
Limits of Computation: An Introduction to the Undecidable and the
Intractable offers a gentle introduction to the theory of computational
complexity. It explains the difficulties of computation, addressing problems
that have no algorithm at all and problems that cannot be solved efficiently.
The book enables readers to understand:
•	 What	does	it	mean	for	a	problem	to	be	unsolvable	or	to	be	NP-

complete?
•	 What	is	meant	by	a	computation	and	what	is	a	general	model	of	a	

computer?
•	 What	does	it	mean	for	an	algorithm	to	exist	and	what	kinds	of	

problems	have	no	algorithm?
•	 What	problems	have	algorithms	but	the	algorithm	may	take	centuries	

to	finish?

Developed from the authors’ course on computational complexity theory,
the text is suitable for advanced undergraduate and beginning graduate
students without a strong background in theoretical computer science.
Each chapter presents the fundamentals, examples, complete proofs of
theorems, and a wide range of exercises.

Features
•	 Helps readers understand the nature of computation
•	 Focuses on the two main questions of theoretical computer science
•	 Presents complete proofs of many NP-complete problems
•	 Provides in-depth discussions of difficult topics, such as different

sizes of infinity, reducibility, and self-reference
•	 Describes Turing machines from state diagrams to encodings
•	 Assumes no prior knowledge of automata, advanced algorithmic

analysis, and formal languages

K13878

LIMITS OF COMPUTATION

L
IM

IT
S O

F C
O

M
PU

T
A
T

IO
N

An Introduction to the
Undecidable and the Intractable

Edna E. Reiter
Clayton Matthew Johnson

R
eiter

Johnson

Computer Science

K13878_Cover.indd 1 8/21/12 12:46 PM

LIMITS OF COMPUTATION
An Introduction to the

Undecidable and the Intractable

LIMITS OF COMPUTATION
An Introduction to the

Undecidable and the Intractable

Edna E. Reiter
Clayton Matthew Johnson

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120808

International Standard Book Number-13: 978-1-4398-8207-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface, xi

Acknowledgments, xiii

About the Authors, xv

Introduction, xvii

Chapter 1 ◾ Set Theory 1
1.1 SETS—BASIC TERMS 1

1.2 FUNCTIONS 6

1.3 CARDINALITIES 7

1.4 COUNTING ARGUMENTS AND DIAGONALIZATION 8

EXERCISES 12

Chapter 2 ◾ Languages: Alphabets, Strings, and Languages 13
2.1 ALPHABETS AND STRINGS 13

2.2 OPERATIONS ON STRINGS 17

2.3 OPERATIONS ON LANGUAGES 22

EXERCISES 30

Chapter 3 ◾ Algorithms 33
3.1 COMPUTATIONAL PROBLEMS 33

3.2 DECISION PROBLEMS 36

3.3 TRAVELING SALESMAN PROBLEM 38

3.4 ALGORITHMS: A FIRST LOOK 39

3.5 HISTORY 41

vi    ◾    Contents

3.6 EFFICIENCY IN ALGORITHMS 42

3.6.1 Why Polynomial? 43
3.6.2 Why Polynomial? Measuring Time 44
3.6.3 Size of the Input 44

3.7 COUNTING STEPS IN AN ALGORITHM 44

3.8 DEFINITIONS 45

3.9 USEFUL THEOREMS 46

3.10 PROPERTIES OF O NOTATION 48

3.11 FINDING O: ANALYZING AN ALGORITHM 48

3.12 BEST AND AVERAGE CASE ANALYSIS 53

3.13 TRACTABLE AND INTRACTABLE 54

COMMENTS 55

EXERCISES 56

Chapter 4 ◾ Turing Machines 61
4.1 OVERVIEW 61

4.2 THE TURING MACHINE MODEL 61

4.3 FORMAL DEFINITION OF TURING MACHINE 62

4.3.1 Input Alphabet 63
4.3.2 Tape Alphabet 63
4.3.3 Set of States 64
4.3.4 Accept State 64
4.3.5 Reject State 64
4.3.6 Start State 64
4.3.7 Transition Function 65

