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This unique book is a compilation of selected papers from the past decade presenting a 
perspective underlying the thematics and strategies related to the chaos theory and its 
applications in modern sciences, in particular, physical sciences and also human behavior, 
both individual and social (including the latest investigations in chaos theory and its 
interrelated problems in diverse theoretical and practical disciplines, incorporating the 
main engineering applications.) This collection of selected papers provide a comprehensive 
view on some models and applications of chaos theory in medicine, biology, ecology, 
economy, electronics, mechanical and human sciences…etc. The papers, written by many 
of the leading experts in the fi eld, cover both the experimental and theoretical aspects of 
the subject. This volume presents a variety of fascinating topics of current interest and 
problems arising in the study of both discrete and continuous time chaotic dynamical systems 
modeling the several phenomena in nature and society. Exciting techniques stemming from 
the area of nonlinear dynamical systems theory are currently being developed to meet these 
challenges.

Models and Applications of Chaos Theory in Modern Sciences is devoted to setting an 
agenda for future research in this exciting and challenging fi eld.

I would like to thank everyone who help me in writing this book.

Readership: Advanced undergraduates and graduate students in natural and human 
sciences and engineering such as physics, chemistry, biology or bioinformatics…etc; 
academics and practitioners in nonlinear physics and in various other areas of potential 
application; researchers, instructors, mathematicians, nonlinear scientists and electronic 
engineers interested in chaos, nonlinear dynamics and dynamical systems and all interested 
in nonlinear sciences.

Dr. Elhadj Zeraoulia 
April, 2011
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ABSTRACT

Background: The study of health behavior change, including nutrition and physical 
activity behaviors, has been rooted in a cognitive-rational paradigm. Change is 
conceptualized as a linear, deterministic process where individuals weigh pros and 
cons, and at the point at which the benefi ts outweigh the cost change occurs. Consistent 
with this paradigm, the associated statistical models have almost exclusively assumed 
a linear relationship between psychosocial predictors and behavior. Such a perspective 
however, fails to account for non-linear, quantum infl uences on human thought and 
action. Consider why after years of false starts and failed attempts, a person succeeds at 
increasing their physical activity, eating healthier or losing weight. Or, why after years 
of success a person relapses. This paper discusses a competing view of health behavior 
change that was presented at the 2006 annual ISBNPA meeting in Boston.

Discussion: Rather than viewing behavior change from a linear perspective it can be 
viewed as a quantum event that can be understood through the lens of Chaos Theory and 
Complex Dynamic Systems. Key principles of Chaos Theory and Complex Dynamic 
Systems relevant to understanding health behavior change include: 1) Chaotic systems 
can be mathematically modeled but are nearly impossible to predict; 2) Chaotic systems 
are sensitive to initial conditions; 3) Complex Systems involve multiple component 
parts that interact in a nonlinear fashion; and 4) The results of Complex Systems are 
often greater than the sum of their parts. Accordingly, small changes in knowledge, 
attitude, effi cacy, etc. may dramatically alter motivation and behavioral outcomes. 
And the interaction of such variables can yield almost infi nite potential patterns of 

† Reused with permission from: Ken Resnicow, Roger Vaughan, A chaotic view of behavior change: a quantum 
leap for health promotion, International Journal of Behavioral Nutrition and Physical Activity 2006, 3: 25. 
http://www.ijbnpa.org/content/3/1/25.
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4 Models and Applications of Chaos Theory in Modern Sciences

motivation and behavior change. In the linear paradigm unaccounted for variance is 
generally relegated to the catch all “error” term, when in fact such “error” may represent 
the chaotic component of the process. The linear and chaotic paradigms are however, 
not mutually exclusive, as behavior change may include both chaotic and cognitive 
processes. Studies of addiction suggest that many decisions to change are quantum 
rather than planned events; motivation arrives as opposed to being planned. Moreover, 
changes made through quantum processes appear more enduring than those that involve 
more rational, planned processes. How such processes may apply to nutrition and 
physical activity behavior and related interventions merits examination. 

Background
“What we call chaos is just patterns we haven’t recognized. What we call random is just 
patterns we can’t decipher. What we can’t understand we call nonsense. What we can’t read 
we call gibberish” Chuck Palahniuk.

The study of health behavior change, including nutrition and physical activity 
behaviors, has historically been rooted in a cognitive-rational paradigm. Extant models, 
such as Social Cognitive Theory, the Health Belief Model, the Theory of Planned Behavior, 
the Transtheoretical Model and others, have generally viewed change as an interaction of 
cognitive factors such as knowledge, attitude, belief, effi cacy and intention [1,2]. Change is 
conceptualized as a linear, deterministic process where individuals weigh the pros and cons, 
and at the point at which the benefi ts outweigh the cost, “decisional balance” tips them toward 
change. An implicit assumption within this perspective is that change is a gradual process 
under conscious control. Consistent with this framework, the associated statistical models 
have almost exclusively assumed a linear relationship between psychosocial predictors and 
behavior (change); i.e., greater increases in knowledge, attitudes and intentions will lead to 
greater change in behavior.

However, the theoretical and statistical assumptions underlying this linear paradigm may 
be seriously fl awed. In particular, such a perspective fails to account for nonlinear, quantum 
infl uences on human thought and action. The limitations of a rational-linear conceptualization 
of behavior change may in part (in addition to measurement error) explain the modest proportion 
of behavioral variance accounted for by such models; which typically has been in the range of 
around 10%–20% and rarely higher than 50% [3–11]. The fact that the majority of studies 
have employed cross-sectional designs and relied on self-report to measure behavior further 
suggests that the true variance accounted for by linear models may be even lower [12]. Below 
we provide an alternative model of health behavior change based on non-linear dynamics.

Discussion
An alternative view is that decisions to initiate (and possibly maintain) behavior change 
are quantum rather than linear events [13]. Such quantum leaps result from a surge of 
motivation or inspiration that is greater than the sum of its cognitive parts. It is not so 
much a planned decision, but something that arrives beyond cognition. The more 



dramatic form of quantum change is described by Miller [14]. “Buried in the statement 
‘I just decided’, however can be another kind of experience that has been confused with 
ordinary decision making. It is the insightful type of quantum change. When people talk 
about such experiences in shorthand, they may say ‘it just happened’ or ‘I just decided’. 
Inquire a little more closely, however, and it becomes apparent that the process is somewhat 
more complex.” (page 37)

Miller delineates two types of quantum change, sudden insights and mystical epiphanies. 
Both kinds leave an indelible impact and often lead to lasting and pervasive change. Both 
usually involve a signifi cant alteration in how the person perceives him/her self, others and 
the world. Although the cases described in Miller’s book tend to involve an overwhelming 
transformation, less dramatic, less mystical “mini-epiphanies” may contribute to many 
behavior change decisions. From this perspective, behavior change can be understood 
through the lens of Chaos Theory and Complex Dynamic Systems. Four key principles 
from these theories relevant to understanding health behavior change are: 

 1.  Chaotic systems can be mathematically modeled, usually in non-linear terms, but are 
nearly impossible to predict;

 2. Chaotic systems are sensitive to initial conditions;
 3. Complex Systems involve multiple component parts that interact in a nonlinear 

fashion; and 
 4. The results of Complex Systems are often greater than the sum of their parts. 

Examples of chaotic systems include the weather, war, love, population growth, many 
epidemics and stock market prices. Chaos Theory has been used to explain psychologic 
health as well as specifi c health behaviors such as smoking and physical activity [15–17].

One of the fi rst published works on Chaos Theory came from a meteorologist named 
Edward Lorenz. In the 1960’s he was developing computer models of weather prediction. 
One day after running a predictive equation he decided to run the model a second time. 
But to save time he started the calculation in the middle of the sequence, plugging in 
manually some key numbers. But the predicted output diverged sharply from the original. 
He eventually discerned that in the original computation the number used was .506127 but 
in the simulation he had only entered the fi rst three digits, .506 [18]. This phenomenon, 
eventually labeled “sensitivity to initial conditions”, posits that a minor change at the 
beginning (or at various points) of a sequence of events can dramatically alter the long-
term outcome of the system. This is commonly referred to as the butterfl y effect. 

The fl apping of a single butterfl y’s wing today produces a tiny change in the state of 
the atmosphere. Over a period of time, what the atmosphere actually does diverges from 
what it would have done. So, in a month’s time, a tornado that would have devastated the 
Indonesian coast doesn’t happen. Or maybe one that wasn’t going to happen, does. (Ian 
Stewart, Does God Play Dice? The Mathematics of Chaos, pg. 141) [19].

The weather is considered a classic chaotic system, as described in the text below. Yet, 
simple substitution of health behavior terminology for meteorological terminology reveals 
striking similarity. The weather (BEHAVIOR CHANGE) is an example of a chaotic 

A Chaotic View of Behavior Change: A Quantum Leap for Health Promotion 5
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system. In order to make long- term weather forecasts (PREDICTIONS OF BEHAVIOR 
CHANGE) it would be necessary to take an infi nite number of measurements, which 
would be impossible to do. Also, because the atmosphere (HUMAN BEHAVIOR) is 
chaotic, tiny uncertainties would eventually overwhelm any calculations and defeat the 
accuracy of the forecast. Even if it were possible to fi ll the entire atmosphere of the earth 
with an enormous array of measuring instruments, e.g., thermometers, wind gauges, and 
barometers (PSYCHOSOCIAL, BIOLOGIC, AND ENVIRONMENTAL MEASURES) 
uncertainty in the initial conditions would arise from the minute variations in measured 
values between each set of instruments in the array. Because the atmosphere (HUMAN 
BEHAVIOR) is chaotic, these uncertainties, no matter how small, would eventually 
overwhelm any calculations and defeat the accuracy of the forecast (PREDICTION). 

Another metaphor for sensitivity to initial conditions involves rolling two identical balls 
down a tall rocky mountain. Starting the balls even an inch or less apart at the top of the 
mountain could result in the two balls ending hundreds of feet apart at the bottom; having 
traversed vastly different courses. The different pathways created by slight differences in 
the impact point on a billiard ball is another example.

One additional concept from Chaos Theory, fractal patterns, may also be relevant to 
understanding human behavior. Fractals, which have been identifi ed in natural science in 
the mapping of the microvascular system and snow fl ake geometry, are recurring patterns 
within larger systems that are self-similar, that is, a shape appears similar at all scales of 
magnifi cation. In terms of human behavior, there may be common patterns of behavior 
change within and across individuals that follow certain complex, non linear patterns. Thus, 
although behavior change may unfold in an almost infi nite combination of knowledge, 
attitude, effi cacy, and intention, there may be recurrent patterns of change that may be used 
to identify audience segments which could be targeted by common interventions.

Linear

Cognitive-Rational

Motivation is arrived at

Planned

Cortical

Left Brain

Maintenance of Change
Engineers/Physicists

Quantum

Intuitive

Motivation arrives

Epiphany

Limbic

Right Brain

Initiation of Change

Artists

Figure 1 Continuum of Motivational Processes.

Application to Health Behavior
Health behavior may mirror other Complex Systems found in nature in that they involve 
multiple component parts that interact in a nonlinear fashion. Factors such as knowledge, 
attitude, belief, and effi cacy no doubt exert some infl uence on health behavior change. 



However, the interaction of these factors represent a complex system bound by chaotic 
regulation. For example, which particular bits of knowledge, attitude, belief, etc. and the 
amount of each required to “tip” the system for a particular individual is virtually impossible 
to predict, and the outcome is sensitive to initial conditions. Initial conditions within 
individuals, e.g., relevant prior experience with a particular disease (e.g., family history) 
or a genetic predisposition may alter the interaction in profound ways. And, the slightest 
change in the system, i.e., the addition of one more piece of information or persuasion 
could dramatically alter the outcome. Such complex relationships are well represented by 
the swirling patterns created by mixing multiple colors of dye with a stick. Given the non-
linear nature of complex systems they are usually represented mathematically by quadratic 
or other non-linear models. In the linear framework unaccounted for variance is generally 
relegated to the catch all “error” term, when in fact such “error” may represent the chaotic 
component of the outcome. Stated otherwise, “error” may be the result of imposing a 
linear model on a non-linear phenomenon. Additionally, in complex dynamic systems the 
interaction of factors can yield almost infi nite potential patterns. In linear terms, this may be 
analogous to higher order interaction terms that could involve 5, 10, or 15-way interactions. 
Although linear methods can be used to model such interactions, they are limited statistically 
and conceptually. First, the ability to detect such interactions would be underpowered, so 
unless the magnitudes of these interactions are pre-specifi ed so that the study could be 
adequately powered, these analyses would generally lead one to assume, perhaps falsely, 
that no interaction exists. Second, untangling a 3-way or higher order interaction generally 
extends beyond our ability to map and interpret such a fi nding; a relatively simple two-way 
interaction states that the effect of one variable on the outcome is not constant, but depends 
upon the level or status of yet a second variable (e.g., the intervention effect on cholesterol 
reduction is not constant, but is greater for males that for females). The extension to a 3-way 
interaction says that that observed gender by treatment interaction is itself not always better 
for males than for females, but depends upon the status of a third variable (perhaps the 
intervention does better for tall males, but no better than it works for short females, etc.). 
And this is a reduced example where each variable in the interaction only has two levels. In 
complex systems the levels of interactions are copious. Finally, from a chaotic perspective 
the confl uence of interactions both within and between individuals is highly variable and 
the system is sensitive to initial conditions making prediction of such complex interactions 
virtually impossible. From a chaotic perspective, rather than searching for main effects or 
simple 2-way interaction effects, behavior change is assumed to involve multiple levels of 
interaction that vary across individuals.

Linear models of behavior change are then both conceptually inappropriate and 
statistically futile. In traditional statistical terms this would equate to analyzing and 
reporting separate main effects for multiple independent variables when there are known 
interactions (non linear in nature) of these variables. The solution does not do justice to the 
complexity of the phenomena.

