FLUD DYNAMCS VIA EXAMPLES AND SOLUTIONS

astek

SERGEY NAZARENKO

FLUID DYNAMICS

FLUID DYNAMICS VIA EXAMPLES AND SOLUTIONS

SERGEY NAZARENKO

University of Warwick, UK

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20141216

International Standard Book Number-13: 978-1-4398-8890-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Pı	Preface x				
A	ckno	wledge	ements	xv	
Li	st of	Figur	es	xvii	
A	utho	r Biog	raphy	xxi	
1	Fluid equations and different regimes of fluid flows				
	1.1	Backg 1.1.1	round theory	1 1	
		$1.1.2 \\ 1.1.3$	Inviscid flows	$2 \\ 3$	
	$1.2 \\ 1.3$	Furthe Proble	er reading	$\frac{3}{3}$	
		$1.3.1 \\ 1.3.2$	Reynolds number	$4 \\ 4$	
		$1.3.3 \\ 1.3.4$	Rossby number	$\frac{4}{5}$	
		$\begin{array}{c} 1.3.5\\ 1.3.6\end{array}$	Prandtl number	$5 \\ 6$	
	1.4	Soluti	Ons	7	
		1.4.1 1.4.2 1.4.2	Model solution to question 1.3.2	7	
		1.4.3 1.4.4 1.4.5	Model solution to question 1.3.5	8	
		1.4.5 1.4.6	Model solution to question 1.3.6	9 10	
2	Cor	iservat	ion laws in incompressible fluid flows	11	
	2.1	Backg 2.1.1 2.1.2 2.1.3	round theory Velocity-vorticity form of the Navier-Stokes equation Bernoulli theorems The vorticity form of the flow equation	11 11 12 12	

	2.1.4	Energy balance and energy conservation	13
	2.1.5	Momentum balance and momentum conservation	14
	2.1.6	Circulation: Kelvin's theorem	15
	2.1.7	Vorticity invariants in 2D flows	15
2.2	Furthe	er reading	16
2.3	Proble	ems	17
	2.3.1	Conservation of potential vorticity	17
	2.3.2	Tap water	17
	2.3.3	Discharge into a drainage pipe	18
	2.3.4	Oscillations in a U-tube	19
	2.3.5	Force on a bent garden hose	20
	2.3.6	Firehose flow	20
	2.3.7	Shear flow in a strain field	21
	2.3.8	Rankine vortex in a strain field	22
	2.3.9	Forces produced by a vortex dipole	23
	2.3.10	Torque produced by a vortex	24
	2.3.11	Jammed garden hose	24
	2.3.12	Flow through a Borda mouthpiece	26
	2.3.13	Water barrel on wheels	27
	2.3.14	Vortex lift	28
	2.3.15	Water clock	29
	2.3.16	Reservoir with regulated water level	29
	2.3.17	Energy of ideal irrotational flows	30
2.4	Solutio	ons	31
	2.4.1	Model solution to question 2.3.1	31
	2.4.2	Model solution to question 2.3.2	32
	2.4.3	Model solution to question 2.3.3	32
	2.4.4	Model solution to question 2.3.4	33
	2.4.5	Model solution to question 2.3.5	34
	2.4.6	Model solution to question 2.3.6	35
	2.4.7	Model solution to question 2.3.7	35
	2.4.8	Model solution to question 2.3.8	37
	2.4.9	Model solution to question 2.3.9	38
	2.4.10	Model solution to question 2.3.10	39
	2.4.11	Model solution to question 2.3.11	41
	2.4.12	Model solution to question 2.3.12	42
	2.4.13	Model solution to question 2.3.13	42
	2.4.14	Model solution to question 2.3.14	43
	2.4.15	Model solution to question 2.3.15	44
	2.4.16	Model solution to question 2.3.16	44
	2.4.17	Model solution to question 2.3.17	45

