative the study should be closed. A
similar decision should be made if the new treatment quickly shows a highly
increased risk of harmful side effects. Continuing a study could deprive pat-
ients of a more effective treatment or expose participants to unnecessary risks
from side effects. Early stopping recommendations are reached through a small
number of planned interim analyses that take place throughout the period of
the study. Cannistra (2004) discusses ethical issues around the application of
early stopping rules.

When planning a new study a comprehensive search of findings from related
work is important using, for instance, MEDLINE, a continually updated source
of information on articles from medical and biological journals. It is unethical
to conduct research that ignores previous work that may be relevant because
it is then likely that time, money and scarce resources will not be used to best
effect. Nevertheless, results of literature searches need to be interpreted with
caution. Studies with interesting findings are more likely to appear in print,
leading to publication bias [see Easterbrook et al (1991)].

When there is little relevant prior knowledge it may be prudent to conduct
an initial pilot study to highlight potential problems that might arise. Results
from a pilot study can also be helpful in choosing an appropriate number of
participants for the main study. A sufficiently large number should be involved
at the pilot stage to have a reasonable chance of finding the expected difference
between the two groups if it really exists. The intended method of statistical
analysis also influences the sample size requirement. Small studies often fail
to yield useful findings and are thus a poor use of resources. On the other
hand, resources can be wasted by recruiting more participants than needed.
In medical research, in either situation more patients than necessary are at
risk of receiving an inferior treatment. Careful planning should consider the
composition of the sample with respect to age, sex, ethnic group, etc., as this
will enable problems under investigation to be answered more effectively.

In medical investigations each potential participant should receive a writ-
ten information sheet outlining the main points about the study. All available
information about the possible efficacy and side-effects of treatments involved
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in the study should be given to the patient. In practice, not all patients
will understand, or even wish, to receive details beyond those given in the
information sheet, particularly in a sophisticated trial. In this situation, the
patient should be given a choice about what information is supplied. Once a
trial has been completed, patients who feel that they have received an effective
treatment for their health problem may wish to continue with it. Financial
constraints and/or the concerns of the patient’s general practitioner may pre-
vent long-term use of the treatment; this should be discussed in advance as
part of the patient information.

Ethical problems may preclude the use of the same patients to compare
two treatments. For instance, in a comparison of two methods of treating oral
cancer, both of which involve radiation, the estimated dose of radiation from
the combined treatments may be considered unacceptably high for the patient.

The autonomy of the patient should be respected and the patient should
only make a decision on whether or not to enter the trial following careful
consideration of the information provided. This is particularly important with
tests for inherited diseases that only become evident in later life. A positive
finding may distress the patient, have serious implications for any children
and prejudice life assurance proposals. Patients should give informed written
consent to the investigator(s) prior to being entered into a trial and they
should be allowed to withdraw from the trial at any time.

Data collected in studies should be kept confidential. In the United King-
dom, for example, computer records should adhere to the principles laid down
in the Data Protection Acts. Data used for statistical purposes should not
contain patients’ names or addresses.

Limited availability of a treatment for experimental use may create ethical
problems. Suppose that there were high hopes that a new drug might greatly
relieve suffering in severe cases but only enough doses were available to treat
six patients. The principles of beneficence and justice suggest that the six
patients to receive the drug should be those with the most severe symptoms.
In a situation like this, the drug may reduce suffering, but such patients may
still, after treatment, be ranked as less well than patients receiving an alter-
native treatment because, although their condition may have improved, their
symptoms may still be more severe than those of patients receiving the alter-
native treatment. In this situation any statistical analysis should be based on
some measure of “degree of improvement” shown by each patient.

At the other extreme, an experimenter might allocate the new drug to
the patients with the least severe symptoms. From a research point of view
this is misleading, as even if it were ineffective or no better than an existing
treatment, these patients may still show less severe symptoms. However, if it
is likely that only patients in the early stages of the disease will benefit it
is more appropriate from an ethical viewpoint to give the new drug to these
patients.

Even when patients are allocated to treatments at random, and we find
strong evidence to suggest we should abandon a hypothesis of no treatment
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effect, the statistically significant outcome may be of no practical importance,
or there may be ethical reasons for ignoring it. A doctor would be unlikely
to feel justified in prescribing the new treatment if it merely prolonged by
three days the life expectation of terminally-ill patients suffering considerable
distress, but may, from the principle of beneficence, feel bound to prescribe it
if it substantially improved survival prospects and quality of life.

Statisticians may be guilty of unethical behaviour. A statistician who per-
forms a number of competing tests — parametric or nonparametric — each
producing a different P -value, but only publishes the P -value that is most
favourable to the conclusion he or she wants to establish, regardless of whether
it is obtained by using an appropriate test, is guilty of unethical suppression
of evidence.

Ethical considerations may influence not only how an experiment is carried
out (the experimental design) but also what inferences are possible and how
these should be made.

1.6 Exercises

Whether the exercises below seem difficult or trivial will depend on the extent of
the reader’s prior training in statistics. Although not directly concerned with non-
parametric methods, they are relevant to the background material covered in this
chapter.

Solutions to exercises marked with an asterisk (*) in this and later chapters are
discussed briefly in Appendix 2.

1.1 As in Example 1.1, suppose that one machine produces rods with diameters
normally distributed with mean 27 mm and standard deviation 1.53 mm, so that 2.5
percent of the rods have diameter 30 mm or more. A second machine is known to
produce rods with diameters normally distributed with mean 24 mm and 2.5 percent
of rods it produces have diameter 30 mm or more. What is the standard deviation
of rods produced by the second machine?

1.2 In a group of 145 patients admitted to hospital with a stroke, weekly alcohol
consumption in standard units had a mean of 17 and a standard deviation of 22.
Explain why their alcohol consumption does not follow a normal distribution. Is this
finding surprising?

1.3 Following a television campaign about the risks of smoking tobacco, the
cigarette consumption of a group of 50 smokers decreases by a mean of 5 cigarettes
per day with a standard deviation of 8. Explain why the reasoning of Exercise 1.2
cannot be used to show that this distribution is not normal.

*1.4 In Section 1.3 we pointed out that 5 tosses of a coin would never provide
evidence against the hypothesis that a coin was fair (equally likely to fall heads or
tails) at a conventional 5 percent significance level. What is the least number of
tosses needed to provide such evidence using a two-tail test, and what is then the
exact P -value?

1.5 A biased coin is such that Pr(heads) = 2/3. If this coin is tossed the least
number of times calculated in Exercise 1.4, what is the probability of an error of



EXERCISES 21

the second kind associated with the 5 percent significance level? What is the power
of the test? Does the discrete nature of possible P -values cause any problems in
calculating the power?

*1.6 If a random variable Xi is distributed N(μ, σ2) and all Xi are independent
it is well known that the variable

Y =

n∑

i=1

Xi

is distributed N(nμ, nσ2). Use this result to answer the following:
The times in minutes a farmer takes to place any fence post are each independently

distributed N(10, 2). He starts placing posts at 9 a.m one morning, and immediately
one post is placed he proceeds to place another, continuing until he has placed 9
posts. What is the probability that he has placed all 9 posts by (1) 10.25 a.m, (ii)
10.30 a.m and (iii) 10.40 a.m?