A potential important element of this model that should also be considered is the 
occurrence of random external and intrapsychic events. Chaotic systems are not synonymous 
with randomness, nonetheless, random events can signifi cantly impact complex systems. 

A Chaotic View of Behavior Change: A Quantum Leap for Health Promotion 7
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Consider why after years of false starts and failed attempts, a person succeeds at increasing 
their physical activity, eating healthier or losing weight. Or, why after years of success a 
person relapses. One explanation is that success or failure is determined by random events. 
The event may be external, such as hearing about someone they knew who lost weight, 
quit smoking, or perhaps passed away. This is similar to the “Cues” concept in the Health 
Belief Model [20,21].

The random event may also be intrapsychic. Without conscious thought, the person 
may experience a surge of motivation that they need to and/or are able to change or a 
craving may arise unexpectedly that triggers a relapse. Such feelings may be stimulated 
by associations created by classical conditioning about which the individual may not 
be conscious. Regardless, motivation and impulse arrives as opposed to being planned. 
Consistent with this perspective, West et al. recently reported an analysis of how smokers 
decided to quit.

Approximately half of the ex- and current smokers in their sample reported that their 
most recent quit attempt was unplanned and those who did quit this way were more likely 
to stay quit than those who made a specifi c plan to quit [22]. Another study of smokers 
found that more than half of quit attempts were spontaneous rather than planned [23]. 
West et al. explain their fi ndings using “catastrophe theory” [22], which posits that dramatic 
outcomes can result from continuous pressure of a force on a system. An example often 
used to illustrate this concept is the result of gradually bending a plastic ruler until it snaps 
or the point at which water becomes vapor. So too, motivation may break or boil when 
enough pressure is applied to the system.

Chaotic patterns can stimulate behavior change in two distinct ways. In the fi rst, 
single external random events such as a conversation, a public service announcement, 
newspaper article, word about the death of a friend or relative, etc. may serve as a tipping 
point for motivational change. Conversely, absent an external event, resident chunks of 
knowledge or attitude may randomly coalesce to form a perfect motivational storm. Miller 
also delineates two types of quantum change, with one being more a dramatic, mystical 
experience and the second being more a sudden insight or sense of fi nding one’s truth. 
Common to both pathways is that they occur outside of conscious reasoning; that they 
happen to the person [13]. As Miller notes, the individual experiences a “fast forward to 
self actualization”. Interestingly in a study of problem drinkers, those whose decision to 
quit drinking arose from a transformational experience (having experienced a negative/
traumatic event such as hitting rock bottom or having a spiritual awakening) were twice as 
likely to be non-problem drinkers at followup whereas those who reported weighing the 
pros and cons of drinking were actually more likely to have drinking problems at followup 
[24]. The cognitive approach to behavior change in this study was associated with worse 
outcomes. Thus not only do there appear to be linear and quantum pathways to change, 
the two processes may impact behavioral outcomes differently. Another perspective that 
may be useful to include in this alternative paradigm is the concept of “Tipping Points”. 
Tipping points are dramatic changes in social behavior that arise quickly and usually 
unexpectedly [25]. Whether it be a jingle or slogan; a political idea or mass purchase of a 



“fad” product, such tipping points are virtually impossible to predict, yet retrospectively 
coherent explanations for the phenomena are routinely offered. Similarly, each night after 
the stock market closes, pundants explain why certain events of the day or week “caused” 
the price fl uctuations. Yet, a priori, few pundants could have predicted the impact of said 
events. If they possessed such prognostication ability they would be extremely wealthy. 
The stock market provides an excellent metaphor for chaos, as on an almost daily level, 
tipping points occur that lead to what has been called the random walk theory of wall street 
[26]. Additionally, just as our interventions often work, the stock market tends to rise. The 
former may be due to an inherent will to live and the latter inherent optimism of consumers. 
However, in both cases, there may be underlying human dynamics that predispose systems 
to moving in a particular direction.

Threshold effects or tipping points are commonly used in epidemiology. For example 
cutpoints for obesity, hyperlipidemia, and blood pressure are in part based on non-linear 
thresholds at which disease risk begins to rise at a faster rate [27]. In behavioral terms, the 
tipping point refers to the threshold at which individuals or groups of individuals adopt a 
particular idea or practice. Relating this to the obesity epidemic for example, there may be 
a societal tipping point at which a large percent of the population decides to alter their diet 
and activity patterns. A recent tipping point occurred in 2004–2005 when as much as 15% 
of the US population had tried the Atkins diet or some other low carbohydrate regimen 
[28], despite little scientifi c evidence demonstrating effectiveness [29–31]. Such non 
linear shifts have also occurred in the prevalence of smoking and illicit drug use [32,33]. 
However, they are diffi cult to predict let alone cause. It is important to note that the chaotic 
perspective of behavior change offered here focuses mostly on the individual intrapsychic 
dimension. Environmental factors such cost, availability, legal restrictions etc. also interact 
with intrapsychic determinants. In some cases, environmental determinants can overwhelm 
system constraints. For example, raising cigarette taxes by several dollars per pack, has a 
suppressing impact on individual smoking behaviors, whereas lack of availability of fruits 
and vegetables can constrain dietary choices. 

Resistance to Chaos
Accepting randomness as a primal determinant of human behavior may be contrary to the 
deterministic view characteristic of western thought. Randomness may confl ict with an 
innate tendency for humans to infer causality and a need for predictability. For example, 
when a punter wins the lottery, a completely random event, many individuals will assume 
that the winner used some replicable strategy that led to them to “earn” their prize or that 
some higher order “kharma” deemed the winner worthy. Accepting randomness requires 
that we relinquish the faith that reward and punishment; fortune and misfortune are doled out 
in an orderly, just fashion. Perhaps not surprisingly, Chaos theory and non-linear dynamics 
have met considerable resistance within the scientifi c community [18]. For public health 
professionals it requires a new conceptualization of health behavior as well as how and 
why we infl uence change.

A Chaotic View of Behavior Change: A Quantum Leap for Health Promotion 9



10 Models and Applications of Chaos Theory in Modern Sciences

In the complex system approach, the role of health communications may be analogous 
to the spinning of ping pong balls in a lottery machine. Say that each ping pong ball 
represents a chunk of knowledge, attitude, effi cacy, or intention. On each ball lies a few 
strips of Velcro; the soft side. Inside the human psyche lies strips of the opposite, hard side 
of Velcro, which serve as potential motivational “receptors”. Some of the motivational 
ping pong balls may have resided in the system for years while others may have been more 
recently implanted through a health education program, clinical counseling encounter, or 
health communication campaign. Rather than attempting to predict which piece or pieces 
of motivation may “tip” the individual, from the chaotic perspective, the role of the health 
professional is to ensure the balls are kept spinning at various intervals and velocities 
to maximize the chances that they adhere to their receptors. When suffi cient balls have 
adhered a tipping point may occur. Which balls or combination of balls may trip the 
motivational switch as well as when and why they may stick, are chaotic events that defy 
accurate prediction. From a non-linear perspective, the goal of health professionals may be 
to encourage wing fl apping. 

The linear and chaotic paradigms are not necessarily mutually exclusive. Behavior 
change includes both chaotic and rational processes. As shown in the fi gure below, the 
Cognitive-Planned and Chaotic-Quantum aspects of motivation can be placed along a 
continuum. The continuum may be seen as a framework to both classify motivational styles 
(across individuals) or behavioral decisions (within individuals).

Some individuals may by their nature be prone to employ rationale decision making 
processes typically associated with left hemispheric function. On the other hand some 
may be more predisposed to quantum processes where change is more dramatic and less 
planned. Most individuals are likely infl uenced by both linear and quantum processes, 
perhaps depending on mood or other initial conditions. Another way to conceptualize the 
interaction of linear and quantum processes is that cognitive-rational factors may provide 
the fertile soil on which chaotic events may sprout. Thus, health promotion may be viewed 
as priming individuals so that when chaotic environmental or intrapsychic events occur, 
they have a greater likelihood of taking root. Whether individuals possess a predisposition to 
either style is an important issue with considerable implications for health communications. 
If valid, one implication is that program planners may need to tailor intervention content 
and delivery to match individual cognitive/motivational styles. Whereas quantum processes 
may be more operative at initiation of change, it is possible that cognitive-rational processes 
may be more relevant to maintenance of behavior change.

Summary and Implications for Practice and Future Research
The random component of health behavior change, though diffi cult to predict or control, 
can nonetheless be incorporated into practice and research. For example, using the “perfect 
storm” analogy, it may be important to provide individuals with periodic interventions 
so that the motivational ping pong balls are spun under varying “atmospheric” (i.e., 
psychologic and/or life circumstances) conditions. Periodic exposure is consistent with 
the approach used in many chronic disease management programs. Such program, from 



this new perspective can be viewed as providing repeated opportunities to produce the 
motivational storm. This approach is also consistent with counseling models such as 
motivational interviewing, which provide clients with considerable opportunity to explore 
life with and without their risk behavior; that is to spin the balls [34,35].

Another implication is that individually tailored interventions may be particularly 
promising as a means to maximize the likelihood of a perfect motivational storm 
[36–40]. Individually tailored communications increase both receiver attention and message 
salience, which together increase the chances that the “balls” are spun and that they have a 
optimal chance of sticking. There are also statistical implications. The potential variance in 
behavior accounted for by traditional cognitive factors should perhaps be assumed to have 
an upper limit far below 100%. Given prior studies, a reasonable upper limit may be in the 
50% range. And rather than assuming unaccounted for variance simply refl ects “error”, 
non-linear models could be used to explore alternative mathematical relationships. And 
although the relationship of predictor variables may be complex and non-linear, there may 
be identifi able patterns, i.e., fractals in the parlance of chaos theory, that manifest across 
individuals that would allow for sophisticated audience segmentation and potentially 
powerfully tailored interventions.

We are not proposing that linear statistical models and linear-based health promotion 
interventions are of no value and need be discarded entirely. There is a vast scientifi c 
base indicating that our interventions can successfully change behavior. What we are 
proposing, however is that we need to rethink why our interventions work and for whom. 
Group interventions, we propose, work because they have spun the “balls” of motivation 
(or deactivated barrier balls) in a large group of individuals, and for a subset of these 
individuals the balls fi t their motivational receptors and other psychologic and biologic 
settings. It is important to note that current theories and communication methodologies can 
greatly inform which “balls” we select to highlight in our interventions. Motivation is not 
random. Tailoring motivational messages to the audience remains a critical step in chieving 
positive outcomes, and our current theories can help select the most effective set of balls.

Additionally, although patterns of change likely follow unique, i.e., chaotic, patterns 
across individuals, it may nonetheless may be useful to know that, in aggregate, balls that 
have similar characteristic profi les tend to “pool” in a defi ned geographic area once rolled 
down the metaphorical intervention mountain, helping us to perhaps understand which ping 
pong balls to keep circulating and for whom. That is, there may be common pathways to 
change based on individual parameters that can be used to develop sophisticated audience 
segmenta ution analyses and more effective interventions that account for the chaotic 
element of change. A “mixture model” of both chaotic and linear progression may be one 
that helps us best understand change.

The proposition that a signifi cant proportion of human behavior operates from a 
chaotic perspective, at fi rst blush, may appear to defy empirical verifi cation. However, with 
the advent of technologies such as Functional Magnetic Resonance Imaging (fMRI) and 
momentary psychologic assessment, it may be possible to examine where, neurologically 
different types of motivation arise, and even predict when and why quantum transformations 
occur. Theoretical and statistical research examining behavior change from a quantum 
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perspective is encouraged. In particular, the degree to which transformational motivation 
observed in the addiction fi eld operates in the nutrition and physical activity domains, and 
whether changes spurred by inspiration are more enduring than changes arrived at from the 
more cognitive, conscious pathway merits examination.

References
 1.  Glanz K., Rimer B.K. and Lewis F.M.: Health Behavior and Health Education. 3rd edition. San 

Fransisco, John Wiley & Sons; 2002.
 2.  Baranowski T., Cullen K.W., Nicklas T., Thompson D. and Baranowski J.: Are current health 

behavioral change models helpful in guiding prevention of weight gain efforts? Obesity Research 
2003, 11 Suppl: 23S–43S.

 3. Godin G. and Kok G: The theory of planned behavior: a review of its applications to health-related 
behaviors. American Journal of Health Promotion 1996, 11: 87–98.

 4. Sjoberg S., Kim K. and Reicks M.: Applying the theory of planned behavior to fruit and vegetable 
consumption by older adults. Journal of Nutrition for the Elderly 2004, 23: 35–46.

 5. Astrom A.N.: Validity of cognitive predictors of adolescent sugar snack consumption. American 
Journal of Health Behavior 2004, 28: 112–121.

 6. Conn V.S., Burks K.J., Pomeroy S.H., Ulbrich S.L. and Cochran J.E.: Older women and exercise: 
explanatory concepts. Womens Health Issues 2003, 13: 158–166.

 7. Masalu J.R. and Astrom A.N.: The use of the theory of planned behavior to explore beliefs about 
sugar restriction. American Journal of Health Behavior 2003, 27: 15–24.

 8. Trost S.G., Pate R.R., Dowda M., Ward D.S., Felton G. and Saunders R.: Psychosocial correlates 
of physical activity in white and African-American girls. Journal of Adolescent Health 2002, 31: 
226–233.

 9. Lien  N., Lytle L.A. and Komro K.A.: Applying theory of planned behavior to fruit and vegetable 
consumption of young adolescents. American Journal of Health Promotion 2002, 16: 189–197.

 10. Kerner M.S. and Grossman A.H.: Attitudinal, social, and practical correlates to fi tness behavior: a 
test of the theory of planned behavior. Perceptual & Motor Skills 1998, 87: 1139–1154.

