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Preface

Why do we need another book on quantum mechanics? Go to any university library
and you’re bound to find hundreds of textbooks on this subject. A number are truly
outstanding and nearly everyone has a favorite. In my case, I very much like Cohen-
Tannoudji’s two-volume text, although Merzbach, Feynman, and Hibbs and Landau
and Lifshitz hold their own places of honor on my bookshelf. So, why go through the
bother and effort of trying to say something new? The majority of leading texts focus
upon the solution of Schrödinger’s equation for a handful of solvable problems. Some
will venture into the realm of scattering theory and most will have a good presentation
of second quantization. However, the discussion of time-dependent quantum dynam-
ics is typically limited to the spread of a Gaussian wave packet, the dispersionless
evolution of a Gaussian in a parabolic potential, and time-dependent perturbation
theory leading to Fermi’s golden rule.

This book grew out of the need to fill a glaring gap between the standard quantum
mechanics textbooks and more specialized texts. It has evolved out of a series of
lecture notes for a course on this topic that I have presented intermittently over the
past decade, and it has grown out of my own attempts to study the underlying physics
of quantum relaxation dynamics as applied to chemical systems. For certain, this book
draws from a variety of deep wells.

One significant focus of modern chemical physics is the experimental detection
of quantum dynamical processes that occur in chemical systems, typically in a con-
densed phase environment. With the rapid advance of multiphonon spectroscopies,
we are beginning to probe some of nature’s most important processes, such as the
light-harvesting mechanism in photosynthetic systems or the mechanism of photo-
damage to DNA. We have also turned these tools to study similar ultrafast processes
in nanoscale materials that may eventually be used for artificial photosynthetic sys-
tems, electronic switches, or light sources. Understanding these systems requires an
in-depth knowledge of time-dependent quantum mechanics beyond what is presented
in a typical graduate-level course.

Regarding scope and level, I deliberately chose not to include much detail on
solving the standard models for the harmonic oscillator, hydrogen atom, quantized
angular momentum, and so forth. These appear in all standard textbooks and I saw
little need to rework these models here. A truly comprehensive text would fill at
least two complete bookshelves. However, I do rely upon such models for bases and
approximations, and I summarize the essential features (eigenstates, spectrum, and
so on) as needed. I assume that the reader is familiar with the essential theory of
quantum mechanics as presented in a typical undergraduate-level physical chemistry
course, and we have used this material in our first-year graduate quantum chem-
istry course at the University of Houston. My assumption is that students are ac-
quainted with the notion of quantization and its role in molecular spectroscopy.
Applications and codes for further illustration can be found on the accompanying Web
site (http://k2.chem.uh.edu/quantum dynamics). A solutions manual is also available
for download.
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1 Survey of Classical
Mechanics

Quantum mechanics is in many ways the cumulation of many hundreds of years
of work and thought about how mechanical things move and behave. Since ancient
times, scientists have wondered about the structure of matter and have tried to develop
a generalized and underlying theory that governs how matter moves at all length scales.

For ordinary objects, the rules of motion are very simple. By ordinary, I mean
objects that are more or less on the same length and mass scale as you and I, say
(conservatively) 10−7m to 106 m and 10−25g to 108g moving at less than 20% of the
speed of light. On other words, almost everything you can see and touch and hold
obeys what are called classical laws of motion. The term classical means that that the
basic principles of this class of motion have their foundation in antiquity. Classical
mechanics is an extremely well-developed area of physics. While you may think that
because classical mechanics has been studied extensively for hundreds of years there
really is little new development in this field, it remains a vital and extremely active area
of research. Why? Because the majority of universe “lives” in a dimensional realm
where classical mechanics is extremely valid. Classical mechanics is the workhorse
for atomistic simulations of fluids, proteins, and polymers. It provides the basis for
understanding chaotic systems. It also provides a useful foundation of many of the
concepts in quantum mechanics.

Quantum mechanics provides a description of how matter behaves at very small
length and mass scales, that is, the realm of atoms, molecules, and below. It has been
developed over the past century to explain a series of experiments on atomic systems
that could not be explained using purely classical treatments. The advent of quantum
mechanics forced us to look beyond the classical theories. However, it was not a drastic
and complete departure. At some point, the two theories must correspond so that
classical mechanics is the limiting behavior of quantum mechanics for macroscopic
objects. Consequently, many of the concepts we will study in quantum mechanics
have direct analogs to classical mechanics: momentum, angular momentum, time,
potential energy, kinetic energy, and action.

Much as classical music is cast in a particular style, classical mechanics is based
upon the principle that the motion of a body can be reduced to the motion of a point
particle with a given mass m, position x , and velocity v. In this chapter, we will
review some of the concepts of classical mechanics which are necessary for studying
quantum mechanics. We will cast these in forms whereby we can move easily back
and forth between classical and quantum mechanics. We will first discuss Newtonian
motion and cast this into the Lagrangian form. We will then discuss the principle of
least action and Hamiltonian dynamics and the concept of phase space.

1



2 Quantum Dynamics: Applications in Biological and Materials Systems

1.1 NEWTON’S EQUATIONS OF MOTION

1.1.1 NEWTON’S POSTULATES

Why do things move? Why does an apple fall from a tree? This is usually the first
sort of problem we face in trying to study the motion and dynamics of particles and
develop laws of nature that are independent of a particular situation.