*1.7 The following two sample data sets both have sample mean 6.

Set I 13.9 2.7 0.8 11.3 1.3
Set II 2.7 8.3 5.2 7.1 6.7

If μ is the population mean perform for each set t-tests of (i) H0: μ = 8 against H0:
μ �= 8 and (ii) H0: μ = 10 against H0: μ �= 10, Do you consider the conclusions of the
tests reasonable? Have you any reservations about using a t-test for either of these
data sets?

*1.8 Use an available standard statistical software package, or one of the many pub-
lished tables of binomial probabilities to determine, for samples of 12 from binomial
distributions with p = 0.5 and with p = 0.75, the probabilities of observing each
possible number of outcomes for each of these values of p. In a two-tail test of the
hypotheses H0 : p = 0.5 against H1: p = 0.75 what is the largest attainable P -value
less than 0.05? What is the critical region for a test based on this P -value? What is
the power of the test?





CHAPTER 2

FUNDAMENTALS OF
NONPARAMETRIC METHODS

2.1 A Permutation Test

Parametric inference assumes observations are samples from populations with
distributions belonging to a specified family. We pointed out in the previous
chapter that for nonparametric inference we make only weaker assumptions
such as one of symmetry, or where two or more populations are involved,
that their distributions differ, if at all, only in some measure of location such
as their medians. This calls for a new approach to hypothesis testing and
estimation.

We introduce some basic ideas and illustrate their use primarily by exam-
ples. Our first illustration describes the procedure called a permutation test.

Example 2.1

Four from nine patients are selected at random to receive a new drug. The remain-
ing five are treated with a standard drug. After three weeks all nine patients are
examined by a skilled consultant who, on the basis of various tests and clinical ob-
servations ranks the patients’ conditions in order from most satisfactory (rank 1) to
least satisfactory (rank 9). If there is no beneficial effect of the new drug, what is
the probability that the patients who received the new drug are ranked 1, 2, 3, 4?

Selecting four patients “at random” means that any four are equally likely to be
given the new drug. If there really is no effect one would expect some of those chosen
to end up with low ranks, some with moderate or high ranks, in the post-treatment
assessment. It is not impossible, but less likely, that those chosen would be ranked
1, 2, 3, 4 or 6, 7, 8, 9 after treatment.

There are 126 ways of selecting a set of four from nine patients. This may be ver-
ified using the well-known mathematical result that the number of ways of selecting
r objects from n is n!/[r!(n−r)!]. For any integer m, the expression m!, called facto-
rial m, is the product of all integers between 1 and m. We also define 0! = 1. Table
2.1 gives all 126 selections. Ignore for the moment the numbers in parentheses after
each selection.

If the new drug were ineffective the set of ranks associated with the four patients
receiving it are equally likely to be any of the 126 quadruplets listed in Table 2.1.
Thus, if there is no treatment effect there is only 1 chance in 126 that the four showing
greatest improvement (ranked 1, 2, 3, 4 in order of condition after treatment) are the
four patients allocated to the new drug. It is more plausible that such an outcome
reflects a beneficial effect of the drug.

23
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Table 2.1 Possible selections of four individuals from nine labelled 1 to 9 with the
sum of the labels (ranks) in parentheses.

1,2,3,4 (10) 1,2,3,5 (11) 1,2,3,6 (12) 1,2,3,7 (13) 1,2,3,8 (14)
1,2,3,9 (15) 1,2,4,5 (12) 1,2,4,6 (13) 1,2,4,7 (14) 1,2,4,8 (15)
1,2,4,9 (16) 1,2,5,6 (14) 1,2,5,7 (15) 1,2,5,8 (16) 1,2,5,9 (17)
1,2,6,7 (16) 1,2,6,8 (17) 1,2,6,9 (18) 1,2,7,8 (18) 1,2,7,9 (19)
1,2,8.9 (20) 1,3,4,5 (13) 1,3,4,6 (14) 1,3,4,7 (15) 1,3,4,8 (16)
1,3,4,9 (17) 1,3,5,6 (15) 1,3,5,7 (16) 1,3,5,8 (17) 1,3,5,9 (18)
1,3,6,7 (17) 1,3,6,8 (18) 1,3,6,9 (19) 1,3,7,8 (19) 1,3,7,9 (20)
1,3,8,9 (21) 1,4,5,6 (16) 1,4,5,7 (17) 1,4,5,8 (18) 1,4,5,9 (19)
1,4,6,7 (18) 1,4,6,8 (19) 1,4,6,9 (20) 1,4,7,8 (20) 1,4,7,9 (21)
1,4,8,9 (22) 1,5,6,7 (19) 1,5,6,8 (20) 1,5,6,9 (21) 1,5,7,8 (21)
1,5,7,9 (22) 1,5,8,9 (23) 1,6,7,8 (22) 1,6,7,9 (23) 1,6,8,9 (24)
1,7,8,9 (25) 2,3,4,5 (14) 2,3,4,6 (15) 2,3,4,7 (16) 2,3,4,8 (17)
2,3,4,9 (18) 2,3,5,6 (16) 2,3,5,7 (17) 2,3,5,8 (18) 2,3,5,9 (19)
2,3,6,7 (18) 2,3,6,8 (19) 2,3,6,9 (20) 2,3,7,8 (20) 2,3,7,9 (21)
2,3,8,9 (22) 2,4,5,6 (17) 2,4,5,7 (18) 2,4,5,8 (19) 2,4,5,9 (20)
2,4,6,7 (19) 2,4,6,8 (20) 2,4,6,9 (21) 2,4,7,8 (21) 2,4,7,9 (22)
2,4,8,9 (23) 2,5,6,7 (20) 2,5,6,8 (21) 2,5,6,9 (22) 2,5,7,8 (22)
2,5,7,9 (23) 2,5,8,9 (24) 2,6,7,8 (23) 2,6,7,9 (24) 2,6,8,9 (25)
2,7,8,9 (26) 3,4,5,6 (18) 3,4,5,7 (19) 3,4,5,8 (20) 3,4,5,9 (21)
3,4,6,7 (20) 3,4,6,8 (21) 3,4,6,9 (22) 3,4,7,8 (22) 3,4,7,9 (23)
3,4,8,9 (24) 3,5,6,7 (21) 3,5,6,8 (22) 3,5,6,9 (23) 3,5,7,8 (23)
3,5,7,9 (24) 3,5,8,9 (25) 3,6,7,8 (24) 3,6,7,9 (25) 3,6,8,9 (26)
3,7,8,9 (27) 4,5,6,7 (22) 4,5,6,8 (23) 4,5,6,9 (24) 4,5,7,8 (24)
4,5,7,9 (25) 4,5,8,9 (26) 4,6,7,8 (25) 4,6,7,9 (26) 4,6,8,9 (27)
4,7,8,9 (28) 5,6,7,8 (26) 5,6,7,9 (27) 5,6,8,9 (28) 5,7,8,9 (29)
6,7,8,9 (30)

In a hypothesis testing framework we have a group of four treated with the new
drug and a group of five (the remainder) given a standard drug in what is called a two
independent sample experiment. We discuss such experiments in detail in Chapter
6. The most favourable evidence for the new drug would be that those receiving it
are ranked 1, 2, 3, 4; the least favourable that they are ranked 6, 7, 8, 9. Each of
these extremes has a probability of 1/126 of occurring when there is no real effect.

