


Introduction to  
General and Generalized 

Linear Models



CHAPMAN & HALL/CRC  
Texts in Statistical Science Series
Series Editors
Bradley P. Carlin, University of Minnesota, USA
Julian J. Faraway, University of Bath, UK
Martin Tanner, Northwestern University, USA
Jim Zidek, University of British Columbia, Canada

Analysis of Failure and Survival Data
P. J. Smith
The Analysis of Time Series —
An Introduction, Sixth Edition
C. Chatfield
Applied Bayesian Forecasting and Time Series 
Analysis
A. Pole, M. West and J. Harrison
Applied Nonparametric Statistical Methods,  
Fourth Edition 
P. Sprent and N.C. Smeeton
Applied Statistics — Handbook of GENSTAT 
Analysis 
E.J. Snell and H. Simpson 
Applied Statistics — Principles and Examples 
D.R. Cox and E.J. Snell
Applied Stochastic Modelling, Second Edition 
B.J.T. Morgan
Bayesian Data Analysis,  Second Edition 
A. Gelman, J.B. Carlin, H.S. Stern 
and D.B. Rubin
Bayesian Ideas and Data Analysis: An Introduction 
for Scientists and Statisticians 
R. Christensen, W. Johnson, A. Branscum,  
and T.E. Hanson
Bayesian Methods for Data Analysis,  
Third Edition 
B.P. Carlin and T.A. Louis
Beyond ANOVA — Basics of Applied Statistics 
R.G. Miller, Jr.
Computer-Aided Multivariate Analysis,  
Fourth Edition 
A.A. Afifi and V.A. Clark
A Course in Categorical Data Analysis
T. Leonard
A Course in Large Sample Theory
T.S. Ferguson
Data Driven Statistical Methods 
P. Sprent 
Decision Analysis — A Bayesian Approach
J.Q. Smith
Design and Analysis of Experiment with SAS
J. Lawson

Elementary Applications of Probability Theory, 
Second Edition 
H.C. Tuckwell
Elements of Simulation 
B.J.T. Morgan
Epidemiology — Study Design and  
Data Analysis, Second Edition
M. Woodward
Essential Statistics, Fourth Edition 
D.A.G. Rees
Exercises and Solutions in Biostatistical Theory
L.L. Kupper, B.H. Neelon, and S.M. O’Brien
Extending the Linear Model with R — Generalized 
Linear, Mixed Effects and Nonparametric Regression 
Models
J.J. Faraway
A First Course in Linear Model Theory
N. Ravishanker and D.K. Dey
Generalized Additive Models:  
An Introduction with R
S. Wood
Graphics for Statistics and Data Analysis with R
K.J. Keen
Interpreting Data — A First Course  
in Statistics
A.J.B. Anderson
Introduction to General and Generalized  
Linear Models
H. Madsen and P. Thyregod
An Introduction to Generalized  
Linear Models, Third Edition
A.J. Dobson and A.G. Barnett
Introduction to Multivariate Analysis 
C. Chatfield and A.J. Collins
Introduction to Optimization Methods and Their 
Applications in Statistics 
B.S. Everitt
Introduction to Probability with R 
K. Baclawski
Introduction to Randomized Controlled Clinical 
Trials, Second Edition 
J.N.S. Matthews
Introduction to Statistical Inference and Its 
Applications with R 
M.W. Trosset



Introduction to Statistical Methods for  
Clinical Trials 
T.D. Cook and D.L. DeMets 
Large Sample Methods in Statistics
P.K. Sen and J. da Motta Singer
Linear Models with R
J.J. Faraway
Logistic Regression Models 
J.M. Hilbe 
Markov Chain Monte Carlo —  
Stochastic Simulation for Bayesian Inference, 
Second Edition
D. Gamerman and H.F. Lopes
Mathematical Statistics 
K. Knight 
Modeling and Analysis of Stochastic Systems, 
Second Edition
V.G. Kulkarni
Modelling Binary Data, Second Edition
D. Collett
Modelling Survival Data in Medical Research, 
Second Edition
D. Collett
Multivariate Analysis of  Variance and Repeated 
Measures — A Practical Approach for Behavioural 
Scientists
D.J. Hand and C.C. Taylor
Multivariate Statistics — A Practical Approach
B. Flury and H. Riedwyl
Pólya Urn Models
H. Mahmoud
Practical Data Analysis for Designed Experiments
B.S. Yandell
Practical Longitudinal Data Analysis
D.J. Hand and M. Crowder
Practical Statistics for Medical Research
D.G. Altman
A Primer on Linear Models
J.F. Monahan
Probability — Methods and Measurement
A. O’Hagan
Problem Solving  — A Statistician’s Guide,  
Second Edition 
C. Chatfield
Randomization, Bootstrap and Monte Carlo 
Methods in Biology, Third Edition 
B.F.J. Manly

Readings in Decision Analysis 
S. French
Sampling Methodologies with Applications 
P.S.R.S. Rao
Statistical Analysis of Reliability Data
M.J. Crowder, A.C. Kimber,  
T.J. Sweeting, and R.L. Smith
Statistical Methods for Spatial Data Analysis
O. Schabenberger and C.A. Gotway
Statistical Methods for SPC and TQM
D. Bissell
Statistical Methods in Agriculture and Experimental 
Biology,  Second Edition
R. Mead, R.N. Curnow, and A.M. Hasted
Statistical Process Control — Theory and Practice, 
Third Edition 
G.B. Wetherill and D.W. Brown
Statistical Theory, Fourth Edition
B.W. Lindgren 
Statistics for Accountants
S. Letchford
Statistics for Epidemiology 
N.P. Jewell
Statistics for Technology — A Course in Applied 
Statistics, Third Edition
C. Chatfield
Statistics in Engineering — A Practical Approach
A.V. Metcalfe
Statistics in Research and Development,  
Second Edition
R. Caulcutt
Stochastic Processes: An Introduction,  
Second Edition
P.W. Jones and P. Smith 
Survival Analysis Using S — Analysis of  
Time-to-Event Data
M. Tableman and J.S. Kim
The Theory of Linear Models
B. Jørgensen
Time Series Analysis
H. Madsen
Time Series: Modeling, Computation, and Inference
R. Prado and M. West