α	,	,
Ċо	nte	nts

3	Flı	uid wit	h free surface	47
	3.1	Backg	round theory	47
		3.1.1	Pressure boundary condition	47
		3.1.2	Kinematic boundary condition	48
		3.1.3	Axially and spherically symmetric flows	48
	3.2	Furthe	er reading	49
	3.3	Proble	ems	49
		3.3.1	Water surface distortion due to vortex	49
		3.3.2	Free surface shape of water in an annular flow	50
		3.3.3	Water-filled turntable	51
		3.3.4	Cavity implosion	52
		3.3.5	Flow in an expanding air bubble	53
		3.3.6	Flow in wire coating die	54
	3.4	Solutio	ons	54
		3.4.1	Model solution to question 3.3.1	54
		3.4.2	Model solution to question 3.3.2	56
		3.4.3	Model solution to question 3.3.3	57
		3.4.4	Model solution to question 3.3.4	58
		3.4.5	Model solution to question 3.3.5	60
		3.4.6	Model solution to question 3.3.6	60
			-	
4	Wa	aves an	d instabilities	63
	4.1	Backg	round theory	63
		4.1.1	Waves	63
		4.1.2	Instabilities	65
	4.2	Furthe	er reading	68
	4.3	Proble	ems	68
		4.3.1	Motion of a wave packet	68
		4.3.2	Gravity waves on the water surface	69
		4.3.3	Gravity and capillary waves: dimensional analysis	70
		4.3.4	Inertial waves in rotating fluids	71
		4.3.5	Internal waves in stratified fluids	72
		4.3.6	Sound waves in compressible fluids	73
		4.3.7	Sound rays in shear flows: acoustic mirage	74
		4.3.8	Sound rays in stratified flows: wave guides, Snell's law	75
		4.3.9	Sound rays in a vortex flow: a black hole effect	76
		4.3.10	Kelvin-Helmholtz instability	76
		4.3.11	Rayleigh-Taylor instability.	77
		4.3.12	Rapid distortion theory	78
	4.4	Solutio	\tilde{v}	80
		4.4.1	Model solution to question 4.3.1	80
		4.4.2	Model solution to question 4.3.2	81
		4.4.3	Model solution to question 4.3.3	83

	4.4.4	Model solution to question 4.3.4	84
	4.4.5	Model solution to question 4.3.5	85
	4.4.6	Model solution to question 4.3.6	86
	4.4.7	Model solution to question 4.3.7	87
	4.4.8	Model solution to question 4.3.8	88
	4.4.9	Model solution to question 4.3.9	90
	4.4.10	Model solution to question 4.3.10	91
	4.4.11	Model solution to question 4.3.11	93
	4.4.12	Model solution to question 4.3.12	95
Βοι	ındary	layers	99
5.1	Backg	round theory	99
5.2	Proble	ems	100
-	5.2.1	The boundary layer equations	100
	5.2.2	A boundary layer over a semi-infinite plate	101
	5.2.3	Boundary layer produced by a pure strain flow	102
	5.2.4	A flow near an oscillating wall	104
	5.2.5	A boundary layer in a rotating fluid	104
5.3	Solutio	ons	106
	5.3.1	Model solution to question 5.2.1	106
	5.3.2	Model solution to question 5.2.2	107
	5.3.3	Model solution to question 5.2.3	109
	5.3.4	Model solution to question 5.2.4	110
	5.3.5	Model solution to question $5.2.5$	111
Τw	vo-dime	ensional flows	115
61	Backm	round theory	115
6.2	Proble		118
0.2	621	Pure strain flow	118
	62.1	Couette flow	118
	6.2.2	Poiseuille flow	110
	62.0	"Turbulent" shear flows	119
	62.1	Jet flow	121
	62.6	Mixing laver	121
	6.2.7	Stream function for a 2D flow	122
	6.2.8	Bound vortices: Bankine vortex and a point vortex	123
	629	Flow bounded by two intersecting planes	123
	6.2.10	"Binary star system"	124
	6.2.11	Complex potential for the gravity water waves	125
	6.2.12	Aeroplane lift and trailing vortices	125
	6.2.13	Finding drag and lift using dimensional analysis	125
	6.2.14	A laminar jet flow	126
	6.2.15	Flow in a cylinder with an elliptical cross-section	127