We understand the concept of force. We all have pushed, pulled, or thrown some-
thing. Those actions require an action or force from the muscles in our body. Newton
proposed a set of basic rules or postulates which he thought could describe the rules
that all objects obey under the influence of any kind of force.

Postulate 1.1
Law of Inertia: A free particle always moves without acceleration.

That is, a particle that is not under the influence of an outside force moves along a
straight line at constant speed, or remains at rest.

Postulate 1.2
Law of Motion: The rate of change of an object’s momentum is equal to the force
acting upon it.

d �p
dt

= �F (1.1)

This is equivalent to �F = m �a where �a = d�v/dt is the acceleration. Note that in
Newton’s first postulate, we assume that the mass does not change with time.

Postulate 1.3
Law of Action: For every action, there is an equal and opposite reaction.

�F12 = − �F21 (1.2)

This is to say that if particle 1 pushes on particle 2 with force F , then particle 2
pushes on particle 1 with a force −F . In SI units, the unit of force is the Newton,
1N = 1kg · m · s−2.

Newton’s Principia set the theoretical basis of mathematical mechanics and anal-
ysis of physical bodies. The equation that force equals mass times acceleration is the
fundamental equation of classical mechanics. Stated mathematically,

mẍ = f (x) (1.3)

The dots refer to differentiation with respect to time. We will use this notion for time
derivatives. We may also use x ′ or dx/dt as well. So,

ẍ = d2x

dt2
(1.4)

For now we are limiting ourselves to one particle moving in one dimension. For
motion in more dimensions, we need to introduce vector components. In Cartesian
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coordinates, Newton’s equations are

mẍ = fx (x, y, z) (1.5)

mÿ = fy(x, y, z) (1.6)

mz̈ = fz(x, y, z) (1.7)

where the force vector �f (x, y, z) has components in all three dimensions and varies
with location. We can also define a position vector �x = (x, y, z) and velocity vector
�v = (ẋ, ẏ, ż). We can also replace the second-order differential equation with two
first-order equations

ẋ = vx (1.8)

v̇x = fx/m (1.9)

These, along with the initial conditions x(0) and v(0), are all that are needed to solve
for the motion of a particle with mass m given a force f . We could have chosen two
endpoints as well and asked, What path must the particle take to get from one point
to the next? Let us consider some elementary solutions.

First, the case in which f = 0 and ẍ = 0. Thus, v = ẋ = const. So, unless there
is an applied force, the velocity of a particle will remain unchanged.

Second, we consider the case of a linear force f = −kx . This is restoring force
for a spring and such force laws are termed Hooke’s law and k is termed the force
constant. Our equations are

ẋ = vx (1.10)

v̇x = −k/mx (1.11)

or ẍ = −(k/m)x . So we want some function which is its own second derivative
multiplied by some number. The cosine and sine functions have this property, so let
us try

x(t) = A cos(at) + B sin(bt) (1.12)

Taking time derivatives,

ẋ(t) = −a A sin(at) + bB cos(bt) (1.13)

ẍ(t) = −a2 A cos(at) − b2 B sin(bt) (1.14)

So we get the required result if a = b = √
k/m, leaving A and B undetermined. Thus,

we need two initial conditions to specify these coefficients. Let us pick x(0) = xo and
v(0) = 0. Thus, x(0) = A = xo and B = 0. Notice that the term

√
k/m has units of

angular frequency,

ω =
√

k

m
(1.15)

So, our equations of motion are

x(t) = xo cos(ωt) (1.16)

v(t) = −xoω sin(ωt) (1.17)
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Let us now consider a two-dimensional example where we have a particle launched
upwards at some initial velocity and we wish to predict where it will land. We shall
neglect frictional forces.

The equations of motion in each direction are as follows. In the vertical direction,

mÿ = −mg (1.18)

where g is the gravitational constant and the force −mg is the attractive force due to
gravity. In x , we have

mẍ = 0 (1.19)

since there are no net forces acting in the x direction. Hence, we can solve the x
equation immediately since v̇x = 0 and thus, x(t) = vx (0)t + xo = vot cos(φ). For
the y equation, denote vy = ẏ,

m
d

dt
vy = −mg (1.20)

Integrating, vy = −gt + const . Evaluating this at t = 0, vy(0) = vo sin(φ) = const.
Thus,

vy(t) = −gt + vo sin(φ) (1.21)

This we can integrate as ∫
dy =

∫
(−gt + vo sin(φ))dt (1.22)

that is,

y = vo sin(φ)t − g

2
t2 (1.23)

So the trajectory in y is parabolic. To determine the point of impact, we seek the roots
of the equation

(
vo sin(φ)t − g

2
t2
)

= 0 (1.24)

Y

V0

X
φ

Either t = 0 or

tI = 2

g
vo sin(φ) (1.25)
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We can now ask this question: What angle do we need to point our cannon to hit a
target X meters away? In time tI the cannon ball will travel a distance x = vo cos(φ)tI .
Substituting our expression for the impact time:

X = v2
o cos(φ)

2

g
sin(φ) = v2

o sin(2φ)

g
(1.26)

Thus,

sin(2φ) = g

v2
o

X (1.27)

One can also see that the maximum range is obtained when φ = π/4.

