PRODUCTION VOLUME RENDERING
DESIGN AND IMPLEMENTATION

CRC Press
MAGNUS WRENNINGE

AN A K PETERS BOOK

Production Volume Rendering

This page intentionally left blank

Production Volume Rendering

Design and Implementation

Magnus Wrenninge

CRC Press
Taylor &Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

AN A K PETERS BOOK

Cover design by Vincent Serritella.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Magnus Wrenninge
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120710

International Standard Book Number-13: 978-1-4398-7363-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To Chia-Chi.

This page intentionally left blank

Preface

Contents

| The PVR System

1.1

1.2
1.3

C++andPython
1.1.1 Useof Namespaces.
1.1.2 Use of External Libraries
Python Bindings
Rendering withPVR.

| Fundamentals

2 The Basics

21

22

2.3

24
25

2.6
27

Time and MotionBlur
211 RenderGlobals
212 FunctionCurves
Cameras o e e
221 Camera Coordinate Spaces
Geometry
231 TheGeometryClass
232 ThepPartictesClass
233 ThepPolygonsClass
234 TheMeshesClass
Geometry Attributes L.
Attribute Tables
251 String Attributes 0L
Attribute References
Attribute Iteration

3 Voxel Buffers

3.1

Introduction to Voxel Buffers
311 VoxelIndexing
3.1.2 Extents and Data Window
3.1.3 Coordinate Spaces and Mappings
3.1.4 What Are the Coordinates of a Voxel?

vii

13
13
15
16
18
19
20
20
21
22
23
24
25
28
29
29

33
33
34
34
35
36

viii Contents

3.2 Implementing a Simple Voxel Buffer 37
33 Field3D 38
331 ThebenseFieldClass 39

3.3.2 ThesparseFieldClass 40

3.4 Transformations and Mappings 43
34.1 Uniform Transforms 43

3.4.2 Frustum Transforms 44

3.5 Interpolating Voxel Data 45
3.5.1 Nearest-Neighbor Interpolation 46

3.52 Linear Interpolation 47

3.5.3 Cubic Interpolation. 49

3.54 Monotonic Cubic Interpolation 53

3.6 Filtered Lookups 55
3.6.1 GaussianFilter 55

3.6.2 Mitchell-Netravali Filter 57

3.6.3 Performance Comparison 59

4 Noise 6l
41 Procedural Textures 61
42 PerlinNoise. 62
43 Noise Functions 63
44 Fractal Functions 64
45 TheFractalBaseClass 66
4.6 Fractional Brownian Motion: fBm 66
461 Octaves. o v i e e e 67

462 Scale 67

463 OctaveGain e 69

464 Lacunarity L 70

4.6.5 Value Range of Fractal Functions 70

Il Volume Modeling 73
5 Fundamentals of Volume Modeling 75
51 Volume Modeling and Voxel Buffers 75
52 Defining the Voxel Buffer 76
52.1 Bounding Primitives, 76

5.2.2 Boundless Voxel Buffers 77

53 Volume-Modeling Strategies 77
5.3.1 Direct Voxel Access. 78

532 Splatting L 78

533 Rasterization 78

534 Instantiation 79

5.4 Rasterization Primitives 79

5.5 Instantiation Primitives 80

Contents

5.6 Using Geometry to Guide Volumetric Primitives
5.6.1 Coordinate Systems
5.6.2 Local-to-World versus World-to-Local
5.7 Common Coordinate Systems
571 Points/Spheres,
572 Lines e e
573 Surfaces
5.8 Procedural Noise and Fractal Functions
58.1 Making Noise Stick
582 Density Variation
5.8.3 Impact on Primitive Bounds

6 PVR’s Modeling Pipeline
6.1 OVerview e e e e e e e
6.2 TheModeler Class
621 AddingInputs,
6.2.2 Building a Uniform Mapping
6.2.3 Building a Frustum Mapping
6.24 Executing the Modeling Process
6.2.5 Accessing the Voxel Buffer
6.3 InputstotheModeler,
64 Handling User Parameters
6.4.1 TheParamMapstruct
6.5 The Primitive BaseClass
6.5.1 Volumetric Primitive versus Underlying Primitive
6.6 Splatting Data to Voxel Buffers
6.6.1 SplattingaPoint
6.6.2 Splatting an Antialiased Point
6.6.3 Splatting and Motion Blur.