 $\mathbf{5}$

6

Content

		6.2.16	Rain flow over an inclined roof	127
		6.2.17	Flow over an inclined plane	128
	6.3	Solutio	ons	129
		6.3.1	Model solution to question 6.2.1	129
		6.3.2	Model solution to question 6.2.2	129
		6.3.3	Model solution to question 6.2.3	130
		6.3.4	Model solution to question 6.2.4	131
		6.3.5	Model solution to question 6.2.5	133
		6.3.6	Model solution to question 6.2.6	134
		6.3.7	Model solution to question 6.2.7	135
		6.3.8	Model solution to question 6.2.8	136
		6.3.9	Model solution to question 6.2.9	137
		6.3.10	Model solution to question 6.2.10	139
		6.3.11	Model solution to question 6.2.11	141
		6.3.12	Model solution to question 6.2.12	142
		6.3.13	Model solution to question 6.2.13	142
		6.3.14	Model solution to question 6.2.14	143
		6.3.15	Model solution to question 6.2.15	144
		6.3.16	Model solution to question 6.2.16	145
		6.3.17	Model solution to question $6.2.17 \ldots \ldots \ldots$	146
7	Poir	nt vort	ices and point sources	149
		D 1		1.10
	7.1	Backg	round theory	149
	7.2	Furthe	r reading	152
	7.3	Proble	ms	152
		(.3.1	Energy, momentum, and angular momentum of a point	150
		720	Vortex set	152
		1.3.2	Motion of two point vortices	153
		1.3.3	Vortex molecules	103
		1.3.4 7.2.5	Motion of three point vortices	155
		1.3.3 7.2.6	Point vortex in a channel	155
		1.3.0	Clustering in the gas of point vertices	157
		1.3.1	Discharge through a hale	157
		1.3.8	Submarged nump near a wall	159
		7.3.9	Flows page a generalize and a balloon	159
	74	7.5.10 Solutio	Tiows past a zeppenn and a bandon	161
	1.4	501utic 7 4 1	Model colution to question 7.2.1	161
		1.4.1		101
		749	Model solution to question 7.3.2	169
		7.4.2	Model solution to question 7.3.2	162
		7.4.2 7.4.3 7.4.4	Model solution to question 7.3.2 Model solution to question 7.3.3 Model solution to question 7.3.4	$162 \\ 163 \\ 165$
		7.4.2 7.4.3 7.4.4 7.4.5	Model solution to question 7.3.2	$162 \\ 163 \\ 165 \\ 167$
		7.4.2 7.4.3 7.4.4 7.4.5 7.4.6	Model solution to question 7.3.2	$162 \\ 163 \\ 165 \\ 167 $
		$7.4.2 \\ 7.4.3 \\ 7.4.4 \\ 7.4.5 \\ 7.4.6 \\ 7.4.7 $	Model solution to question 7.3.2Model solution to question 7.3.3Model solution to question 7.3.4Model solution to question 7.3.5Model solution to question 7.3.6	$162 \\ 163 \\ 165 \\ 167 \\ 167 \\ 168 $

