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Preface

My	students	motivated	me	to	write	this	book.	Every	time	I	teach	the	course	
on	 fracture	mechanics	my	students	 love	 it	and	ask	me	 to	write	a	book	on	
this	subject,	stating	that	my	class	notes	are	much	more	organized	and	easy	
to	understand	 than	 the	available	 textbooks.	They	 say	 I	 should	 simply	put	
together	my	class	notes	in	the	same	order	I	teach	so	that	any	entry	level	grad-
uate	student	or	senior	undergraduate	student	can	learn	fracture	mechanics	
through	self-study.	Because	of	their	encouragement	and	enthusiasm,	I	have	
undertaken	this	project.

When	I	teach	this	course	I	start	my	lectures	reviewing	the	fundamentals	
of	 continuum	 mechanics	 and	 the	 theory	 of	 elasticity	 relevant	 to	 fracture	
mechanics.	Chapter	1	of	the	book	does	this.	Students	lacking	a	continuum	
mechanics	background	should	first	go	through	this	chapter,	solve	the	exer-
cise	problems,	and	then	start	 reading	 the	other	chapters.	The	materials	 in	
this	book	have	been	carefully	selected	and	only	the	topics	important	enough	
to	be	covered	in	the	first	course	on	fracture	mechanics	have	been	included.	
Except	for	the	last	chapter,	no	advanced	topics	have	been	covered	in	this	book.	
Therefore,	instructors	of	elementary	fracture	mechanics	courses	should	have	
a	much	easier	time	covering	the	entire	book	in	a	three-unit	graduate	level	
course;	 they	 will	 not	 have	 to	 spend	 too	 much	 time	 picking	 and	 choosing	
appropriate	topics	for	the	course	from	the	vast	knowledge	presented	in	most	
fracture	mechanics	books	available	today.

A	professor	who	has	never	taught	fracture	mechanics	can	easily	adopt	this	
book	as	the	official	textbook	for	his	or	her	course	and	simply	follow	the	book	
chapters	and	sections	in	the	same	order	in	which	they	are	presented.	A	num-
ber	of	exercise	problems	that	can	be	assigned	as	homework	problems	or	test	
problems	are	also	provided.	At	the	end	of	the	semester,	if	time	permits,	the	
instructor	can	cover	some	advanced	topics	presented	in	the	last	chapter	or	
topics	of	his	or	her	interest	related	to	fracture	mechanics.

From	over	20	years	of	my	teaching	experience	I	can	state	with	confidence	
that	if	the	course	is	taught	in	this	manner,	the	students	will	love	it.	My	teach-
ing	evaluation	score	in	fracture	mechanics	has	always	been	very	high	and	
often	 it	was	perfect	when	 I	 taught	 the	course	 in	 this	manner.	Since	many	
students	of	different	backgrounds	over	the	last	two	decades	have	loved	the	
organization	of	the	fracture	mechanics	course	presented	in	this	book,	I	am	
confident	that	any	professor	who	follows	this	book	closely	will	be	liked	by	
his	or	her	students.

The	 book	 is	 titled	 Fundamentals of Fracture Mechanics	 because	 only	 the	
essential	topics	of	fracture	mechanics	are	covered	here.	Because	I	was	moti-
vated	by	my	students,	my	main	objective	in	writing	this	book	has	been	to	
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keep	the	materials	and	explanations	very	clear	and	simple	for	the	benefit	of	
students	and	first-time	instructors.	Almost	all	books	on	fracture	mechanics	
available	in	the	market	today	cover	the	majority	of	the	topics	presented	in	
this	book	and	often	much	more.	These	books	are	great	as	reference	books	
but	not	necessarily	as	textbooks	because	the	materials	covered	are	not	nec-
essarily	 presented	 in	 the	 same	 order	 as	 most	 instructors	 present	 them	 in	
their	lectures.	Over	half	of	the	materials	presented	in	any	currently	available	
fracture	mechanics	book	is	not	covered	in	an	introductory	fracture	mechan-
ics	course.	For	this	reason,	the	course	instructors	always	need	to	go	through	
several	fracture	mechanics	books’	contents	carefully	and	select	appropriate	
topics	 to	 cover	 in	 their	 classes.	 It	 makes	 these	 books	 expensive	 and	 diffi-
cult	for	self-study.	Often,	instructors	find	that	some	important	topics	may	be	
missing	or	explained	in	a	complex	manner	in	the	fracture	mechanics	books	
currently	available.	For	this	reason,	they	are	forced	to	follow	several	books	
in	their	course	or	provide	supplementary	class	notes	for	clearer	explanations	
of	difficult	 topics.	Fundamentals of Fracture Mechanics	overcomes	 this	short-
coming.	Since	it	only	covers	the	essential	topics	for	an	introductory	fracture	
mechanics	course,	 it	 is	 the	right	book	for	first-time	learners,	students,	and	
instructors.