4.4 CONFIGURATIONS OF TURING MACHINES 66

4.5 TERMINOLOGY 67

4.6 SOME SAMPLE TURING MACHINES 69

4.7 TURING MACHINES: WHAT SHOULD I BE ABLE
TO DO? 74

4.7.1 Decide If a Given Diagram Describes a Turing
Machine 74

Contents    ◾    vii

4.7.2 Given a Turing Machine, Trace Its Operation on
a Given String 75

4.7.3 Given a Turing Machine, Describe the Language
It Accepts 75

4.7.4 Given a Language, Write a Turing Machine That
Decides (or Accepts) This Language 75

EXERCISES 76

Chapter 5 ◾ Turing-Completeness 81
5.1 OTHER VERSIONS OF TURING MACHINES 81

5.1.1 Semi-Infinite Tape 82
5.1.2 Stay Option 84
5.1.3 Multiple Tapes 85
5.1.4 Nondeterministic Turing Machines (NDTMs) 90
5.1.5 Other Extensions and Limitations of Turing

Machines 97
5.2 TURING MACHINES TO EVALUATE A FUNCTION 98

5.3 ENUMERATING TURING MACHINES 98

5.4 THE CHURCH–TURING THESIS 99

5.5 A SIMPLE COMPUTER (OPTIONAL) 101

5.6 ENCODINGS OF TURING MACHINES 104

5.7 UNIVERSAL TURING MACHINE 108

EXERCISES 110

Chapter 6 ◾ Undecidability 113
6.1 INTRODUCTION AND OVERVIEW 113

6.1.1 Problems That Refer to Themselves (Self-
Reference) 113

6.1.1.1 Problem 1: The Barber 114
6.1.1.2 Problem 2: Grelling’s Paradox 115
6.1.1.3 Problem 3: Russell’s Paradox 115

6.2 SELF-REFERENCE AND SELF-CONTRADICTION IN
COMPUTER PROGRAMS 115

viii    ◾    Contents

6.2.1 Problem 1: The “Hello World” Writing Detector
Program 115

6.2.2 Problem 2: The Infinite Loop Detector Program 118
6.3 CARDINALITY OF THE SET OF ALL LANGUAGES

OVER AN ALPHABET 121

6.4 CARDINALITY OF THE SET OF ALL TURING
MACHINES 122

6.5 CONSTRUCTION OF THE UNDECIDABLE
LANGUAGE ACCEPTTM 124

EXERCISES 126

Chapter 7 ◾ Undecidability and Reducibility 129
7.1 UNDECIDABLE PROBLEMS: OTHER EXAMPLES 129

7.2 REDUCIBILITY 132

7.3 REDUCIBILITY AND LANGUAGE PROPERTIES 134

7.4 REDUCIBILITY TO SHOW UNDECIDABILITY 135

7.5 RICE’S THEOREM (A SUPER-THEOREM) 139

7.6 UNDECIDABILITY: WHAT DOES IT MEAN? 141

7.7 POST CORRESPONDENCE PROBLEM (OPTIONAL) 141

7.8 CONTEXT-FREE GRAMMARS (OPTIONAL:
REQUIRES SECTION 7.7) 153

EXERCISES 157

Chapter 8 ◾ Classes NP and NP-Complete 161
8.1 THE CLASS NP (NONDETERMINISTIC

POLYNOMIAL) 161

8.2 DEFINITION OF P AND NP 161

8.3 POLYNOMIAL REDUCIBILITY 165

8.4 PROPERTIES 167

8.5 COMPLETENESS 168

8.6 INTRACTABLE AND TRACTABLE—ONCE AGAIN 169

8.7 A FIRST NP-COMPLETE PROBLEM: BOOLEAN
SATISFIABILITY 171

8.8 COOK–LEVIN THEOREM: PROOF 174

Contents    ◾    ix

8.8.1 Proof Part I: Construction of the Clauses 175
8.8.2 Proof Part II: Construction in Polynomial Time

and Correctness 179
8.9 CONCLUSION 180

EXERCISES 180

Chapter 9 ◾ More NP-Complete Problems 185
9.1 ADDING OTHER PROBLEMS TO THE LIST OF