ix

		7.4.8	Model solution to question 7.3.8	169
		7.4.9	Model solution to question 7.3.9	170
		7.4.10	Model solution to question 7.3.10	171
8	Tu	rbulen	ce 1	173
	8.1	Backg	round theory	173
	8.2	Furthe	r reading	176
	8.3	Proble	ems	176
	0.0	8.3.1	Kolmogorov spectrum of turbulence	176
		8.3.2	Dual cascade in steady two-dimensional turbulence .	177
		8.3.3	Dual cascade in evolving two-dimensional turbulence.	178
		8.3.4	Spectra of two-dimensional turbulence	179
		8.3.5	Dispersion of particles in turbulence	179
		8.3.6	Near-wall turbulence	180
		8.3.7	Dissipative anomaly in turbulence	181
	8.4	Solutio	ons	182
		8.4.1	Model solution to question 8.3.1	182
		8.4.2	Model solution to question 8.3.2	182
		8.4.3	Model solution to question 8.3.3	183
		8.4.4	Model solution to question 8.3.4	183
		8.4.5	Model solution to question 8.3.5	184
		8.4.6	Model solution to question 8.3.6	185
		8.4.7	Model solution to question 8.3.7	186
9	Co	mpress	sible flow 1	187
	0.1	Booko	round theory	197
	9.1	0 1 1	One dimensional gas dynamics	107 187
		9.1.1 0 1 2	Two-dimensional gas dynamics	107
		3.1.2	9.1.2.1 Irrotational isontropic flows	100
			0.1.2.2 Stoody hypersonic flow past a slonder hody	101
	92	Furthe	r reading	103
	9.2	Proble		193
	0.0	931	Characteristic equations	193
		932	Flow due to a piston withdrawal	194
		933	Gas expansion into vacuum	195
		934	Dam break flow	195
		935	Momentum conservation in a viscous compressible flow	195
		936	Energy conservation in compressible flow	195
		937	Rankine-Hugoniot conditions for jumps across shocks	196
		9.3.8	Hypersonic collision of two gas masses	196
		9.3.9	Zhukovskiv's theorem for the subsonic flow	198
		9.3.10	Flow around a cone-nosed rocket	199
		9.3.11	Flow around a wedge	200

Content

	9.3.12	Lift force on a hypersonic wing	202
	9.3.13	Formation of a blast wave by a very intense explosion	203
	9.3.14	Balloon in polytropic atmosphere	203
9.4	Solutio	ons	204
	9.4.1	Model solution to question 9.3.1	204
	9.4.2	Model solution to question 9.3.2	204
	9.4.3	Model solution to question 9.3.3	207
	9.4.4	Model solution to question 9.3.4	207
	9.4.5	Model solution to question 9.3.5	207
	9.4.6	Model solution to question 9.3.6	208
	9.4.7	Model solution to question 9.3.7	209
	9.4.8	Model solution to question 9.3.8	210
	9.4.9	Model solution to question 9.3.9	211
	9.4.10	Model solution to question 9.3.10	212
	9.4.11	Model solution to question 9.3.11	214
	9.4.12	Model solution to question 9.3.12	216
	9.4.13	Model solution to question 9.3.13	217
	9.4.14	Model solution to question 9.3.14	218
Bibliog	raphy		219
Index			223

xi

Preface

As an applied subject, fluid dynamics is best studied via considering specific examples and solving problems dealing with various phenomena and effects in fluids. This is well recognised in most Fluid Dynamics courses, which often have support classes devoted to considering physically motivated exercises. Also, such Fluid Dynamics courses are typically assessed via solution of specific problems more often than via reproducing mathematical proofs or general abstract constructions. However, original Fluid Dynamics problems are rather hard to invent, and the Fluid Dynamics lecturers are often "on their own" having to reinvent successful ideas, tricks and representative examples. The present book addresses these issues by systematically providing such ideas and model examples.

A distinct feature of the present book is that it is problem oriented. Of course, there are many wonderful fluid dynamics textbooks, classical and more recent, which contain exercises and examples, to name just a few: Hydrodynamics by H. Lamb [13], Essentials of Fluid Dynamics L. Prandtl [21], An Introduction to Fluid Dynamics by G.K. Batchelor [4], Fluid Dynamics by L.D. Landau and E.M. Lifshitz [14], Prandtl-Essentials of Fluid Mechanics by Oertel et al. [17], Elementary Fluid Dynamics by D.J. Acheson [1], Fluid Mechanics by P.K. Kundu and I.M. Cohen [12], Physical Fluid Dynamics by D.J. Tritton [28], A First Course in Fluid Dynamics by A.R. Paterson [19], Elementary Fluid Mechanics by T. Kambe [9], Fluid Mechanics: A Short Course for Physicists by G. Falkovich [6], Fundamentals of Geophysical Fluid Dynamics by J.C. McWilliams [16] and Waves in Fluids by J. Lighthill [15]. However, most of the existing books make an accent on the theory or expositions. There has been a clear lack of a text which would contain a sizeable set of example problems and detailed model solutions. The present book is intended to fill this gap by presenting a number of fluid dynamics problems organised in chapters dealing with several sub-areas, types of flows and applications. The problems form a "skeleton" of the book structure. Throughout this book, we include supplementary theoretical material when necessary, with an extended list of references for suggested further reading material at the end of each chapter. We also provide a complete set of model solutions.