Tribikram Kundu
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1
Fundamentals of the Theory of Elasticity

1.1  Introduction

It is necessary to have a good knowledge of the fundamentals of continuum 
mechanics and the theory of elasticity to understand fracture mechanics. This 
chapter is written with this in mind. The first part of the chapter (section 1.2) is 
devoted to the derivation of the basic equations of elasticity; in the second part 
(section 1.3), these basic equations are used to solve some classical boundary 
value problems of the theory of elasticity. It is very important to comprehend 
the first chapter fully before trying to understand the rest of the book.

1.2   Fundamentals of Continuum Mechanics 
and the Theory of Elasticity

Relations among the displacement, strain, and stress in an elastic body are 
derived in this section.

1.2.1  Deformation and Strain Tensor

Figure 1.1 shows the reference state R and the current deformed state D of a 
body in the Cartesian x1x2x3 coordinate system. Deformation of the body and 
displacement of individual particles in the body are defined with respect 
to this reference state. As different points of the body move, due to applied 
force or change in temperature, the configuration of the body changes from 
the reference state to the current deformed state. After reaching equilibrium 
in one deformed state, if the applied force or temperature changes again, 
the deformed state also changes. The current deformed state of the body is 
the equilibrium position under current state of loads. Typically, the stress-
free configuration of the body is considered as the reference state, but it is 
not necessary for the reference state to always be stress free. Any possible 
configuration of the body can be considered as the reference state. For sim-
plicity, if it is not stated otherwise, the initial stress-free configuration of the 
body, before applying any external disturbance (force, temperature, etc.), will 
be considered as its reference state.
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� Fundamentals of Fracture Mechanics

Consider two points P and Q in the reference state of the body. They move 
to P* and Q* positions after deformation. Displacement of points P and Q is 
denoted by vectors u and u + du, respectively. (Note: Here and in subsequent 
derivations, vector quantities will be denoted by boldface letters.) Position 
vectors of P, Q, P*, and Q* are r, r + dr, r*, and r* + dr*, respectively. Clearly, 
displacement and position vectors are related in the following manner:

 

r r u

r dr r dr u du

dr dr du

*

* *

*

= +

+ = + + +

∴ = +  

(1.1)

In terms of the three Cartesian components, the preceding equation can 
be written as:

    
( ) ( )* * *dx dx dx dx dx dx1 2 3 1 2 3e e e e e e1 2 3 1 2 3+ + = + + + (( )du du du1 2 3e e e1 2 3+ +  (1.2)

where e1, e2, and e3 are unit vectors in x1, x2, and x3 directions, respectively.
In index or tensorial notation, equation (1.2) can be written as

 
dx dx dui i i

* = +  (1.3)

where the free index i can take values 1, 2, or 3.
Applying the chain rule, equation (1.3) can be written as

 

dx dx
u
x

dx
u
x

dx
u
x

dx

dx

i i
i i i

i

*

*

= + ∂
∂

+ ∂
∂

+ ∂
∂

∴

1
1

2
2

3
3

== + ∂
∂

= +
=
∑dx

u
x

dx dx u dxi
i

j
j

j

i i j j

1

3

,

 

(1.4)

Figure 1.1
Deformation of a body: R is the reference state and D is the deformed state.
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In the preceding equation, the comma (,) means “derivative” and the sum-
mation convention (repeated dummy index means summation over 1, 2, and 3) 
has been adopted.