KNOWN NP-COMPLETE PROBLEMS 185

9.2 REDUCTIONS TO PROVE NP-COMPLETENESS 185

9.2.1 Restriction (Also Called Generalization) 186
9.2.2 Local Replacement 187
9.2.3 Component Design 189

9.3 GRAPH PROBLEMS 190

9.4 VERTEX COVER: THE FIRST GRAPH PROBLEM 194

9.5 OTHER GRAPH PROBLEMS 199

9.6 HAMILTONIAN CIRCUIT (HC) 201

9.7 EULERIAN CIRCUITS (AN INTERESTING PROBLEM
IN P) 208

9.8 THREE-DIMENSIONAL MATCHING (3DM) 209

9.9 SUBSET SUM 215

9.10 SUMMARY AND REPRISE 219

EXERCISES 220

Chapter 10 ◾ Other Interesting Questions and Classes 225
10.1 INTRODUCTION 225

10.2 NUMBER PROBLEMS 225

10.3 COMPLEMENT CLASSES 230

10.4 OPEN QUESTIONS 231

10.5 ARE THERE ANY PROBLEMS IN NP-P BUT NOT
NP-COMPLETE? 232

10.5.1 Linear Programming 236
10.5.2 PRIME 237

x    ◾    Contents

10.5.3 Graph Isomorphism 237
10.5.4 Other Examples? 237

10.6 PSPACE 237

10.7 REACHABLE CONFIGURATIONS 240

10.8 NPSPACE = PSPACE 241

10.9 A PSPACE COMPLETE PROBLEM 243

10.9.1 Quantified Boolean Formulas (QBFs) 245
10.10 OTHER PSPACE-COMPLETE PROBLEMS 247

10.11 THE CLASS EXP 248

10.12 SPACE RESTRICTIONS 249

10.13 APPROACHES TO HARD PROBLEMS IN PRACTICE 250

10.14 SUMMARY 251

EXERCISES 252

BIBLIOGRAPHY, 253

xi

Preface

To the Student: We think that the theory dealing with what is hard about
computation (and what is impossible!) is challenging but fun. This book
grows out of these ideas and our approach to teaching a course in compu-
tational complexity.

There is no doubt that some of the material in these chapters is what
might be called “wrap your brain around it” material, where a first reac-
tion might be that the authors are pulling off a trick like a magician pulling
a rabbit out of a hat. For instance, consider the proof—using contradic-
tion—that there can be no algorithm to tell whether a program written
in C++ will go into an infinite loop. One reaction upon reaching the con-
tradiction might be that there must be a misstep somewhere in the proof;
another might be that there cannot really be a contradiction. Only after
reading, rereading, and carefully considering each step can the student
buy into the proof. There are no shortcuts here; this is not reading to be
done with the television playing in the background.

There are also diversions here such as the bridges of Königsberg prob-
lem—interesting but easy, and useful to point out that there can be vast
differences in the difficulty of problems that sound very much alike.

To the Instructor: We hope you have as much fun explaining the difficul-
ties and complexities of computation as we do.

At California State University, East Bay, there is a required course for
Computer Science Master of Science students in complexity theory.

This book grew out of the problems we had in choosing a text for this
course. Sipser’s Introduction to the Theory of Computation (Gale/Cengage
Learning, 2006) has many good points, and we recommend it to all students
as a reference—but it covers automata theory and formal languages (Part
1) as well as Computability Theory (Part 2) and Complexity (Part 3), which
leads to less depth than we might like. And for a course that does not cover
Part 1, the references back to it from Parts 2 and 3 are a bit problematic.

xii    ◾    Preface

The Hopcroft, Motwani, and Ullman (2007) text is exemplary in many
ways, and is another excellent reference; it is, however, more suitable to stu-
dents in a doctoral program or those in an advanced course in complexity.

And of course, there is the wonderful Garey and Johnson (1979) text
on NP-completeness. We love to point out to our computer science stu-
dents that this book is still important and that every computer scientist
should own a copy. Can you say that about any other book on technol-
ogy of that vintage? There are also good, older books available, although
not at a level appropriate for an M.S. student without a strong background
in automata. (See Brainerd and Landweber, 1974; Harrison, 1978; Lewis
and Papadimitriou, 1997; and Papadimitriou, 1994.)

We also think that the more popular books that mention Turing
machines (such as those by Douglas Hofstader, 1979 and Penrose, 1989)
are nice supplemental extracurricular material, although students must
become adept at reading different models of Turing machines.

This book, then, is intended for advanced undergraduates or beginning
graduate students who may not have a strong background in theoretical
computer science and who do not plan to become experts in the area.