Texts in Statistical Science

Henrik Madsen
Technical University of Denmark

Lyngby, Denmark

Poul Thyregod
Technical University of Denmark

Lyngby, Denmark

Introduction to  
General and Generalized 

Linear Models



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20141009

International Standard Book Number-13: 978-1-4398-9114-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts 
have been made to publish reliable data and information, but the author and publisher cannot assume 
responsibility for the validity of all materials or the consequences of their use. The authors and publishers 
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to 
copyright holders if permission to publish in this form has not been obtained. If any copyright material has 
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, 
including photocopying, microfilming, and recording, or in any information storage or retrieval system, 
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood 
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and 
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, 
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used 
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



Contents

Preface xi
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1
1.1 Examples of types of data . . . . . . . . . . . . . . . . . . . 2
1.2 Motivating examples . . . . . . . . . . . . . . . . . . . . . . 3
1.3 A first view on the models . . . . . . . . . . . . . . . . . . 5

2 The likelihood principle 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Point estimation theory . . . . . . . . . . . . . . . . . . . . 10
2.3 The likelihood function . . . . . . . . . . . . . . . . . . . . 14
2.4 The score function . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 The information matrix . . . . . . . . . . . . . . . . . . . . 18
2.6 Alternative parameterizations of the likelihood . . . . . . . 20
2.7 The maximum likelihood estimate (MLE) . . . . . . . . . . 21
2.8 Distribution of the ML estimator . . . . . . . . . . . . . . . 22
2.9 Generalized loss-function and deviance . . . . . . . . . . . . 23
2.10 Quadratic approximation of the log-likelihood . . . . . . . 23
2.11 Likelihood ratio tests . . . . . . . . . . . . . . . . . . . . . 25
2.12 Successive testing in hypothesis chains . . . . . . . . . . . . 27
2.13 Dealing with nuisance parameters . . . . . . . . . . . . . . 33
2.14 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 General linear models 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 The multivariate normal distribution . . . . . . . . . . . . . 42
3.3 General linear models . . . . . . . . . . . . . . . . . . . . . 44
3.4 Estimation of parameters . . . . . . . . . . . . . . . . . . . 48
3.5 Likelihood ratio tests . . . . . . . . . . . . . . . . . . . . . 53
3.6 Tests for model reduction . . . . . . . . . . . . . . . . . . . 58
3.7 Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8 Inference on parameters in parameterized models . . . . . . 70
3.9 Model diagnostics: residuals and influence . . . . . . . . . . 73



viii Contents

3.10 Analysis of residuals . . . . . . . . . . . . . . . . . . . . . . 77
3.11 Representation of linear models . . . . . . . . . . . . . . . . 78
3.12 General linear models in R . . . . . . . . . . . . . . . . . . 81
3.13 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Generalized linear models 87
4.1 Types of response variables . . . . . . . . . . . . . . . . . . 89
4.2 Exponential families of distributions . . . . . . . . . . . . . 90
4.3 Generalized linear models . . . . . . . . . . . . . . . . . . . 99
4.4 Maximum likelihood estimation . . . . . . . . . . . . . . . 102
4.5 Likelihood ratio tests . . . . . . . . . . . . . . . . . . . . . 111
4.6 Test for model reduction . . . . . . . . . . . . . . . . . . . 115
4.7 Inference on individual parameters . . . . . . . . . . . . . . 116
4.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.9 Generalized linear models in R . . . . . . . . . . . . . . . . 152
4.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5 Mixed effects models 157
5.1 Gaussian mixed effects model . . . . . . . . . . . . . . . . 159
5.2 One-way random effects model . . . . . . . . . . . . . . . . 160
5.3 More examples of hierarchical variation . . . . . . . . . . . 174
5.4 General linear mixed effects models . . . . . . . . . . . . . 179
5.5 Bayesian interpretations . . . . . . . . . . . . . . . . . . . . 185
5.6 Posterior distributions . . . . . . . . . . . . . . . . . . . . . 191
5.7 Random effects for multivariate measurements . . . . . . . 192
5.8 Hierarchical models in metrology . . . . . . . . . . . . . . . 197
5.9 General mixed effects models . . . . . . . . . . . . . . . . . 199
5.10 Laplace approximation . . . . . . . . . . . . . . . . . . . . 201
5.11 Mixed effects models in R . . . . . . . . . . . . . . . . . . . 218
5.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

6 Hierarchical models 225
6.1 Introduction, approaches to modeling of overdispersion . . 225
6.2 Hierarchical Poisson Gamma model . . . . . . . . . . . . . 226
6.3 Conjugate prior distributions . . . . . . . . . . . . . . . . . 233
6.4 Examples of one-way random effects models . . . . . . . . . 237
6.5 Hierarchical generalized linear models . . . . . . . . . . . . 242
6.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