The book is designed to be used in problem solving support classes and for exam revision in undergraduate and graduate fluid dynamics courses. Also, the book will aid lecturers by offering a pool of possible exam questions for such fluid dynamics courses. It is my hope that the book could be useful also

Preface

to students and lecturers in related subjects, such as continuum mechanics, turbulence, ocean and atmospheric sciences, etc. More broadly, the provided set of example problems should help an effective hands-on study of fluid dynamics, within or outside of a university course, including an independent study by specialists in other scientific areas who would like to learn basics of fluid dynamics.

 xiv

Acknowledgements

I am grateful to Jason Laurie for a thorough proofreading of the manuscript. I thank Davide Faranda, Denis Kuzzay, Vadim Nikolaev, and Miguel Onorato for their comments that allowed to improve the presentation. The book was partially written during my sabbatical leave spent at the Institute of Computational Technologies in Novosibirsk, Russia, in 2012–13 and at the SPEC laboratory at the Commissariat à l'Énergie Atomique in Saclay, France, in 2013–14. I am grateful to both of these organisations for their genuine hospitality.

List of Figures

2.1	Tap water. 18
2.2	Drain pipe
2.3	U-tube
2.4	Bent garden hose
2.5	Water flow in firehose
2.6	Vortex pair in a cylindrical container
2.7	Vortex in a cylindrical container
2.8	Sudden change of a pipe cross-section
2.9	Flow through a Borda mouthpiece
2.10	Flow from a moving barrel
2.11	Vortices over sharply swept plane wings
2.12	Vortex over an infinite flat plate located at $y = 0$. The image
	vortex is below the plate (dashed line)
2.13	Water clock
2.14	Reservoir with a sluice gate
3.1	Vortex in a layer of fluid with free surface
3.2	Water in an annular flow
3.3	Rotating tank of water
3.4	Cavity implosion
3.5	Expanding air bubble
3.6	Flow in a wire coating die
4.1	Wave packet
4.2	Stable (left) and unstable (right) fixed points
4.3	Plane-parallel shear flow
4.4	Fourier distribution in a wave packet
4.5	Sound propagation in a shear flow
4.6	Kelvin-Helmholtz instability setup: piecewise constant shear
	flow with a tangential discontinuity
4.7	Constant-shear flow
4.8	Sound rays in a shear flow
4.9	Sound rays in a stratified flow
4.10	Sound rays in a stratified flow
4.11	Sound rays in a point vortex flow

