
Limits of Computation: An Introduction to the Undecidable and the  
Intractable offers a gentle introduction to the theory of computational 
complexity. It explains the difficulties of computation, addressing problems 
that have no algorithm at all and problems that cannot be solved efficiently. 
The book enables readers to understand:
•	 What	does	it	mean	for	a	problem	to	be	unsolvable	or	to	be	NP-

complete?
•	 What	is	meant	by	a	computation	and	what	is	a	general	model	of	a	

computer?
•	 What	does	it	mean	for	an	algorithm	to	exist	and	what	kinds	of	

problems	have	no	algorithm?
•	 What	problems	have	algorithms	but	the	algorithm	may	take	centuries	

to	finish?

Developed from the authors’ course on computational complexity theory, 
the text is suitable for advanced undergraduate and beginning graduate 
students without a strong background in theoretical computer science. 
Each chapter presents the fundamentals, examples, complete proofs of 
theorems, and a wide range of exercises.

Features
•	 Helps readers understand the nature of computation
•	 Focuses on the two main questions of theoretical computer science
•	 Presents complete proofs of many NP-complete problems
•	 Provides in-depth discussions of difficult topics, such as different 

sizes of infinity, reducibility, and self-reference
•	 Describes Turing machines from state diagrams to encodings
•	 Assumes no prior knowledge of automata, advanced algorithmic 

analysis, and formal languages
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Preface

To the Student: We think that the theory dealing with what is hard about 
computation (and what is impossible!) is challenging but fun. This book 
grows out of these ideas and our approach to teaching a course in compu-
tational complexity.

There is no doubt that some of the material in these chapters is what 
might be called “wrap your brain around it” material, where a first reac-
tion might be that the authors are pulling off a trick like a magician pulling 
a rabbit out of a hat. For instance, consider the proof—using contradic-
tion—that there can be no algorithm to tell whether a program written 
in C++ will go into an infinite loop. One reaction upon reaching the con-
tradiction might be that there must be a misstep somewhere in the proof; 
another might be that there cannot really be a contradiction. Only after 
reading, rereading, and carefully considering each step can the student 
buy into the proof. There are no shortcuts here; this is not reading to be 
done with the television playing in the background.

There are also diversions here such as the bridges of Königsberg prob-
lem—interesting but easy, and useful to point out that there can be vast 
differences in the difficulty of problems that sound very much alike.

To the Instructor: We hope you have as much fun explaining the difficul-
ties and complexities of computation as we do.

At California State University, East Bay, there is a required course for 
Computer Science Master of Science students in complexity theory.

This book grew out of the problems we had in choosing a text for this 
course. Sipser’s Introduction to the Theory of Computation (Gale/Cengage 
Learning, 2006) has many good points, and we recommend it to all students 
as a reference—but it covers automata theory and formal languages (Part 
1) as well as Computability Theory (Part 2) and Complexity (Part 3), which 
leads to less depth than we might like. And for a course that does not cover 
Part 1, the references back to it from Parts 2 and 3 are a bit problematic.
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The Hopcroft, Motwani, and Ullman (2007) text is exemplary in many 
ways, and is another excellent reference; it is, however, more suitable to stu-
dents in a doctoral program or those in an advanced course in complexity.

And of course, there is the wonderful Garey and Johnson (1979) text 
on NP-completeness. We love to point out to our computer science stu-
dents that this book is still important and that every computer scientist 
should own a copy. Can you say that about any other book on technol-
ogy of that vintage? There are also good, older books available, although 
not at a level appropriate for an M.S. student without a strong background 
in automata. (See Brainerd and Landweber, 1974; Harrison, 1978; Lewis 
and Papadimitriou, 1997; and Papadimitriou, 1994.)

We also think that the more popular books that mention Turing 
machines (such as those by Douglas Hofstader, 1979 and Penrose, 1989) 
are nice supplemental extracurricular material, although students must 
become adept at reading different models of Turing machines.

This book, then, is intended for advanced undergraduates or beginning 
graduate students who may not have a strong background in theoretical 
computer science and who do not plan to become experts in the area.

The book is designed so that essentially all of it can be covered in a 
one-quarter (4 hour/week) or one-semester (3 hour/week) course, with 
roughly half the course devoted to what is undecidable, and half to what 
is intractable. To do this, it may be necessary to omit some proofs (such 
as the proof that if P ≠ NP, then there are problems in NP that are not 
NP-complete), but we feel that such proofs must be included in the text for 
the interested reader.