7 Real life inspired problems 245
7.1 Dioxin emission . . . . . . . . . . . . . . . . . . . . . . . . 246
7.2 Depreciation of used cars . . . . . . . . . . . . . . . . . . . 249
7.3 Young fish in the North Sea . . . . . . . . . . . . . . . . . . 250
7.4 Traffic accidents . . . . . . . . . . . . . . . . . . . . . . . . 251
7.5 Mortality of snails . . . . . . . . . . . . . . . . . . . . . . . 252



Contents ix

A Supplement on the law of error propagation 255
A.1 Function of one random variable . . . . . . . . . . . . . . . 255
A.2 Function of several random variables . . . . . . . . . . . . . 255

B Some probability distributions 257
B.1 The binomial distribution model . . . . . . . . . . . . . . . 259
B.2 The Poisson distribution model . . . . . . . . . . . . . . . . 262
B.3 The negative binomial distribution model . . . . . . . . . . 264
B.4 The exponential distribution model . . . . . . . . . . . . . 266
B.5 The gamma distribution model . . . . . . . . . . . . . . . . 268
B.6 The inverse Gaussian distribution model . . . . . . . . . . 275
B.7 Distributions derived from the normal distribution . . . . . 280
B.8 The Gamma-function . . . . . . . . . . . . . . . . . . . . . 284

C List of symbols 285

Bibliography 287

Index 293





Preface

This book contains an introduction to general and generalized linear models
using the popular and powerful likelihood techniques. The aim is to provide a
flexible framework for the analysis and model building using data of almost
any type. This implies that the more well-known analyses based on Gaussian
data like regression analysis, analysis of variance and analysis of covariance
are generalized to a much broader family of problems that are linked to, for
instance, binary, positive, integer, ordinal and qualitative data.

By using parallel descriptions in two separate chapters of general and
generalized linear models, the book facilitates a unique comparison between
these two important classes of models and, furthermore, presents an easily
accessible introduction to the more advanced concepts related to generalized
linear models.

Likewise, the concept of hierarchical models is illustrated separately – in
one chapter a description of Gaussian based hierarchical models, such as the
mixed effects linear models is outlined, and in another chapter an introduction
is presented to the generalized concept of those hierarchical models that are
linked to a much broader class of problems connected to various types of data
and related densities. The book also introduces new concepts for mixed effects
models thereby enabling more flexibility in the model building and in the
allowed data structures.

Throughout the book the statistical software R is used. Examples show
how the problems are solved using R, and for each of the chapters individual
guidelines are provided in order to facilitate the use of R when solving the
relevant type of problems.

Theorems are used to emphasize the most important results. Proofs are
provided, only, if they clarify the results. Problems on a smaller scale are dealt
with at the end of most of the chapters, and a separate chapter with real life
inspired problems is included as the final chapter of the book.

During the sequence of chapters, more advanced models are gradually
introduced. With such an approach, the relationship between general and
generalized linear models and methods becomes more apparent.

The last chapter of this book is devoted to problems inspired by real life
situations. At the home page http://www.imm.dtu.dk/~hm/GLM solutions to
the problems are found. The homepage also contains additional exercises –
called assignments – and a complete set of data for the examples used in the
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book. Furthermore, a collection of slides for an introductory course on general,
generalized and mixed effects models can be found on the homepage.

The contents of this book are mostly based on a comprehensive set of
material developed by Professor Poul Thyregod during his series of lectures
at the Section of Mathematical Statistics at the Technical University of Den-
mark (DTU). Poul was the first person in Denmark who received a PhD
in mathematical statistics. Poul was also one of the few highly skilled in
mathematical statistics who was fully capable of bridging the gap between
theory and practice within statistics and data analysis. He possessed the
capability to link statistics to real problems and to focus on the real added
value of statistics— in order to help us understand the real world a bit better.
The ability to work with engineers and scientists, to be part of the discovery
process, and to be able to communicate so distinctly what statistics is all about
is clearly a gift. Poul possessed that gift. I am grateful to be one of a long
list of students who had the privilege of learning from his unique capabilities.
Sadly, Poul passed away in the summer of 2008, which was much too early
in his life. I hope, however, that this book will reflect his unique talent to
establish an easily accessible introduction to theory and practice of modern
statistical modeling.

I am grateful to all who have contributed with useful comments, suggestions
and contributions. First I would like to thank my colleagues Gilles Guillot,
Martin Wæver Pedersen, Stig Mortensen and Anders Nielsen for their helpful
and very useful assistance and comments.

In particular, I am grateful to Anna Helga Jónsdóttir for her assistance
with text, proofreading, figures, exercises and examples. Without her insis-
tent support this book would never had been completed. Finally, I would
like to thank Helle Welling for proofreading, and Morten Høgholm for both
proofreading and for proposing and creating a new layout in LATEX.

Henrik Madsen
Lyngby, Denmark
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Notation

All vectors are column vectors. Vectors and matrices are emphasized using
a bold font. Lowercase letters are used for vectors and uppercase letters are
used for matrices. Transposing is denoted with the upper index T .

Random variables are always written using uppercase letters. Thus, it is
not possible to distinguish between a multivariate random variable (random
vector) and a matrix. However, variables and random variables are assigned to
letters from the last part of the alphabet (X, Y, Z, U, V, . . . ), while constants
are assigned to letters from the first part of the alphabet (A, B, C, D, . . . ).
From the context it should be possible to distinguish between a matrix and a
random vector.





CHAPTER 1

Introduction

This book provides an introduction to methods for statistical modeling using
essentially all kind of data. The principles for modeling are based on likelihood
techniques. These techniques facilitate our aim of bridging the gap between
theory and practice for modern statistical model building.

