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Preface

As an applied subject, fluid dynamics is best studied via considering specific
examples and solving problems dealing with various phenomena and effects
in fluids. This is well recognised in most Fluid Dynamics courses, which often
have support classes devoted to considering physically motivated exercises.
Also, such Fluid Dynamics courses are typically assessed via solution of specific
problems more often than via reproducing mathematical proofs or general
abstract constructions. However, original Fluid Dynamics problems are rather
hard to invent, and the Fluid Dynamics lecturers are often “on their own”
having to reinvent successful ideas, tricks and representative examples. The
present book addresses these issues by systematically providing such ideas and
model examples.

A distinct feature of the present book is that it is problem oriented. Of
course, there are many wonderful fluid dynamics textbooks, classical and more
recent, which contain exercises and examples, to name just a few: Hydrody-
namics by H. Lamb [13], Essentials of Fluid Dynamics L. Prandtl [21], An
Introduction to Fluid Dynamics by G.K. Batchelor [4], Fluid Dynamics by
L.D. Landau and E.M. Lifshitz [14], Prandtl-Essentials of Fluid Mechanics by
Oertel et al. [17], Elementary Fluid Dynamics by D.J. Acheson [1], Fluid Me-
chanics by P.K. Kundu and I.M. Cohen [12], Physical Fluid Dynamics by D.J.
Tritton [28], A First Course in Fluid Dynamics by A.R. Paterson [19], Ele-
mentary Fluid Mechanics by T. Kambe [9], Fluid Mechanics: A Short Course
for Physicists by G. Falkovich [6], Fundamentals of Geophysical Fluid Dynam-
ics by J.C. McWilliams [16] and Waves in Fluids by J. Lighthill [15]. However,
most of the existing books make an accent on the theory or expositions. There
has been a clear lack of a text which would contain a sizeable set of exam-
ple problems and detailed model solutions. The present book is intended to
fill this gap by presenting a number of fluid dynamics problems organised in
chapters dealing with several sub-areas, types of flows and applications. The
problems form a “skeleton” of the book structure. Throughout this book, we
include supplementary theoretical material when necessary, with an extended
list of references for suggested further reading material at the end of each
chapter. We also provide a complete set of model solutions.

The book is designed to be used in problem solving support classes and for
exam revision in undergraduate and graduate fluid dynamics courses. Also,
the book will aid lecturers by offering a pool of possible exam questions for
such fluid dynamics courses. It is my hope that the book could be useful also

xiii



xiv Preface

to students and lecturers in related subjects, such as continuum mechanics,
turbulence, ocean and atmospheric sciences, etc. More broadly, the provided
set of example problems should help an effective hands-on study of fluid dy-
namics, within or outside of a university course, including an independent
study by specialists in other scientific areas who would like to learn basics of
fluid dynamics.
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Chapter 1

Fluid equations and different
regimes of fluid flows

1.1 Background theory

A fluid is a continuous medium whose state is characterised by its velocity
field, u = u(x,t), pressure and density fields, p = p(x,t) and p = p(x,t)
respectively, and possibly other relevant fields (e.g. temperature). Here, t is
time and x € R? is the physical coordinate in the d-dimensional space, d = 1,2
or 3. Respectively, u € R%, although in some special flows the dimensions of
x and u may be different from each other.

Most of the fluid dynamics results have been obtained starting from
the Navier-Stokes equations. These equations have many variations depend-
ing on the forces acting on the fluid, as well as the properties of the
fluid itself—compressibility, thermoconductivity, viscosity, density homogene-
ity /inhomogeneity, chemical composition, etc. We will consider a relatively
small but important subset of idealised cases.

1.1.1 Incompressible flows

The Navier-Stokes equation for incompressible flow is given by
1
Diu=—-Vp+vViu+f, (1.1)
p

which is a momentum balance equation for fluid particles (a continuous
medium version of Newton’s second law). We introduced notation for the
fluid particle acceleration,

Dyu=0u+ (u-Vu. (1.2)

Operator D; = 0; + (u- V) is a time derivative along the fluid particle
trajectory—a Lagrangian time derivative. Possible external forces acting on
the fluid (per unit mass) are denoted by term f in the right-hand side of
equation (1.1); these could be gravity, electrostatic force, etc.

The momentum balance equation (1.1) has to be complemented by a mass
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balance equation, which for an incompressible fluid is
V-u=0, (1.3)

and is usually called the incompressibility condition.

Note that fluids can be incompressible and yet the density of the fluid
particles may vary in physical space. In this case we need an extra equation
describing the conservation of p along the fluid particle trajectories,

1.1.2 Inviscid flows

When the Reynolds number is large one can ignore viscosity (see problem
1.3.1), and the momentum balance equation (1.1) reduces to

1
Diyu = —;Vp—i—f, (1.5)

which is known as the Euler equation. It is valid for both compressible and
incompressible fluids. However, for compressible fluids, the mass balance equa-
tion is now different:

Op+ V- (pu)=0. (1.6)

(This equation remains the same in presence of viscosity). Also, since there
is an extra unknown field, p(x,t), we need an extra evolution equation for
the model to be complete. Generally, such an equation is provided by the
energy balance relation. In particular, assuming that different fluid particles
are thermally insulated from each other, one can write the additional equation
in the form of conservation of entropy S = S(x,t) along the fluid paths,

DS = 0. (1.7)
For the polytropic gas model

S=C,lnL, (1.8)
p’Y

where constants C), and - are called the specific heat constant and the adi-
abatic index respectively. Obviously, C,, drops out of the equation (1.8) and
therefore it is irrelevant in this case. For monatomic ideal gas (e.g. helium,
neon, argon) v = 5/3; for diatomic gas v = 7/5 (e.g. oxygen, nitrogen).

In the simplest case of isentropic gas, S =const, i.e.

poxpl. (1.9)

In incompressible fluids the equation (1.7) implies conservation of temper-
ature T along the fluid paths,

D,T = 0. (1.10)