7 Rasterization Primitives in PVR
7.1 The RasterizationPrimBaseClass
711 The RasterizationLoop
7.1.2 Sampling Density from the Subclass
713 OptimalBounds
7.1.4 Rasterization and MotionBlur
7.2 Implementing Primitives
721 Attributes
722 A Design Pattern for Handling Attributes
7.3 Sphere-Based Primitives
731 Bounding the Primitive
74 The Point Primitive
741 Executing the Primitive
742 Density Function
743 Boundinga Single Point

82
82
83
85
85
86
87
88
88
88
90

91
91
92
94
94
95
96
97
97
98
98
99
100
101
101
102
104

107
107
108
109
110
110
111
111
112
114
115
116
117
121
122

7.5

7.6

7.7

7.8

Contents

The PyroclasticPoint Primitive

7.5.1
7.5.2
753

Executing the Primitive
Density Function
Bounding a Single Pyroclastic Point

Line-Based Primitives

7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6

BoundingalLine
Executing the Primitive
Updating the Acceleration Data Structure
Finding the Closest Pointona Line
Displacement Bounds
Interpolating Attributes along the Line

The Line Primitive

771

Density Function

The PyroclasticLine Primitive

7.8.1
7.8.2
7.8.3
7.8.4
7.8.5

Density Function
Transforming from World to Local Space
Updating Per-Polygon Attributes
Updating Per-Point Attributes
Displacement Bounds

Instantiation Primitives in PVR
The InstantiationPrimBaseClass
Common Strategies

8.1
8.2

8.3

8.4

8.5

8.2.1
8.2.2
8.2.3

Number of Points to Instance
Local Coordinate Space
Output from Point-Based Instantiation Primitives

The Sphere Instantiation Primitive

8.3.1

Executing the Primitive

The Line Instantiation Primitive

8.4.1

Executing the Primitive

The Surface Instantiation Primitive

8.5.1
8.5.2

Executing the Primitive
Eroding the Edges

Volume Rendering

Volumetric Lighting

Lighting Fundamentals
Absorption
Emission
Scattering
Phase Functions
Optical Thickness and Transmittance
Wavelength Dependency
Other Approaches to Volume Rendering

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

122
124
125
128
128
130
131
132
133
134
135
135
136
136
138
141
141
142
142

145
145
146
146
146
146
146
148
152
154
158
160
163

165

167
167
169
171
171
172
174
179
179

Contents

10

Raymarching

10.1 An Introduction to Raymarching

10.2 Lighting and Raymarching
10.3 Integration Intervals

10.4 Integration Intervals for Multiple Volumes

10.5 Integration Intervals for Overlapping Volumes

10.6 Sampling Strategies
10.7 Empty-Space Optimization
10.8 Holdouts

PVR’s Rendering Pipeline

11.1 The SceneClass

11.2 The Renderer Class
11.2.1 Setting Up Rays . .

11.2.2 Firing and IntegratingRays
11.2.3 ExecutingtheRender

11.2.4 The RayState Struct
11.2.5 The RenderGlobals C
11.3 The Camera Base Class . . .

lass

11.3.1 Camera Transformations

11.3.2 Transforming Points

11.4 The PerspectiveCamera Class
11.5 The SphericalCamera Class
11.6 Image Output

PVR Volume Types

121 Volumesin PVR
12.1.1 Volume Properties a
12.1.2 The VolumeSampleSta

nd Attributes
teStruct

12.1.3 The VolumeSample Struct

12.2 The ConstantVolume Class .
12.3 The voxelvolume Class . . .
12.3.1 Attribute Handling

12.3.2 Ray Intersection Testing
12.3.3 Intersecting Uniform Buffers

12.3.4 Intersecting Frustum Buffers

12.3.5 Empty-Space Optimization

12.3.6 Optimizing Sparse Uniform Buffers

12.3.7 Optimizing Sparse Frustum Buffers

12.3.8 Sampling the Buffer
12.4 The CompositeVolume Class

Xi

181
181
185
187
188
190
191
192
194

203
203
204
205
207
208
210
212
213
216
218
220
226
230

233
233
235
237
237
238
243
244
244
245
248
250
251
257
260
262

Xii

I3 Raymarching in PVR

13.1 Introduction

13.2 The Raymarcher Base Class
13.2.1 The IntegrationResult Struct .

13.3 The UniformRaymarcher Class
13.3.1 Ray Integration
13.3.2 Updating Transmittance and Lu

13.4 Integration Intervals
13.4.1 Splitting Intervals.

4 Lighting in PVR
14.1 Raymarch Samplers
14.1.1 The RaymarchSample Struct . . .
14.2 The DensitySampler Class
14.3 The PhysicalSampler Class
144 The Light BaseClass.
1441 Light Intensity
1442 Falloff
145 PointLights
146 SpotLights
14.7 Phase Functionsin PVR.
14.7.1 The PhaseFunction Base Class .
14.7.2 The Isotropic Phase Function .