If we consider a test of

H0: new drug has no effect

against the two-sided alternative

H1: new drug has an effect (beneficial or deleterious)

the outcomes 1, 2, 3, 4 and 6, 7, 8, 9 are extremes with a total associated probability
P = 2/126 ≈ 0.0159 if H0 is true.
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Table 2.2 Number of occurences for each sum of ranks of four items from nine.

Rank sum 10 11 12 13 14 15 16 17 18 19 20
Occurences 1 1 2 3 5 6 8 9 11 11 12

Rank sum 21 22 23 24 25 26 27 28 29 30
Occurrences 11 11 9 8 6 5 3 2 1 1

In classic hypothesis testing terms we speak of rejecting H0 at an exact 1.59
percent significance level if we observed either of these extreme outcomes. This
small P -value provides strong evidence that the new drug has an effect. What if
the patients receiving the new drug were ranked 1, 2, 3, 5? Intuitively this evidence
looks to favour the new drug. How do we test this?

We seek a statistic, i.e., some function of the four ranks, that has a low value if all
ranks are low, a high value if all ranks are high and an intermediate value if there
is a mix of ranks for those receiving the new drug. An intuitively reasonable choice
is the sum of the four ranks. If we sum the ranks for every quadruplet in Table 2.1,
and count how many times each sum occurs we may easily work out the probability
of getting any particular sum, and hence the distribution of our test statistic when
H0 is true.

In Table 2.1 the number in parentheses after each quadruplet is the sum of the
ranks for that quadruplet, e.g., for 1, 2, 7, 9 the sum is 1 + 2 + 7 + 9 = 19. The
lowest sum is 10 for 1, 2, 3, 4 and the highest is 30 for 6, 7, 8, 9. Table 2.2 gives the
numbers of quadruplets having each given sum.

Because there are 126 different, but equally likely, sets of ranks the probability
that the rank sum statistic, which we denote by S, takes a particular value is obtained
by dividing the number of times that value occurs by 126. For example,

Pr(S = 17) = 9/126 ≈ 0.0714.

To find what outcomes are consistent with a P -value not exceeding 0.05, we select a
region in each tail (since H1 implies a two-tail test) with a total associated probability
not exceeding 0.025. It is easily seen from Table 2.2 that if we select in the lower
tail S = 10 and S = 11, the associated probability is 2/126 and if we add S = 12
the associated total probability, i.e., Pr(S ≤ 12) = 4/126 ≈ 0.0317. This exceeds
0.025, so our lower-tail critical region should be S ≤ 11 giving P = 2/126 ≈ 0.0159.
By symmetry, the upper-tail region is S ≥ 29 also with P ≈ 0.0159. Thus, for a
two-tail test the largest symmetric critical region with P ≤ 0.05 is S = 10, 11, 29, 30
and the exact P = 4/126 ≈ 0.0317.

Some statisticians suggest choosing a critical region with probability as close as
possible to a target level such as P = 0.05 rather than the more conservative choice
of one no larger. In this example, adding S = 12 and the symmetric S = 28 to
our critical region gives a two-tail P = 8/126 ≈ 0.0635. This is closer to 0.05 than
the size (0.0317) of the region chosen above. We reaffirm that ideally it is best to
quote the exact P -value obtained, and point out again that the practical argument
(though there are further theoretical ones) for quoting nominal sizes such as 0.05
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is that many tables give only these, although a few, e.g., Gibbons and Chakraborti
(2004) in their Table J and Hollander and Wolfe (1999) in their Table A6, give
relevant exact P -values for many sample size combinations and different values of
S. Computer programs giving exact P -values overcome any difficulty if the latter
type of table is not readily available.

Unless there are strong reasons before the experiment is started to believe that an
effect, if any, of the new drug could only be beneficial, a two-tail test is appropriate.
We consider a one-tail test scenario in Exercise 2.2.

In Section 1.2 we suggested that in preliminary testing of drugs for treating a rare
disease our population may be in a strict sense only the cases we have. However, if
these patients are fairly typical of all who might have the disease, it is not unreason-
able to assume that findings from our small experiment may hold for any patients
with a similar condition providing other factors (nursing attention, supplementary
treatments, consistency of diagnosis, etc.) are comparable. When our experiment
involves what is effectively the whole population, and the only data are ranks, a
permutation test is the best test available. Random allocation of treatments is es-
sential for the test to be valid; this may not always be possible in the light of some
ethical considerations that we discussed in Section 1.5.

Tests based on permutation of ranks or on permutation of certain functions
of ranks (including the original measurements on a continuous scale when
these are available) are central to many nonparametric methods. They are
called permutation or randomization tests. The latter term applies when the
permutation process is based on the randomization procedure used to assign
treatments to units. That was the situation in Example 2.1, the permutations
giving all possible assignments. These tests have an intuitive appeal and com-
ply with well-established theoretical criteria for sound inference. This theo-
retical basis is summarized by Hettmansperger and McKean (1998) for many
different procedures.

Small scale tests of a drug like that in Example 2.1 are often called pilot
studies. Efficacy of a drug in wider use may depend on factors like severity
of disease, treatment being administered sufficiently early, the age and sex
of patients, etc. All or none of these may be reflected in a small group of
available patients. An encouraging result with the small group may suggest
further experiments are desirable. A not very small P -value associated with
what looks to be an intuitively encouraging result may indicate that a larger
experiment is needed to tell us anything useful.

2.2 Binomial Tests

One observation was censored in the data in Example 1.2. We mentioned
that it could be shown that it was not unreasonable, given that data, to
accept a hypothesis that the population median was 200. We now consider an
appropriate test to justify that conclusion.
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Example 2.2

The data for survival times in weeks given in Example 1.2 were

49 58 75 110 112 132 151 276 281 362∗

The asterisk denotes the censored observation.
We want to test the hypothesis that the median, θ, of survival times for the

population from which the sample was obtained is 200 against the alternative of
some other value, i.e., to test

H0: θ = 200 against H1: θ �= 200 (2.1)

A simple test needs only a count of the number of sample values exceeding 200
(recording each as a “plus”). By the definition of a random sample and that of a
population median, if we have a random sample from any continuous distribution
with median 200 each sample value is equally likely to be above or below 200. This
means that under H0 the number of plus signs has a binomial B(10, 0.5) distribution.