Equation (1.4) can also be written in matrix notation in the following form:

 

dx

dx

dx

dx

dx

dx

1

2

3

1

2

3

*

*

*
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∂
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∂
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∂
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∂

∂
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∂






























u
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u
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3
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3

1

2
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(1.5)

In short form, equation (1.5) can be written as

 
{ } { } [ ] { }dr dr u dr* T= + ∇  (1.6)

If one defines

 

εij i j j iu u= +1
2

( ), ,
 

(1.7a)

and

 
ωij i j j iu u= -1

2
( ), ,

 
(1.7b)

then equation (1.6) takes the following form:

 
{ } { } [ ]{ } [ ]{ }dr dr dr dr* = + +ε ω  (1.7c)

1.2.1.1  Interpretation of e ij and w ij for Small Displacement Gradient

Consider the special case when dr = dx1e1. Then, after deformation, three 
components of dr* can be computed from equation (1.5):

 

dx dx
u
x

dx dx

dx
u
x

dx

1 1
1

1
1 11 1

2
2

1
1

1*

*

( )= + ∂
∂

= +

= ∂
∂

ε

== +

= ∂
∂

= +

( )

( )*

ε ω

ε ω

21 21 1

3
3

1
1 31 31 1

dx

dx
u
x

dx dx
 

(1.8)
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� Fundamentals of Fracture Mechanics

In this case, the initial length of the element PQ is dS = dx1, and the final 
length of the element P*Q* after deformation is

dS dx dx dx dx* * * *( ) ( ) ( ) ( )= + +[ ] = +1
2

2
2

3
2

1 11
2

1
2 1 ε ++ + + +[ ]

≈ +[ ] =
( ) ( )ε ω ε ω

ε

21 21
2

31 31
2

1 11

1
2

1
21 2dx dxx1 111( )+ ε  

(1.9)

In equation (1.9) we have assumed that the displacement gradients ui,j are 
small. Hence, e ij and w ij are small. Therefore, the second-order terms involv-
ing e ij and w ij can be ignored.

From its definition, engineering normal strain (E11) in x1 direction can be 
written as

 

Ε11
1 11 1

1
11

1= - = + - =dS dS
dS

dx dx
dx

* ( )ε ε
 

(1.10)

Similarly one can show that e22 and e33 are engineering normal strains in 
x2 and x3 directions, respectively.

To interpret e12 and w12, consider two mutually perpendicular elements PQ 
and PR in the reference state. In the deformed state these elements are moved 
to P*Q* and P*R* positions, respectively, as shown in Figure 1.2.

Let the vectors PQ and PR be (dr)PQ = dx1e1 and (dr)PR = dx2e2, respectively. 
Then, after deformation, three components of (dr*)PQ and (dr*)PR can be writ-
ten in the forms of equations (1.11) and (1.12), respectively:

 

( ) ( )

( )

*

*

dx dx
u
x

dx dx

dx

PQ

PQ

1 1
1

1
1 11 1

2

1= + ∂
∂

= +

= ∂

ε

uu
x

dx dx

dx
u
x

dxPQ

2

1
1 21 21 1

3
3

1
1

∂
= +

= ∂
∂

=

( )

( ) (*

ε ω

ε331 31 1+ω )dx
 

(1.11)

P

P*

R*

R

x1

x2

x3

Q

Q*

90°
S

S*

α1

αα2

Figure 1.2
Two elements, PQ and PR, that are mutually perpendicular before deformation are no longer 
perpendicular after deformation.
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dx
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= ∂
∂
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∂∂
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= ∂
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x
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(1.12)

Let a1 be the angle between P*Q* and the horizontal axis, and a2 the angle 
between P*R* and the vertical axis as shown in Figure 1.2. Note that a + a1 + 
a2 = 90°. From equations (1.11) and (1.12), one can show that

 

tan
( )
( )

α ε ω
ε

ε ω ε ω1
21 21 1

11 1
21 21 12 21

= +
+

≈ + = +dx
dx 11

2
12 12 2

22 2
12 211

tan
( )
( )

α ε ω
ε

ε ω= +
+

≈ -dx
dx  

(1.13)

In the preceding equation, we have assumed a small displacement gradi-
ent and therefore 1 + e ij ≈ 1. For a small displacement gradient, tan a i ≈ a i and 
one can write:

 

α ε ω

α ε ω

ε α α ω α

1 12 21

2 12 21

12 1 2 21
1
2

1
2

= +

= -

∴ = + =( ) & ( 11 2-α )
 

(1.14)

From equation (1.14) it is concluded that 2e12 is the change in the angle 
between the elements PQ and PR after deformation. In other words, it is 
the engineering shear strain and w21 is the rotation of the diagonal PS (see 
Figure 1.2) or the average rotation of the rectangular element PQSR about the 
x3 axis after deformation.