Contents

minance

14.7.3 The Henyey-Greenstein Phase Function

14.74 The Double Henyey-Greenstein
14.7.5 Composite Phase Functions . .
14.8 OcclusioninPVR
14.8.1 The Occluder Base Class
14.8.2 The OcclusionSampleState Struct
14.8.3 The RaymarchOccluder Class . .

I5 Precomputed Occlusion
15.1 Voxelized Occlusion
152 Deep Shadows
15.3 Strategies for Precomputation
15.4 The VoxelOccluder Class
15.5 The otfvoxelOccluder Class
15.6 The DeepImage Class
15.7 The TransmittanceMapOccluder Class . .
15.8 The otfTransmittanceMapOccluder Class

Bibliography
Index

Class Index

Phase Function

267
267
268
269
270
270
276
281
281

285
285
286
286
288
292
294
295
296
298
300
300
301
301
305
306
311
311
311
313

315
315
316
317
318
321
323
324
327

333
335
339

Preface

Production volume rendering, described in less than 15 words, refers to
rendering of nonsurfaces for the purpose of creating images for film or
animation production. A slightly longer explanation might include some
examples, such as the creation and rendering of virtual smoke, fire, dust,
and clouds. The “and” in “creation and rendering” is also an important
point: production volume rendering refers just as much to the modeling
of the effects as it refers to the actual rendering, and in fact, the modeling
side is often the lesser known part of the two.

No matter which way you look at it, production volume rendering
is an esoteric subject. Volume rendering in the general sense encom-
passes everything from medical visualization to real-time game graphics,
but production volume rendering has very little overlap with these sub-
jects. There are only a few publicly available pieces of software, and to
make matters more complicated, there is also very little research or other
documentation available, due to the fact that most development is done
in-house at visual effects and animation production houses around the
world.

The consequence of this lack of information is that each person who is
tasked with working on a production volume renderer, or who just hap-
pens to be interested in the topic, has to start out from scratch, inventing
most of the puzzle pieces that he or she needs to make their systems
work.

A certain frustration with this lack of documentation and systemiza-
tion led to a 2010 SIGGRAPH course called Volumetric Methods in Visual
Effects, and the course, in turn, led to the book you now hold in your
hand.

The course tried to give an overview of all the different techniques
and ideas that are used in the volume-rendering solutions at some of the
largest production facilities, and it also covered a wide range of concrete
examples of those techniques, as they are implemented at those facilities.

This book takes over where the first part of the course left off and goes
into all the same fundamental topics. But where the course stayed in a

xiii

Xiv Preface

generic context, with simple examples, this book provides and describes
a systematic implementation of the techniques.

The book’s approach is highly pragmatic. Its scope is limited to the
techniques and algorithms that are actively used in production work.
It leaves out much of the available research into photorealistic volume
rendering, but the reason for doing so is simply that those techniques
rarely get used in production work.

In order to ensure that enough detail is provided on how each tech-
nique works, the book is written around an open source renderer called
PVR, which can be downloaded, compiled, and modified by the reader.
This approach hopefully means that whatever questions are left by the
book can be answered by looking at how the code is implemented.

Goals

The goal of the book is to provide two paths towards understanding pro-
duction volume rendering. On one side, it describes the techniques used
for modern production volume rendering in a generic context. It shows
how the techniques fit together, and how the modules that make it up are
used to achieve real-world goals. But it wouldn’t be a complete book if
it did not also describe an implementation of those techniques. Showing
how to translate the abstract set of concepts into concrete, working code
is an important part of the equation. It shows that the ideas work. And
it shows that they work together to create a complete system.

Throughout this book, the illustrations and rendered images are all
created using the code that the book describes. In fact, the scripts and the
data used for all the examples are freely available (along with the source
code) at http://www.github.com/pvrbook.

The aim with this approach is to let the readers explore the book
in two ways: Someone who is curious about how production volume
rendering works in the big picture can start with reading the chapters
that describe the fundamental ideas at play. At the same time, if the
reader comes across an interesting image, he or she can go straight to the
lowest level, starting with the script that created it. The reader can then
trace his or her way back through the rendering code and the modeling
primitives, which then hopefully illustrates the bigger picture that ties all
the steps together.