 11. Conner M., Norman P. and Bell R.: The theory of planned behavior and healthy eating. Health 
Psychology 2002, 21: 194–201.

 12. Baranowski T., Lin L., Wetter D.W., Resnicow K. and Davis M.: Theory as mediating variables: Why 
aren’t community interventions working as desired? Annals of Epidemiology 1997, 7: 89–95.

 13. Miller W.R.: The phenomenon of quantum change. Journal of Clinical Psychology 2004, 60: 
453–460.

 14. Miller W.R. and C’De Baca J.: Quantum change: When epiphanies and sudden insights transform 
ordinary lives., New York, NY, US: Guilford Press.; 2001:212.

 15. Behrens D.A., Caulkins J.P. and Feichtinger G.: A model of chaotic drug markets and their control. 
Nonlinear Dynamics, Psychology, & Life Sciences 2004, 8: 375–401.

 16. Sprott J.C.: Dynamical models of happiness. Nonlinear Dynamics, Psychology, & Life Sciences 2005, 
9: 23–36.

 17. Warren K., Hawkins R.C. and Sprott J.C.: Substance abuse as a dynamical disease: evidence and 
clinical implications of nonlinearity in a time series of daily alcohol consumption. Addictive 
Behaviors 2003, 28: 369–374.

 18. Glieck J.: Chaos: Making a New Science. New York, Penguin 1987.
 19. Stewart I.: Does God Play Dice?: The Mathematics of Chaos. Cambridge MA, Blackwell 1989.
 20. Rosenstock I.: Social learning theory and the health belief model. Health Education Quarterly 1988, 

15: 175–183.
 21. Janz N.K. and Becker M.H.: The health belief model: A decade later. Health Educaiton Quarterly 

1984, 11: 1–47.



 22. West R. and Sohal T.: “Catastrophic” pathways to smoking cessation: fi ndings from national survey. 
BMJ 2006, 332: 458–460.

 23. Larabie LC: To what extent do smokers plan quit attempts? Tobacco Control 2005, 14: 425–428.
 24. Matzger H., Kaskutas L.A. and Weisner  C.: Reasons for drinking less and their relationship 

to sustained remission from problem drinking [see comment]. Addiction 2005, 100: 
1637–1646.

 25. Gladwell M.: The Tipping Point. Boston, Little, Brown, and Company 2000.
 26. Malkiel B.: A Random Walk Down Wall Street: Completely Revised and Updated. 8th edition. New 

York, WW Norton 2003.
 27. Norris J.C., van der Laan M.J., Lane S., Anderson J.N. and Block G.: Nonlinearity in demographic 

and behavioral determinants of morbidity. Health Services Research 2003, 38: 1791–1818.
 28. Opiniondynamics: What Happened to the Low-Carb Craze? 2005.
 29. Foster G.D., Wyatt H.R., Hill J.O., McGuckin B.G., Brill C., Mohammed B.S., Szapary P.O., Rader D.J., 

Edman J.S. and Klein S.: A randomized trial of a low-carbohydrate diet for obesity [see comment]. 
New England Journal of Medicine 2003, 348: 2082–2090.

 30. Kushner R.F.: Low-carbohydrate diets, con: the mythical phoenix or credible science? Nutrition in 
Clinical Practice 2005, 20: 13–16.

 31. Truby H., Baic S., deLooy A., Fox K.R., Livingstone M.B., Logan C.M., Macdonald I.A., Morgan 
L.M., Taylor M.A. and Millward D.J.: Randomised controlled trial of four commercial weight loss 
programmes in the UK: initial fi ndings from the BBC “diet trials”. BMJ 2006, 332: 1309–1314.

 32. Centers for Disease C, Prevention: Cigarette smoking among adults—United States, 2003. MMWR—
Morbidity & Mortality Weekly Report 2005, 54: 509–513. 

 33. Sloboda Z.: Changing patterns of “drug abuse” in the United States: connecting fi ndings from 
macro- and microepidemiologic studies. Substance Use & Misuse 2002, 37: 1229–1251.

 34. Resnicow K., DiIorio C., Soet J.E., Borrelli B., Ernst D., Hecht J. and Thevos A.: Motivational 
Interviewing in medical and public health settings. In Motivational interviewing: Preparing 
people for change 2nd edition. Edited by: Miller W and Rollnick S. New York, Guildford Press 2002: 
251–269.

 35. Resnicow K., DiIorio C., Soet J.E., Ernst D., Borrelli B. and Hecht J.: Motivational interviewing in 
health promotion: it sounds like something is changing. Health Psychology 2002, 21: 444–451.

 36. Strecher V.J.: Computer-tailored smoking cessation materials: A review and discussion. Pat Educ 
Couns 1999, 36: 107–117. 

 37. Brug J. and van Assema P.: Differences in use and impact of computer-tailored dietary fat-feedback 
according to stage of change and education. Appetite 2000, 34: 285–293. 

 38. Oenema A., Brug J. and Lechner L.: Web-based tailored nutrition education: results of a randomized 
controlled trial. Health Education Research 2001, 16: 647–660.

 39. Kreuter M.W. and Wray R.J.: Tailored and targeted health communication: strategies for enhancing 
information relevance. American Journal of Health Behavior 2003, 27 Suppl 3: S227–32.

 40. Brug J., Oenema A. and Campbell M.: Past, present, and future of computer-tailored nutrition 
education. Am J Clin Nutr 2003, 77: 1028S–1034S.m of Motivational Processes.

A Chaotic View of Behavior Change: A Quantum Leap for Health Promotion 13



ABSTRACT

Resnicow & Vaughn challenged the fi eld of behavioral nutrition and physical activity to 
conduct research in new ways. They challenged the predictiveness of our models, sensitivity 
to initial conditions, factors predisposing to change and measurement procedures. While 
the predictiveness of our models will refl ect the sophistication of our thinking and research, 
and the sensitivity to initial conditions is subsumed under the sophistication of our models, 
research on conditions predisposing to change (e.g., epiphanies), more longitudinal 
designs, refi ned measurement procedures and testing of critical issues can only enhance 
the quality of our research. Improved research quality should lead to enhanced effi cacy 
and effectiveness of our interventions, and thereby our making meaningful contributions 
to mitigating the chaos in our fi eld and the crisis from the rising epidemic of obesity.

Background
Our fi eld of behavioral nutrition and physical activity should be operating in crisis mode. 
The prevalence of obesity and overweight (an essentially nutrition and physical activity 
problem in its etiology and control) continues to increase at alarming rates in all age, 
demographic and gender groups in the US [1], Europe [2], and many other parts of the 
world [3,4]. There is concern that this will reverse the recent advances in chronic disease 
control [5]. In the face of this encroaching epidemic, obesity treatment programs have 
tended to have weak effects mostly for short periods of time [6]; and review after review 
have shown that obesity prevention programs also tend not to work [7–9]. Furthermore, 
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using the mediating variable model (see Fig.1) as a structured framework, it is not clear we 
know what changes in diet or physical activity behaviour have led to the current problems 
and thereby provide the best behavioral targets for change [link A in Fig.1] [10,11]; nor 
what mediating variables are most strongly related to these behaviors and thereby provide 
the best mechanisms for change [link B in Fig.1] [12]; nor how best to manipulate the 
mediating variables to obtain behavior change and lower obesity [link C in Fig.1] [13]. This 
is a frightful state of affairs. We should all be doing innovative theoretically guided, but 
high risk, research to quickly build a stronger knowledge base from which more effective 
interventions could be crafted. Yet, most of us appear to be acting in our usual way of doing 
things: “same old, same old,”

In this context, Resnicow & Vaughn [14] challenged our “same old” way of thinking 
about our fi eld. They correctly specifi ed the assumption of linearity in our predictive models, 
and proposed Chaos and Dynamic Systems Theories as iterative nonlinear models. They 
did not throw out all our theories per se, but challenged how we interrelated the variables, 
how we related them to behaviors, and offered some new variables predisposing to change. 
While Glass & McAtee [15] recently pointed out defi ciencies in the social dimensions of 
our research, Resnicow & Vaughn targeted our thinking about behavior change. Some of 
the issues they raised are non-issues, but others deserve that we morph our basic methods 
to test the new ideas.

Intervention 
Design

Intervention 
Implementation

Moderating 
Variables

Mediating 
Variables

• Diet
• Physical Activity

• Psychosocial
• Behavioral
• Environmental
• Biological

• Demographic
• Environmental
• Behavioral
• Biological
• Psychosocial

Behaviors

Adiposity

A

B

C

Figure 1 Mediating variable model for obesity.
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Discussion
Nonissues
Since we use statistical methods, all our models are by defi nition probabilistic, rather than 
deterministic (unless we could account for 100% of the variance, which will not happen in 
our lifetimes). 

A key issue in their article was the predictiveness of our current models. They correctly 
identifi ed the very limited predictiveness of the current models. The key issue, however, 
is the level of predictiveness that could possibly be achieved in predicting behavior. For 
example, our biological research colleagues are not satisfi ed unless their models account 
for 90% or more of the variance in their phenomena of interest. We are well below that [16]. 
Resnicow & Vaughn have not taken into account the emerging research on environmental 
infl uences, e.g., home availability [17], neighbourhood characteristics [18,19]; biological 
infl uences, e.g., genes [20], sensitivity to tastes [21], the hormone rages of adolescent 
development [22,23]; emotional infl uences [23,24]; nor the likely interrelationships 
and interactions among these variables and our more usual psychosocial and behavioral 
predictors [25,26]. The higher the predictiveness of our models, the more we can engage in 
our logical approach to designing interventions based on these models. The larger number 
of and more diverse variables incorporated into these models, the more complex our 
interventions will need to be to address components of the model. And the interventions will 
need to both segment the population for differing types of interventions to different gender, 
age, ethnic, socioeconomic, and/or neighbourhood groups, and tailor the intervention to 
individual characteristics within these groups [27]. At this time, we need to build and test 
the more comprehensive models. This is a daunting, but exciting, challenge.

Resnicow & Vaughn proposed the principal of sensitivity to initial conditions, as if 
this were a new idea. All of our models of longitudinal relationships (as equations) have 
built into them sensitivity to initial conditions, i.e., the initial values of the variables. How 
diverse the outcomes depend on the nature of the relationships. As our models become more 
comprehensive and complex, fairly similar initial conditions could lead to quite divergent 
outcomes. In part this is a function of the sophistication of our knowledge base. We need to 
build more sophisticated predictive models.

The idea of a tipping point or when it might occur, is not well defi ned [28]. In some 
ways it reifi es a change, as if there is something intrinsic to or magical about the change 
process. If a tipping point is nothing more than a critical point on a variable beyond which 
change occurs, it is not clear the concept adds much, but identifying those points would be 
helpful.

Issues Deserving Intensive Research
Investigators could take away from the Resnicow & Vaughn message that change is random 
and cannot be predicted, and thereby cannot be understood by our usual research methods 
on behavior or its change. This would be very unfortunate. Resnicow & Vaughn will 
have made a major contribution, only if it leads to innovative research and new insights. 



Even in the vast complexities of molecular science, investigators are hammering away at 
delineating linear and nonlinear patterns to better understand the biology. Chances are we 
can do the same in behavior research. 

Resnicow & Vaughn proposed that change does not occur in a linear “persuasion 
slowly overcoming resistance” manner, but rather in what they characterized as “quantum 
leaps,” i.e., an epiphany or “aha!” event occurs from which the person decides to change. 
This is an interesting idea and should be testable. Innovative methods will be needed to 
identify people soon after the aha! experience to learn more about it. Perhaps interviewing 
new recruits to Weight Watchers™ or to fi tness centers would accomplish this? A related 
issue would be what could we do to encourage aha! experiences? Are they a response to 
an overload of information (probably not, since we have done a lot of this already)? To 
repeated thinking about the issues (we could rogram prompts to thinking)? To setting off 
some emotional experience related to the behaviour (we might be able to tailor messages 
to issues people found emotionally charged)? Resnicow & Vaughn invoked the concept of 
“cues” from the Health Belief Model. There has been some research on cues [29–31], but 
this has not as yet led to substantial insights. Relating cues to aha! experiences could be 
an important avenue for research. Developing valid and reliable retrospective methods to 
identify and recall aha! experiences would be necessary to make much progress. 

Resnicow & Vaughn correctly pointed out the cross sectional nature of most of our 
research. Dynamic Systems modelling proposes that dynamic research be done, and this 
would be focused on change over time which requires longitudinal designs [32]. The 
importance of longitudinal designs was emphasized when Nigg [33] found that physical 
activity predicted ensuing self effi cacy, but not the other way around. If self effi cacy is 
really caused by physical activity, but doesn’t cause physical activity, it doesn’t make sense 
to try to increase self effi cacy in interventions.

While it is challenging to recruit and maintain longitudinal cohorts, such cohorts are 
required to address issues of direction of causality and thereby which variables should be 
targets for change in intervention programs. While ten year cohorts may not be necessary, 
perhaps 3 mo or 6 mo cohorts would provide tests for the changes we need. Longitudinal 
dynamic systems research has been initiated in other fi elds [34,35], which should provide 
a guide for our further development.

Whether behavior change can only be understood in retrospect instead of prospectively 
is an empirical issue. In part this is a function of how much variance our models will 
ultimately predict. Perhaps a few retrospective analyses will be necessary, perhaps using 
qualitative methods, to map out the processes occurring? But predictive science should be 
where we are headed, since predictive relationships clearly demonstrate what we know.