The probability of observing r plus signs in 10 observations when p = 0.5 is given
by the binomial formula

pr = Pr(X = r) =

(
10

r

)(
1

2

)10

where (
10

r

)
=

10!

r!(10 − r)!

and is called the binomial coefficient.
The values of these probabilities, pr, for each value of r between 0 and 10, correct

to 4 decimal places, are

r 0 1 2 3 4 5
pr 0.0010 0.0098 0.0439 0.1172 0.2051 0.2461

r 6 7 8 9 10
pr 0.2051 0.1172 0.0439 0.0098 0.0010

In the data 3 observations, including the censored one, exceed 200 so there are 3
plus signs and, from the table above, we see that when H0 is true the probability of
3 or less plus signs in a sample of 10 is 0.1172 + 0.0439 + 0.0098 + 0.0010 = 0.1719.
There is no strong evidence against H0, tail probabilities for our observed statistic,
the number of plus signs) is 2 × 0.1719 = 0.3438. This implies that departures from
the expected number of plus signs, 5, as large, or larger, than that observed will
occur in slightly more than one-third of all samples when H0 is true. This simple test,
called the sign test, is discussed more fully in Section 3.3. The test is distribution-free
because we have made no assumption about the form of the continuous distribution
of the underlying observations. We have only formulated and tested hypotheses
concerning possible values of the population median.
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When applying a t-test, or most other parametric tests, all values of P between 0
and 1 are possible. For the sign test, however, only certain discrete P -values occur.
In this example, for a two-tail test the three smallest are P = 2× (0.0010) = 0.0020
corresponding to 0 or 10 plus; P = 2× (0.0010 + 0.0098) = 0.0216 corresponding to
1 or 9 plus; then P = 2 × (0.0010 + 0.0098 + 0.0439) = 0.1094 corresponding to 2
or 8 plus. Next comes the observed P = 0.3438. In all cases probabilities have been
rounded to four decimal places. For a one-tail test these P -values are all halved. Our
statistic — the number of plus signs — has a discrete distribution. This means that,
as in Example 2.1, there is no direct way of obtaining a critical region of exact size
0.05 for a two-tail test; we must choose between regions of size 0.0216 or 0.1094.

Once they are recognized, and the consequences appreciated, discontinuities
in possible P -values do not cause serious interpretational problems in the
analysis of a particular data set. However, these discontinuities do lead to
some theoretical difficulties in comparing performance of competing tests.

A device called a randomized decision rule has been proposed with the
property that in the long run an error of the first kind has, in repeated testing,
a probability at a prechosen nominal level, e.g., at 5 percent. In practice, our
prime interest is what happens in our one test, so it is better, when we know
them, to use exact levels, rather than worry about nominal arbitrary levels.
An account of how a randomized decision rule works is given by Gibbons
and Chakraborti (2004) (pp. 28–29). They rightly comment that such devices
may seem artificial and are “probably seldom employed by experimenters”.
We suggest they should never be used in real-world applications.

There is, however, when there are discontinuities, a case for forming a tail
probability by allocating only one half of the probability that the statistic
equals the observed value to the “tail” when determining the size of the “crit-
ical” region. This approach has many advocates. We do not use it in this book,
but if it is used this should be done consistently.

The sign test provides a basis for forming a confidence interval for the
population median.

Example 2.3

We saw in Example 2.2, when using a sign test for a median with a sample of 10,
we would, in a two-tail test at the 2.16 percent level, accept H0 if we got between 2
and 8 plus signs.

Consider again the data in that example, i.e.,

49 58 75 110 112 132 151 276 281 362∗

where the asterisk represents a censored observation. We have between 2 and 8
plus signs if the median specified in H0 has any value greater than 58 but less
than 281. This implies that the interval (58, 281) is a 100(1 − 0.0216) = 97.84
percent confidence interval for θ, the population median survival time. Since we
would accept any H0 that specified a value for the median greater than 58 but less
than 281, there is considerable doubt about the population median value. It is almost
an understatement to say the estimate lacks precision.
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Care is needed in interpreting P -values especially in one-tail tests. Most
computer programs for nonparametric tests quote the probability that a value
greater than or equal to the test statistic will be attained if this probability is
less than 0.5, otherwise they give the probability that a value less than or equal
to the test statistic is obtained. This is the probability of errors of the first
kind in a one-tail test if we decide to reject at a significance level equal to that
probability. In practice, the evidence against H0 is only rated strong if this
“tail” probability is sufficiently small, and is in the appropriate tail. In general,
we recommend doubling a one-tail probability to obtain the actual significance
level for a two-tail test, but see Example 2.4 and the remarks following it.
If the test statistic has a symmetric distribution, doubling is equivalent to
considering equal deviations from the median value of the statistic in either
direction. If the statistic does not have a symmetric distribution, taking tails
equidistant from the mean is not equivalent to doubling a one-tail probability.

Example 2.4 exposes another difficulty that sometimes arises due to dis-
continuities in P -values; namely, that if we only regard the evidence against
H0 as strong enough to reject that hypothesis if P ≤ 0.05 (or at any rate
a value not very much greater than this), we may never get that evidence
because no outcome provides it, a problem we have already alluded to with
small experiments.

Example 2.4

In a dental practice, experience has shown that 75 percent of adult patients require
treatment following a routine inspection. So the number of individuals requiring
treatment, S, in a sample of 10 independent patients has a binomial B(10, 0.75)
distribution. Here the probabilities for the various values, r, of the statistic S, where
r takes integral values between 0 and 10, are given by

pr = Pr(X = r) =

(
10

r

)(
3

4

)r (1

4

)10−r

.

The relevant probabilities are

r 0 1 2 3 4 5
pr 0.0000 0.0000 0.0004 0.0031 0.0162 0.0584

r 6 7 8 9 10
pr 0.1460 0.2503 0.2816 0.1877 0.0563

If we had data for another practice and wanted, for that practice, to test H0:
p = 0.75 against H1: p > 0.75, the smallest P -value for testing is in the upper
tail and is associated with r = 10, i.e., P = 0.0563. This means that if we only
regard P ≤ 0.05 as sufficiently strong evidence to discredit H0 such values are never
obtained.
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There would be no problem here for a one-tail test of H0: p = 0.75 against H1:
p < 0.75 since, in the appropriate lower tail, P = Pr(S ≤ 4) = 0.0162 + 0.0031 +
0.0004 = 0.0197.

This example also shows a logical difficulty associated with a rule that the appro-
priate level for a two-tail test is twice that for a one-tail test, for if we get S = 4 the
two-tail test level based on this rule is 2×0.0197 = 0.0394. This presents a dilemma,
for there is no observable upper tail area corresponding to that in the lower tail.
This means that if a two-tail test is appropriate, we shall in fact only be likely to
detect departures from the null hypothesis if they are in one direction. There may
well be a departure in the other direction, but if so we are highly unlikely to detect
it at the conventional level P ≤ 0.05. Even if we did, it would be for the wrong
reason. This is not surprising when, as shown above, the appropriate one-tail test
must fail to detect it, for generally a one-tail test at a given significance level is more
powerful for detecting departures in the appropriate direction than is a two-tail test
at the same level.