1.2 LAGRANGIAN MECHANICS

1.2.1 THE PRINCIPLE OF LEAST ACTION

The most general form of the law governing the motion of a mass is the principle of
least action or Hamilton’s principle. The basic idea is that every mechanical system
is described by a single function of coordinate, velocity, and time: L(x, ẋ, t) and that
the motion of the particle is such that certain conditions are satisfied. That condition
is that the time integral of this function

S =
∫ t f

to

L(x, ẋ, t) dt (1.28)

takes the least possible value given a path that starts at xo at the initial time and ends
at x f at the final time.

Let us take x(t) to be a function for which S is minimized. This means that S
must increase for any variation about this path, x(t) + δx(t). Since the endpoints are
specified, δx(0) = δx(t) = 0 and the change in S upon replacement of x(t) with
x(t) + δx(t) is

δS =
∫ t f

to

L(x + δx, ẋ + δ ẋ, t)dt −
∫ t f

to

L(x, ẋ, t)dt = 0 (1.29)

This is zero because S is a minimum. Now, we can expand the integrand in the first
term

L(x + δx, ẋ + δ ẋ, t) = L(x, ẋ, t) +
(

∂L

∂x
δx + ∂L

∂ ẋ
δ ẋ

)
(1.30)

Thus, we have ∫ t f

to

(
∂L

∂x
δx + ∂L

∂ ẋ
δ ẋ

)
dt = 0 (1.31)

Since δ ẋ = dδx/dt and integrating the second term by parts

δS =
[
∂L

δ ẋ
δx

]t f

to

+
∫ t f

to

(
∂L

∂x
− d

dt

∂L

∂ ẋ

)
δxdt = 0 (1.32)
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The surface term vanishes because of the condition imposed above. This leaves the
integral. It too must vanish and the only way for this to happen is if the integrand
itself vanishes. Thus we have

∂L

∂x
− d

dt

∂L

∂ ẋ
= 0 (1.33)

L is known as the Lagrangian. Before moving on, we consider the case of a free
particle. The Lagrangian in this case must be independent of the position of the particle
since a freely moving particle defines an inertial frame. Since space is isotropic, L
must depend upon only the magnitude of v and not its direction. Hence,

L = L(v2) (1.34)

Since L is independent of x , ∂L/∂x = 0, so the Lagrange equation is

d

dt

∂L

∂v
= 0 (1.35)

So, ∂L/∂v = const , which leads us to conclude that L is quadratic in v. In fact,

L = 1

m
v2 (1.36)

which is the kinetic energy for a particle

T = 1

2
mv2 = 1

2
mẋ2 (1.37)

For a particle moving in a potential field V , the Lagrangian is given by

L = T − V (1.38)

L has units of energy and gives the difference between the energy of motion and the
energy of location.

This leads to the equations of motion:

d

dt

∂L

∂v
= ∂L

∂x
(1.39)

Substituting L = T − V yields

mv̇ = −∂V

∂x
(1.40)

which is identical to Newton’s equations given above once we identify the force as
the minus of the derivative of the potential. For the free particle, v = const . Thus,

S =
∫ t f

to

m

2
v2dt = m

2
v2(t f − to) (1.41)

You may be wondering at this point why we needed a new function and derived
all this from some minimization principle. The reason is that for some systems we
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have constraints on the type of motion they can undertake. For example, there may be
bonds, hinges, and other mechanical hindrances that limit the range of motion a given
particle can take. The Lagrangian formalism provides a mechanism for incorporating
these extra effects in a consistent and correct way. In fact we will use this principle
later in deriving a variational solution to the Schrödinger equation by constraining
the wave function solutions to be orthonormal.

Lastly, it is interesting to note that v2 = (dl/d)2 = (dl)2/(dt)2 is the square
of the element of an arc in a given coordinate system. Thus, within the Lagrangian
formalism it is easy to convert from one coordinate system to another. For example, in
Cartesian coordinates: dl2 = dx2 +dy2 +dz2. Thus, v2 = ẋ2 + ẏ2 + ż2. In cylindrical
coordinates, dl = dr2 + r2dφ2 + dz2, we have the Lagrangian

L = 1

2
m(ṙ2 + r2φ̇2 + ż2) (1.42)

and for spherical coordinates, dl2 = dr2 + r2dθ2 + r2 sin2 θdφ2; hence,

L = 1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) (1.43)

1.2.2 EXAMPLE: THREE-DIMENSIONAL HARMONIC OSCILLATOR

IN SPHERICAL COORDINATES

Here we take the potential energy to be a function of r alone (isotropic)

V (r ) = kr2/2 (1.44)

Thus, the Lagrangian in Cartesian coordinates is

L = m

2
(ẋ2 + ẏ2 + ż2) + k

2
r2 (1.45)

Since r2 = x2 + y2 + z2, we could easily solve this problem in Cartesian space since

L = m

2
(ẋ2 + ẏ2 + ż2) + k

2
(x2 + y2 + z2) (1.46)

=
(

m

2
ẋ2 + k

2
x2

)
+

(
m

2
ẏ2 + k

2
y2

)
+

(
m

2
ż2 + k

2
z2

)
(1.47)

and we see that the system is separable into three independent oscillators. To convert
to spherical polar coordinates, we use

x = r sin(φ) cos(θ ) (1.48)

y = r sin(φ) sin(θ ) (1.49)

z = r cos(θ ) (1.50)

and the arc length given above

L = m

2
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) − k

2
r2 (1.51)
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FIGURE 1.1 Vector diagram for motion in central forces. The particle’s motion is along the
Z axis, which lies in the plane of the page.