The authors have included a wide range of exercises. There is no way 
to learn this material without doing it. We feel strongly that the student 
should read this book with pencil in hand, filling in any missing details 
(“it is easily shown that …”). The student then needs to test his or her 
understanding by doing a variety of exercises, and he or she needs feed-
back that his or her approach to solving the exercises was (or was not) 
correct. We give weekly graded written assignments, and either one or 
two midterm exams in a 10-week quarter, plus a final exam. We have read 
at least one study on pedagogy stating that something must be learned 
three times in order to be mastered and for the learning to last: we hope 
that in doing a homework set, in studying for a midterm, and then again 
in studying for a final exam, we have forced our students into rethinking 
the material at least three times.
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Introduction

ALGORITHM: WHAT IS IT, WHEN DOES ONE EXIST?
Most of the computer science courses in the first several years of a student’s 
experience are concerned with teaching algorithms, and getting students 
to implement them. The student of computer science spends many hours 
in many courses learning how to write programs to solve problems. She 
learns about sorting data, saving data in various data structures, main-
taining databases, managing networks, creating graphics, and more. She 
learns algorithms for supporting an operating system, maintaining data-
base purity, parsing source files, and so on. The question of unsolvable 
problems may not even appear—the instructor, the text, and the student 
are too busy learning the efficient algorithms that are in use.

Even the word algorithm is often used without a good definition—and 
expressing that definition will be a major theme of this text, one that can-
not be answered in just a few paragraphs.

IMPORTANT QUESTIONS
Only in a few places does the computer science student study such ques-
tions as: What is computation? What is an algorithm? How do I know 
that this problem has a solution? If there is a solution, will it answer the 
problem fast enough? An answer in the next century is no better than no 
answer at all.

Any “educated” computer scientist needs to know something about 
the answers to these questions. There are many easy-to-state questions in 
computer science that either have no algorithm at all, or have no practical 
algorithm. These include:
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• Given a context-free grammar G, is it ambiguous?

• What is the shortest route for a salesman to take, starting at his 
home, visiting all the cities on his route?

• Given a program written by another computer science student, will 
this program terminate? Or will it go into an infinite loop?

• Given a set of processes running on a system, will they end in deadlock?

These questions have intrigued computer scientists and others. Some pop-
ular books address some of the same questions as this text—see Hofstadter 
(1979) and Penrose (1991). Some questions have monetary prizes for any-
one who can solve them (see Devlin, 2002).

DOES MY PROBLEM HAVE A SOLUTION? 
A GOOD SOLUTION?
The computer scientist should be aware of questions like these, and be 
suspicious of new assignments—if told to write code to solve problem X, it 
would be nice to know that X has a solution and that this solution will not 
require centuries or millennia to execute.

Questions to consider before beginning are: Is there a known good 
algorithm for this problem? Or, are there algorithms that work, but take 
too long? A problem that used to be difficult, but now has become easier, is 
the forecasting of weather. Weather (like many physical systems) obeys a 
complicated set of differential equations, and it can be forecast by getting 
initial data points—the current weather—and solving these equations. 
However, if it takes longer to solve the equations than for weather to hap-
pen, these forecasts are not useful. It does not do much good to have the 
forecast for Tuesday on the following Wednesday. Problems like this one 
generated research in methods for solving differential equations, and con-
siderable progress has been made.

But what problems are like this—solvable with good methods? Are 
there any problems that are difficult now and that we cannot expect ever 
to have good solutions?

Of course, if one needs a solution to a problem that has no solution—or 
no reasonable solution—then what? Here too, some knowledge is useful. 
It is not necessary just to give up and say, “Can’t be done.” Knowing the 
difficulties (and the options around them) is the first step.
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In short, an educated computer scientist needs more than tools of pro-
gramming. He or she needs to understand what is possible to program—
which is the topic of this book.

THE “BIG” IDEAS
The two big questions that this book deals with are:

Which problems have no algorithm at all (and what does that mean)?

Which problems cannot be solved efficiently (and what does that mean)?

Answering these questions—and even having the machinery to properly 
pose them as questions—will take some time and effort.

This can be summarized in Figure I.1.

• What is an algorithm?
• What is a computation?
• What is a computer?
• When does an algorithm exist?
• When do reasonable algorithms exist?
• What is meant by reasonable?

FIGURE I.1 Questions for this course.
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C h a p t e r  1

Set Theory

Students will have seen set theory before and thus, the following is 
a brief review. Some important ideas, though, may be new and will be 

covered in more detail.

1.1 SETS—BASIC TERMS

Definition 1.1

A set is a collection of objects.

Definition 1.2

A member or element is an object in a set. A set is said to contain its 
elements.

Elements in a set are listed in braces.

Examples

 S1 = {1, 2, 3, 4}

 S2 = {a, b, c}

 S3 = {♣, ♦, ♥, ♠}
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Repetition does not matter in a set and ordering means nothing, so 
{a, b, c} = {b, a, c, b}.

Sets can be finite or infinite. Ellipses can be used in set notation once a 
pattern of membership has been established.

Examples

 S4 = {1, 2, 3, …, 98, 99, 100}

 S5 = {1, 2, 3, …}

 S6 = {…, –3, –2, –1}

 S7 = {…, –2, –1, 0, 1, 2, …}

Sets can also be described using Peano’s notation.