Resnicow & Vaughn correctly identifi ed our current approaches to measurement as 
providing severe limitations to how we could understand our phenomena of interest. There 
have been limits on the extent to which existing measurement methods (e.g., classical 
test theory) have been used and reported [36], and limits on the predictiveness of existing 
measurement models [37]. One innovation in measurement theory that has recently drawn 
attention is Item Response Theory (IRT) [38]. IRT fi ts latent variables to items (and 
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respondents) which identifi es portions of the underlying variable being poorly measured 
[39], and assesses reliability across the range of the underlying variable [39,40]. Having 
items measuring specifi c locations on the underlying variable permits an assessment of 
whether the measures work differently after participation in an experiment [41]; differ by 
ethnic, gender or other groupings; and permit more effi cient multidimensional modelling of 
the variable [42]. Use of IRT offers great promise for better understanding and minimizing 
the problems due to measurement of our constructs, and deserves much wider use. 

An issue Resnicow addressed in his oral presentation in Boston (but not in his paper) 
was the falsifi ability of a theory, and whether our current cognitive models are really 
theories. He correctly stated that in our current approach to research, no theories have 
been discarded (which would be considered a sign of progress and development in a fi eld). 
Our best current research fi ts multivariate models to sets of variables [43], and determines 
which variables were signifi cantly related to other variables in the model. This is useful 
for assessing the predictiveness of particular variables in certain situations, but does not 
necessarily address the usefulness of the larger theory. To move our fi eld forward we need 
more attention to theoretical issues in our research, tests of clearer more specifi c predictions 
from theory applied to particular issues [44,45], and delineation of “critical issues” where 
two theories would make different predictions or model fi tting research would need to 
test the fi t of competing models [24], where the alternative models were predicated on 
different theories. More highly controlled experimental research on critical issues will also 
be necessary. Accumulation of fi ndings across “critical” studies would enable the fi eld to 
fi nd more comprehensive and more predictive theoretical frameworks, and capitalize upon 
them in more likely to be effective interventions. There has been distaste for theory in 
our fi eld [46], and some have proposed continuing conducting intervention research until 
randomly hitting on intervention procedures that work [47].

Alternatively, I believe highly predictive theory should guide the design of effective 
interventions. In a complicated set of many possible variables and relationships, a random 
search may never result in fi nding effective change techniques, and even if it did, we wouldn’t have 
the conceptual framework to understand why it happened in order to exploit it.

Conclusion
Resnicow & Vaughn challenged the fi eld of behavioural nutrition and physical activity 
to conduct research in new ways. While the predictiveness of our models will refl ect the 
sophistication of our thinking and research, and the sensitivity to initial conditions is 
subsumed under the sophistication of our models, research on conditions predisposing to 
change (e.g., epiphanies), more longitudinal designs, refi ned measurement procedures and 
testing of critical issues can only enhance the quality of our research. Improved research 
quality should lead to enhanced effi cacy and effectiveness of our interventions, and thereby 
our making meaningful contributions to mitigating the chaos in our fi eld and the crisis from 
the rising epidemic of obesity.
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ABSTRACT

Background: Recent work has indicated an increasingly complex role for astrocytes 
in the central nervous system. Astrocytes are now known to exchange information with 
neurons at synaptic junctions and to alter the information processing capabilities of the 
neurons. As an extension of this trend a hypothesis was proposed that astrocytes function 
to store information. To explore this idea the ion channels in biological membranes 
were compared to models known as cellular automata. These comparisons were made 
to test the hypothesis that ion channels in the membranes of astrocytes form a dynamic 
information storage device.
Results: Two dimensional cellular automata were found to behave similarly to ion 
channels in a membrane when they function at the boundary between order and chaos. 
The length of time information is stored in this class of cellular automata is exponentially 
related to the number of units. Therefore the length of time biological ion channels store 
information was plotted versus the estimated number of ion channels in the tissue. This 
analysis indicates that there is an exponential relationship between memory and the 
number of ion channels. Extrapolation of this relationship to the estimated number of 
ion channels in the astrocytes of a human brain indicates that memory can be stored in 
this system for an entire life span. Interestingly, this information is not affi xed to any 
physical structure, but is stored as an organization of the activity of the ion channels. 
Further analysis of two dimensional cellular automata also demonstrates that these 
systems have both associative and temporal memory capabilities.
Conclusion: It is concluded that astrocytes may serve as a dynamic information sink 
for neurons. The memory in the astrocytes is stored by organizing the activity of ion 
channels and is not associated with a physical location such as a synapse. In order for 
this form of memory to be of signifi cant duration it is necessary that the ion channels in 
the astrocyte syncytium be electrically in contact with each other. This function may be 
served by astrocyte gap junctions and suggests that agents that selectively block these 
gap junctions should disrupt memory.
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Background
Until recently astrocytes were considered to play no more than a supportive role for neurons in 
the central nervous system. This view has now been supplanted by a more active participation 
of astrocytes in information processing, where the astrocytes not only receive and respond to 
neuronal input, but also transmit signals to neurons [1–9]. These fi ndings indicate that astrocytes 
contribute to the processing of information. In support of this concept it was recently demonstrated 
that spinal cord astrocytes are necessary to support hyperalgesia produced by peripheral injury 
[10–12]. Blocking gap junctions in the astrocytes suppressed hyperalgesia, which suggested 
that the astrocytes were processing the nociceptive information and regulating the function of 
spinal cord neurons [10]. These results are similar to work reported by Hertz et al. and Ng et al. 
who demonstrated that astrocytes are critical for the establishment of learned behaviors [13,14]. 
Furthermore, recent studies indicate that several general anesthetics suppress the function of 
astrocyte gap junctions at concentrations that are relevant for loss of consciousness [15,16]. 
These data suggest that the anesthetic properties of these agents may be mediated at least in part 
by their actions on astrocytes and may indicate some role for astrocytes in consciousness.

In a recent review Robertson outlined an astrocentric hypothesis of memory [17] as an 
alternative to the current neurocentric or synaptic based theories. In this hypothesis Robertson 
concludes that because astrocytes form large syncytium via gap junctions and that they are 
connected to neurons through synapses these cells can store and “bind” diverse information. 

In this intriguing review Robertson hypothesizes that information is stored as a result 
of gap junctional plaques converting to a crystalline confi guration that is a closed, high 
resistance, state of the gap junctions. As a result of these altered gap junctions ion fl ow 
between astrocytes is restricted resulting in a functional memory.

In examining the idea that astrocytes might play a major role in information processing 
it seemed prudent to examine other potential memory mechanisms that could support 
information processing in astrocytes. In experiments examining electrical potentials and 
calcium fl uxes in astrocytes it was demonstrated that these cells can, on an individual 
basis, support potentials for several seconds [1,2,6,7]. These data suggest that ion channel 
activity in a group of gap junction linked astrocytes could retain information for substantial 
periods of time. Thus, the ion channels mediating the astrocyte potentials could function to 
store and process information in the central nervous system. 

This paper examines the possible role of ion channels in storing information in 
astrocytes.

Results and Discussion
Similarity of Ion Channels to Cellular Automata
Ion channels communicate with each other via changes in voltage, changes in calcium 
concentrations or through other second messenger systems. In voltage gated ion channels, for 
example, the rules governing the relationship between channels specify that if neighboring 
channels alter the local membrane potential to some threshold the channel under observation 
will change state, i.e., open or close. Each ion channel functions as an independent unit that 
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monitors information transmitted from its nearest neighbors. As a result of the information 
processing occurring at the single ion channel level ensembles of ion channels are capable 
of performing relatively complex functions, such as the generation of action potentials. This 
form of information processing by ion channels is remarkably similar to models known as 
cellular automata [18,19]. In cellular automata simple units that are capable of existing in a 
fi nite number of states are linked together using rules for the transfer of information between 
the units. The states occupied by the units and the rules of information transfer determine 
what state each unit will occupy in the next time period. These models have been extensively 
studied and demonstrate the emergence of complex behavior [20,21]. Some cellular automata 
have even demonstrated universal computation [22]. To illustrate how a cellular automata 
stores and processes information a one dimensional cellular automaton in which the units 
are binary (they are either in state 0 or state 1) is presented in  Fig.1. The rule used was the 
mean of three units rounded to the nearest integer determines the state of the middle unit in 
the next iteration. This model was studied at length by Wolfram and this rule is Wolfram’s 
rule number 232 [20,21].

In Fig.1 the initiating event (Representation 1(R1)) was produced by randomly setting 
the states of the units in the automata. The time series was then calculated. In the fi gure it is 
evident that from R1 to R4 the automaton changes representations, but after R4 the cellular 
automaton reaches a steady state and the representations no longer change. This stabile 
representation is the attractor R0. The transition period from R1 to R0 is the memory of 

Figure 1 Memory in cellular automata. A sixteen unit one dimensional cellular automaton was constructed 
using binary units and Wolfram’s rule number 232. This rule is illustrated at the bottom of the fi gure where the 
three squares on top are the current states of three adjacent units and the single square below is the resultant 
state of the middle unit during the next iteration. Open squares indicate state 0 and fi lled squares indicate state 1. 
The initial representation (R1) was generated by randomly setting the state of each unit to either 0 (open) or 1 
(fi lled). The time series was then calculated. Note that the memory of this system extends from R1 to R4 where 
the representations change with each iteration. Starting at R0 the units no longer change state indicating that all 
information about R1 is lost.

R0

R4

R3

R2

R1



the automaton. At each iteration prior to R0 the automaton retains information that can be 
used to determine something about the initial confi guration. However, when the automaton 
reaches R0 all information about the initial confi guration has been lost. In astrocytes the 
ion channels in the membrane are distinct units with a fi nite number of states and they 
communicate with each other through a simple set of rules, i.e., a change in voltage or in 
Ca2+ concentration. Therefore, the astrocytes’ membrane ion channels are acting as a two 
dimensional cellular automaton. As with the automaton presented in Fig.1 the initiating 
event can be inferred based on the confi guration of the entire ensemble of ion channels up 
until the ion channel confi guration returns to the attractor representation (R0). At this point 
all information about the initiating event is lost. This concept suggests that ion channels 
working in collection can store information for at least brief periods of time. The remaining 
question is the maximum duration of memory in this type of system.

Memory in Cellular Automata
In a series of interesting experiments Langton examined the properties of cellular automata 
that optimize information storage and processing [23]. In these experiments he varied the 
rules by which the cellular automata operated and measured the resulting chaotic nature of 
the system. Langton found that automata whose rules made them operate at the junction 
between ordered and chaotic behavior were able to store information for the longest period 
of time. Memory dropped off markedly on either side of this phase transition. To illustrate 
how the chaotic nature of the cellular automata might infl uence memory a two dimensional 
cellular automaton with four different rule sets and a Moore neighborhood (8 neighbors) 
was set up (Fig. 2.A). The units in the automaton could occupy four different states, i.e., 
one open, one closed and two inactive. The cellular automaton was seeded with two units 
in the open state to invoke the initial representation R1.

The left hand column illustrates a rule set that produces ordered behavior. Note that 
a signal cannot propagate in this cellular automaton. The second column demonstrates 
another form of ordered behavior where the behavior immediately becomes repetitive. 
This cellular automaton, like the one to the left of it, cannot process information due to 
the inability of the automaton to transition to novel representations. The third column is a 
rule set that produces behavior at the border between order and chaos. The net result is the 
smooth propagation of an “action potential” throughout the cellular automaton with the 
system eventually returning to the attractor representation R0. The fi nal column illustrates 
a chaotic system that evolves rapidly into a random pattern of channel openings. The nearly 
random behavior prevents proper processing of information since there is no relationship 
between successive representations. Figure 2.B illustrates the “potentials” produced 
by these different rule sets by plotting the number of open channels versus time. These 
models demonstrate that only the rule set with behavior at the transition between order 
and chaos produces a potential that is similar to an action potential observed in biological 
systems. Note that the rules that produce ordered behavior either returned to the attractor 
representation R0 very rapidly or never returned to R0, suggesting that the systems are 
incapable of supporting information storage. The chaotic rule set also never returns to the 
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Figure 2 Two dimensional cellular automata operating between order and chaos behave like excitable membranes 
in biological cells. A. A two dimensional cellular automaton was constructed with the program CaSim using units 
with four states, i.e., one open, one closed and two inactive states. Four different rule sets were used to generate the 
four time series in the fi gure. The cellular automaton was seeded at R1 by setting two units to the open state and the 
times series calculated. The confi guration of the cellular automata at iterations 0, 1, 25, 50 and 100 are presented 
in the fi gure for the four rule sets. The entropy of the rule sets was determined by calculating the probability of 
each state (Ps) from 10 runs of 1000 iterations. For these calculations 10 percent of the units were set to the open 
state at R1. Entropy was calculated using the equation: entropy ( )ss PP ln∑−= . The entropy of each rule set was 
then expressed as a ratio of the calculated entropy to the maximum entropy (bottom of the fi gure). The maximum 
entropy is when all four states have a probability of 0.25. B. The “potentials” generated by the rule sets in A were 
graphed by plotting the number of open channels versus time. These plots indicate that only the transition rule set 
produces channel openings that are similar to action potentials in biological membranes.
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attractor, which also indicates that the system cannot retain information for signifi cant 
periods of time. Only the rule set that produced behavior between order and chaos could 
retain information about the initial event R1 for a period of time and then return to the 
attractor representation. Based on the similarity of the potentials generated by the transition 
rule set these models suggest that the ion channels in the membranes of biological cells 
function as cellular automata with rules that set the behavior at the boundary between order 
and chaos. This region of the order to chaos spectrum balances information storage with 
transmission, which, in turn, supports information modifi cation [23].

In addition to examining the length of memory in cellular automata relative to the chaotic 
nature of the automata, Langton [23] evaluated how the number of units in an automaton 
infl uenced memory. In these experiments Langton used rules that produced automata that 
operated in the order/chaos phase transition and then varied the number of units in the 
automata. He found that there was a log-linear relationship between the time that the cellular 
automata stored information and the number of units in the automata. This indicated that the 
addition of units to the automata exponentially increased the amount of time the automata 
stored information. This relationship is an extremely powerful property of cellular automata 
that has evolutionary signifi cance for biological systems that process information with ion 
channels. The exponential relationship between memory and the number of units in an 
automaton indicates that a biological system simply has to add more units (ion channels) to its 
calculating device in order to dramatically increase its memory. With an increase in memory 
duration the complexity of the calculations that can be performed also increases [23].