In summary, e ij and w ij are strain tensor and rotation tensor, respectively, 
for small displacement gradients.

Example 1.1
Prove that the strain tensor satisfies the relation e ij,kℓ + e kℓ,ij = e ik,jℓ + e jℓ,ik.

This relation is known as the compatibility condition.

Solution

Left-hand side = ε εij k k ij i jk j ik k ij kiu u u u, , , , , ,(l l l l l l+ = + + +1
2 jj )

Right-hand side = ε εik j j ik i kj k ij j ik jiu u u u, , , , , ,(l l l l l l+ = + + +1
2 kk )
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Since the sequence of derivative should not make any difference, ui,jkℓ = 
ui,kjℓ; similarly, the other three terms in the two expressions can be shown 
as equal. Thus, the two sides of the equation are proved to be identical.

Example 1.2
Check if the following strain state is possible for an elasticity problem:

 ε ε ε ε11 1
2

2
2

22 2
2

3
2

12 1 2 3= +( ) = +( ) =k x x k x x kx x x, , , 113 23 33 0= = =ε ε

Solution
From the compatibility condition, e ij,kℓ + ekℓ,ij = e ik,jℓ + e jℓ,ik, given in example 
1.1, one can write

e11,22 + e22,11 = 2e12,12 by substituting i = 1, j = 1, k = 2, ℓ = 2.

 

ε ε

ε

11 22 22 11

12 12 3

2 0 2

2 2

, ,

,

+ = + =

=

k k

kx

Since the two sides of the compatibility equation are not equal, the 
given strain state is not a possible strain state.

1.2.2  Traction and Stress Tensor

Force per unit area on a surface is called traction. To define traction at a point 
P (see Figure 1.3), one needs to state on which surface, going through that 
point, the traction is defined. The traction value at point P changes if the ori-
entation of the surface on which the traction is defined is changed.

Figure 1.3 shows a body in equilibrium under the action of some external 
forces. If it is cut into two halves by a plane going through point P, in general, 
to keep each half of the body in equilibrium, some force will exist at the cut 
plane. Force per unit area in the neighborhood of point P is defined as the 
traction at point P. If the cut plane is changed, then the traction at the same 
point will change. Therefore, to define traction at a point, its three components 
must be given and the plane on which it is defined must be identified. Thus, 
the traction can be denoted as T(n), where the superscript n denotes the unit 

PF1

F2

F3

F4

Figure 1.3
A body in equilibrium can be cut into two halves by an infinite number of planes going through 
a specific point P. Two such planes are shown in the figure.
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vector normal to the plane on which the traction is defined and where T(n) 
has three components that correspond to the force per unit area in x1, x2, and 
x3 directions, respectively.

Stress is similar to traction; both are defined as force per unit area. The 
only difference is that the stress components are always defined normal or 
parallel to a surface, while traction components are not necessarily normal 
or parallel to the surface. A traction T(n) on an inclined plane is shown in 
Figure 1.4. Note that neither T(n) nor its three components Tni are necessarily 
normal or parallel to the inclined surface. However, its two components snn 
and sns are perpendicular and parallel to the inclined surface and are called 
normal and shear stress components, respectively.

Stress components are described by two subscripts. The first subscript 
indicates the plane (or normal to the plane) on which the stress component is 
defined and the second subscript indicates the direction of the force per unit 
area or stress value. Following this convention, different stress components 
in the x1x2x3 coordinate system are defined in Figure 1.5.