The book is designed so that essentially all of it can be covered in a
one-quarter (4 hour/week) or one-semester (3 hour/week) course, with
roughly half the course devoted to what is undecidable, and half to what
is intractable. To do this, it may be necessary to omit some proofs (such
as the proof that if P ≠ NP, then there are problems in NP that are not
NP-complete), but we feel that such proofs must be included in the text for
the interested reader.

The authors have included a wide range of exercises. There is no way
to learn this material without doing it. We feel strongly that the student
should read this book with pencil in hand, filling in any missing details
(“it is easily shown that …”). The student then needs to test his or her
understanding by doing a variety of exercises, and he or she needs feed-
back that his or her approach to solving the exercises was (or was not)
correct. We give weekly graded written assignments, and either one or
two midterm exams in a 10-week quarter, plus a final exam. We have read
at least one study on pedagogy stating that something must be learned
three times in order to be mastered and for the learning to last: we hope
that in doing a homework set, in studying for a midterm, and then again
in studying for a final exam, we have forced our students into rethinking
the material at least three times.

xiii

Acknowledgments

The authors wish to thank the many people who have helped in the path
toward publication. First and foremost, there is the California State
University, East Bay (CSUEB) office staff—Richard Uhler, who helped
with many technical problems, and Susan Foye, Kimberly Cherry, and
Erendira McDunn, who helped with the administrative details and kept
the department running. We thank our colleagues Shirley Veomett, who
helped with the illustration on function growth, and Steve Simon, who also
teaches complexity. We greatly appreciate the efforts of Stan Wakefield,
literary agent, and Amy Blalock, project coordinator and Linda Leggio,
project editor at Taylor & Francis/CRC Press. We also thank our families
and friends, particularly Jim Reiter and Grant Petersen, who supported us
during the writing (and rewriting) of the book.

xiv

xv

About the Authors

Drs. Edna Reiter and Clayton Matthew Johnson are faculty in the
Department of Mathematics and Computer Science at California State
University, East Bay (CSUEB) in the San Francisco Bay area. Together,
they developed the subject matter of the CSUEB course Computation and
Complexity, required for all students in the Master of Science program.
The course covers the hard problems of computer science—those that are
intractable or undecidable. The text and the exercises in the text have been
tested on multiple sections of CSUEB students.

Edna E. Reiter, Ph.D., received M.S. degrees from the University of
Michigan and the University of California at Davis, and a Ph.D. from the
University of Cincinnati. Her initial research interests were in noncommu-
tative ring theory, but she then became interested in the theoretical aspects
of computer science. Dr. Reiter has discovered that she enjoys introducing
students to these subjects. She is currently Chair of the Department of
Mathematics and Computer Science at CSUEB..

Clayton Matthew Johnson, Ph.D., received an M.S. degree from Michigan
State University, and holds a Ph.D. from the College of William and Mary
in Virginia. His current research interests are genetic algorithms and
machine learning. He teaches many of the core courses for both graduate
and undergraduate students including data structures, automata theory,
analysis of algorithms, and complexity. Dr. Johnson is the graduate coor-
dinator for all M.S. students at CSUEB; he is also the incoming Chair of
the Department of Mathematics and Computer Science.

xvii

Introduction

ALGORITHM: WHAT IS IT, WHEN DOES ONE EXIST?
Most of the computer science courses in the first several years of a student’s
experience are concerned with teaching algorithms, and getting students
to implement them. The student of computer science spends many hours
in many courses learning how to write programs to solve problems. She
learns about sorting data, saving data in various data structures, main-
taining databases, managing networks, creating graphics, and more. She
learns algorithms for supporting an operating system, maintaining data-
base purity, parsing source files, and so on. The question of unsolvable
problems may not even appear—the instructor, the text, and the student
are too busy learning the efficient algorithms that are in use.

Even the word algorithm is often used without a good definition—and
expressing that definition will be a major theme of this text, one that can-
not be answered in just a few paragraphs.

IMPORTANT QUESTIONS
Only in a few places does the computer science student study such ques-
tions as: What is computation? What is an algorithm? How do I know
that this problem has a solution? If there is a solution, will it answer the
problem fast enough? An answer in the next century is no better than no
answer at all.

Any “educated” computer scientist needs to know something about
the answers to these questions. There are many easy-to-state questions in
computer science that either have no algorithm at all, or have no practical
algorithm. These include:

xviii    ◾    Introduction

• Given a context-free grammar G, is it ambiguous?