 S = {x | x satisfies some condition}

Examples

 {x | x = y2 and y is an integer} {squares}

 {x | x = 2y and y is an integer} {even numbers}

There must always be an underlying universal set U, either specifically 
stated or implicit. Some common universal sets include:

 N = {0, 1, 2, 3, …} (natural or counting numbers)

 Z = {…, –2, -–1, 0, 1, 2, …} (integers)

 Z+ = {1, 2, 3, …} (positive integers)

 Z– = {…, –3, –2, –1} (negative integers)

 Q = {x : x = m/n, m, n
 are integers, n ≠ 0} (rational numbers)

 R = real numbers
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Set membership is indicated by the ∈ symbol, and set exclusion (is not 
a member) by ∉.

Examples

 a ∈ {a, b, c}

 d ∉ {a, b, c}

Definition 1.3

The set A is a subset of set B, denoted A ⊆ B, if and only if (iff) every mem-
ber of A is also a member of B.

Example

{a}, {b, c}, and {c, b, a} are some of the subsets of {a, b, c}.

Definition 1.4

The empty set, denoted ∅, is the set {}. It contains no elements.

Definition 1.5

The set A is a proper subset of set B iff every member of A is also a mem-
ber of B and A ≠ B, denoted A ⊂ B.

Example

{a}, {b, c} are some proper subsets of {a, b, c}.

The empty set is a subset of every set, and a proper subset of every set 
except itself.

Definition 1.6

The standard set operations are union, intersection, difference, and com-
plement. They are defined as:
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The union of two sets A and B, denoted A ∪ B, is the set {x | x ∈ A or 
x ∈ B}.

The intersection of two sets A and B, denoted A ∩ B, is the set {x | x ∈ 
A and x ∈ B}.

The difference of two sets A and B, denoted A – B, is the set {x | x ∈ A 
and x ∉ B}.

The complement of a set A, denoted Ā or Ac, is the set {x | x ∉ A and x 
∈ U}.

Definition 1.7

A multiset is a set in which the repetition of elements is important. Order 
is still irrelevant in a multiset.

Example

 {4, 1, 2, 4, 1} ≠ {4, 1, 2} (for multisets)

 {4, 1, 2, 4, 1} = {4, 1, 2} (for sets)

 {4, 1, 2, 4, 1} = {1, 1, 2, 4, 4} (for multisets and sets)

Definition 1.8

A well-ordered set is a set in which there is a natural ordering of the ele-
ments such that for any two distinct elements e1 and e2 in the set, either e1 

< e2 or e1 > e2. For example, the English language alphabet {a, b, c, …, x, y, 
z} is a well-ordered set. We rely on this fact when we alphabetize.

Definition 1.9

A sequence is a list of objects in an order. Elements in a sequence are listed 
in parentheses.

Example

 (a, b, r, a, c, a, d, a, b, r, a)

 (3, 1, 4, 1, 5, 9, 2)
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Repetition and order both matter in a sequence, so (1, 2, 3) ≠ (1, 1, 2, 3) 
≠ (2, 1, 3).

Definition 1.10

An empty sequence is the sequence ().

As with sets, a sequence can be finite or infinite. The set of natural num-
bers can be viewed as a sequence (0, 1, 2, 3, …).

Finite sequences have particular names.

Definition 1.11

A tuple is a finite sequence.
An n-tuple is a sequence containing exactly n elements. The sequence 

(a, b, c) is therefore a 3-tuple, and the sequence (1, 2, 3, 4) is a 4-tuple.
An ordered pair is a 2-tuple.

Definition 1.12

The power set of A, denoted P(A), is the set of all subsets of A.

Examples

 P({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

 P({1, 2}) = {∅, {1}, {2}, {1, 2}}

 P(∅) = {∅}

Definition 1.13

The Cartesian product or cross-product of two sets A and B, denoted A 
× B, is the set {(x, y): x ∈ A and y ∈ B}.
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Example

 {a, b} × {c, d} = {(a, c), (a, d), (b, c), (b, d)}

 {1, 2, 3} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}

 {a, b, c} × ∅ = ∅

1.2 FUNCTIONS
Again, functions are a concept quite familiar to computer science.

Definition 1.14

A function or mapping from set A to set B (written f: A → B) is a subset of 
A × B such that each x ∈ A is associated with a unique y ∈ B.

For f: A → B:
• A is called the domain of f.
• B is called the codomain of f.

If f(x) = y:
• y is called the image of x under f.
• x is the preimage of y under f.

Thus, the mapping from a person to his or her mother is a function 
(assuming exactly one mother per person), but the mapping from a per-
son to his or her child is not. The mapping (person x, mother of X) has a 
domain of all people—since every person has a mother, and a codomain 
of the set of women who have children.

Definition 1.15

A function f from a set A to a set B is an injection if no two values from A 
are mapped to the same element of B (f(x) = f(y) implies that x = y). It is a 
surjection if it is onto B (for every b ∈ B, there is an x ∈ A such that f(x) = 
b). It is a bijection or one-to-one correspondence if it is both an injection 
and a surjection (one-to-one and onto).