List of Figures

5.1	Boundary layer profile	100
5.2	Boundary layer over a semi-infinite plate	102
5.3	Boundary layer near a stagnation point.	103
5.4	Boundary layer near an oscillating wall.	104
5.5	Boundary layer in a rotating fluid.	105
6.1	Couette flow.	118
6.2	Poiseuille flow	119
6.3	Jet flow	121
6.4	Mixing layer.	122
6.5	Flow down a roof	127
6.6	Flow down a slope	128
6.7	"Turbulent" Couette flow.	132
6.8	"Turbulent" Poiseuille flow.	133
6.9	Calculation of the mass flux	136
6.10	Point vortex.	136
6.11	Case $n = 4$	138
6.12	Case $n = 4/3$	138
6.13	Case $n = 2/3$	139
6.14	Case $n = 1/2$	139
6.15	"Binary star system"	140
7.1	"Gas" of point vortices. Counter-clockwise and clockwise	
	pointing arrows mark vortices with positive and negative cir-	
	culations respectively	150
7.2	A point source flow	151
7.3	Three-vortex of molecule.	153
7.4	Four-vortex of molecule.	154
7.5	N-vortex of molecule for $N = 6$	154
7.6	Scattering of a point vortex dipole at an isolated vortex	156
7.7	Vortex in channel	157
7.8	Infinite chain of image vortices	158
7.9	Water discharging through a hole at the bottom	159
7.10	Submerged pump near a wall	160
7.11	Flow around a zeppelin	160
7.12	Motion of two like-signed point vortices. Both vortices are	
	counter-clockwise in this figure, i.e. they have positive circu-	
	lations $\Gamma_1 > 0$ and $\Gamma_2 > 0$	163
7.13	Motion of two opposite-signed point vortices. Counter-	
	clockwise and clockwise pointing arrows mark vortices with	
	positive and negative circulations respectively. In this exam-	
	ple $\Gamma_1 > 0$ and $\Gamma_2 < 0$	164
7.14	Dipole of point vortices. Counter-clockwise and clockwise	
	pointing arrows mark vortices with positive and negative cir-	
	culations respectively	165

List	of	Figures
------	----	---------

7.15	Three-vortex of molecule.	166
8.1	Richardson cascade in the physical space.	174
8.2	Richardson's cascade in the k -space.	175
8.3	2D turbulence: dual cascade in the k -space space	175
9.1	Hypersonic flow past a slender body ("hypersonic plane"). The bold solid line is a shock, dashed lines indicate an expan- sion fan.	192
9.2	Gas motion after a collision of two clouds. The dashed lines mark positions of the three jumps: two shocks (on the right and on the left) and a contact discontinuity (in the middle). The solid line is the density profile. The pressure profile is sim- ilar, except that there is no pressure jump across the contact	
	discontinuity.	197
9.3	Flow past a thin rocket.	199
9.4	Flow past a wedge	201
9.5	Hypersonic flow past a flat wing	202
9.6	Characteristics in a piston-generated flow. C^0 – solid lines, C^- – dashed lines, C^+ – dash-dotted lines. The bold straight line passing through (0, 0) is separating the C^+ -characteristics originating on the x-axis and the ones originating at the pis-	005
0.7	ton's trajectory $x = A(t)$.	205
9.7	the piston's speed is constant and negative, $\dot{X}(t) = -V < 0$.	207
9.8	Flow past a thin rocket.	212
9.9	Flow past a wedge.	214
9.10	Hypersonic flow past a flat wing. The wing is shown by the very bold line. The bold line marks the shocks, and the dashed lines mark the expansion fans. The streamlines are marked by	
	the thin solid lines	216

xix

Author Biography

Sergey Nazarenko's research is in the areas of fluid dynamics, turbulence and waves arising in different applications. This includes wave turbulence, magneto-hydrodynamic turbulence, superfluid turbulence, water waves, Rossby waves, vortices and jets in geophysical fluids, drift waves and zonal jets in plasmas, optical vortices and turbulence, turbulence in Bose-Einstein condensates.

Sergey Nazarenko has been working at the University of Warwick since 1996, where presently he holds a position of full professor. Prior to Warwick, Sergey Nazarenko worked as visiting assistant professor at the Department of Mathematics, University of Arizona in 1993–1996, postdoc at the Department of Mechanical and Aerospace Engineering, Rutgers University, New Jersey in 1992–1993, and researcher at the Landau Institute for Theoretical Physics, Moscow in 1991–1992.

Sergey Nazarenko wrote *Wave Turbulence* published by Springer in 2011. He was a co-editor of the books *Non-equilibrium Statistical Mechanics and Turbulence*, CUP 2008, and *Advances in Wave Turbulence*, World Scientific, 2013. Sergey Nazarenko has organised twelve international scientific conferences and workshops in fluid dynamics and turbulence.