The equations of motion are

d

dt

∂L

∂φ̇
− ∂L

∂φ
= d

dt
mr2 sin2 θφ̇ = 0 (1.52)

d

dt

∂L

∂θ̇
− ∂L

∂θ
= d

dt
(mr2θ̇ ) − mr2 sin θ cos θφ̇ = 0 (1.53)

d

dt

∂L

∂ ṙ
− ∂L

∂r
= d

dt
(mṙ ) − mr θ̇2 − mr sin2 θφ̇2 + kr = 0 (1.54)

We now prove that the motion of a particle in a central force field lies in a plane
containing the origin. The force acting on the particle at any given time is in a direction
toward the origin. Now, place an arbitrary Cartesian frame centered about the particle
with the z axis parallel to the direction of motion as sketched in Figure 1.1. Note
that the y axis is perpendicular to the plane of the page, and hence, there is no force
component in that direction. Consequently, the motion of the particle is constrained
to lie in the zx plane, that is the plane of the page, and there is no force component
that will take the particle out of this plane.

Let us make a change of coordinates by rotating the original frame to a new one
whereby the new z′ is perpendicular to the plane containing the initial position and
velocity vectors. In Figure 1.1, this new z′ axis would be perpendicular to the page
and would contain the y axis we placed on the moving particle. In terms of these new
coordinates, the Lagrangian will have the same form as previously since our initial
choice of axis was arbitrary. However, now we have some additional constraints.
Because the motion is now constrained to lie in the x ′y′ plane, θ ′ = π/2 is a constant,
and θ̇ = 0. Thus cos(π/2) = 0 and sin(π/2) = 1 in the previous equations. From the
equations for φ we find

d

dt
mr2φ̇ = 0 (1.55)

or

mr2φ̇ = const = pφ (1.56)
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This we can put into the equation for r

d

dt
(mṙ ) − mr φ̇2 + kr = 0 (1.57)

d

dt
(mṙ ) − p2

φ

mr3
+ kr = 0 (1.58)

where we notice that −p2
φ/mr3 is the centrifugal force. Taking the last equation,

multiplying by ṙ , and then integrating with respect to time gives

ṙ2 = − p2
φ

m2r2
− kr2 + b (1.59)

that is,

ṙ =
√

− p2
φ

m2r2
− kr2 + b (1.60)

Integrating once again with respect to time,

t − to =
∫

rdr

ṙ
(1.61)

=
∫

rdr√
− p2

φ

m2 − kr4 + br2

(1.62)

= 1

2

∫
dx√

a + bx + cx2
(1.63)

where x = r2, a = −p2
φ/m2, b is the constant of integration, and c = −k. This is a

standard integral and we can evaluate it to find

r2 = 1

2ω
(b + A sin(ω(t − to))) (1.64)

Z
Z´

X´

Y´Y

X
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where

A =
√

b2 − ω2 p2
φ

m2
(1.65)

What we see then is that r follows an elliptical path in a plane determined by the
initial velocity.

This example also illustrates another important point that has tremendous impact
on molecular quantum mechanics, namely, that the angular momentum about the axis
of rotation is conserved. We can choose any axis we want. In order to avoid confusion,
let us define χ as the angular rotation about the body-fixed Z ′ axis and φ as angular
rotation about the original Z axis. So our conservation equations are

mr2χ̇ = pχ (1.66)

about the Z ′ axis and

mr2 sin θφ̇ = pφ (1.67)

for some arbitrary fixed Z axis. The angle θ will also have an angular momentum
associated with it, pθ = mr2θ̇ , but we do not have an associated conservation principle
for this term since it varies with φ. We can connect pχ with pθ and pφ about the other
axis via

pχdχ = pθdθ + pφdφ (1.68)

Consequently,

mr2χ̇2dχ = mr2(φ̇ sin θdφ + θ̇dθ ) (1.69)

Here we see that the the angular momentum vector remains fixed in space in the
absence of any external forces. Once an object starts spinning, its axis of rotation re-
mains pointing in a given direction unless something acts upon it (torque); in essence,
in classical mechanics we can fully specify Lx , L y , and Lz as constants of the motion
since d �L/dt = 0. In a later chapter, we will cover the quantum mechanics of rotations
in much more detail. In the quantum case, we will find that one cannot make such a
precise specification of the angular momentum vector for systems with low angular
momentum. We will, however, recover the classical limit in the end as we consider
the limit of large angular momenta.