• What is the shortest route for a salesman to take, starting at his
home, visiting all the cities on his route?

• Given a program written by another computer science student, will
this program terminate? Or will it go into an infinite loop?

• Given a set of processes running on a system, will they end in deadlock?

These questions have intrigued computer scientists and others. Some pop-
ular books address some of the same questions as this text—see Hofstadter
(1979) and Penrose (1991). Some questions have monetary prizes for any-
one who can solve them (see Devlin, 2002).

DOES MY PROBLEM HAVE A SOLUTION?
A GOOD SOLUTION?
The computer scientist should be aware of questions like these, and be
suspicious of new assignments—if told to write code to solve problem X, it
would be nice to know that X has a solution and that this solution will not
require centuries or millennia to execute.

Questions to consider before beginning are: Is there a known good
algorithm for this problem? Or, are there algorithms that work, but take
too long? A problem that used to be difficult, but now has become easier, is
the forecasting of weather. Weather (like many physical systems) obeys a
complicated set of differential equations, and it can be forecast by getting
initial data points—the current weather—and solving these equations.
However, if it takes longer to solve the equations than for weather to hap-
pen, these forecasts are not useful. It does not do much good to have the
forecast for Tuesday on the following Wednesday. Problems like this one
generated research in methods for solving differential equations, and con-
siderable progress has been made.

But what problems are like this—solvable with good methods? Are
there any problems that are difficult now and that we cannot expect ever
to have good solutions?

Of course, if one needs a solution to a problem that has no solution—or
no reasonable solution—then what? Here too, some knowledge is useful.
It is not necessary just to give up and say, “Can’t be done.” Knowing the
difficulties (and the options around them) is the first step.

Introduction    ◾    xix

In short, an educated computer scientist needs more than tools of pro-
gramming. He or she needs to understand what is possible to program—
which is the topic of this book.

THE “BIG” IDEAS
The two big questions that this book deals with are:

Which problems have no algorithm at all (and what does that mean)?

Which problems cannot be solved efficiently (and what does that mean)?

Answering these questions—and even having the machinery to properly
pose them as questions—will take some time and effort.

This can be summarized in Figure I.1.

• What is an algorithm?
• What is a computation?
• What is a computer?
• When does an algorithm exist?
• When do reasonable algorithms exist?
• What is meant by reasonable?

FIGURE I.1 Questions for this course.

1

C h a p t e r 1

Set Theory

Students will have seen set theory before and thus, the following is
a brief review. Some important ideas, though, may be new and will be

covered in more detail.

1.1 SETS—BASIC TERMS

Definition 1.1

A set is a collection of objects.

Definition 1.2

A member or element is an object in a set. A set is said to contain its
elements.

Elements in a set are listed in braces.

Examples

 S1 = {1, 2, 3, 4}

 S2 = {a, b, c}

 S3 = {♣, ♦, ♥, ♠}

2    ◾    Limits of Computation

Repetition does not matter in a set and ordering means nothing, so
{a, b, c} = {b, a, c, b}.

Sets can be finite or infinite. Ellipses can be used in set notation once a
pattern of membership has been established.

Examples

 S4 = {1, 2, 3, …, 98, 99, 100}

 S5 = {1, 2, 3, …}

 S6 = {…, –3, –2, –1}

 S7 = {…, –2, –1, 0, 1, 2, …}

Sets can also be described using Peano’s notation.

 S = {x | x satisfies some condition}

Examples

 {x | x = y2 and y is an integer} {squares}

 {x | x = 2y and y is an integer} {even numbers}

There must always be an underlying universal set U, either specifically
stated or implicit. Some common universal sets include:

 N = {0, 1, 2, 3, …} (natural or counting numbers)

 Z = {…, –2, -–1, 0, 1, 2, …} (integers)

 Z+ = {1, 2, 3, …} (positive integers)

 Z– = {…, –3, –2, –1} (negative integers)

 Q = {x : x = m/n, m, n
 are integers, n ≠ 0} (rational numbers)

 R = real numbers

Set Theory    ◾    3  

Set membership is indicated by the ∈ symbol, and set exclusion (is not
a member) by ∉.