T(n)

Tn1
x1

x2

x3

Tn2

Tn3

σnn

σns

Figure 1.4
Traction T(n) on an inclined plane can be decomposed into its three components, Tni, or into two 
components: normal and shear stress components (snn and sns).

x1

x2

x3

σ22

σ21
σ23

σ13 σ13σ11
σ11

σ12

σ33

σ32

σ12

σ31

Figure 1.5
Different stress components in the x1x2x3 coordinate system.
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Note that on each of the six planes (i.e., the positive and negative x1, x2, and 

x3 planes), three stress components (one normal and two shear stress com-
ponents) are defined. If the outward normal to the plane is in the positive 
direction, then we call the plane a positive plane; otherwise, it is a negative 
plane. If the force direction is positive on a positive plane or negative on a 
negative plane, then the stress is positive. All stress components shown on 
positive x1, x2, and x3 planes and negative x1 plane in Figure 1.5 are positive 
stress components. Stress components on the other two negative planes are 
not shown to keep the Figure simple. Dashed arrows show three of the stress 
components on the negative x1 plane while solid arrows show the stress com-
ponents on positive planes. If the force direction and the plane direction have 
different signs, one positive and one negative, then the corresponding stress 
component is negative. Therefore, in Figure 1.5, if we change the direction 
of the arrow of any stress component, then that stress component becomes 
negative.

1.2.3  Traction–Stress relation

Let us take a tetrahedron OABC from a continuum body in equilibrium (see 
Figure 1.6). Forces (per unit area) acting in the x1 direction on the four sur-
faces of OABC are shown in Figure 1.6. From its equilibrium in the x1 direc-
tion one can write

 
F T A A A A f Vn1 1 11 1 21 2 31 3 1 0∑ = - - - + =σ σ σ

 (1.15)

where A is the area of the surface ABC; A1, A2, and A3 are the areas of the 
other three surfaces OBC, OAC, and OAB, respectively; and f1 is the body 
force per unit volume in the x1 direction.

x1

x2

x3

Tn1

Tn2

Tn3
A

B

C

O

T(n)σ31

σ11

σ21

Figure 1.6
A tetrahedron showing traction components on plane ABC and x1 direction stress components 
on planes AOC, BOC, and AOB.
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If nj is the jth component of the unit vector n that is normal to the plane 
ABC, then one can write Aj = njA and V = (Ah)/3, where h is the height 
of the tetrahedron measured from the apex O. Thus, equation (1.15) is 
simplified to

 

T n n n f
h

n1 11 1 21 2 31 3 1 3
0- - - + =σ σ σ

 
(1.16)

In the limiting case when the plane ABC passes through point O, the tetra-
hedron height h vanishes and equation (1.16) is simplified to

 
T n n n nn j j1 11 1 21 2 31 3 1= + + =σ σ σ σ  (1.17)

In this equation the summation convention (repeated index means sum-
mation) has been used.

Similarly, from the force equilibrium in x2 and x3 directions, one can write

 

T n

T n

n j j

n j j

2 2

3 3

=

=

σ

σ  

(1.18)

Combining equations (1.17) and (1.18), the traction–stress relation is 
obtained in index notation:

 
T nni ji j= σ  (1.19)

where the free index i takes values 1, 2, and 3 to generate three equations and 
the dummy index j takes values 1, 2, and 3 and is added in each equation.

For simplicity, the subscript n of Tni is omitted and Tni is written as Ti. It is 
implied that the unit normal vector to the surface on which the traction is 
defined is n. With this change, equation (1.19) is simplified to

 
T ni ji j= σ  (1.19a)

1.2.4  equilibrium equations

If a body is in equilibrium, then the resultant force and moment on that body 
must be equal to zero.

1.2.4.1  Force Equilibrium

The resultant forces in the x1, x2, and x3 directions are equated to zero to obtain 
the governing equilibrium equations. First, x1 direction equilibrium is studied. 
Figure 1.7 shows all forces acting in the x1 direction on an elemental volume.
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Thus, the zero resultant force in the x1 direction gives

 

- + +
∂
∂
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31

3
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f
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∂
∂
+ =

σ j

jx
f1
1 0

 

(1.20)

In equation (1.20) repeated index j indicates summation.
Similarly, equilibrium in x2 and x3 directions gives

 

∂
∂
+ =

∂
∂
+ =

σ

σ

j

j

j

j

x
f

x
f

2
2

3
3

0

0
 

(1.21)

x1

x2

x3

f1σ11

σ21

σ31

σ21 + dx2
дσ21
дx2

σ31 + dx3
дσ31
дx3

σ11 + dx1
дσ11
дx1

Figure 1.7
Forces acting in the x1 direction on an elemental volume.
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The three equations in (1.20) and (1.21) can be combined in the follow-
ing form:

 

∂
∂
+ = + =

σ
σji

j
i ji j ix

f f, 0
 

(1.22)

The force equilibrium equations given in equation (1.22) are written in index 
notation, where the free index i takes three values—1, 2, and 3—and corresponds 
to three equilibrium equations, and the comma (,) indicates derivative.