1.3 CONSERVATION LAWS

We just encountered one extremely important concept in mechanics, namely, that
some quantities are conserved if there is an underlying symmetry. Next, we consider
a conservation law arising from the homogeneity of time. For a closed dynamical
system, the Lagrangian does not explicitly depend upon time. Thus we can write

d L

dt
= ∂L

∂x
ẋ + ∂L

∂ ẋ
ẍ (1.70)
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Replacing ∂L/∂x with Lagrange’s equation, we obtain

d L

dt
= ẋ

d

dt

(
∂L

∂ ẋ

)
+ ∂L

∂ ẋ
ẍ (1.71)

= d

dt

(
ẋ
∂L

∂ ẋ

)
(1.72)

Now, rearranging this a bit,

d

dt

(
ẋ
∂L

∂ ẋ
− L

)
= 0 (1.73)

So, we can take the quantity in the parenthesis to be a constant, and

E =
(

ẋ
∂L

∂ ẋ
− L

)
= const (1.74)

is an integral of the motion. This is the energy of the system. L can be written in the
form L = T − V where T is a quadratic function of the velocities, and using Euler’s
theorem on homogeneous functions:

ẋ
∂L

∂ ẋ
= ẋ

∂T

∂ ẋ
= 2T (1.75)

This gives

E = T + V (1.76)

which says that the energy of the system can be written as the sum of two different
terms: the kinetic energy or energy of motion and the potential energy or the energy
of location.

One can also prove that linear momentum is conserved when space is homoge-
neous. That is, when we can translate our system, some arbitrary amount ε and our
dynamical quantities must remain unchanged. We will prove this in the problem sets.

1.3.1 CONSERVATIVE FORCES

A conservative force has nothing to do with its particular political bend. In a loose
sense, it is a force in which the total energy is conserved. More precisely, a conservative
force acts in such a way that the potential energy of an object does not depend upon
the path taken by the object. Recall that work is force times the distance moved.
More precisely, work is an integral of the force along a given line or trajectory. In one
dimension

W =
∫ b

a
F(x)dx (1.77)

where a and b are beginning and end of the path. In multiple dimensions, we have to
extend this concept so that the integral is taken along some arbitrary path.



12 Quantum Dynamics: Applications in Biological and Materials Systems

Suppose we have a curve, C , connecting two points either on a plane or in a
volume. This curve may twist and bend, but it is fixed at the two endpoints and our
integral must be taken along C from one endpoint to the other. First, let us cut C into
N short straight segments of length 
si so that the segments {
s1 · · · 
sN } make up
a piecewise continuous approximation for C . The work performed along any one of
the segments can be approximated as

Wi = 
si F(xi , yi , zi ) (1.78)

Consequently, the total work in moving along C is approximately

W ≈
N∑
i


si F(xi , yi , zi ) (1.79)

Taking 
s → 0 and N → ∞, we can write the work performed in moving along
path C as

W = lim

si →∞

N∑
i


si F(xi , yi , zi ) =
∫

C
F(s)ds (1.80)

Now, suppose the force can be written as the gradient of some scaler potential
function

F = ∇G (1.81)

and that our curve C can be parametrized via a single variable t . For example, t could
be the length traveled along C or the time. Thus,

dG

dt
= ∇G

ds

dt
= F(s(t))

ds

dt
(1.82)

Inserting this into the work integral,

W =
∫

C
F(s)ds =

∫
C

F(s(t))
ds

dt
dt =

∫
C

dG

dt
dt = G(a) − G(b) (1.83)

where a and b are the two endpoints. As you can see, the integral now depends only
upon the two endpoints and does not depend upon the particular details of path C .

Suppose an object starts at point A and moves about some arbitrary closed path
P such that after some time it is again at point A. It may still be moving, but the net
work done on the object is exactly zero. That is, for a conservative force

W =
∮

�F(s) · d�s = 0 (1.84)

Although most forces encountered in molecular systems are conservative, many
are not, particularly those that depend upon velocity. For such forces, the three criteria
are not mathematically equivalent. For example, a magnetic force will satisfy the first
requirement, but its curl is not defined and it cannot be written as the gradient of a
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potential. However, the magnetic force F = q�v × �B can be counted as conservative
since the force acts perpendicular to the velocity vector �v and as such the work is
always zero. Nonconservative forces often arise when we neglect or exclude various
degrees of freedom. For example, for Brownian motion, the Brownian particle feels
a random kick and a viscous drag. These forces arise from the microscopic motion of
the surrounding atoms and molecules in the liquid. If we were to treat their motions
explicitly, the force acting on the Brownian particle would be conservative. Treating
the forces and interactions statistically makes for a far simpler description at the cost
of introducing a nonconservative force.