The Human Cellular Automaton
The fi ndings of Langton indicate that as a cellular automaton is increased in size the 
duration of memory increases. In the astrocentric hypothesis large numbers of astrocytes 
are connected through gap junctions [10,17,24–27], which suggests that astrocytes form 
extensive ion channel cellular automata. To examine the potential memory duration for a 
human brain sized cellular automaton data was collected from the literature for maximum 
ion channel open and closed times, duration of potentials evoked in single cells by very brief 
stimuli and the duration of potentials in brain slices and mollusk ganglia. The recordings 
in the slices and ganglia used for this analysis represented a large number of cells in the 
tissue rather than a single cell in the slice or a population response to a single synaptic 
event. Since data are limited for astrocytes, potentials from all forms of excitable cells 
were collected. In Fig. 3 the log maximum length of time reported for single ion channels 
to transition through an open and closed cycle and the log of the duration of evoked whole 
cell potentials were plotted versus the number of ion channels. For whole cells the number 
of ion channels was estimated to be 106. A regression line was fi tted to these two sets 
of data. The duration of potentials from the slices and ganglia were then plotted on this 
line and the number of ion channels needed to produce these potentials was estimated by 
extrapolation. These potentials appeared to be generated by 107 to 108 ion channels. This 
fi nding suggests that Langton’s relationship of the number of units to length of time that 
information is stored in cellular automata holds true for ion channel cellular automata. 
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Note that for convenience there was no attempt to limit the data collected to any one type 
of ion channel, cell type, or species. The assumption used here is that all biological systems 
evolved a similar mechanism to process information with ion channels and, as such, their 
ion channels have similar properties.

Figure 3 Memory as a function of the number of ion channels. Data was collected from the literature for the 
open/closed times for single ion channels, the length of potentials evoked in single cells and the length of 
potentials in groups of cells in brain slices or mollusk ganglia. The logs of the single ion channel and single cell 
data were graphed versus the number of ion channels. Cells were estimated to have 106 ion channels. The slope 
of the line defi ned by these two points was determined and the length of the potentials in the brain slices and 
mollusk ganglia were plotted onto the graph.
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To generate an estimate of the total number of ion channels in a human astrocyte 
cellular automaton the number of astrocytes was approximated to be 1013 [28]. With 
106ion channels/cell this suggests 1019 ion channels in a human cellular automaton. 
Using the estimate of 1019 ion channels in the human cellular automaton the predicted 
duration of memory was extrapolated from the slope of the line in Fig. 3. The 
relationship between memory and the number of ion channels was estimated to be 
t = e2.3×10–7 N. Where t is time and N is the number of ion channels in the system. This calculation 
yielded a predicted maximum memory for a human sized astrocyte cellular automaton 
of  121010  years. Therefore, for all practical purposes, the predicted maximum duration of 
memory in human cellular automata is infi nite. What is most notable about this memory 
is that it occurs without fi xing the information to any physical structure such as a synapse 
or cell as predicted in Hebb’s postulate [29]. The information is stored as a succession of 
representations, or ion channel confi gurations, with each individual representation lasting 
only a short period of time. The confi guration of the ion channels is organized by the 
incoming information and then as this organization dissipates over time the information 
is lost. In thermodynamic terms the entropy of the system is decreased by the storage of 
information and, as the calculation presented above indicates, it takes a substantial amount 
of time for the entropy to return to baseline levels. Admittedly, the estimates for the number 



of ion channels and the number of astrocytes that make up a single syncytium are crude; 
however, even if the estimates are off by several orders of magnitude the overall conclusion 
that the potential duration of memory in a human ion channel cellular automaton is infi nite, 
from a biological frame of reference, remains valid. 

Another interesting comparison to be made between the astrocentric hypothesis 
and the neurocentric hypothesis is that there are  1910k distinct representations or unique 
confi gurations of the ion channels. 

Using 1012 neurons each possessing 103 synapses we can estimate that there are 1015 

synapses in a human brain [28] and a potential for  1510k distinct representations or unique 
confi gurations of the synapses. The term k is the number of states that an individual ion 
channels or synapse can take. These calculations demonstrate that the potential information 
processing capacity of the astrocytes using ion channels is many orders of magnitude larger 
than the capacity of neurons using synapses.

Associative Memory in Cellular Automata
An important component of memory is the ability to associate two or more events. In an ion 
channel cellular automata this is accomplished by the fact that the series of representations 
produced by a single event is signifi cantly different from that produced by two events. 
Fig. 4 demonstrates the ability of a cellular automaton to associate information from 
two events. In the fi rst column a single event produces a series of representations as the 
automaton progresses. In the second column two events occur simultaneously. The two 
events produce a series of representations that are distinct from the single event presented 
in the left column. This indicates that the two events have been associated to produce a 
unique memory.

Another interesting facet of ion channel cellular automata is that because they are 
dynamic systems they can readily store temporal differences between events. In the right 
hand column the two events are separated by ten units of time resulting in a series of 
representations that differs from either the single event in the left hand column or the two 
simultaneous events in the middle column. These observations suggest that the proposed 
astrocyte memory system can associate memories and that temporal information can be 
stored.

Research Supporting Astrocyte Cellular Automata as Memory Systems
In studies published over forty years ago Hyden demonstrated that glia were critical for 
memory [30–32]. More recent work using the one-trial aversive learning paradigm in chicks 
has confi rmed Hyden’s fi ndings [13,14,33]. In these studies inhibitors of astrocyte function 
were found to block both short term and intermediate term memory, but, when administered 
later, had no effect on the long term retention of the learned behavior. During the short and 
intermediate periods it was demonstrated that ion fl uxes in astrocytes are critical [13,33,34] 
for memory suggesting that the astrocyte ion channels may store information in the chicks 
for a brief period of time, approximately 60 minutes, while the appropriate rewiring of the 
neuronal circuitry takes place. It is important to note that this behavioral model involves 
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both memory and learning, while the cellular automata hypothesis presented here is 
related purely to memory. Memory is the ability of an organism to store information about 
events in a retrievable format, whereas learning involves a change in behavior or potential 
behavior. Thus, a consolidated learned behavior, as occurs in the one-trial aversive learning 
paradigm, is likely to be the result of neuronal rewiring. 

Furthermore, it does not require the organism to retain any specifi c memory of the event 
that precipitated the change in behavior beyond the length of time necessary to produce 
the rewiring. In this light, the chick in the aversive learning paradigm may actually recall 
the aversive stimulus for the short and intermediate term memory periods, which require 
astrocytes, but may not retain any recollection of the event once the aversive behavior has 
been established. It is enough for the chick to avoid certain objects without remembering 
why it needs to avoid them. The distinction between memory and learning is important 
because the two processes are likely mediated by different mechanisms. In the current 
hypothesis the ion channel cellular automata would be responsible for the specifi c memory 
of the event while changes in synaptic strength of the neurons would be responsible for 

Figure 4 Associative memory in cellular automata. A cellular automaton operating at the transition between 
order and chaos was setup as described in Fig. 2 using the program CaSim. Three different stimuli were used. 
Iterations 1, 14 and 25 are presented in the fi gure. In the left column the cellular automaton was seeded by 
setting one unit to the open state at R1 (Single Event). In the center column two units were seeded at R1 (Two 
Events). In the right hand column the cellular automaton was seeded by setting one unit to the open state at 
R1 and a separate unit to the open state at R10 (Two Events Temporally Separated). Note that each time series 
generates a different pattern of channel openings (representations) indicating that the two events in the second 
and third columns have produced unique memories by associating the events. Also note that the difference 
in representations produced by the automaton in the second and third columns indicates that the cellular 
automaton stores temporal information about the events. Therefore it is concluded that a two dimensional ion 
channel cellular automata is capable of associative memory.

Single Event

R1

R14

R25

Two Events
Two Events Temporally 

Separated



learning and maintaining the new behavior. Astrocyte memory could support learning, but 
learning does not necessarily support the memory of events.

In addition to proposing that glia were involved in memory, Hyden predicted that mental 
diseases may involve glia [35] as reported in [34]. In the ion channel cellular automata 
hypothesis it is critical that the ion channels operate at the junction between order and 
chaos. Departure from this behavior is predicted to produce pathology. Deviation to the 
ordered side of the spectrum might produce depressive types of behaviors in the organism 
and memory defi cits while deviation to the chaotic side might produce psychotic or manic 
types of behaviors that are also associated with memory defi cits. 

Several studies have demonstrated that long term treatment with antidepressant drugs 
at clinically relevant doses alters protein expression and function in astrocytes [36–41] 
and long term treatment with lithium ion results in suppression of mRNA for sodium-
dependent inositol transporter in astrocytes [34]. The length of treatment required for the 
change in astrocyte proteins is consistent with the onset of the therapeutic effect of these 
agents. These studies suggest that these psychoactive agents may adjust the activity of 
astrocyte ion channel cellular automata toward the order/chaos border, thus improving the 
function of the memory system. Therefore, a number of studies, spanning over forty years, 
indicate that astrocytes are important for memory and possibly for the therapeutic effect of 
psychoactive drugs, which is consistent with the astrocyte ion channel cellular automata 
hypothesis.

Conclusion
In this study the hypothesis that astrocytes could store information in the central nervous 
system was considered. Based on the similarity of membrane ion channels to mathematical 
models known as cellular automata it seems reasonable to conclude that ion channels in 
astrocytes could store information for signifi cant periods of time. This storage system 
does not rely on physically fi xing information to any structure such as a synapse; rather 
information is stored by organizing the activity of the ion channels. If this concept is correct 
it suggests that neurons may use astrocytes as a dynamic information sink. In theory, this 
information would remain readily available to the neurons for extended periods of time. 

Furthermore, this hypothesis indicates that to store information for signifi cant periods 
of time the ion channels in the astrocyte syncytium must be in electrical contact with 
each other. This function could be served by the astrocytes’ gap junctions. Thus, we can 
predict that agents that selectively block astrocyte gap junctions should disrupt memory. 
Clearly, further work is needed to verify this theoretical framework for memory in nervous 
systems.

Methods
One Dimensional Cellular Automaton
A 16 unit one dimensional cellular automaton was set up with each unit having 2 states. 
The rule used for this automaton was Wolfram’s rule number 232 [20,21]. In this rule each 
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unit is updated by averaging the states of the unit with its two nearest neighbors and then 
rounding to the nearest integer. The time series for this cellular automaton was calculated 
by hand.

Two Dimensional Cellular Automata
To examine the effects of different rule sets on 2 dimensional cellular automata the 
program CaSim [42] was used. A matrix of 100×100 units with a Moore neighborhood 
(eight neighbors) was set up with various rules. Each unit had 4 states. The entropy of 
the different rule sets was calculated using the equation entropy  ( )ss PP ln∑−= , where Ps 
is the probability of a unit occupying a particular state. The probabilities of the different 
states were determined from 10 runs of 1000 iterations for each cellular automaton. For 
these calculations the cellular automaton was seeded for each run by randomly setting 
ten percent of the units to the open state. The maximum entropy was calculated using the 
probability of 0.25 for each of the four states. The ratio of the calculated entropy of the 
rule set to the maximum possible entropy was used as an indicator of the chaotic nature of 
the system. Thus an entropy ratio of 0 is a completely ordered rule set and a ratio of 1 is a 
completely chaotic rule set.

For the examples presented in the fi gures the cellular automata where seeded with 
either 1 or 2 units set to the open state.

Duration of Memory Versus the Number of Ion Channels
To calculate the relationship between the number of ion channels in a system and the 
duration of information storage by the ion channels data was collected from published 
sources. The maximum open and closed times for various ion channels were obtained 
[43–54] and the open to closed cycle was used as the duration of memory in single ion 
channels. Similarly, potentials recorded in single cells were obtained [55–62] and used as 
an indication of the activity of multiple ion channels in concert. The log of the values for 
the duration of the responses in the ion channels and cells were plotted versus the number 
of ion channels. The number of ion channels in the cells was estimated to be 106. A line was 
then fi tted to the two points and the log of the duration of potentials in slices and ganglia 
[63–71] were plotted on the line.
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ABSTRACT

We introduce fractional order into an HIV model. We consider the effect of viral 
diversity on the human immune system with frequency dependent rate of proliferation 
of cytotoxic T-lymphocytes ( CTLs) and rate of elimination of infected cells by CTLs, 
based on a fractional-order differential equation model. For the one-virus model, our 
analysis shows that the interior equilibrium which is unstable in the classical integer-
order model can become asymptotically stable in our fractionalorder model and 
numerical simulations confi rm this. We also present simulation results of the chaotic 
behaviors produced from the fractional-order HIV model with viral diversity by using 
an Adams-type predictor-corrector method. 

Introduction
An important part of the human immune response against viral infections is cytotoxic T 
Lymphocytes (CTLs) [1].They recognize and kill cells which are infected by virus. There 
are many immune models describing the virus dynamics with CTL immune response. 
Nowak and Bangham [2,3] proposed an ODE model which explores the relation among 
CTL immune responses, virus load, and virus diversity. In [2], a rate of specifi c CTL(Zj) 
proliferation in response to the corresponding specifi c infected cells (Ij) depends on the 
mass action law cI j Zj. This model has been important in the fi eld of mathematical modelling 
of HIV infection. In their model, there is no interaction among different types of CTL(Zj). 
Iwami et al. [4] assumed that the correlation is incorporated as a function of the frequency 
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that the specifi c CTLs(Zj)-encounter in the specifi c infected cells (Ij). In a similar manner, 
they considered the rate of elimination of specifi c infected cells (Ij) by the specifi c CTLs(Zj) 
to be proportional to this frequency. However, these models do not take into account the 
fractional order derivatives that have been extensively applied in many fi elds (e.g., [5–17]) 
and the reference cited therein). Recently many mathematicians and applied researchers 
have tried to model real processes using the fractional order differential equations (FODE) 
[16]. In biology, it has been deduced that the membranes of cells of biological organism 
have fractional order electrical conductance [13] and then, they are classifi ed into group of 
noninteger order models. Also, it has been shown that modelling the behavior of brainstem 
vestibule-oculumotor neurons by FODE has more advantages than classical integer order 
modelling [8].