1.2.4.2  Moment Equilibrium

Let us now compute the resultant moment in the x3 direction (or, in other 
words, moment about the x3 axis) for the elemental volume shown in 
Figure 1.8.

If we calculate the moment about an axis parallel to the x3 axis and pass-
ing through the centroid of the elemental volume shown in Figure 1.8, 
then only four shear stresses shown on the four sides of the volume can 
produce moment. Body forces in x1 and x2 directions do not produce any 
moment because the resultant body force passes through the centroid of 
the volume. Since the resultant moment about this axis should be zero, one 
can write

 

σ σ σ12
12

1
1 2 3

1
12 2 32

+
∂
∂







+
x

dx dx dx
dx

dx dx
d

( )
xx

x
dx dx dx

dx

dx

1
21

21

2
2 1 3

2

12

2 2
- +

∂
∂







-

σ σ

σ( ) 11 3
2

2
0dx

dx =

x2

x3

f1

f2 x1

σ21 + dx2
дσ21
дx2

σ12 + dx1
дσ12
дx1

σ12
σ21

Figure 1.8
Forces on an element that may contribute to the moment in the x3 direction.
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Ignoring the higher order terms, one gets

 
2

2
2

2
021 2 3

1
21 1 3

2( ) ( )σ σdx dx
dx

dx dx
dx- =

or s12 = s21.
Similarly, applying moment equilibrium about the other two axes, one can 

show that s13 = s31 and s32 = s23. In index notation,

	 sij = sji (1.23)

Thus, the stress tensor is symmetric. It should be noted here that if the 
body has internal body couple (or body moment per unit volume), then the 
stress tensor will not be symmetric.

Because of the symmetry of the stress tensor, equations (1.19a) and (1.22) 
can be written in the following form as well:

 

T n

f

i ij j

ij j i

=

+ =

σ

σ , 0
 

(1.24)

1.2.5  Stress Transformation

Let us now investigate how the stress components in two Cartesian coordi-
nate systems are related.

Figure 1.9 shows an inclined plane ABC whose normal is in the x1′ direc-
tion; thus, the x2′x3′ plane is parallel to the ABC plane. Traction T(1′) is acting 
on this plane. Three components of this traction in x1′, x2′, and x3′ directions 
are the three stress components s1′1′, s1′2′, and s1′3′, respectively. Note that the 

x1

x2

x3

A

B

C

O

x1́x2́  

x3´

σ1́ 3´

σ1́ 2´ σ1́ 1́

T(1́ )

Figure 1.9
Stress components in x1′x2′x3′ coordinate system.
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first subscript indicates the plane on which the stress is acting and the sec-
ond subscript gives the stress direction.

From equation (1.19) one can write

 T ni ji j ji j′
′

′= =1
1

1σ σ( ) l  (1.25)

where nj j
( )′

′=1
1l  is the jth component of the unit normal vector on plane 

ABC or, in other words, the direction cosines of the x1′ axis.
Note that the dot product between T(1′) and the unit vector n(1′) gives the 

stress component s1′1′; therefore,

 σ σ′ ′ ′ ′ ′ ′= =1 1 1 1 1 1T i i ji j il l l  (1.26)

Similarly, the dot product between T(1′) and the unit vector n(2′) gives s1′2′ 
and the dot product between T(1′) and the unit vector n(3′) gives s1′3′. Thus, we 
get

 

σ σ

σ σ

′ ′ ′ ′ ′ ′

′ ′ ′ ′

= =

= =

1 2 1 2 1 2

1 3 1 3

T

T

i i ji j i

i i j

l l l

l ii j il l′ ′1 3  
(1.27)