Example: Let us take for an example a force given by F(x, y) = (x + y) and let
us compute the work along three different paths. First, a path C1 from the origin to
(1, 1); second, along a path C2 from (0, 0) to (1, 0) then to (1, 1); and finally along
a curved parabolic path C3 given by y = x2 from the origin to (1, 1). Along C1, we
take s as the distance traveled along C1 so that x = s/

√
2 and y = s/

√
2. Thus,

W1 =
∫

C1

(x + y)ds =
√

2
∫ √

2

0
sds =

√
2 (1.85)

Moving on to C2, it is easier to break this into two segments. Along the segment from
(0,0) to (1,0), x = s and y = 0. Thus,

W (1)
2 =

∫ 1

0
sds = 1

2
(1.86)

Along the next segment from (1, 0) to (1, 1), x = 1 and y = s, so we integrate

W (2)
2 =

∫ 1

0
(1 + s)ds = 3

2
(1.87)

then add W2 = W (1)
2 + W (2)

2 = 2. Finally, along the parabolic path, let x = s and
y = s2 and we integrate

W3 =
∫ 1

0
(s + s2)ds = 5

6
(1.88)

Clearly, we are not dealing with a conservative force in this case! In fact, in most
cases, line integrals depend upon the path taken.

1.4 HAMILTONIAN DYNAMICS

Hamiltonian dynamics is a further generalization of classical dynamics and provides
a crucial link with quantum mechanics. Hamilton’s function, H , is written in terms of
the particle’s position and momentum, H = H (p, q). It is related to the Lagrangian via

H = ẋ p − L(x, ẋ) (1.89)

Taking the derivative of H with respect to x ,

∂ H

∂x
= −∂L

∂x
= − ṗ (1.90)
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Differentiation with respect to p gives

∂ H

∂p
= q̇ (1.91)

These last two equations give the conservation conditions in the Hamiltonian for-
malism. If H is independent of the position of the particle, then the generalized
momentum, p, is constant in time. If the potential energy is independent of time, the
Hamiltonian gives the total energy of the system,

H = T + V (1.92)

It is often easier and more convenient to express Newton’s equations of motion
as two first-order differential equations rather than a single second-order differential
equation. Both are equally valid. However, it is far easier to obtain equations of motion
in other coordinate systems than the x, y, z Cartesian coordinates we work with as
a more general set of equations. For this, we define a more general quantity for the
energy of a system,

H = T (v1, v2, . . . , vN ) + V (q1, q2, . . . qN ) (1.93)

where T is the kinetic energy that depends upon the velocities of the N particles in
the system and V is the potential energy describing the interaction between all the
particles and any external forces. V is the energy of position whereas T is the energy
of motion. For a single particle moving in three dimensions,

T = 1

2
m
(
v2

x + v2
y + v2

z

)
(1.94)

If we write the momentum as px = mvx , then

T = 1

2m

(
p2

x + p2
y + p2

z

)
(1.95)

Notice that we can also define the momentum as the velocity derivative of T :

px = ∂T

∂vx
(1.96)

This defines a generalized momentum such that qx is the conjugate coordinate to
px and (qx , px ) are a pair of conjugate variables. This relation between T and px is
important since we can define the canonical momentum in any coordinate frame. In
the Cartesian frame, px = mvx . However, in other frames, this will not be so simple.

We can also define the following relations:

∂ H

∂pi
= ∂T

∂pi
= pi

m
= ∂qi

∂t
(1.97)

∂ H

∂qi
= ∂V

∂qi
= −Fi = −∂(mvi )

∂t
(1.98)
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where i now denotes a general coordinate (not necessarily x, y, z). In short, we can
write the following equations of motion:

∂ H

∂pi
= ∂qi

∂t
(1.99)

−∂ H

∂qi
= ∂pi

∂t
(1.100)

These hold in any coordinate frame and are termed Hamilton’s equations.

Example: Hamilton’s Equations in Polar Coordinates

Let us consider the transformation between polar and two-dimensional Cartesian
coordinates, x and y.

x = r cos θ and y = r sin θ (1.101)

Our Hamiltonian in x, y coordinates is

H = m

2

(
v2

x + v2
y

) + V (x, y) (1.102)

Thus,

vx = dx

dt
= vr cos θ − vθr sin θ (1.103)

vy = dy

dt
= vr sin θ + vθr cos θ (1.104)

v2 = v2
x + v2

y = v2
r + v2

θr2 (1.105)

Thus,

H = m

2

(
v2

r + v2
θr2

) + V (r, θ ) (1.106)

We can now proceed to write this in terms of the conjugate variables,

pr = ∂T

∂vr
= mvr (1.107)

pθ = ∂T

∂vθ

= mvθr2 (1.108)
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Note that pθ is the angular momentum of the system. Thus, we can write

H = 1

2m

(
p2

r + p2
θ

r2

)
+ V (r, θ ) (1.109)

Next, consider the case where V (r, θ ) has no angular dependence. Thus,

∂pr

∂t
= −∂ H

∂r
= p2

θ

mr3
− ∂V

∂r
(1.110)

∂pθ

∂t
= −∂ H

∂θ
= −∂V

∂θ
= 0 (1.111)

∂r

∂t
= ∂ H

∂pr
= pr

m
(1.112)

∂θ

∂t
= ∂ H

∂pθ

= pθ

mr2
(1.113)

Notice that pθ does not change in time; that is, the angular momentum is a constant
of the motion. The radial force we obtain from ∂pr/∂t = Fr is

Fr = p2
θ

mr3
− ∂V

∂r
(1.114)

The first term is constant (since pθ = const) and represents the radial force produced
by the angular momentum. It always points outward toward larger values of r and
is termed the centrifugal force. The second term is the force due to the attraction
between the moving object and the origin. It could be the gravitational forces, the
Coulombic force between charged particles, and so forth. Using the expression for
pθ (Equation 1.111), we can also write the force equation as