Each chapter of the book contains examples and guidelines for solving
the problems using the statistical software package R, which can be freely
downloaded and installed on almost any computer system. We do, however,
refer to other software packages as well.

In general the focus is on establishing models that explain the variation
in data in such a way that the obtained models are well suited for predicting
the outcome for given values of some explanatory variables. More specifically
we will focus on formulating, estimating, validating and testing models for
predicting the mean value of the random variables. However, by the considered
approach we will consider the complete stochastic model for the data which
includes an appropriate choice of the density describing the variation of the
data. It will be demonstrated that this approach facilitates adequate methods
for describing also the uncertainty of the predictions.

By the approach taken, the theory and practice in relation to widely applied
methods for modeling using regression analysis, analysis of variance and the
analysis of covariance, that are all related to Gaussian distributed data, are
established in a way which facilitates an easily accessible extension to similar
methods applied in the case of, e.g., Poisson, Gamma and Binomial distributed
data. This is obtained by using the likelihood approach in both cases, and
becomes clear that the general linear models are relevant for Gaussian dis-
tributed samples whereas the generalized linear models facilitate a modeling
of the variation in a much broader context, namely for all data originating
from the so-called exponential family of densities including Poisson, Binomial,
Exponential, Gaussian, and Gamma distributions.

The presentation of the general and generalized linear models is provided
using essentially the same methods related to the likelihood principles, but
described in two separate chapters. By a parallel presentation of the methods
and models in two chapters, a clear comparison between the two model types
is recognized. This parallel presentation is also aiming at providing an easily
accessible description of the theory for generalized linear models. This is due
to the fact that the book first provides the corresponding or parallel results
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for the general linear models, which is easier to understand, and in many cases
well-known.

The book also contains a first introduction to both mixed effects models
(also called mixed models) and hierarchical models. Again, a parallel setup in
two separate chapters is provided. The first chapter concentrates on introducing
the random effects and, consequently, also the mixed effects in a Gaussian
context. The subsequent chapter provides an introduction to non-Gaussian
hierarchical models where the considered models again are members of the
exponential family of distributions.

To the readers with a theoretical interest it will be obvious that virtually
all the results are based on about a handful of results from the likelihood
theory, and that the results that are valid for finite samples for the general
linear models are valid asymptotically in the case of generalized linear models.
The necessary likelihood theory is described in the chapter following the
Introduction.

1.1 Examples of types of data

Let us first illustrate the power of the methods considered in this book by
listing some of the types of data which can be modelled using the described
techniques. In practice several types of response variables are seen as indicated
by the examples listed below:

i) Continuous data (e.g., y1 = 2.3, y2 = −0.2, y3 = 1.8, . . . , yn = 0.8).
Normal (Gaussian) distributed. Used, e.g., for air temperatures in
degrees Celsius. An example is found in Example 2.18 on page 14.

ii) Continuous positive data (e.g., y1 = 0.0238, y2 = 1.0322, y3 = 0.0012,
. . . , yn = 0.8993). Log-normally distributed. Often used for concentra-
tions.

iii) Count data (e.g., y1 = 57, y2 = 67, y3 = 54, . . . , yn = 59). Poisson
distributed. Used, e.g., for number of accidents—see Example 4.7 on
page 123 on page 123.

iv) Binary (or quantal) data (e.g., y1 = 0, y2 = 0, y3 = 1, . . . , yn = 0), or
proportion of counts (e.g. y1 = 15/297, y2 = 17/242, y3 = 2/312, . . . ,
yn = 144/285). Binomial distribution—see Example 4.6 on page 118 or
Example 4.14 on page 140.

v) Nominal data (e.g., “Very unsatisfied”, “Unsatisfied”, “Neutral”, “Satis-
fied”, “Very satisfied”). Multinomial distribution—see Example 4.12 on
page 133.

The reader will also become aware that the data of a given type might look
alike, but the (appropriate) statistical treatment is different!
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1.2 Motivating examples

The Challenger disaster

On January 28, 1986, Space Shuttle Challenger broke apart 73 seconds into
its flight and the seven crew members died. The disaster was due to a
disintegration of an O-ring seal in the right rocket booster. The forecast for
January 28, 1986 indicated an unusually cold morning with air temperatures
around 28 degrees F (−1 degrees C).

During a teleconference on January 27, one of the engineers, Morton
Thiokol, responsible for the shuttle’s rocket booster, expressed concern due to
the low temperature.

The planned launch on January 28, 1986 was launch number 25. During
the previous 24 launches problems with the O-ring were observed in 6 cases.
Figure 1.1 shows the relationship between observed sealing problems and the
air temperature. A model of the probability for O-ring failure as a function of
the air temperature would clearly have shown that given the forecasted air
temperature, problems with the O-rings were very likely to occur.

30 40 50 60 70 80

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

P
ro

b
a
b

il
it

y

Temperature [F]

Observed failure
Predicted failure

Figure 1.1: Observed failure of O-rings in 6 out of 24 launches along with predicted
probability for O-ring failure.
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Table 1.1: Incidence of Torsade de Pointes by dose for high risk patients.