An implication is that in this example we need a larger sample to detect departures
of the form H1 : p > 0.75. Again, the fairly large P -value associated with the possible
critical region for the one-tail test only tells us our sample is too small.

The stipulation that the patients be independent is important. If the sample
included three members of the same family it is quite likely that if one of them were
more (or less) likely to require treatment than the norm, this may also be the case
for other members of that family. We consider situations of this kind in more detail
in Section 15.7

There is no universal agreement that one should double a one-tail probabil-
ity to get the appropriate two-tail significance level — see, for example, Yates
(1984) and the discussion thereon. An alternative is that once the exact size
of a one-tail region has been determined, we should, for a two-tail test, add
the probabilities associated with an opposite tail situated equidistant from the
mean value of the test statistic to that associated with our observed statistic
value. In the symmetric case, as already pointed out, this is equivalent to
doubling the probability, but it seems inappropriate with a nonsymmetric
distribution. In Example 2.4 the region r ≤ 4 is appropriate for a lower-tail
test. The mean of the test statistic (the binomial mean np) is here 7.5. Since
7.5 − 4 = 3.5, the corresponding deviation above the mean is 7.5 + 3.5 = 11.
Because Pr(r ≥ 11) = 0, the two-tail test based on equidistance from the
mean would have the same exact significance level as the one-tail test.

2.3 Order Statistics and Ranks

Many nonparametric procedures are based on the ordering, or ranking, of
detailed observations. In Examples 2.2, we did not use ranks, but ordering
was inherent in our procedure. We took order into account in determining the
number of survival times that exceeded the hypothesized median.

Ordering data is important in more general statistical contexts, both para-
metric and nonparametric. We may be interested in the distribution of the
largest or smallest observations in a sample to answer questions such as
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• On the basis of maximum flood levels recorded in a river over a number of
years, what is the probability of the level exceeding, say, 5m, in future?

• Given a sample of times to first breakdown of a certain brand of computer,
what is the probability of a first breakdown being observed within 6 months
in one machine in a production run of 1000 machines?

In a parametric context such questions are often answered using families of
distributions called extreme value distributions. A simple example of the role
of order statistics in a parametric context is given in Exercise 2.10.

Greatest and least values in samples are just two examples of order statistics.
The sample median is also an order statistic.

A detailed account of order statistics and their properties is given by Gibbons
and Chakraborti (2004, Chapter 2). Here we only indicate the relevance of
these statistics to nonparametric inference, and quote some key results with-
out proof.

Consider a sample of n observations x1, x2, . . . , xn from a continuous distri-
bution. Continuity implies that there should be no ties and thus observations
may be uniquely ordered from smallest to largest. We denote the smallest
observation by x(1), the second smallest by x(2) and so on, finally the largest
by x(n). It follows that

x(1) < x(2) < · · · < x(n)

The x(i), i = 1, 2, . . . , n are called the order statistics. The minimum order
statistic, x(1), is relevant to the study of minimum extremes such as the distri-
bution of shortest times to a machine breakdown, or minimum survival times
after some treatment. The largest, x(n), is relevant to the study of floods, or
maximum time to failure of a certain type of lightbulb.

The median is widely used as a measure of location in nonparametric in-
ference, and the sample median is defined in terms of order statistics. For
a sample of n the median is x[(n+1)/2] if n is odd, and is usually defined as
[x(m) + x(m+1)]/2 if n = 2m is even. A possible measure of dispersion is the
sample range x(n)−x(1). More satisfactory measures are the interquartile range
or semi-interquartile range defined in Section 2.4. One reason for preferring
one of the latter is that the extreme order statistics are often strongly influ-
enced by suspect observations associated with the terms outliers and dirty
data.

In nonparametric inference an important concept based on order statistics
is the sample, or empirical, distribution function. For a random sample of
size n from a population having cumulative distribution function F (x), the
sample, or empirical, distribution function is defined as

Sn(x) =
number of sample values ≤ x

n

For any x the value of Sn(x) is expressible in terms of the order statistics.
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Figure 2.1 Sample distribution function for a sample of six.

It is easy to see that

Sn(x) = 0 if x < x(1),

Sn(x) = i/n if x(i) ≤ x < x(i+1), i = 1, 2, . . . , n − 1, (2.2)
Sn(x) = 1 if x ≥ x(n).

The function Sn(x) is a step function with a step of size 1/n at x = x(i),
i = 1, 2, . . . , n. This is illustrated in Figure 2.1 for six observations

1.7, 2.5, 3.6, 5.1, 7.4, 8.3 .

The sample cumulative distribution function Sn(x) is important because
it is closely related to the population cumulative distribution function F (x).
This is reflected in the following properties:

• The mean value of Sn(x) is E[Sn(x)] = F (x).

• The variance of Sn(x) is Var[Sn(x)] = F (x)[1 − F (x)]/n.

• Sn(x) is a consistent estimator of F (x) for any fixed x.

The term consistent estimator implies that Sn(x) converges in probability
to F (x) as n tends to infinity. For a proof of these properties see Gibbons and
Chakraborti (2004, Section 2.3).

The assumption that F (x) is continuous rules out, in theory, the possibility
of tied observations. In practice tied values in sample data are not uncommon.
This may be due to rounding in the recording of data, or to the population
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distribution being not strictly continuous. We see the practical implications
of tied data in specific techniques in later chapters.

2.4 Exploring Data

The addition of nonparametric or distribution-free methods to the procedures
for making statistical inferences widens the choice of techniques appreciably,
An invaluable first step in selecting an appropriate technique in any given
situation is to use exploratory data analysis or EDA. Some basic tools of EDA
are

• Descriptive statistics.

• Boxplots.

• Histograms and frequency curves.

• Empirical and theoretical cumulative distribution graphs.

Descriptive statistics are commonly presented in lists or tables. The other
tools above are by nature graphical. Commonly met descriptive statistics that
summarize key features of sample data are the sample mean, median, max-
imum value, minimum value, standard deviation and quartiles. Slightly less
well-known ones, but often of interest when questions of robustness arise, are
the trimmed mean and the Winsorized mean. We introduce the last two in
Chapter 14. Statistics such as the mean, median, standard deviation, or other
derived quantities, are often referred to as secondary data to distinguish them
from the original raw or observational data called primary data. Most gen-
eral statistical software packages have a facility for computing a wide range
of descriptive statistics.

A study of relevant descriptive statistics may give a quick indication of,
for example, whether an assumption of normality appears to be seriously
invalidated, or whether it is reasonable to suppose the sample comes from
a symmetric or a skew distribution; and if the latter, whether the long tail
is to the left or right. Such basic characteristics may be explored more fully
by graphical techniques. These are often useful to indicate how well samples
reflect population features. We have already indicated in Section 2.3 that the
sample, or empirical, distribution function is a consistent estimator of the
population cumulative distribution function.

We indicate the use of some basic EDA tools by examples.

Example 2.5

In Appendix 1 we give four small data sets and indicate how they were collected.
Table 2.3 gives a set of descriptive statistics useful for summarizing and comparing
the data for each of the four sets.