Particular emphasis is that a major difference between fractional order models and 
integer order models is that fractional order models possess memory [5,12], while the 
main features of immune response involve memory [18]. Hence, we attempt to model HIV 
infection with immune response using a fractional order system. Our presentation is based 
on the immune model of HIV infection which is developed by Iwami et al. [4]. For the 
one-virus model, we carry out a detailed analysis on stability of equilibrium. Our analysis 
shows that the interior equilibrium which is unstable in the classical integer order model 
can become asymptotically stable in our fractional order model. We also fi nd that chaos 
does exist in the fractional order HIV model with viral diversity.

Model Derivation
We fi rst give the defi nition of fractional order integration and fractional order differentiation 
[14,16]. For the concept of fractional derivative we will adopt Caputo’s defi nition which is a 
modifi cation of the Riemann-Liouville defi nition and has the advantage of dealing properly with 
initial value problems.

Defi nition 2.1. The fractional integral of order α�> 0 of a function RRf →+:  is given by
 dttftx

x
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)(
1)( 1∫ −−

Γ
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(2.1)

provided the right side is pointwise defi ned on +R .

Defi nition 2.2. The Caputo fractional derivative of order ),1( nn −∈α  of a continuous 
function RRf →+:  is given by
 .),()(

dt
dDxfDIxfD nn == −αα

 
   

(2.2)

Now we introduce fractional order into the ODE model by Iwami et al. [4]. The new 
system is described by the following set of FODE:
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where T(t) represents the concentration of uninfected cells at time t, )(tI j  represents the 
concentration of infected cells with a virus particle of type j, )(tV j  the concentration of 
free virus particle of type j, and )(tZ j denotes the magnitude of the specifi c CTL response 
against variant j. Here, 0.95 ≤ q1j, q2j, q3j, q4j≤1 (j=1,2,…,n) are restricted such that fractional
derivative can be approximately described the rate of change in number.

Following [4], uninfected cells are assumed to be generated at a constant rateλ . 
Uninfected cells, infected cells, free viruses, and CTLs decline at rates d, a, u, and δ , 
respectively. The total number of virus particles produced from one cell is k. The rate of 
CTL proliferation in response to antigen is given by 
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)/(  while infected cells are produced from
uninfected cells and free virus at rate β llTV' , that is, a rate of specifi c CTL(Zj) proliferation in 
response to the corresponding specifi c infected cells )( jI  depends on the frequency, instead 
of the mass action law.

To simplify the model, it is reasonable to assume that the decay rate of free virus, u, 
is much larger than that of the infected cells, a, and this system describes the qualitative 
dynamics of the asymptomatic phase of HIV infection. Thus, we may introduce as a good 
approximation that the virus is in steady state (i.e., Dq4jVj = 0) and hence ukaIV jj /= (see 
[4, 19]). This leads to the following simplifi ed system of FODE: 
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One-Virus Model
In this section, we discuss in detail an important special case of model 
(2.4) and perform an equilibrium and stability analysis for this special case. 
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We consider the one-virus model (n = 1) and assume that q1=q21=q31=α  
(0.95 1≤≤α ). This one-virus model is described by the following system of FODE:
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Following the analysis in [4], we introduce a basic reproduction number which is defi ned 
by
 

.1
0 d

R
α
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(3.5)

Denote { }0,0,0/),,( 11
3

11
3 ≥≥≥∈=+ ZITRZITR  and we always assume that δ>c . Note 

that 01 <ZDα always holds true if δ≤c . By generalized mean value theorem [15], we get 
Z1(t) is decreasing if δ≤c .

Next we will discuss the existence and stability of the equilibria of the model (3.1).

Theorem 3.1. (a) The uninfected equilibrium EH is locally asymptotically stable (LAS) if 
)1,0(0 ∈R and unstable if 10 >R .

(b) If 10 >R , then the boundary equilibrium EI exists. This equilibrium is LAS if 
 1))(/(1 0 +−<< δαδ cdR and unstable if  1))(/(0 +−> δαδ cdR .
(c) If  ,1))(/0 +−> δαδ cdR  then Ec exists in 3Int +R , where 3Int +R  is the interior of 3

+R .
Proof: (a) The Jacobian matrix J(EH) for system (3.1) evaluated at EH is given by
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EH is locally asymptotically stable if all of the eigenvalues p of the Jacobian matrix J(EH) 
satisfy the following condition (6,17):
 

2
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   (3.7)
The eigenvalues of J(EH) are −d, )/(1 ad −λβ , δ− . It is clear that EH is LAS if 10 <R and is 
unstable if 10 >R .
(b) If 10 >R , then the existence of EI is obvious. The Jacobian matrix J(EI) for system (3.1) 
evaluated at EI is given by
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For J(EI) given by (3.8), the characteristic equation becomes
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 and hence all the eigenvalues
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If 10 >R , then 0* >T , 0*
1 >I and p1,2 have negative real parts. Furthermore,

if ( ) 1)(/1 0 +−<< δαδ cdR , then p3<0 and EI is LAS. 
If  ( ) 1)(/0 +−> δαδ cdR , then p3>0 and EI is unstable.
(c) If  ( ) 1)(/0 +−> δαδ cdR , then we obtain 0ˆ

1 >Z . Thus, Ec exists in Int 3Int +R . Therefore, 
the proof is complete.

To discuss the local stability of the interior equilibrium Ec, we consider the linearized 
system of (3.1) at Ec. The Jacobian matrix at Ec is given by
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For convenience, we denote ZZIITT === 11

ˆ,ˆ,ˆ and ββ =1 . In view of the above 
assumptions and using 
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J(Ec) can now be written as follows:
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Then the characteristic equation of the linearized system of (3.1) is
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Proposition 3.2. The interior equilibrium Ec is LAS if all of the eigenvalues p of J(Ec)
satisfy 
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Using the results of [5,20], we have the following proposition:
Proposition 3.3. One assumes that Ec exists in 3

+IntR .

 i)  If the discriminant of )(),( ΦΦ Dp is positive and Routh-Hurwitz conditions are 
satisfi ed, that is, ,0)( >ΦD ,01 >α ,321 ααα > then the interior equilibrium Ec is 
LAS.

 ii)  If ,0,0)( 1 ><Φ αD ]1,0[,,0 3213 ∈=> ααααα , then the interior equilibrium Ec is 
LAS.

 iii)  If 
3
2,0,0,0)( 31 ><<<Φ αααD , then the interior equilibrium Ec is unstable.

In our fi rst example we set  02.0,10 == dλ  which are chosen according to [21] and 
set 4

1 104,,04.0 −×==== βδα bc  which come from [4]. With these parameter values: 
( ) ,1)(//50 +−> δαδ cdR 321 ααα < ,

.0104073.9)( 7 <×−=Φ −D  By Pro.3.2., we obtain the interior equilibrium 
Ec=(362.0335,19.0544,49.9289) is LAS when 0.9916.<α  Numerical simulations show 
that trajectories of system (3.1) approach to the interior equilibrium (see Figs. 1(a) and 
1(b)) However, when 1=α that is the case of classical integer order, Ec is unstable by the 
Routh-Hurwitz criterion (see Figs. 2(a) and 2(b)).
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Figure 1 Numerical solutions of system (3.1). The plots show that trajectories of system (3.1) approach to the 
interior equilibrium for α=0.95.
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Two-Virus Model
In this section, we consider viral diversity.We examine the two-virus model using numerical 
simulations. By examining the behavior of this simpler model we hope to get an idea as to 
how the more general models in system (2.4) may behave. The two-virus model is given 
by the following system of FODE:
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with initial value condition

,2.1,)0(;)0(,)0( 000 ==== iZZIITT iiii                                                                         (4.2) 

where 0.95 ≤ q1, q2j, q3j (j= 1, 2) ≤ 1.

Figure 2 Numerical solutions of system (3.1). The plots show that the interior equilibrium is unstable for 1=α .
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To fi nd numerical solution to (4.1) and (4.2) in the interval [0,T], we reduce the systems 
(4.1) and (4.2) to a set of fractional integral equations, by using an equivalence (see [16, 
Theorem 3.24])

)()0()()( xfIXtXxfXD αα +=⇔= ).  (4.3)
Then we apply the generalized Adams-type predictor-corrector method or, more precisely, 
Predict, Evaluate, Correct, Evaluate (PECE) methods (see [22, 23]).
For notational convenience, we denote α =(q1, q21, q22, q31, q32). 

We carry out numerical simulations for system, (4.1) and (4.2) with parameters ,10=λ
,08.0== cb ,03.0,031.0 == δα ,02.0=d 4

1 104 −×=β and 4
2 1008.2 −×=β  for the step 



size 0.07. Numerical solutions of systems (4.1) and (4.2) support that the system exhibits a chaotic 
behavior and systems (4.1) and (4.2) have a strange attractor in 5

+IntR for [ ]1 1, 1, 0.95, 0.95,=α  (see 
Figs. 3(a)–3(c)). It is clear that chaos does exist in our fractional order model with viral 
diversity as in the case of integer order model. The effect of viral diversity and the frequency 
dependence results in collapse of the immune system and make the behavior of the system 
dynamics complex [4]. However, as the value of some component or more components 
of the order α further decreases, for example,  [ ]1 1, 0.95, 0.95, 0.95,=α , the chaotic motion 
disappears and the systems (4.1) and (4.2) stabilize to a fi xed point (see Figs. 4(a)–4(c)).
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Figure 3 Numerical solutions of system (4.1) for  [ ]1 1, 1, 0.95, 0.95,=α . (a) A strange attractor in the Z1-Z2-I1 
phase. (b) Infected cell 1. (c) CTL 2.
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Figure 4 Numerical solutions of system (4.1) for  [ ]1 1, 0.95, 0.95, 0.95,=α . (a) Z1-Z2-I1 phase. (b) Infected cell 
1. (c) CTL 2.
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Conclusions
In this paper, we have proposed a fractional order HIV model, as a generalization of an 
integer order model, developed by Iwami et al. [4]. The premise of the proposed model 
is the fact that fractional order models possess memory while the main features of 
immune response involve memory. It is an attempt to incorporate fractional order into the 
mathematical model of HIV-immune system dynamics and it is still an interesting exercise 
to determine, mathematically, how the order of a fractional differential system affects the 
dynamics of system.

In the case of one-virus model, the fractional order system has an interior equilibrium 
under some restriction. By using stability analysis on fractional order system, we obtain 
suffi cient condition on the parameters for the stability of the interior equilibrium. Our 
analysis shows that the interior equilibrium which is unstable in the classical integer order 
model can become asymptotically stable in our fractional order model. Note that the interior 
equilibrium is globally asymptotically stable (GAS) (see [24]) if the terms associated with

immune reactions are given by cZ1I1and bZ1I1 instead of 
1

11

IT
IcZ

+
 and 

1

11

IT
IbZ

+
 in (3.1). That

is, the interior equilibrium of the one-virus model can become unstable because of the 
frequency dependence (see [4]). However, in our fractional order model with the frequency 
dependence, the interior equilibrium can also become asymptotically stable if the order 

.9916.0<α
We then consider viral diversity. If the terms associated with immune reaction depend 

on the mass action law instead of frequency, an interior equilibrium in [24] is GAS. Similar 
to the integer order model in [4], we fi nd that strange chaotic attractors can be obtained 
under fractional order model with frequency dependence. That is, the effect of viral diversity 
and the frequency dependence results in collapse of the immune system and make the 
behavior of the system dynamics complex. However the chaotic motion may disappear and 
the fractional order system stabilizes to a fi xed point if the value of the order α decreases. 
The specifi c biological meaning is deserved to further study.
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ABSTRACT

Using phase space reconstruct technique from one-dimensional and multi-dimensional 
time series and the quantitative criterion rule of system chaos, and combining the neural 
network; analyses, computations and sort are conducted on electroencephalogram (EEG) 
signals of fi ve kinds of human consciousness activities (relaxation, mental arithmetic of 
multiplication, mental composition of a letter, visualizing a 3-dimensional object being 
revolved about an axis, and visualizing numbers being written or erased on a blackboard). 
Through comparative studies on the determinacy, the phase graph, the power spectra, 
the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG 
signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) 
The statistic results of the deterministic computation indicate that chaos characteristic may 
lie in human consciousness activities, and central tendency measure (CTM) is consistent 
with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of 
power spectra show that ideology of single subject is almost identical but the frequency 
channels of different consciousness activities have slight difference. (3) The approximate 
entropy between different subjects exist discrepancy. Under the same conditions, the larger 
the approximate entropy of subject is, the better the subject’s innovation is. (4) The results 
of the correlation dimension and the Lyapunov exponent indicate that activities of human 
brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion 
rule, which unites the neural network, can classify different kinds of consciousness 
activities well. In this paper, the results of classifi cation indicate that the consciousness 
activity of arithmetic has better differentiation degree than that of abstract.
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Introduction
EEG signal is a spontaneous bioelectricity activity that is produced by the central nervous 
system. It includes abundant information about the state and change of the neural system; 
therefore it is widely used in clinic and neural-electricity physiological research. In recent 
years, with the development of the nonlinear dynamics, more and more evidences indicate 
that the brain is a nonlinear dynamic system, and EEG signal can be regarded as its output 
[1,2]. In 1985, Babloyantz et al. fi rst put forward that II and IV stage EEG signals of human 
sleep cycle are chaotic [3]. Hereafter, a large number of study results were reported that the 
EEG was derived from chaotic systems [4–8]. Therefore, people try to analyze EEG signals 
by way of nonlinear dynamics to get new knowledge of the brain. Lindenberg, Lehnertz 
and Ferri et al. researched several kinds of physiological and pathologic conditions; and 
computed the relevant data under various conditions. They point out fi nally, the nonlinear 
characteristic of the physiological EEG signals greatly differs from that of the pathology; 
when clear-headed, the brain has higher chaotic degree, processes information more 
quickly and can make more responses [9–12]. Chaos is unordered, but in some situations, 
it has organizing structures and high order and is the source of system information [13]. 
Therefore, in this paper, we study the relation of chaos characteristic of EEG signals 
with high-level intelligence activity of human brain through comparative studies of the 
nonlinear dynamic characteristic of the dynamic physiological EEG information of brain 
under different consciousness conditions.