Equations (1.26) and (1.27) can be written in index notation in the follow-
ing form:

 σ σ′ ′ ′ ′=1 1m j ji m il l  (1.28)

In this equation, the free index m′ can take values 1′, 2′, or 3′.
Similarly, from the traction vector T(2′) on a plane whose normal is in the x2′ 

direction, one can show that

 σ σ′ ′ ′ ′=2 2m j ji m il l  (1.29)

From the traction vector T(3′) on the x3′ plane, one can derive

 σ σ′ ′ ′ ′=3 3m j ji m il l  (1.30)

Equations (1.28) to (1.30) can be combined to obtain the following equation 
in index notation:

 σ σ′ ′ ′ ′=n m n j ji m il l

Note that in the preceding equation, i, j, m′, and n′ are all dummy indices and 
can be interchanged to obtain

 σ σ σ′ ′ ′ ′ ′ ′= =m n m i ij n j m i n j ijl l l l  (1.31)
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1.2.5.1  Kronecker Delta Symbol (d ij) and Permutation Symbol (e ijk)

In index notation the Kronecker delta symbol (d ij) and permutation symbol 
(e ijk, also known as the Levi–Civita symbol and alternating symbol) are often 
used. They are defined in the following manner:

 

δ

δ

ij

ij

i j

i j

= =

= ≠

1

0

for

for

and

e ijk = 1 for i, j, k having values 1, 2, and 3; or 2, 3, and 1; or 3, 1, and 2.
e ijk = –1 for i, j, k having values 3, 2, and 1; or 1, 3, and 2; or 2, 1, and 3.
e ijk = 0 for i, j, k not having three distinct values.

1.2.5.2  Examples of the Application of d ij and e ijk

Note that

 

∂
∂
= =•

x
x

i

j
ij ijδ δ; e ei j

 

Det

a a a

a a a

a a a

a a aijk i j

11 12 13

21 22 23

31 32 33

1 2 3= ε kk ijk j kb c; b c ei× = ε

where ei and ej are unit vectors in xi and xj directions, respectively, in the 
x1x2x3 coordinate system. Also note that b and c are two vectors, while [a] is 
a matrix.

One can prove that the following relation exists between these two symbols:

 
ε ε δ δ δ δijk imn jm kn jn km= -

Example 1.3
Starting from the stress transformation law, prove that sm′n′sm′n′ = s ijs ij 
where sm′n′ and s ij are stress tensors in two different Cartesian coordinate 
systems.

Solution

 

σ σ σ σ′ ′ ′ ′ ′ ′ ′ ′ ′= =m n m n m i n j ij m p n q pq m i( )( ) (l l l l l ll l l

l l l l

′ ′ ′

′ ′ ′ ′=

n j m p n q ij pq

m i m p n j n q

)( )

( )( )

σ σ

σσ σ δ δ σ σ σ σij pq ip jq ij pq ij ij= =
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1.2.6  Definition of Tensor

A Cartesian tensor of order (or rank) r in n dimensional space is a set of nr 
numbers (called the elements or components of tensor) that obey the follow-
ing transformation law between two coordinate systems:

 t tm n p q m i n j p k q ijk′ ′ ′ ′ ′ ′ ′ ′=..... ( )( )l l l l l lK…  (1.32)

where tm′n′p′q′… and tijk…. each has r number of subscripts; r number of direction 
cosines ( )l l l l Kl′ ′ ′ ′m i n j p k q  are multiplied on the right-hand side. Comparing 
equation (1.31) with the definition of tensor transformation equation (1.32), 
one can conclude that the stress is a second-rank tensor.

1.2.7  Principal Stresses and Principal Planes

Planes on which the traction vectors are normal are called principal planes. 
Shear stress components on the principal planes are equal to zero. Normal 
stresses on the principal planes are called principal stresses.

In Figure 1.10, let n be the unit normal vector on the principal plane ABC 
and l the principal stress value on this plane. Therefore, the traction vector 
on plane ABC can be written as

 T ni i= λ

Again, from equation (1.24),

 T ni ij j= σ

From the preceding two equations, one can write

 σ λij j in n- = 0  (1.33)

x1

x2

x3

A

B

λ

C

O

n

Figure 1.10
Principal stress l on the principal plane ABC.
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