Index Daily dose Number of Number Fraction showing
[mg] subjects showing TdP TdP

i xi ni zi pi

1 80 69 0 0
2 160 832 4 0.5
3 320 835 13 1.6
4 480 459 20 4.4
5 640 324 12 3.7
6 800 103 6 5.8

QT prolongation for drugs
In the process of drug development it is required to perform a study of potential
prolongation of a particular interval of the electrocardiogram (ECG), the QT
interval. The QT interval is defined as the time required for completion of both
ventricular depolarization and repolarization. The interval has gained clinical
importance since a prolongation has been shown to induce potentially fatal ven-
tricular arrhythmia such as Torsade de Pointes (TdP). The arrhythmia causes
the QRS complexes, another part of the ECG, to swing up and down around the
baseline of the ECG in a chaotic fashion. This probably caused the name which
means “twisting of the points” in French. A number of drugs have been reported
to prolong the QT interval, both cardiac and non-cardiac drugs. Recently, both
previously approved as well as newly developed drugs have been withdrawn
from the market or have had their labeling restricted because of indication of
QT prolongation. Table 1.1 shows results from a clinical trial where a QT pro-
longing drug was given to high risk patients. The patients were given the drug
in six different doses and the number of incidents of Torsade de Points counted.

It is reasonable to consider the fraction, Yi = Zi
ni
, of incidences of Torsade

de Points as the interesting variable. A natural distributional assumption is the
binomial distribution, Yi ∼ B(ni, pi)/ni, where ni is the number of subjects
given the actual dosage and pi is the fraction showing Torsade de Pointes.

x Remark 1.1 – A bad model
Obviously the fraction, pi is higher for a higher daily dosage of the drug.
However, a linear model of the form Yi = pi + εi where pi = β0 + β1xi does
not reflect that, pi is between zero and one, and the model for the fraction,
Yi (as ‘mean plus noise’) is clearly not adequate, since the observations are
between zero and one.

It is, thus, clear that the distribution of εi and then the variance of
observations must be dependent on pi. Also, the problem with the homogeneity
of the variance indicates that a traditional “mean plus noise” model is not
adequate here. x
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x Remark 1.2 – A correct model
Instead we will now formulate a model for transformed values of the observed
fractions pi.

Given that Yi ∼ B(ni, pi)/ni we have that

E[Yi] = pi

Var[Yi] =
pi(1− pi)

ni

(1.1)

(1.2)

i.e., the variance is now a function of the mean value. Later on the so-called
mean value function V (E[Yi]) will be introduced which relates the variance to
the mean value.

A successful construction is to consider a function, the so-called link function
of the mean value E[Y ]. In this case we will use the logit-transformation

g(pi) = log
( pi

1− pi

)
(1.3)

and we will formulate a linear model for the transformed values. A plot of
the observed logits, g(pi) as a function of the concentration indicates a linear
relation of the form

g(pi) = β0 + β1xi (1.4)

After having estimated the parameters, i.e., we have obtained (β̂0, β̂1), it is now
possible to use the inverse transformation, which gives the predicted fraction
p̂ of subjects showing Torsade de Pointes as a function of a daily dose, x using
the logistic function:

p̂ =
exp (β̂0 + β̂1x)

1 + exp(β̂0 + β̂1x)
. (1.5)

This approach is called logistic regression.
It is easily seen that this model will ensure that the fraction is between

zero and one, and we also see that we have established a reasonable description
of the relation between the mean and the variance of the observations. x

1.3 A first view on the models

As mentioned previously, we will focus on statistical methods to formulate
models for predicting the expected value of the outcome, dependent, or response
variable, Yi as a function of the known independent variables, xi1, xi2, . . . , xik.
These k variables are also called explanatory, or predictor variables or covariates.
This means that we shall focus on models for the expectation E[Yi].

Previously we have listed examples of types of response variables. Also
the explanatory variables might be labeled as continuous, discrete, categorical,
binary, nominal, or ordinal. To predict the response, a typical model often
includes a combination of such types of variables.
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Since we are going to use a likelihood approach, a specification of the prob-
ability distribution of Yi is a very important part when specifying the model.

General linear models
In Chapter 3, which considers general linear models, the expected value of
the response variable Y is linked linearly to the explanatory variables by an
equation of the form

E[Yi] = β1xi1 + · · ·+ βkxik . (1.6)

It will be shown that for Gaussian data it is reasonable to build a model
directly for the expectation as shown in (1.6), and this relates to the fact that
for Gaussian distributed random variables, all conditional expectations are
linear (see e.g., Madsen (2008)).

x Remark 1.3
In model building, models for the mean value are generally considered. However,
for some applications, models for, say, the 95% quantile might be of interest.
Such models can be established by, e.g., quantile regression; see Koenker
(2005). x

Generalized linear models
As indicated by the motivating example above it is, however, often more
reasonable to build a linear model for a transformation of the expected value
of the response. This approach is more formally described in connection with
the generalized linear models in Chapter 4, where a link between the expected
value of response and the explanatory variables is of the form

g(E[Yi]) = β1xi1 + . . .+ βkxik . (1.7)

The function g(.) is called the link function and the right hand side of (1.7) is
called the linear component of the model.

Thus, a full specification of the model contains a specification of

1. The probability density of Y . In Chapter 3 this will be the Gaussian
density, i.e., Y ∼ N(µ, σ2), whereas in Chapter 4 the probability density
will belong to the exponential family of densities, which includes the
Gaussian, Poisson, Binomial, Gamma, and other distributions.

2. The smooth monotonic link function g(.). Here we have some freedom,
but the so-called canonical link function is directly linked to the used
density. As indicated in the discussion related to (1.6) no link function
is needed for Gaussian data – or the link is the identity.

3. The linear component. See the discussion above.
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In statistical modeling it is very useful to formulate the model for all n
observations Y = (Y1, Y2, . . . , Yn)T .