Fr = (mvθr2)2

mr3
− ∂V

∂r
= mv2

θr − ∂V

∂r
(1.115)

If the two forces counterbalance each other, then the net force is Fr = 0 and we have

mv2
θr = ∂V

∂r
(1.116)

Since vθ = θ̇ = const, θ = ωt + const. Where ω is the angular velocity and using
vθ = ω, we can write

mω2r = ∂V

∂r
(1.117)

Finally, we note that the linear velocity is related to the angular velocity by ω = vr ,

mv2

r
= ∂V

∂r
(1.118)

Hence we have a relation between the kinetic energy T and the potential energy V
for a centro-symmetric system:

mv2 = 2T = r
∂V

∂r
(1.119)

This relation is extremely useful in deriving the classical orbital motion for Coulomb-
bound charges as in the hydrogen atom or for planetary motion.
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1.4.1 PHASE PLANE ANALYSIS

Often we cannot determine the closed-form solution to a given problem and we need
to turn to more approximate methods or even graphical methods. Here, we will look
at an extremely useful way to analyze a system of equations by plotting their time
derivatives.

First, let us look at the oscillator we just studied. We can define a vector s =
(ẋ, v̇) = (v, −k/mx) and plot the vector field. Figure 1.2 shows how to do this in
Mathematica. The superimposed curve is one trajectory and the arrows give the “flow”
of trajectories on the phase plane.

We can examine more complex behavior using this procedure. For example, the
simple pendulum obeys the equation ẍ = −ω2 sin x . This can be reduced to two
first-order equations: ẋ = v and v̇ = −ω2 sin(x).

We can approximate the motion of the pendulum for small displacements by
expanding the pendulum’s force about x = 0:

−ω2 sin(x) = −ω2

(
x − x3

6
+ · · ·

)
(1.120)

For small x , the cubic term is very small, and we have

v̇ = −ω2x = − k

m
x (1.121)

which is the equation for harmonic motion. So, for small initial displacements, we see
that the pendulum oscillates back and forth with an angular frequency ω. For large
initial displacements, xo = π, or if we impart some initial velocity on the system
vo > 1, the pendulum does not oscillate back and forth but undergoes librational
motion (spinning!) in one direction or the other.

x

–3

–2

–1

0

1

2

3

v

–2π –π 0 π 2π

–2π –π 0 π 2π

FIGURE 1.2 Tangent field for simple pendulum with ω = 1. The superimposed curve is a
linear approximation to the pendulum motion.
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1.4.2 INTERACTION BETWEEN A CHARGED PARTICLE

AND AN ELECTROMAGNETIC FIELD

We consider here a free particle with mass m and charge e in an electromagnetic field.
The Hamiltonian is

H = px ẋ + py ẏ + pz ż − L (1.122)

= ẋ
∂L

∂ ẋ
+ ẏ

∂L

∂ ẏ
+ ż

∂L

∂ ż
− L (1.123)

Our goal is to write this Hamiltonian in terms of momenta and coordinates.
For a charged particle in a field, the force acting on the particle is the Lorenz

force. Here it is useful to introduce a vector and scalar potential and to work in
centimeter-gram-second (cgs) units

�F = e

c
�v × ( �∇ × �A) − e

c

∂ �A
∂t

− e �∇φ (1.124)

The force in the x direction is given by

Fx = d

dt
mẋ = e

c

(
ẏ
∂ Ay

∂x
+ ż

∂ Az

∂x

)

− e

c

(
ẏ
∂ Ax

∂y
+ ż

∂ Ax

∂z
+ ∂ Ax

∂t

)
− e

∂φ

∂x
(1.125)

with the remaining components given by cyclic permutation. Since

d Ax

dt
= ∂ Ax

∂t
+ ẋ

∂ Ax

∂x
+ ẏ

∂ Ax

∂y
+ ż

∂ Ax

∂z
(1.126)

with the force in x given by

Fx = e

c

(
ẋ
∂ Ax

∂x
+ ẏ

∂ Ax

∂y
+ ż

∂ Ax

∂z

)
− e

c
�v · �A − eφ (1.127)

and we find that the Lagrangian is

L = 1

2
mẋ2 + 1

2
mẏ2 + 1

2
mż2 + e

c
�v · �A − eφ (1.128)

where φ is a velocity independent and static potential.
Continuing on, the Hamiltonian is

H = m

2
(ẋ2 + ẏ2 + ż2) + eφ (1.129)

= 1

2m
((mẋ)2 + (mẏ)2 + (mż)2) + eφ (1.130)

The velocities, mẋ , are derived from the Lagrangian via the canonical relation

p = ∂L

∂ ẋ
(1.131)
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From this we find,

mẋ = px − e

c
Ax (1.132)

mẏ = py − e

c
Ay (1.133)

mż = pz − e

c
Az (1.134)

and the resulting Hamiltonian is

H = 1

2m

[(
px − e

c
Ax

)2
+

(
py − e

c
Ay

)2
+

(
pz − e

c
Az

)2
]

+ eφ (1.135)

We see here an important concept relating the velocity and the momentum. In the
absence of a vector potential, the velocity and the momentum are parallel. However,
when a vector potential is included, the actual velocity of a particle is no longer
parallel to its momentum and is in fact deflected by the vector potential.