The first row tells us the number of data for each set. The small sample of 13
observations for the McDelta clan might be expected to be less informative than the
sample of 59 McAlphas.
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Table 2.3 Descriptive, or summary, statistics for Badenscallie data given in Ap-
pendix 1.

Clan McAlpha McBeta McGamma McDelta

Number 59 24 21 13
Mean 61.8 61.1 62.9 48.1
Median 74.0 67.5 77.0 65.0
St. dev 27.52 24.92 26.77 33.45
SE mean 3.58 5.08 5.84 9.28
Minimum 0 0 13 1
Maximum 95 96 88 87
1st quartile 44.0 41.5 33.0 13.0
3rd quartile 81.00 78.75 83.50 80.00
Range 95 96 75 86
IQ range 37.00 37.25 50.50 67.00

The sample mean for McDelta is markedly lower than that for the other clans.
We may be interested in whether this indicates a shorter average life expectancy
for that clan, or whether the difference represents some sampling quirk that might
disappear if we had a larger sample.

The medians are all appreciably higher than the means, suggesting that the dis-
tributions of ages are asymmetric. This follows because we expect samples to reflect
broadly the population characteristics, and for symmetric population distributions
the mean and median coincide.

The abbreviation St. dev is used in the table for the standard deviation, the well-
known measure of spread that in the case of a sample from a normal population is
an appropriate estimator of the parameter σ. Once again the clan McDelta is the
odd one out.

SE mean is an abbreviation for standard error of the mean. If we denote the
sample standard deviation by s, then the standard error of the mean is computed
as s/

√
n. Thus, the standard error decreases with sample size for a given standard

deviation.

The maximum and minimum ages at death indicate at least one case of infant
mortality for each clan except McGamma, and at least one nonogenarian survivor
for two of the clans.

The quartiles divide each ordered sample into four groups of equal size. If we
consider the median as dividing the sample into two groups of equal size, the first
quartile is in effect the median of the group of lower values and the third quartile
is the median of the group of higher values. More formally the first quartile is the
median of x(1), x(2), · · · x((n−1)/2) if n is odd and is the median of x(1), x(2), · · ·x(n/2)

if n is even, with corresponding definitions for the third quartile. The second quartile
is the sample median. While the third quartiles are similar for all clans, the first
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Figure 2.2 Boxplots for Badenscallie data given in Appendix 1.

quartile is strikingly low for McDelta. In a more formal analysis we may want to
know if this can be accounted for by a quirk of the relatively small sample, or if it
represents a different age distribution from that of the other clans.

Range and interquartile range, the latter abbreviated in the table to IQ range,
are respectively the differences maximum–minimum and third quartile–first quartile.
Each is a measure of spread alternative to standard deviation. Of the two, the
interquartile range is preferred because range depends only on two observations x1

and xn, either of which may represent some unusual, or even a rogue, observation.
On the other hand the interquartile range covers an interval containing the central
50 percent of the observations. Intuitively, this may be expected to be a more stable
estimate of general variability. As an alternative to the interquartile range the semi-
interquartile range is often used. As its name implies, it is obtained by dividing the
interquartile range by 2. For the clan data the striking differences in interquartile
range might be an aspect of the data requiring further analysis.

The five descriptive statistics presented in the order minimum, 1st quartile,
median, 3rd quartile, maximum consititute a five number summary. This is
the basis of what is called a boxplot or a box and whisker plot. Figure 2.2 gives
boxplots for each clan for the Badenscallie data based on 5-number summaries
easily obtained from Table 2.3.
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Figure 2.3 Histogram for clan McAlpha data given in Appendix 1.

The labels attached to the boxplot for the McDelta clan apply to any box-
plot and indicate that the box section extends from the first to the third
quartile. The vertical line dividing this box into two portions represents the
median. The horizontal line outside the boxes extends from the minimum to
the maximum.

Including box and whisker plots for all four clans on the one diagram enables
useful comparisons of the kind outlined above to be made very easily. In
particular, remembering that half the observations lie at or above the median,
and half lie at or below the median, we see that for all clans the distribution
of ages at death is skewed to the left or lower tail. This is made very clear
by the median in all cases being nearer to the third quartile than to the first
quartile. Recall that the quartiles are effectively the medians of the lower and
upper halves of the data respectively.

Histograms are another widely used graphical device to exhibit key data
characteristics. Figure 2.3 is a histogram based on the clan McAlpha data for
ages at death with a class interval of 10 years. The long tail to the left is evi-
dent. There is also an indication of a mixture of distributions, with a smaller
portion of the data indicating infant mortality or death before reaching adult-
hood, while the larger portion represents a more normal (in the physiological
but not necessarily in the statistical sense) lifespan peaking at an age close to
80 years.

We pointed out in Section 2.3 that the sample or empirical distribution
function was a consistent estimator of the population distribution function.
This reflects the fact that as the size of a random sample increases it mirrors
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Figure 2.4 Histogram for a sample of 50 from an exponential distribution with mean
2. The fitted curve is that of the distribution frequency function.

the population characteristics ever more closely. Modern statistical software
packages allow one to draw random samples of any chosen size from a wide
range of distributions. For reasonably large samples, i.e., those of at least 50
observations, constructing appropriate histograms and superimposing these
on the relevant population distribution frequency function gives a good im-
pression of how effective these matches are.

Example 2.6

A computer-generated sample of 50 observations from an exponential distribution
with mean 2 using Minitab gave the histogram in Figure 2.4. All sample values were
less than 10, and 20 of them lay in the interval [0, 1), 14 in the interval [1, 2), 6 in
the interval [2, 3), and so on. The curve superimposed on the histogram is that of
the frequency function or probability density function of the exponential distribution
with mean 2, which has the form:

f(x) =
1

2
e−x/2, x ≥ 0.

Statisticians would regard the closeness of the curve to the histogram as an indi-
cation that the data might be a sample from this distribution.

For samples smaller than 50 the grouping required to form a histogram may
result in a rather poor fit to the population frequency function. However, even
for small samples the sample distribution step function usually lies fairly close
to the population cumulative distribution function.
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Figure 2.5 Sample cumulative distribution function (stepped) for a sample of eight
from an exponential distribution with mean 2. The curve is the population cumulative
distribution function and the straight line is that for a uniform distribution over
(0,10).

Example 2.7

A computer generated sample of eight from an exponential distribution with mean
2 gave the values

0.25 0.53 0.91 0.94 1.56 1.73 4.71 5.50

where these have been arranged in ascending order. Figure 2.5 shows the sample cum-
ulative distribution function for these data (stepped function) and the cumulative
distribution function for an exponential function with mean 2. This takes the form

F (x) = 1 − e−x/2, x ≥ 0.

The step function lies close to this population cumulative distribution function. For
illustrative purposes the straight line joining the points (0, 0) and (10, 1) on the
graph is the cumulative distribution function for a uniform distribution over (0, 10).
It is almost self-evident that our sample was not taken from that distribution.