Theory and Method
Chaotic system is described by strange attractors in the phase space [13]. In order to construct 
the phase space, we adopt the phase space reconstruct technique which was put forward 
by Packard et al. [14] and made reliable mathematical base by Takens [15]. Its principle is: 
Reconstruct m-dimensional phase space from EEG time series { | 1, 2, , }nx n N= �  , then 
we get a group of phase space vectors

( 1){ , , , }i i i i mx x x+ + −= �τ τX , 1, 2, ,i M= � , m
i R∈X ;

where τ is the time-delay; 2 1m δ≥ + , δ is the number of the system independent variables. 
M is less than N and they have the same order of magnitude. To reconstruct phase space, 
it is critical to analyze the phase graph, compute correlation dimension and Lyapunov 
exponent.

CTM Algorithm and the Determinism Computation of EEG Signals
Whether the brain is a deterministic system, determines the applicability of the nonlinear 
dynamic method of studying EEG signal [16]. Generally, the deterministic computation of 
the EEG signal requires much data; and supposes the spread of adjacent lines of EEG series 
in the phase space are similar. However, unstable data often generates false results. CTM 
algorithm is a method to express the second-order difference plot (SODP) characteristic of 
trajectory tangent vector quantifi cationally. It can be used in the deterministic computation 
of nonlinear time series effectively. This algorithm is real-time, stable and anti-noisy [17]. 

Research on the Relation of EEG Signal Chaos Characteristics 51



52 Models and Applications of Chaos Theory in Modern Sciences

The tangent vector of trajectory in the reconstructing phase space is

( ) ( 1) ( )t t t= + −Y x x .

The angle between the tangent vectors can be expressed by its cosine value
( 1) ( )( )
( 1) ( )
t tA t
t t
+ ⋅

=
+

Y Y
Y Y

.

Compared with the angle itself, the cosine value can resist noises better. The SODP of 
signal expresses the change rate of the tangent vectors angle ( 2) ( 1)A n A n+ − +  to 

( 1) ( )A n A n+ − , its CTM value is

[ ] [ ]
2

2 2
2 1 1

1

1CTM
2

N

n n n n
n

A A A A
N

−

+ + +
=

= − + −
− ∑ .

The value of CTM refl ects the smooth degree of the attractors’ trajectory: the smaller the 
CTM value is, the less the changes of tangent vector angle, the smoother the trajectory 
is; and vice versa. The determinacy of the signal S can be measured by the ratio of the 
CTM value of the EEG series data and the surrogate data. The bigger S is, the stronger the 
randomicity of EEG signal is. The researches show: the deterministic signal S < 0.3; the 
random signal S > 0.7; as to part deterministic signal 0.3 < S < 0.7.

Approximate Entropy
In 1991, Pincus put forward a rule to measure the complexity and the statistic quantifi cation 
of time series, i.e., approximate entropy [18]. The approximate entropy can weigh the 
probability of creating new pattern of time series. The bigger the probability is, the more 
complex the time series gets. Because only less data is needed to compute the stable 
estimated value of the approximate entropy, the approximate entropy is suitable for the 
classifi cation of nonsteady consciousness EEG signal. For example, the sampling frequency 
for most EEG machines are between 100–1000Hz, but computing the approximate entropy 
needs 100–1000 data points, so the EEG data length used for classifi cation can be taken as 
0.5–1s. Although there are false mark disturbance and power frequency disturbance while 
gathering EEG signals, the EEG data needed is very short. So the approximate entropy has 
strong anti-chirp and antijamming ability. At present, there is still dispute on whether EEG 
is derived from chaotic systems or disorderly linear random systems [19]. The approximate 
entropy is suitable for deterministic and random signal, which further shows that the 
approximate entropy has better practicability.
The concrete algorithm for approximate entropy is described as follows: Suppose the initial 
data as (1), (2), , ( )x x x N� .

 1.  Form a group of m-dimensional vector according to the serial number order: 
( ) [ ( ), ( 1), , ( 1)]i x i x i x i m= + + −�X ( 1, 2, , 1)i N m= − +� .

  2.  Define the distance between X(i) and X( j) as 
0 1

[ ( ), ( )] max [ ( ) ( ) ]
k m

d i j x i k x j k
= −

= + − +
∼

X X , 
  and compute the distance [ ( ), ( )]d i jX X  between X(i) and other vectors X(j) 

( 1, 2, , 1; )j N m j i= − + ≠�  for every i value.



 3.  Given the threshold value r, count the number of [ ( ), ( )]d i jX X  which is smaller than 
r for every i value, and compute the ratio of this number to the total distance N m− : 

1( ) {number of [ [ ( ), ( )] ]}m
iC r d i j r

N m
= <

−
X X ( 1, 2, , 1)i N m= − +… .

 4.  The average value of i is computed according to logarithm of ( )m
iC r :

  

1

1

1( ) ln ( )
1

N m
m m

i
i

r C r
N m

φ
− +

=

=
− + ∑ .

 5.  Add the dimension by 1 again to 1m + , repeat steps (1) to (4), and compute ( )m
iC r  

and ( )m rφ .
 6.  The theoretical value of the approximate entropy is

   1( , ) lim[ ( ) ( )]m m

N
ApEn m r r rφ φ +

→∞
= − .

Generally speaking, the boundary value mentioned above exists by probability 1. 
N can’t be ∞  in practice. When N is a fi nite value, the result is the estimated value of 
ApEn when the series length is N, which is defi ned as 1( , , ) ( ) ( )m mApEn m r N r rφ φ += − . 
Obviously, the value of ApEn is related with the value of m and r. According to Pincus’s 
work, m = 2 and r =0.1 : 0.25SDx are suggested (SDx is the standard deviation (SD) of initial 
data x(i) (i = 1, 2,..., N). 

Multi-lead Correlation Dimension
In the study of nonlinear dynamics of EEG signals, the Takens’s time delay reconstruction 
phase space method used EEG data of single channel record to reconstruct multi-
dimensional EEG attractor, which refl ects the time correlation of the system. In order to 
show the characteristic of the system from time and space, Eckmann and Ruelle proposed the 
multichannel reconstructing (multivariable embedding) method that can show the correlation 
of space and time simultaneously. When applied in time series with short-time noise, it can 
avoid problems such as the choice of delayed parameters and system errors with higher 
embedding dimension. Rombouts et al. thought the multichannel reconstructing method 
can provide more reliable results [20]. Take EEG signals as an example, recording variable 
of each lead is taken as a component of the reconstructing vector while reconstructing, the 
reconstructing dimension is decided by the electrode number of EEG signals.

Based on the multi-lead data, the principal step of computing the correlation dimension 
with GP algorithm [21] is: The m-dimensional embedding-space { }X  is got from m-lead 
observing time series.

 1.  Suppose 1 2( ) { ( ), ( ), , ( )}mn x n x n x n= …X  ( , )n N m M≤ ≤ , here m is the number of 
the required variables.

 2.  For a given distance r, compute the correlation integral 
1

1

2( ) ( )
( 1)

N N

i j
j i j w

C r H r
N N

−

= = +

= − −
− ∑ ∑ X X , here X is the vector in

  embedded space, N is the number of the vector, w is Theiler window, H is Heaviside 
function.
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 3.  For an enough small r, the correlation integral approaches to the following formula:
   ( ) ( )m mLnC r LnC d Ln r= + .

 4.  Evaluate the slope of the fi tting straight line in the linearity range of  ( ) ( )rLnrLnCm ≅ , 
namely the estimated value of the correlation dimension 2D .

Generally speaking, the correlation dimension of EEG represents the invariable 
measure for the self-similarity and the criterion irrelevance of the EEG signal, and shows 
the complex degree of the EEG signal.

Small Data Sets Method of Computing Lyapunov Exponent
The ordinary method of studying whether the actual observable series has chaotic 
characteristic or not, is to compute the biggest Lyapunov exponent 1λ  of the observable 
series. When 1 0>λ , the observable system is believed to be chaotic. Since Wolf proposed 
and computed the Lyapunov exponent according to the observable series in 1985, there 
are some sophisticated methods in this respect, such as Jacobian method, p norm method 
and the small data sets method proposed by Rosenstein et al. [22]. The small data sets 
method is more robust than other methods to embedded dimension of the phase space, the 
reconstruction time delay, observable noises and so on.

Mark the constructed phase space as X=[X1,X 2,…,XN], phase point is

( ) ( )[ ] ),...,2,1(,...,, 21 Njxxx jJmjJmjj == −−−−X , here N is the total number of the phase
points, m  is the embedding dimension of the phase space, J is the reconstructing time 
delay. Generally, tkJ Δ= , k is a positive integer, tΔ  is sampling interval. For ∀ Xj∈X, defi ne

jjkjjd ˆkinf)0( XXXXX −=−= ∈ , and pjj >− ˆ , p is the average cycle of the time track.
If ∃Xj+i∈X and XX ∈

+iĵ ,  defi ne ijijj id ++ −= ˆ)( XX , then the advanced distance dj(i) has 
the following approximate relation

1( ) (0) i t
j jd i d e Δ≈ λ    (1)

here tΔ  is the sampling interval or the step length of the observable series; i is the sliding 
step ordinal of the phase point along the time track. Take natural logarithm to both sides of
the formula (1), we can get 1ln ( ) ln (0)j jd i d i t≈ + Δλ . When ˆ( )j j i j id i + += −X X ( ⋅
denotes the vector 2 norm), we get the empirical formula which Rosenstein et al. used to 
compute 1λ  [22]. In view of the infl uence of local computation, the last empirical formula 
is

1
1 1ln ( ) ln (0)j jd i d i
t t
< >≈ < > +

Δ Δ
λ .

Here < ⋅ >  is to get average. 

Power Spectra
Using Auto-Regressive (AR) parameter model method to compute the self power spectra 
estimated value of the EEG signal [23]: The AR model of the EEG time series xn is provided 
by the following formula



∑
=

− +−=
p

k
nknkn wxax

1    

 (2)

here p is the order of the AR model; ),2,1( pkak �=  is AR model parameter; wn is the 
unpredictable part of xn, namely residual error. If the model can well match the EEG time 
series, wn should be white noise process. According to the AR model given by formula (2), 
we can get the estimated value of the AR spectra
 2 2

2 2

1

( )
( )

1

ω ω
x jω p

jωk
k

k

σ σ
P ω

A e
a e−

=

= =

+∑     (3) 

here 2
ùóωσ  is the variance of AR model residual error. From the formulas (2) and (3), we know 

the key to get the AR spectra estimation is to estimate the AR parameters ),2,1( pkak �=  
through the EEG time series. Usually, Yule-Walker equation and Levinson-Durbin algorithm 
are used to estimate AR parameters. In this paper, we use Burg algorithm. Burg algorithm 
is an autoregression power spectra estimated method, on the premise of Levinson-Durbin 
recursion restraint, making the sum of the front and back forecast error energy smallest. 
Burg algorithm avoids the computation of self-correlation function. It can distinguish the 
extremely close sine signal in low noise signals, and may use less data record to estimate, 
and the result is extremely close to real values. Moreover, the forecasting error fi lter 
obtaining from Burg algorithm is minimum phase. The choice of the model order p is a 
critical problem in the AR model spectra estimate. If p is too low, it will cause smooth 
spectra estimate; while if p is too high, it will cause spectral line excursion and spectral 
line abruption and generate general statistic instability. In this paper, we adopt Akaike 
information criterion (AIC) to estimate the value of the order
 ( ) ln 2pAIC p N ρ p= +� ,

here N is the number of the data points, ρ
�)

 P  is the estimated value of the white noise variance 
(forecasting error power) of p order AR model.

SOM Neural Network
The neural network is a highly nonlinear system; and it also shares similar characteristics 
with brain, so it is used in various classifi cations extensively. SOM neural network is 
composed of entire connection neuron array and it is a non-teacher, self-organizing and 
self-learning network. Its idea is that neurons in different areas of the space have different 
functions. When the neural network accepts an external input mode, it will be divided into 
different response areas, and each area has different response characteristics to the input 
mode.

A typical characteristic of SOM network is that it can generate the characteristic 
topology classifi cation of input signal on one-dimensional or two-dimensional processing 
unit array, so the SOM network can extract the pattern characteristics of the input signal. 
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Generally, SOM network only includes one-dimensional array and two-dimensional array, 
but it can also be generalized into multidimensional processing unit array. This research 
uses two-dimensional array. SOM network is made up of the following four parts.

 1.  Processing unit array. Using to accept the input event and forming “discriminant 
function” of these signals.

 2.  Comparison and choice of mechanism. Using to compare the “discriminant function”. 
And choosing one processing unit which has the biggest output value.