Examples

 a ∈ {a, b, c}

 d ∉ {a, b, c}

Definition 1.3

The set A is a subset of set B, denoted A ⊆ B, if and only if (iff) every mem-
ber of A is also a member of B.

Example

{a}, {b, c}, and {c, b, a} are some of the subsets of {a, b, c}.

Definition 1.4

The empty set, denoted ∅, is the set {}. It contains no elements.

Definition 1.5

The set A is a proper subset of set B iff every member of A is also a mem-
ber of B and A ≠ B, denoted A ⊂ B.

Example

{a}, {b, c} are some proper subsets of {a, b, c}.

The empty set is a subset of every set, and a proper subset of every set
except itself.

Definition 1.6

The standard set operations are union, intersection, difference, and com-
plement. They are defined as:

4    ◾    Limits of Computation

The union of two sets A and B, denoted A ∪ B, is the set {x | x ∈ A or
x ∈ B}.

The intersection of two sets A and B, denoted A ∩ B, is the set {x | x ∈
A and x ∈ B}.

The difference of two sets A and B, denoted A – B, is the set {x | x ∈ A
and x ∉ B}.

The complement of a set A, denoted Ā or Ac, is the set {x | x ∉ A and x
∈ U}.

Definition 1.7

A multiset is a set in which the repetition of elements is important. Order
is still irrelevant in a multiset.

Example

 {4, 1, 2, 4, 1} ≠ {4, 1, 2} (for multisets)

 {4, 1, 2, 4, 1} = {4, 1, 2} (for sets)

 {4, 1, 2, 4, 1} = {1, 1, 2, 4, 4} (for multisets and sets)

Definition 1.8

A well-ordered set is a set in which there is a natural ordering of the ele-
ments such that for any two distinct elements e1 and e2 in the set, either e1

< e2 or e1 > e2. For example, the English language alphabet {a, b, c, …, x, y,
z} is a well-ordered set. We rely on this fact when we alphabetize.

Definition 1.9

A sequence is a list of objects in an order. Elements in a sequence are listed
in parentheses.

Example

 (a, b, r, a, c, a, d, a, b, r, a)

 (3, 1, 4, 1, 5, 9, 2)

Set Theory    ◾    5  

Repetition and order both matter in a sequence, so (1, 2, 3) ≠ (1, 1, 2, 3)
≠ (2, 1, 3).

Definition 1.10

An empty sequence is the sequence ().

As with sets, a sequence can be finite or infinite. The set of natural num-
bers can be viewed as a sequence (0, 1, 2, 3, …).

Finite sequences have particular names.

Definition 1.11

A tuple is a finite sequence.
An n-tuple is a sequence containing exactly n elements. The sequence

(a, b, c) is therefore a 3-tuple, and the sequence (1, 2, 3, 4) is a 4-tuple.
An ordered pair is a 2-tuple.

Definition 1.12

The power set of A, denoted P(A), is the set of all subsets of A.

Examples

 P({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

 P({1, 2}) = {∅, {1}, {2}, {1, 2}}

 P(∅) = {∅}

Definition 1.13

The Cartesian product or cross-product of two sets A and B, denoted A
× B, is the set {(x, y): x ∈ A and y ∈ B}.

6    ◾    Limits of Computation

Example

 {a, b} × {c, d} = {(a, c), (a, d), (b, c), (b, d)}

 {1, 2, 3} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}

 {a, b, c} × ∅ = ∅

1.2 FUNCTIONS
Again, functions are a concept quite familiar to computer science.

Definition 1.14

A function or mapping from set A to set B (written f: A → B) is a subset of
A × B such that each x ∈ A is associated with a unique y ∈ B.

For f: A → B:
• A is called the domain of f.
• B is called the codomain of f.

If f(x) = y:
• y is called the image of x under f.
• x is the preimage of y under f.

Thus, the mapping from a person to his or her mother is a function
(assuming exactly one mother per person), but the mapping from a per-
son to his or her child is not. The mapping (person x, mother of X) has a
domain of all people—since every person has a mother, and a codomain
of the set of women who have children.

Definition 1.15

A function f from a set A to a set B is an injection if no two values from A
are mapped to the same element of B (f(x) = f(y) implies that x = y). It is a
surjection if it is onto B (for every b ∈ B, there is an x ∈ A such that f(x) =
b). It is a bijection or one-to-one correspondence if it is both an injection
and a surjection (one-to-one and onto).