Chapter 1

Fluid equations and different regimes of fluid flows

1.1 Background theory

A fluid is a continuous medium whose state is characterised by its velocity field, $\mathbf{u} = \mathbf{u}(\mathbf{x}, t)$, pressure and density fields, $p = p(\mathbf{x}, t)$ and $\rho = \rho(\mathbf{x}, t)$ respectively, and possibly other relevant fields (e.g. temperature). Here, t is time and $\mathbf{x} \in \mathbb{R}^d$ is the physical coordinate in the d-dimensional space, d = 1, 2or 3. Respectively, $\mathbf{u} \in \mathbb{R}^d$, although in some special flows the dimensions of \mathbf{x} and \mathbf{u} may be different from each other.

Most of the fluid dynamics results have been obtained starting from the *Navier-Stokes equations*. These equations have many variations depending on the forces acting on the fluid, as well as the properties of the fluid itself—compressibility, thermoconductivity, viscosity, density homogeneity/inhomogeneity, chemical composition, etc. We will consider a relatively small but important subset of idealised cases.

1.1.1 Incompressible flows

The Navier-Stokes equation for incompressible flow is given by

$$D_t \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u} + \mathbf{f}, \qquad (1.1)$$

which is a momentum balance equation for fluid particles (a continuous medium version of Newton's second law). We introduced notation for the fluid particle acceleration,

$$D_t \mathbf{u} \equiv \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u}. \tag{1.2}$$

Operator $D_t \equiv \partial_t + (\mathbf{u} \cdot \nabla)$ is a time derivative along the fluid particle trajectory—a Lagrangian time derivative. Possible external forces acting on the fluid (per unit mass) are denoted by term **f** in the right-hand side of equation (1.1); these could be gravity, electrostatic force, etc.

The momentum balance equation (1.1) has to be complemented by a mass

balance equation, which for an incompressible fluid is

$$\nabla \cdot \mathbf{u} = 0, \tag{1.3}$$

and is usually called the *incompressibility condition*.

Note that fluids can be incompressible and yet the density of the fluid particles may vary in physical space. In this case we need an extra equation describing the conservation of ρ along the fluid particle trajectories,

$$D_t \rho = 0. \tag{1.4}$$

1.1.2 Inviscid flows

When the Reynolds number is large one can ignore viscosity (see problem 1.3.1), and the momentum balance equation (1.1) reduces to

$$D_t \mathbf{u} = -\frac{1}{\rho} \nabla p + \mathbf{f}, \tag{1.5}$$

which is known as the *Euler equation*. It is valid for both compressible and incompressible fluids. However, for compressible fluids, the mass balance equation is now different:

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0. \tag{1.6}$$

(This equation remains the same in presence of viscosity). Also, since there is an extra unknown field, $\rho(\mathbf{x}, t)$, we need an extra evolution equation for the model to be complete. Generally, such an equation is provided by the energy balance relation. In particular, assuming that different fluid particles are thermally insulated from each other, one can write the additional equation in the form of conservation of entropy $S \equiv S(\mathbf{x}, t)$ along the fluid paths,

$$D_t S = 0. \tag{1.7}$$

For the polytropic gas model

$$S = C_v \ln \frac{p}{\rho^{\gamma}},\tag{1.8}$$

where constants C_v and γ are called the specific heat constant and the adiabatic index respectively. Obviously, C_v drops out of the equation (1.8) and therefore it is irrelevant in this case. For monatomic ideal gas (e.g. helium, neon, argon) $\gamma = 5/3$; for diatomic gas $\gamma = 7/5$ (e.g. oxygen, nitrogen).

In the simplest case of *isentropic gas*, S = const, i.e.

$$p \propto \rho^{\gamma}.$$
 (1.9)

In incompressible fluids the equation (1.7) implies conservation of temperature T along the fluid paths,

$$D_t T = 0.$$
 (1.10)