1.4.3 TIME DEPENDENCE OF A DYNAMICAL VARIABLE

One of the important applications of Hamiltonian mechanics is in the dynamical
evolution of a variable that depends upon p and q, G(p, q). The total derivative
of G is

dG

dt
= ∂G

∂t
+ ∂G

∂q
q̇ + ∂G

∂p
ṗ (1.136)

From Hamilton’s equations, we have the canonical definitions

q̇ = ∂ H

∂p
, ṗ = −∂ H

∂q
(1.137)

Thus,

dG

dt
= ∂G

∂t
+ ∂G

∂q

∂ H

∂p
− ∂G

∂p

∂ H

∂q
(1.138)

dG

dt
= ∂G

∂t
+ {G, H} (1.139)

where {A, B} is called the Poisson bracket of two dynamical quantities, G and H :

{G, H}, = ∂G

∂q

∂ H

∂p
− ∂G

∂p

∂ H

∂q
(1.140)

We can also define a linear operator L as generating the Poisson bracket with the
Hamiltonian:

LG = 1

i
{H, G} (1.141)
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so that if G does not depend explicitly upon time,

G(t) = exp(iLt)G(0) (1.142)

where exp(iLt) is the propagator that carried G(0) to G(t).
Also, note that if {G, H} = 0, then dG/dt = 0 so that G is a constant of the

motion. This too, along with the construction of the Poisson bracket, has considerable
importance in the realm of quantum mechanics.

1.4.4 VIRIAL THEOREM

Finally, we turn our attention to a concept that has played an important role in both
quantum and classical mechanics. Consider a function G that is a product of linear
momenta and coordinate,

G = pq (1.143)

The time derivative is simply

G

dt
= q ṗ + pq̇ (1.144)

Now, let us take a time average of both sides of this last equation:

〈
d

dt
pq

〉
= lim

T →∞
1

T

∫ T

0

(
d

dt
pq

)
dt (1.145)

= lim
T →∞

1

T

∫ T

0
d(pq) (1.146)

= lim
T →∞

1

T
((pq)T − (pq)0) (1.147)

If the trajectories of the system are bounded, both p and q are periodic in time and
are therefore finite. Thus, the average must vanish as T → ∞ giving

〈pq̇ + q ṗ〉 = 0 (1.148)

Since pq̇ = 2T and ṗ = −F , we have

〈2T 〉 = −〈q F〉 (1.149)

In Cartesian coordinates this leads to

〈2T 〉 = −
〈∑

i

xi Fi

〉
(1.150)

For a conservative system F = −∇V . Thus, if we have a centro-symmetric
potential given by V = Crn , it is easy to show that

〈2T 〉 = n〈V 〉 (1.151)
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For the case of the harmonic oscillator, n = 2 and 〈T 〉 = 〈V 〉. So, for example,
if we have a total energy equal to kT in this mode, then 〈T 〉 + 〈V 〉 = kT and
〈T 〉 = 〈V 〉 = kT/2. Moreover, for the interaction between two opposite charges
separated by r , n = −1 and

〈2T 〉 = −〈V 〉 (1.152)

1.4.5 ANGULAR MOMENTUM

We noted above that if we have a radial force, then the angular velocity and angular
momentum are constants of the motion. In general, the angular momentum is de-
fined as the cross product between a radial vector locating the particle and its linear
momentum

�M = �r × �p (1.153)

Cross products are equivalent to taking the determinant of a matrix

�M =
∣∣∣∣∣∣

î ĵ k̂
x y z
px py pz

∣∣∣∣∣∣ (1.154)

where î , ĵ , and k̂ are the unit vectors along the x, y, z axes. Evaluating the determinant
gives

�M = î(ypz − zpy) − ĵ(xpz − zpx ) + k̂(xpy − ypx ) (1.155)

= î Mx + ĵ My + k̂ Mz (1.156)

For motion in the x–y plane, the only term that remains is the Mz term, indicating
that the angular momentum vector points perpendicular to the plane of rotation,

Mz = (xpy − ypx ) = m(xvy − yvx ) (1.157)

Since we have noted that the angular momentum is a constant of the motion, we must
have d Mz/dt = 0. Let us check:

d Mz

dt
= m(vxvy − vyvx + xay − yax ) (1.158)

where ax = v̇x is the acceleration in x . Thus,

d Mz

dt
= (x Fy − yFx ) (1.159)

If the force is radial, Fx = Fr cos(θ ) and Fy = Fr sin(θ ). Likewise, x = r cos(θ ) and
y = r sin(θ ). Putting this into the equations, we have

d Mz

dt
= r Fr (sin(θ ) cos(θ ) − sin(θ ) cos(θ )) = 0 (1.160)

Taking θ = ωt as above where ω is the angular frequency, and using vx =
−rω sin(ωt) and yy = +rω cos(ωt), we can also write

M = m(vx y − vy x) = mvr (sin2(ωt) + cos2(ωt)) = mvr (1.161)