The primary goal of the book is to be illustrative, and an important
step towards that goal is making sure that the translation of the tech-
niques and concepts into the working code is clear and that the code’s
modular structure properly reflects the ideas presented in the book. Sec-
ondly, the concepts outlined in the book and implemented in the code

Preface XV

must be completely integrated, in the sense that each part of the system
should work with all the others, using the same fundamental concepts.
There should not be any isolated ideas that only work on their own and
cannot be integrated into the system.

Efficiency is not the primary concern of the system. In the choice
between simpler code or faster performance, PVR strives to be easy to
understand. That is not to say that the system’s performance is ignored.
On the contrary, scalability is a very important aspect of any system that
is to be used in production. The goal of the system is instead to show
how various design considerations have an impact on both scalability, ex-
tensibility, generality, and performance, but to do so in a straightforward
and understandable way.

This page intentionally left blank

The PVR System

The system described in this book is called PVR, standing simply for
production volume rendering. Because production volume rendering is
a fairly esoteric topic, it was clear early on that a working example of the
algorithms and techniques in action had to be included. To not include
one would be to rob the reader of the understanding that can sometimes
only be had by seeing how a set of techniques covering different areas
work in conjunction with one another.

|.I C++ and Python

PVR is implemented entirely in C++. The choice of C++ was simple;
although the PVR renderer isn’t built primarily for speed, the amounts
of data it needs to process makes C or C++ the only real choice. And
because the system needed to be modularized so that concepts from the
book could map cleanly to code, the object-oriented nature of C++ made
it the best candidate.

While C++ has many strengths, runtime configurability isn’t neces-
sarily one of them. In order to make it easy for the reader to create scene
descriptions, PVR also includes a Python module that wraps the entire
code base (or at least the relevant 99% of it) so that scenes can be created
and rendered with a few lines of Python code.

To exclude the Python interface (or some other scripting language
bindings) would mean that the reader would have to compile a full C++
application in order to create a scene. We assume that the reader takes

2 The PVR System o

no pleasure in decoding GCC’s template error messages and, therefore,
provide the bindings as a convenient, but powerful, scene-modeling and
rendering language.

The intent of this book is to describe a simple but complete volume-
modeling and rendering system. The focus is on illustrating the most
important concepts as clearly as possible, and on describing a modular
system where parts can easily be replaced to show the impact of different
techniques and system design decisions. Performance, although very
important in a production renderer, is not the primary goal of PVR. The
system doesn’t use any hard-to-understand or obfuscating optimization
techniques, but where algorithmic optimizations are possible, those are
discussed and implemented.

The system does use some programming concepts that are advanced
in nature, but an effort has been made to keep this in the supporting
code. The key parts of the system have all been designed to be as simple
and instructive as possible.

[.I.I' Use of Namespaces

Namespaces are an important part of writing production code. If we
consider some common classes one might write for a render, Ray, Vector,
Curve, Polygon, etc., it is not unlikely that one of the other libraries that
our system uses might have similarly named classes. If this occurs, the
compiler will throw up its hands in confusion and tell you that you al-
ready created a Vector class, and it is not impressed that you are trying
to do so again.

C++ provides a concept called namespaces that addresses this problem
by changing the internal (C++ calls this mangled) name of a symbol to
include the name of the namespace. This way, the compiler will know
the difference between Imath::Vec3<T> and your MyLibrary: :Vec3<T>. For
this reason, all of the C++ source code is wrapped in a pvr namespace.

PVR also uses namespaces to divide its classes into broad modules,
although more for organizational purposes than to prevent symbol name
clashes. Representations of geometry, such as polygons, particles, and
attributes, are all in the pvr::Geo namespace. Modeling-related classes
are in pvr: :Model and so on.

pvr::Accel Acceleration data structures
pvr: :Geo Geometry-related classes and functions
pvr::Math Math-related functions

pvr: :Model Volume-modeling classes

Chapter |

Section [.2 o Python Bindings 3

pvr::Noise Noise and fractals
pvr::Render Rendering-related classes
pvr::Sys System-related classes

pvr::Util Various utility functions and classes

1.1.2 Use of External Libraries

Where possible, existing libraries have been used to accomplish tasks not
central to the functionality of the system and for components not directly
related to volume modeling and rendering.

OpenEXR/Imath Used as the main math library. Contains basic classes
such as vectors and matrices.

OpenImageI0 A library for image input and output. Gives PVR the
ability to read and write a variety of image formats.