 3.  Partial interconnection action. Using to drive the chosen processing unit and the 
processing unit closest to it simultaneously.

 4.  Adaptive process. Using to revise the parameter of driven unit in order to increase its 
output value to the specifi c input “discriminant function”.

Experiment and Result
EEG Data Source
The data used in this paper is the consciousness activities EEG data of 7 subjects that offered 
by the EEG research center of Colorado State University [24]. There are fi ve kinds of 
human consciousness activities, i.e., relaxation, mental arithmetic of multiplication, mental 
composition of a letter, visualizing a 3-dimensional object being revolved about an axis, 
and visualizing numbers being written or erased on a blackboard [25]. The experimental 
process of data acquisition is: Subjects sit in the sound-insulated and light-weak room with 
the electrode cap and complete some consciousness tasks according to the indications. The 
corresponding electrical signals of the brain will be recorded. The electrode is laid in C3, 
C4,P3,P4,O1,O2 and EOG (Electro-Oculogram) altogether 7 leads according to international 
10 20 system standard. The sampling frequency is 250Hz, the simulative fi ltering range is 

100Hz.~1.0 Signals polluted seriously by winks are excluded. Experimental data of each 
consciousness task last 10s. Figure 1 is the EEG signal of subject 1 while relaxing. It is 
obvious that even under relaxing conditions; healthy people’s EEG signals fl uctuate in a 
complicated way, which contains abundant nonlinear dynamic information.

Phase Graph Analysis
Using the phase space reconstruct technique from one-dimensional time series to determine 
the time delayτ: In the experimental system, it should be through repeated trial method to 
confi rm choice of τ . If τ  is undersize, the track of the phase space will approach to a 
straight line; per contra τ  is oversize, the data point will centralize in a small range of the 
phase space, and we can’t get the attractors’ local structures from the reconstructed phase 
graph [13]. Testing repeatedly, we fi nd that selecting 3=τ , data point N = 2000, it can 
well reconstruct the EEG attractors. We construct the EEG attractors of all fi ve kinds of 
consciousness activities of 7 subjects and fi nd that EEG attractors of various patterns have 
similar characteristics.

Figure 2 is a representative one. As can be seen from Fig. 2, the attractors’ track often 
rotate in an extremely complex way, even smear a group black in the plane, but there is 
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Figure 1 EEG signal waveform of subject 1 while relaxing.
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Figure 2 EEG attractors of fi ve kinds of consciousness activities of subject 1. (a) Relaxation. (b) Mental 
arithmetic of multiplication. (c) Mental composition of a letter. (d) Visualizing a 3-dimensional object being 
revolved about an axis. (e) Visualizing numbers being written or erased on a blackboard.
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still internal structure when the attractors is magnifi ed. The attractors of relaxation, mental 
composition of a letter and visualizing a 3-dimensional object being revolved about an 
axis often distribute in a small ellipse region, while the point in the attractors of mental 
arithmetic of multiplication and visualizing numbers being written or erased on a blackboard 
centralize nearby the 45 degree line and there is a large distributing range along the 45 
degree line. This is because while proceeding rational computation such as mathematics 
or imagination, the value of the adjacent sampling points of EEG signals are close, and the 
amplitude values of the whole EEG signals are great.

Power Spectra Analysis 
Using the AR parameter model method, we select 250Hz sampling frequency to compute 
the power spectra of fi ve kinds of tasks’ EEG signal of 7 subjects. The parameters used 
in analysis are: the length of FFT M: 1024; the total number of the data N: 6000; order 
p: 320. By comparison of the power spectra of fi ve kinds of tasks of 7 subjects, we fi nd 
that the power spectra of fi ve kinds of tasks for identical subject are similar and meet 1/f 
distribution. As can be seen from Fig. 3, although the attractors’ difference is great (Fig. 2 
(b) and 2(d)), their power spectra (Fig. 3(a) and 3(b)) show certain similarity. The peak in 
the high-frequency in Fig.3 is caused by the power frequency disturbance.

Figure 3 EEG power spectra of 2 kinds of tasks of subject 1. (a) Mental arithmetic of multiplication. (b) 
Visualizing a 3-dimensional object being revolved about an axis.
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Practice prove: The EEG of human can be divided into four frequency sections: δ 
wave: the frequency is 1-4Hz, appears while sleeping, anaesthetizing deeply, oxygen 
defi cit or the brain with organic disease; θ wave: the frequency is 4–8Hz, appears while 
feeling sleepy; α wave: the frequency is 8–13Hz, appears while closing eyes with clear-
headed; β wave: the frequency is 14–30Hz, appears while opening eyes and looking at 
things or thinking. As can be seen from Fig. 3, although the spectral lines are similar, there 
are differences in the active frequency bands (8–30Hz) of different consciousness. So we 
add the energy of 8–13Hz and 14–30Hz separately in order to use it in SOM network to 
classify the consciousness.



CTM and the Deterministic Computation of the Signals
EOG signal is the main disturbance of each lead EEG signal, so we make a relevant 
analysis separately between the gathered EOG signal and another 6 leads in order to fi nd 
several leads which are disturbed less. We choose 3=τ  and 16m =  to compute the CTM. 
The method of surrogate data [26,27] is used to help detect nonlinear determinism. The 
surrogate data are linear stochastic time series that have the same power spectra as the 
EEG signal series. In this paper, we use “iteratively refi ned surrogate data”, which have 
the same autocorrelation function, Fourier power spectrum, and probability distribution as 
the EEG time series. More detailed algorithms used in this study are present in the paper 
of Schreiber and Schmitz [27].

Figure 4 gives the statistic average histogram for each task of 100 times testing. 
It is obvious that the value of CTM accords with the phase graph 3 well. The statistic 
average results of the deterministic computations of the EEG signals are in the interval of 
0.3 S 0.7< < . It offers strong support that human brain which contains chaotic component 
is a highly nonlinear system. But while proceeding deterministic tests, we also fi nd that its 
value’s fl uctuation is very big. As an empirical algorithm, when there is less data sample, 
its application also has certain limitation.
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Figure 4 Statistic average histogram of CTM and S of 5 tasks of subject 1 (SD denotes standard deviation).

Approximate Entropy Computation
According to the characteristics of the processing data, we choose 0.5 xr SD=  and xr SD= . 
The approximate entropy to 100 groups of data is computed separately. Because the data 
gathered from different electrodes may be asynchronous, we make interval eliminations to 
those unsuitable data. Figure 5 provides the statistic average histogram of the approximate 
entropy when 0.5 xr SD=  and xr SD= . 
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Correlation Dimension Computation
According to the characteristics of the processing data, we precondition the EEG data fi rst. 
Namely make a relevant analysis between the EOG and other leads, and sort them according 
to the order from weak to strong. Then carry through the phase space reconstruction. 
According to the discussion by Brandstater and Swinney [13]: The fl uctuation of partial 
derivative in scale-free region should be less than 1%. Thus, the scale-free region can be 
determined. Then the least square method can be used to obtain the correlation dimension. 
After iterative trials, we found that the correlation dimension can be exactly determined 
with 12m > . Therefore, in these experiments, we choose 3=τ  and 16m =  to compute the 
data of 4 subjects and each contains ten groups separately. 

From Fig. 5, we can see, the consciousness activities (task 2 and 5), with more rational 
consciousness such as arithmetic, have relatively weaker ability to generate new pattern; 
while those consciousness activities (task 4), with more abstract consciousness such as 
visualizing graph rotating, have relatively stronger ability to generate new pattern, which 
means that the time series have more complexity. This also corresponds to the practice. 
Because mathematical computation is based on fi xed rule, its ability to create new pattern 
ingredient is naturally lower.

Figure 5 Statistic average histogram of the approximate entropy of subject 1 when SDxr 5.0=  and SDxr 0.1= .

Figure 6(a) is a representative curve LnC(r) vs Ln(r) of subject 1 while relaxing. Figure 
6(b) provides the statistic results of the correlation dimension D2 of 10 groups of data 
of fi ve kinds of human consciousness activities (each vertical line represents the mean 
square error range of each task, the crossing point between the crosswise fold line and the 
vertical line is the mathematic expectation of the task). We can see from Fig. 6(b): For 
the same subject, do the same kind of tests in different time, its 2D  value may have great 
fl uctuation, which means human brain has different excitable degree in different time slice. 
Figure 6(b) also shows that the error fl uctuation of 2D  is minimum when implementing 



mathematical computation (task 2). This is because mathematical computation can make 
the spirit centralized more easily than other consciousness activities. In addition, we also 
compute the data of 2D  for other 3 subjects and each contains 10 groups of data. These 2D  
will also be used in the ideology classifi cation of the SOM.
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Figure 6 The result of the correlation dimension D2 of subject 1. (a) LnC(r) vs Ln(r) curve while relaxing. (b) 
D2 of 5 kinds of tasks and each contains 10 groups of EEG data.

0

–2

–4

–6

–8

–10

–12

6

5.6

5.8

5.4

5.2

5

4.8

4.6

4.4

4.2

40 1 2 3 4 5 65 –1 –0.5 0 0.5 1 1.5 2 2.5 3 3.5

1n
 C

 (r
)

D
2

1n (r) task

Lyapunov Exponent Computation
Different consciousness activities stimulate different cerebrum regions, so the computation 
of single lead signal can’t refl ect the synthetic Lyapunov exponent of the brain consciousness 
activity well. The embedded dimension m  is determined by iteratively trials. For the delay τ, the 
phase space of EEG signals is projected into the two-dimension plane. If τ  is too small, the 
attractors will muster around the line y x= . If τ  is too large, τm will be much more than the 
average period. On this basis,τ  is determined by iteratively trials. Furthermore, considering 
the fact that for different consciousness, different cerebrum region has different activity degree, 
implement sample splicing to the sampling data of each lead with 3ô= , m = 16 to reconstruct 
the phase space. Figure 7 is the biggest Lyapunov exponent 1λ of 10 groups of EEG data with 
fi ve kinds of human consciousness activities (each vertical line represents the result of mean 
square error range of each task, the crossing point between the histogram and the vertical line 
is the mathematic expectation of the task). It is obvious that the biggest Lyapunov exponents 

1λ  of fi ve human consciousness activities are all bigger than zero, which proves that human 
brain activity is chaotic.

SOM Network Consciousness Classifi cation
The purpose of the investigation in this paper is to classify the intelligence consciousness 
activities. From the analysis above, we know that for the same subject, the methods described 
above may have better differentiation degree; but for different subjects, the above methods 
have diffi culties to classify the consciousness activities, which also indicates that the brain 
is a highly complicated nonlinear system.
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Therefore, we make the nonlinear criterions (mentioned above) into the prophase 
processing module, and input them to the input unit of the SOM network. That is, the SOM 
network has six inputs, including power spectra, CTM, S, approximate entropy, correlation 
dimension and Lyapunov exponents. According to the tests of the data, the competitive layer 
of the network is chosen as 8×6 structure. The predicted results of the network are shown in 
Fig. 8. In Fig. 8, the horizontal ordinate denotes the fi ve outputs of the SOM network, and 
the vertical ordinate denotes the correct resolution. Figure 8(a) shows the correct resolution 
histogram of mixed tasks of single subject. In Fig. 8(a), the outputs of the SOM network 
are the mixed tasks which are combined in turn from the fi ve kinds of human consciousness 
activities, i.e., relaxation, mental arithmetic of multiplication, mental composition of a letter, 
visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers 
being written or erased on a blackboard. For example, “3” represents the combination of 
three tasks, i.e., relaxation, mental arithmetic of multiplication, and mental composition of 
a letter. Figure 8(b) shows the correct resolution histogram of four subjects. In Fig. 8(b), 
the outputs of the SOM network are the fi ve individual tasks mentioned above. As can be 
seen from Fig. 8(b), the resolution of mathematical computation is relatively higher, while 
the resolutions of other tasks are about equivalent. The authors think that this is because the 
nonlinear quantitative parameters of the mathematical computation have great difference 
compared with other tasks. As can be seen from Fig. 8(a) and Fig. 8(b), the resolution of 
multi-individual drops obviously relative to single individual. This is because the nonlinear 
quantitative parameters of two subjects differ greatly, which makes the resolution of the 
network details drop. There will be better results if there are more individuals to train the 
network.

Figure 7 1λ of 5 kinds of tasks and 10 groups of EEG data of subject 1.



Discussion and Conclusion
 1.  In this paper, we use the determinacy, the phase graph, the power spectra, the 

approximate entropy, the correlation dimension and the Lyapunov exponent method 
etc. to study the EEG signal of 5 kinds of consciousness activities of 7 subjects. 
Although every method has merits and faults, the results show the nonlinear dynamic 
characteristics of the subject’s brain from different perspective. Thereinto, from the 
deterministic computation we know that the EEG signal is between random signal 
and deterministic signal. This indicates that the brain may be a chaotic system. The 
analysis of the power spectra shows that various ideology of single subject is almost 
identical, but the activity frequency channels for different consciousness activities 
are different slightly. The analysis of the approximate entropy presents the degree 
of various consciousness activities on generating new pattern. The approximate 
entropy of different subjects exist discrepancy. The authors think that at the same 
state, the larger approximate entropy of the subject, the more innovational he has. 
The correlation dimension shows the change of chaos of different consciousness 
activities well, which can better indicate the activity degree of human consciousness, 
combining with the approximate entropy and the Lyapunov exponent. The above 
analyses indicate: Different consciousness activities have profound nonlinear dynamic 
differences. Some differences are diffi cult to perceive, and the nonlinear quantitative 
parameters of different individuals have great differences. So it is a critical problem 
to fi nd a widely applicable criterion, which needs to be explored for a long time.
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Figure 8 The predicted result of SOM network. (a) The correct resolution histogram of mixed tasks of single 
subject. (b) The correct resolution histogram of 4 subjects and 5 kinds of tasks’.
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