Let us introduce the known model vector xi = (xi1, xi2, . . . , xik)T for the
ith observation, and unknown parameter vector β = (β1, β2, . . . , βk)T . Then
the model for all n observations can be written asg(E[Y1])

...
g(E[Yn])

 =

x
T
1
...
xTn

β (1.8)

or
g(E[Y ]) = Xβ (1.9)

where the matrix X of known coefficients is called the design matrix.
As indicated in the formulation above, the parameter vector β is fixed, but

unknown, and the typical goal is to obtain an estimate β̂ of beta. Models
with fixed parameters are called fixed effects models.

Suppose that we are not interested in the individual (fixed) parameter
estimates, but rather in the variation of the underlying true parameter. This
leads to an introduction of the random effects models which will be briefly
introduced in the following section.

Hierarchical models
In Chapters 5 and 6 the important concept of hierarchical models is introduced.
The Gaussian case is introduced in Chapter 5, and this includes the so-called
linear mixed effects models. This Gaussian and linear case is a natural extension
of the general linear models. An extension of the generalized linear models
are found in Chapter 6 which briefly introduces the generalized hierarchical
models.

Let us first look at the Gaussian case. Consider for instance the test of
ready made concrete. The concrete are delivered by large trucks. From a
number of randomly picked trucks a small sample is taken, and these samples
are analyzed with respect to the strength of concrete. A reasonable model for
the variation of the strength is

Yij = µ+ Ui + εij (1.10)

where µ is the overall strength of the concrete and Ui is the deviation of
the average for the strength of concrete delivered by the i’th truck, and
εij ∼ N(0, σ2) the deviation between concrete samples from the same truck.

Here we are typically not interested in the individual values of Ui but
rather in the variation of Ui, and we will assume that Ui ∼ N(0, σ2

u).
The model (1.10) is a one-way random effects model. The parameters are

now µ, σ2
u and σ2.
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Putting µi = µ+Ui we may formulate (1.10) as a hierarchical model, where
we shall assume that

Yij |µi ∼ N(µi, σ2) , (1.11)
and in contrast to the fixed effects model, the level µi is modeled as a realization
of a random variable,

µi ∼ N(µ, σ2
u), (1.12)

where the µi’s are assumed to be mutually independent, and Yij are condi-
tionally independent, i.e., Yij are mutually independent in the conditional
distribution of Yij for given µi.

Let us again consider a model for all n observations and let us further
extend the discussion to the vector case of the random effects. The discussion
above can now be generalized to the linear mixed effects model where

E[Y |U ] = Xβ +ZU (1.13)

with X and Z denoting known matrices. Note how the mixed effect linear
model in (1.13) is a linear combination of fixed effects, Xβ and random effects,
ZU . These types of models will be described in Chapter 5.

The non-Gaussian case of the hierarchical models, where

g(E[Y |U ]) = Xβ +ZU (1.14)

and where g(.) is an appropriate link function will be treated in Chapter 6.



CHAPTER 2

The likelihood principle

2.1 Introduction

Fisher (1922) identified the likelihood function as the key inferential quantity
conveying all inferential information in statistical modeling including the uncer-
tainty. In particular, Fisher suggested the method of maximum likelihood to
provide a point estimate for the parameters of interest, the so-called maximum
likelihood estimate (MLE).

Example 2.1 – Likelihood function
Suppose we toss a thumbtack 10 times and observe that 3 times it lands
point up. Assuming we know nothing prior to the experiment, what is the
probability of landing point up, θ? It is clear that θ cannot be zero and the
probability is unlikely to be very high. However, the probability for success
θ = 0.3 or θ = 0.4 is likely, since in a binomial experiment with n = 10 and
Y = 3, the number of successes, we get the probabilities P(Y = 3) = 0.27 or
0.21 for θ = 0.3 or θ = 0.4, respectively. We have thus found a non-subjective
way to compare different values of θ. By considering Pθ(Y = 3) to be a
function of the unknown parameter we have the likelihood function:

L(θ) = Pθ(Y = 3).

In a general case with n trials and y successes, the likelihood function is:

L(θ) = Pθ(Y = y) =
(
n

y

)
θy(1− θ)n−y.

A sketch of the likelihood function for n = 10 and y = 3 is shown in Figure 2.1
on the following page. As will be discussed later in the chapter, it is often
more convenient to consider the log-likelihood function. The log-likelihood
function is:

logL(θ) = y log θ + (n− y) log(1− θ) + const

where const indicates a term that does not depend on θ. By solving
∂ logL(θ)

∂θ = 0, it is readily seen that the maximum likelihood estimate (MLE)
for θ is θ̂(y) = y

n . In the thumbtack case where we observed Y = y = 3 we
obtain θ̂(y) = 0.3. The random variable θ̂(Y ) = Y

n is called a maximum
likelihood estimator for θ. Notice the difference between θ̂(y) and θ̂(Y ).
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Figure 2.1: Likelihood function of the success probability θ in a binomial experiment
with n = 10 and y = 3.

The likelihood principle is not just a method for obtaining a point estimate of
parameters; it is a method for an objective reasoning with data. It is the entire
likelihood function that captures all the information in the data about a certain
parameter, not just its maximizer. The likelihood principle also provides the
basis for a rich family of methods for selecting the most appropriate model.

Today the likelihood principles play a central role in statistical modeling
and inference. Likelihood based methods are inherently computational. In
general, numerical methods are needed to find the MLE.

We could view the MLE as a single number representing the likelihood
function; but generally, a single number is not enough for summarising the
variations of a function. If the (log-)likelihood function is well approximated
by a quadratic function it is said to be regular and then we need at least two
quantities: the location of its maximum and the curvature at the maximum.
When our sample becomes large the likelihood function generally becomes
regular. The curvature delivers important information about the uncertainty
of the parameter estimate.

Before considering the likelihood principles in detail we shall briefly consider
some theory related to point estimation.