More sophisticated EDA methods include the so-called P–P and Q–Q plots,
abbreviations for plots of probabilities and of quantiles respectively associated
with two distributions or with a hypothesized distribution and a sample be-
lieved to be from a population having that distribution. A description of how
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these are used and interpreted is given by Gibbons and Chakraborti (2004,
Section 4.7).

The examples in this section only touch on the potential of an EDA ap-
proach. Further examples are given throughout this book.

2.5 Efficiency of Nonparametric Procedures

We pointed out in Section 1.3 that the power of a test depends upon (i) the
sample size, n, (ii) the choice of the largest P -value to indicate significance
(usually denoted in power studies by α), (iii) the magnitude of any departure
from H0 and (iv) whether assumptions that are needed for validity hold.

Most intuitively reasonable tests have good power to detect a true alter-
native that is far removed from the null hypothesis providing the data set is
large enough. We sometimes want tests to have as much power as possible for
detecting alternatives close to H0 even when these are of no practical impor-
tance. This is because such tests are usually also good at detecting larger
departures, a desirable state of affairs.

If α is the probability of a Type I error, and β is the probability of a Type
II error (the power is 1− β), then the efficiency of a test T2 relative to a test
T1 is the ratio n1/n2 of the sample sizes needed to obtain the same power
for the two tests with these values of α, β. In practice, we usually fix α at
some P -value appropriate to the problem at hand. Then β depends on the
particular alternative as well as the sample sizes. Fresh calculations of relative
efficiency are required for each particular value of the parameter or parameters
of interest in H1 and for each choice of α, β.

Pitman (1948), in a series of unpublished lecture notes, introduced the con-
cept of asymptotic relative efficiency for comparing two tests. He considered
sequences of tests T1, T2 in which we fix α and then allow the alternative
in H1 to vary in such a way that β remains constant as the sample size n1

increases. For each n1 we determine n2 such that T2 has the same β for the
particular alternative considered.

Increasing sample size usually increases the power for alternatives closer to
H0. Therefore, for large samples, Pitman studied the behaviour of the effi-
ciency, n1/n2, for steadily improving tests for detecting small departures from
H0. He showed under very general conditions that in these sequences of tests
n1/n2 tended to a limit as n1 → ∞. More importantly, this limit, which he
called the asymptotic relative efficiency (ARE) was the same for all choices
of α, β. A full discussion of asymptotic relative efficiency is given by Gibbons
and Chakraborti (2004, Chapter 13).

Bahadur (1967) proposed an alternative definition that is less widely used,
so for clarity and brevity we refer to Pitman’s concept simply as the Pitman
efficiency. The concept is useful because, when comparing two tests the small
sample relative efficiency is often close to, or even higher, than the Pitman
efficiency.
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The Pitman efficiency of the sign test relative to the t-test when the latter
is appropriate is a rather low 2/π ≈ 0.64. Lehmann (1975, 2006) shows that
for samples of size 10 and a range of values of the median θ relative to the
value θ0 specified in H0 with α fixed, the relative efficiency exceeds 0.7. For
samples of 20 it is nearer to, but still above, 0.64. Here Pitman efficiency gives
a pessimistic picture of the performance of the sign test at small sample sizes.

We have already mentioned that when it is relevant and valid the t-test is
the most powerful test for any mean specified in H0 against any alternative.
When the t-test is not appropriate, other tests may have higher efficiency.
Indeed, if our sample comes from the double exponential distribution, which
has much longer tails than the normal, the Pitman efficiency of the sign test
relative to the t-test is 2. That is, a sign test using a sample of n (at least
for large samples) is as efficient as a t-test applied to a sample of size 2n.
There are, however, situations where asymptotic relative efficiency may give
an unduly optimistic picture of small sample behaviour.

2.6 Computers and Nonparametric Methods

Computer software packages suitable for nonparametric analysis fall into three
main categories. The first is specialist menu-driven packages that use exact
permutation or related methods for small to medium sized samples and provide
Monte Carlo and/or asymptotic tests for larger samples.

The second category are the mainstream menu-driven statistical software
packages that allow exact inferences for some, but by no means all, widely
used nonparametric tests, or are user-friendly in the sense that they allow the
user to write programs to carry out such procedures.

The final category is comprised of versatile interactive statistical packages
that have a variety of options, or tools, to perform various data manipulations
and statistical operations. These are not menu driven. The user combines
relevant tools, often with further options of his or her own creation, to achieve
some desired objective. Such programs are by their nature generally less user-
friendly than menu-driven packages, but they are often more powerful.

In the first category widely used packages are StatXact 7.0, distributed by
Cytel Software Corporation, Cambridge, Ma, and Testimate, distributed by
IDV Daten-analyse und Versuchs-planung, Munich, Germany. StatXact gives
exact permutation P-values for small samples together with Monte Carlo est-
imates of these, for a large range of tests. Large sample, or asymptotic, results
are also given and there are facilities for computing confidence intervals and
also the power of some of the tests for assigned sample sizes and specified al-
ternative hypotheses. Some of the tests in StatXact are also available in SAS.
Testimate has considerable overlap with StatXact, but some methods are in-
cluded in one but not both these packages and there are minor differences
between the packages in detail for some procedures. There are also specialized
programs dealing with particular aspects of the broad fields of nonparamet-
ric and semiparametric inference. These include LogXact, which is especially
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relevant to logistic regression, a topic only covered briefly in Chapter 15 in
this book.

The efficiency of StatXact programs stems from the use of algorithms based
on the work of Mehta and his co-authors in a series of papers including Mehta
and Patel (1983, 1986), Mehta, Patel and Tsiatis (1984), Mehta, Patel and
Gray (1985), Mehta, Patel and Senchaudhuri (1988, 1998). Similar, and other
efficient algorithms are used in Testimate, but understanding the algorithms
is not needed to use these packages.

General statistical packages such as SAS, Minitab, SPSS, and Stata include
some nonparametric procedures. In some of these exact tests are given, but
many rely heavily on asymptotic results, sometimes with little warning about
when, particularly with small or unbalanced sample sizes, these may be mis-
leading.

In the third category the increasingly popular R, and the closely related
S-PLUS are particularly useful for the bootstrap described in Chapter 14, as
well as for some of the semiparametric procedures discussed in Chapter 15.

Monte Carlo approximations to exact P -values, or for bootstrap estimation,
can often be obtained from standard packages by creating macros that make
use of inbuilt facilities for generating many random samples with or with-
out replacement. Packages such as R and SAS have a versatility that makes
combining of approaches such as EDA and more formal analyses quick and
easy.

Users should test nonparametric procedures in any package programs they
use with examples from this book and other sources. In some cases the output
will be different, being either more or less extensive than that given in the
source of the examples. For instance, output may give nominal (usually 5
or 1 percent) significance levels rather than exact P -values. Sometimes the
convention of doubling a one-tail P -value may be used to obtain a two-tail test
value, but as indicated in Example 2.4, this may not always be appropriate.
Particular care should be taken to check whether exact or asymptotic results
are given.