2.2 Point estimation theory

Assume that the statistical model for the multivariate random variable, Y =
(Y1, Y2, . . . , Yn)T is given by the parametric family of joint densities

{fY (y1, y2, . . . , yn;θ)}θ∈Θk (2.1)
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with respect to some measure νn on Yn. In the following, the random variable
Y will sometimes denote the observations. Assume also that we are given a
realization of Y which we shall call the observation set, y = (y1, y2, . . . , yn)T .

We define an estimator as a function θ̂(Y ) of the random variable Y . For
given observations, θ̂(y) is called an estimate. Note that an estimator is a
random variable whereas an estimate is a specific number.

Example 2.2 – Estimate and Estimator
In Example 2.1 on page 9 θ̂(y) = y / n is an estimate whereas the random
variable θ̂(Y ) = Y /n is an estimator. In both cases they are of the maximum
likelihood type.

Let us now briefly introduce some properties that are often used to describe
point estimators.

Definition 2.1 – Unbiased estimator
Any estimator θ̂ = θ̂(Y ) is said to be unbiased if E[θ̂] = θ for all θ ∈ Θk.

Example 2.3 – Unbiased estimator
Consider again the binomial experiment from Example 2.1 where we derived
the maximum likelihood estimator

θ̂(Y ) =
Y

n
. (2.2)

Since

E
[
θ̂(Y )

]
=

E [Y ]
n

=
n · θ
n

= θ (2.3)

it is seen that the estimator is unbiased cf. Definition 2.1.

Another important property is consistency.

Definition 2.2 – Consistent estimator
An estimator is consistent if the sequence θn(Y ) of estimators for the
parameter θ converges in probability to the true value θ. Otherwise the
estimator is said to be inconsistent.

For more details and more precise definitions see, e.g., Lehmann and Casella
(1998) p. 332.
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Definition 2.3 – Minimum mean square error
An estimator θ̂ = θ̂(Y ) is said to be uniformly minimum mean square error
if1

E
[
(θ̂(Y )− θ)(θ̂(Y )− θ)T

]
≤ E

[
(θ̃(Y )− θ)(θ̃(Y )− θ)T

]
(2.4)

for all θ ∈ Θk and all other estimators θ̃(Y ).

x Remark 2.1
In the class of unbiased estimators the minimum mean square estimator is
said to be a minimum variance unbiased estimator (MVUE) and, furthermore,
if the estimators considered are linear functions of the data, the estimator is a
best linear unbiased estimator (BLUE). x

By considering the class of unbiased estimators it is most often not possible
to establish a suitable estimator; we need to add a criterion on the variance of
the estimator. A low variance is desired, and in order to evaluate the variance
a suitable lower bound is given by the Cramer-Rao inequality.

Theorem 2.1 – Cramer-Rao inequality
Given the parametric density fY (y;θ),θ ∈ Θk, for the observations Y . Sub-
ject to certain regularity conditions, the variance covariance of any unbiased
estimator θ̂(Y ) of θ satisfies the inequality

Var
[
θ̂(Y )

]
≥ i−1(θ) (2.5)

where i(θ) is the Fisher information matrix defined by

i(θ) = E

[(
∂ log fY (Y ;θ)

∂θ

)(
∂ log fY (Y ;θ)

∂θ

)T]
(2.6)

and where Var
[
θ̂(Y )

]
= E

[
(θ̂(Y )− θ)(θ̂(Y )− θ)T

]
. The Fisher information

matrix is discussed in more detail in Section 2.5 on page 18.

Proof Since θ̂(Y ) is unbiased we have that

E
[
θ̂(Y )

]
= θ (2.7)

i.e., ∫
θ̂(y)fY (y;θ){dy} = θ (2.8)

1Note that the inequality should be understood in the way that the left hand side ÷
right hand side is non-negative definite.
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which implies that
∂

∂θ

∫
θ̂(y)fY (y;θ){dy} = I. (2.9)

Assuming sufficient regularity to allow for differentiation under the integral
we obtain ∫

θ̂(y)
∂

∂θ
fY (y;θ){dy} = I (2.10)

or ∫
θ̂(y)

∂ log fY (y;θ)
∂θ

fY (y;θ){dy} = I (2.11)
or

E
[
θ̂(Y )

∂ log fY (Y ;θ)
∂θ

]
= I. (2.12)

Furthermore, we see that

E
[
∂ log fY (Y ;θ)

∂θ

]
=
∫
∂ log fY (y;θ)

∂θ
fY (y;θ){dy}

=
∫
∂fY (y;θ)

∂θ
{dy} =

∂

∂θ

∫
fY (y;θ){dy} = 0T .

(2.13)

Using (2.12) and (2.13) we are able to find the variance (or variance

covariance matrix) for
[

θ̂(Y )
∂ log fY (Y ;θ)/∂θ

]
.

E
[(

θ̂(Y )− θ
(∂ log fY (Y ;θ)/∂θ)T

)(
(θ̂(Y )− θ)T ∂ log fY (Y ;θ)/∂θ

)]
= Var

[
θ̂(Y ) I
I i(θ)

]
. (2.14)

This variance matrix is clearly non-negative definite, and we have

[I i−1(θ)]

[
Var

[
θ̂(Y )

]
I

I i(θ)

] [
I

i−1(θ)

]
≥ 0 (2.15)

i.e.,
Var

[
θ̂(Y )

]
− i−1(θ) ≥ 0 (2.16)

which establishes the Cramer-Rao inequality.