This book is largely about well-established methods, but only modern com-
puting facilities allow us to use them in the way we describe. Solutions to
examples, or illustrations in this book using statistical packages, are usually
based on StatXacT, Minitab or R, but in many cases it would be equally
appropriate to use other well-known packages such as SAS, SPSS, Stata, etc.,
providing these packages contain relevant programs.

Developments in statistical computer software are rapid and much of what
we say about this may be out of date by the time you read it. Readers should
check advertisements for statistical software in relevant journals and look for
reviews of software in publications such as The American Statistician to trace
new products.
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2.7 Further Reading

Hollander and Wolfe (1999), Conover (1999), Gibbons and Chakraborti (2004),
Higgins (2004) and Desu and Raghavarao (2004) give, in some cases, more
background for some of the procedures described here. Each book covers a
slightly different range of topics, and at varying depths, but all are suitable
references for those who want to get a broad picture of the many aspects
of basic nonparametrics. Daniel (1990) is a general book on applied nonpar-
ametric methods.

A moderately advanced mathematical treatment of the theory behind non-
parametric methods is given by Hettmansperger and McKean (1998). Randles
and Wolfe (1979) and Maritz (1995) are other recommended books covering
the theory at a more advanced mathematical level than that used here. A
classic is the book by Lehmann (1975), a revised edition of which appeared
in 2006. This book repays careful reading for those who want to pursue the
logic of the subject in more depth without too much mathematical detail.
Applications in the social sciences are covered by Leach (1979) and by Siegel
and Castellan (1988), the latter an update of a book written by Siegel some
30 years earlier.

Noether (1991) uses a nonparametric approach to introduce basic general
statistical concepts. Although dealing basically with rank correlation meth-
ods, Kendall and Gibbons (1990) give an insight into the relationship between
many nonparametric methods. Rayner and Best (2001) give a wide ranging
treatment of many standard and a few specialist procedures using methods
based largely on partitioning of the chi-squared statistic. Wasserman (2006),
despite its title, deals mainly with more advanced modern topics in nonpara-
metric statistics, a few of which we touch upon in Chapters 14 and 15. He
gives a lucid introduction to those topics he covers.

Agresti (1984, 1996, 2002) and Everitt (1992) give detailed accounts of var-
ious models, parametric and nonparametric, used in categorical data analysis.
A sophisticated treatment of randomization tests with emphasis on biological
applications is given by Manly (2006). Good (2005) and Edgington (1995)
cover randomization and permutation tests. The theory behind rank tests is
given by Hájek, Sidák and Sen (1999).

Books dealing with the bootstrap include Efron and Tibshirani (1993),
Davison and Hinkley (1997) and Chernick (1999).

2.8 Exercises

2.1 A new type of intensive physiotherapy is developed for individuals who have
undergone spinal surgery. Due to limited hospital resources it can only be given to
3 out of 10 patients. The patients are aged:

15 21 26 32 39 45 52 60 70 82

Explain how a permutation test could be used to investigate whether use of the
physiotherapy is related to patient age, (i.e., whether there is a policy to give the
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treatment to younger as opposed to older groups or vice versa). If the patients aged
15, 26 and 32 have the intensive physiotherapy find the P -value for a two-tailed test
of an appropriate null hypothesis. Comment on your findings.

*2.2 Suppose that the new drug under test in Example 2.1 has all the ingredients
of a standard drug at present in use and an additional ingredient that has proved
to be of use for a related disease, so that it is reasonable to assume that the new
drug will do at least as well as the standard one, but may do better. Formulate the
hypotheses leading to an appropriate one-tail test. If the post-treatment ranking of
the patients receiving the new drug is 1, 2, 4, 6 assess the strength of the evidence
against the relevant H0.

2.3 An archaeologist numbers some articles 1 to 11 in the order he discovers them.
He selects at random a sample of 3 of them. What is the probability that the sum
of the numbers on the items he selects is less than or equal to 8? (You do not need
to list all combinations of 3 items from 11 to answer this question.)

If the archaeologist believed that items belonging to the more recent of two civ-
ilizations were more likely to be found earlier in his dig and of his 11 items 3 are
identified as belonging to that more recent civilization (but the remaining 8 come
from an earlier civilization) does a rank sum of 8 for the 3 matching the more recent
civilization provide reasonable support for his theory?

2.4 A library has on its shelves 114 books on statistics. I take a random sample of 12
and want to test the hypothesis that the median number of pages, θ, in all 114 books
is 225. In the sample of 12, I note that 3 have less than 225 pages. Does this justify
retention of the hypothesis that θ = 225? What should I take as an appropriate
alternative hypothesis? What is the largest critical region for a test with P ≤ 0.05
and what is the corresponding exact P -level?

*2.5 The numbers of pages in the sample of 12 books in Exercise 2.4 were:

126 142 156 228 245 246 370 419 433 454 478 503

Find a confidence interval at a level not less than 95 percent for the median θ.

*2.6 In Sect.1.4.1 we associated a confidence interval with a two-tail test. As
well as such two-sided confidence intervals, one may define a one-sided confidence
interval composed of all parameter values that would not be rejected in a one-tail
test. Follow through such an argument to obtain a confidence interval at level not
less than 95 percent based on the sign test criteria for the 12 book sample values
given in Exercise 2.5 relevant to a test of H0 : θ = θ0 against a one-sided alternative
H1 : θ > θ0.

2.7 From 6 consenting patients requiring a medical scan, 3 are chosen at random
to undergo a positron emission tomography (PET) scan, the others receiving a mag-
netic resonance imaging (MRI) scan. Image quality is ranked in order by a hospital
consultant from 1 (best) to 6 (worst). Describe how you would test H0: scan quality
is unrelated to scan method against (i) H1: PET scans are better (ii) H1: the scans
differ in quality depending on whether they are from PET or MRI. Interpret the
finding that the consultant rates the three PET scans as the three highest quality
images.
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2.8 In Example 2.4 we remarked that a situation could arise where we might reject
H0 for the wrong reason. Explain how this is possible in that example.

*2.9 State appropriate null and alternative hypotheses for the example from the
book of Daniel about diet in Section 1.1.3. How could you use ranks to calculate the
probability that the four receiving the diet of pulses were ranked 1, 2, 3, 4? Calculate
this probability assuming that there were 20 young men involved altogether.

*2.10 A sample of 12 is taken from a continuous uniform distribution over the
interval (0, 1). What is the probability that the largest sample value exceeds 0.95?
(Hint: Determine the probability that any sample value exceeds 0.95. The condition
is met if at least one value exceeds 0.95.)

2.11 A sample of 24 is known to come either from a uniform distribution over
the interval (0, 10) or else from a symmetric triangular distribution over the same
interval (0, 10). The sample values are

4.17 8.42 3.02 2.89 9.77 6.06 2.72 5.12 6.00 4.78 2.62 7.20
1.61 5.92 7.25 8.01 4.76 5.36 5.34 7.59 0.66 7.27 3.39 1.40

Use appropriate graphical or other EDA techniques to get an indication as to which
of these distributions is the more likely source of the sample.