Definition 2.4 – Efficient estimator
An unbiased estimator is said to be efficient if its covariance is equal to the
Cramer-Rao lower bound.

x Remark 2.2 – Dispersion matrix
The matrix Var[θ̂(Y )] is often called a variance covariance matrix since it
contains variances in the diagonal and covariances outside the diagonal. This
important matrix will often be termed the Dispersion matrix in this book. x
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2.3 The likelihood function

The likelihood function is built on an assumed parameterized statistical model
as specified by a parametric family of joint densities for the observations
Y = (Y1, Y2, . . . , Yn)T . The likelihood of any specific value θ of the parameters
in a model is (proportional to) the probability of the actual outcome, Y1 =
y1, Y2 = y2, . . . , Yn = yn, calculated for the specific value θ. The likelihood
function is simply obtained by considering the likelihood as a function of
θ ∈ Θk.

Definition 2.5 – Likelihood function
Given the parametric density fY (y,θ), θ ∈ Θk, for the observations y =
(y1, y2, . . . , yn) the likelihood function for θ is the function

L(θ;y) = c(y1, y2, . . . , yn)fY (y1, y2, . . . , yn;θ) (2.17)

where c(y1, y2, . . . , yn) is a constant.

x Remark 2.3
The likelihood function is thus the joint probability density for the actual
observations considered as a function of θ. x

x Remark 2.4
The likelihood function is only meaningful up to a multiplicative constant,
meaning that we can ignore terms not involving the parameter. x

As illustrated in Example 2.1 on page 9, the likelihood function contains a
measure of relative preference for various parameter values. The measure
is closely linked to the assumed statistical model, but given the model the
likelihood is an objective quantity that provides non-subjective measures of
belief about the values of the parameter.

Very often it is more convenient to consider the log-likelihood function
defined as

`(θ;y) = log(L(θ;y)) (2.18)

where L(θ;y) is given by (2.17). Sometimes the likelihood and the log-
likelihood function will be written as L(θ) and `(θ), respectively, i.e., the
dependency on y is not explicitly mentioned.

x Remark 2.5
It is common practice, especially when plotting, to normalize the likelihood
function to have unit maximum and the log-likelihood to have zero maximum. x
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Example 2.4 – Likelihood function for mean of normal distribution
An automatic production of a bottled liquid is considered to be stable. A
sample of three bottles was selected randomly from the production and the
volume of the content was measured. The deviation from the nominal volume
of 700.0ml was recorded. The deviations (in ml) were 4.6, 6.3, and 5.0.

At first a model is formulated
i) Model: C+E (center plus error) model, Y = µ+ ε

ii) Data: Yi = µ+ εi

iii) Assumptions:
• Y1, Y2, Y3 are independent
• Yi ∼ N(µ, σ2)
• σ2 is known, σ2 = 1.

Thus, there is only one unknown model parameter, µY = µ.
The joint probability density function for Y1, Y2, Y3 is

fY1,Y2,Y3(y1, y2, y3;µ) =
1√
2π

exp
[
− (y1 − µ)2

2

]
× 1√

2π
exp

[
− (y2 − µ)2

2

]
× 1√

2π
exp

[
− (y3 − µ)2

2

] (2.19)

which for every value of µ is a function of the three variables y1, y2, y3.
Now, we have the observations, y1 = 4.6; y2 = 6.3 and y3 = 5.0, and

establish the likelihood function

L4.6,6.3,5.0(µ) = fY1,Y2,Y3(4.6, 6.3, 5.0;µ)

=
1√
2π

exp
[
− (4.6− µ)2

2

]
× 1√

2π
exp

[
− (6.3− µ)2

2

]
× 1√

2π
exp

[
− (5.0− µ)2

2

]
.

The function depends only on µ. Note that the likelihood function expresses
the infinitesimal probability of obtaining the sample result (4.6, 6.3, 5.0) as a
function of the unknown parameter µ.

Reducing the expression we find

L4.6,6.3,5.0(µ) =
1

(
√

2π)3
exp

[
− 1.58

2

]
exp

[
− 3(5.3− µ)2

2

]
. (2.20)
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Figure 2.2: The likelihood function for µ given the observations y1 = 4.6, y2 = 6.3,
and y3 = 5.0, as in Example 2.4.

A sketch of the likelihood function is shown in Figure 2.2. Note that,
while the probability density function (2.19) is a function of (y1, y2, y3)
which describes the prospective variation in data, the likelihood function
(2.20) is a function of the unknown parameter µ, describing the relative
plausibility or likelihood of various values of µ in light of the given data. The
likelihood function indicates to which degree the various values of µ are in
agreement with the given observations. Note, that the maximum value of the
likelihood function (2.20) is obtained for µ̂ = 5.3 which equals the sample
mean y =

∑n
i=1 yi/n.

Sufficient statistic
The primary goal in analyzing observations is to characterize the information
in the observations by a few numbers. A statistic t(Y1, Y2, . . . , Yn) is the result
of applying a function (algorithm) to the set of observations. In estimation
a sufficient statistic is a statistic that contains all the information in the
observations.

Definition 2.6 – Sufficient statistic
A (possibly vector-valued) function t(Y1, Y2, . . . , Yn) is said to be a sufficient
statistic for a (possibly vector-valued) parameter, θ, if the probability density
function for t(Y1, Y2, . . . , Yn) can be factorized into a product

fY1,...,Yn(y1, . . . , yn;θ) = h(y1, . . . , yn)g(t(y1, y2, . . . , yn);θ)

with the factor h(y1, . . . , yn) not depending on the parameter θ, and the fac-
tor g(t(y1, y2, . . . , yn);θ) only depending on y1, . . . , yn through the function