Field3D Provides voxel data structures and routines for storing
voxel data on disk.

GPD A library that enables reading and writing of Houdini’s
geo and bgeo formats.

boost After the Standard Template Library, probably the most
commonly used library in the world. PVR uses a variety
of classes from boost, from smart pointer classes through
timing utilities to Boost.Python.

.2 Python Bindings

The use of Python in production pipelines has exploded over the last five
to ten years. It is most commonly used for general scripting, but due
to the ease of creating bindings for existing C/C++ libraries, it has also
replaced the internal scripting languages of several major applications,
for example, hscript in Houdini, MEL in Maya, and Tcl in Nuke.

PVR uses Boost.Python for its bindings, which exposes PVR'’s internal
classes and function directly. Boost.Python makes it very simple to build
the bindings and supports advanced memory management and object
lifetime techniques, such as smart pointers, deep and shallow copying,
etc.

4 The PVR System o

As an example, the following code snippet builds a Python class
that exposes the Renderer class, automatically manages its lifetime us-
ing Renderer: :Ptr, and also replaces Python’s default constructor with a
custom one.

Code I.l. Creating Python bindings for the Renderer class using Boost.Python

class_<Renderer, Renderer::Ptr>("Renderer", no_init)

def("__init__", make_constructor(Renderer::create))
.def("clone", &Renderer::clone)

.def("setCamera", &Renderer: :setCamera)
.def("setRaymarcher", &Renderer::setRaymarcher)
.def("addVolume", &Renderer: :addVolume)
.def("addLight", &Renderer::addLight)
.def("execute", &Renderer: :execute)
.def("saveImage", &Renderer: :saveImage)

Boost.Python also makes it easy to expand the flexibility of the C++
code when creating bindings. For example, Python has no concept of
const objects. To make the C++ code play nice with the Python bindings,
Boost.Python provides a function that instructs the binding layer that
some extra type conversions are legal, for example converting a non-
const object to a const one.

Code |.2. Instructing Boost.Python that a non-const pointer is convertible to a const pointer

implicitly_convertible<Renderer::Ptr, Renderer::CPtr>();

Boost.Python also makes it simple to adapt C++’s rigid type struc-
ture to work within Python’s loosely typed classes. For example, we can
tell it to allow conversions from Python’s list and dict types to C++'s
std::vector and std: :map.

Code 1.3. Converting a Python type to a C++ type

template <typename T>
std::vector<T> pylListValues(boost::python::list 1)
{

using namespace boost::python;

using namespace std;

vector<T> hits;
for (boost::python::ssize t i =0, end = len(1l); i < end; ++i) {

object o = 1.pop();
extract<T> s(0);

Chapter |

o Section |.3 o Rendering with PVR 5

if (s.check()) {
hits.push_back(s());
}
}

return hits;

}

// Convert a python list, grabbing only float values
boost::python::list 1 = some_list();
std::vector<float> floatVec = pyListValues<float>(1);

The bindings for PVR reside in the libpvr/python folder.

.3 Rendering with PVR

To give an example of how rendering is accomplished with PVR, we first
PVR'’s Modeling Pipeline, 91 look at an example of a Python script that uses the Modeler class to build a
Voxel Buffers, 33 voxel buffer and then renders it using the Renderer class. In the example,
PVR'’s Rendering Pipeline, 203 references have been made to each of the relevant chapters and sections.
The final image is shown in Figure 1.1.

Figure I.1. The result of our PVR example.

6 The PVR System o

First, the pvr module is imported into the script. The from pvr import =
syntax is used instead of import pvr so that the symbols in the library be-
come visible without always having to prefix them with the library name.

Code |.4. A simple modeling and rendering example

#! /usr/bin/env python

from pvr import =x

The next step is to create instances of the classes that are used in
the volume-modeling process. The Modeler is responsible for taking in-
puts in the form of ModelerInput instances and turning them into voxel
buffers. Each modeler input contains the definition of a volume primitive
(also known as volumetric primitive), in this case, a PyroclasticPoint, and
a Geometry instance, which is the underlying geometric representation of
the volume primitive. Pyroclastic points are a type of rasterization prim-
itive, and their geometric representation is a Particles instance.

Code 1.5. A simple modeling and rendering example

Modeling classes

modeler = Modeler()

parts = Particles()

geo = Geometry()

prim = Prim.Rast.PyroclasticPoint()
input = ModelerInput()

The particles object is configured with a single point, which by default
sits at the origin. The particles instance is then hooked up to the geometry
container, and the two are added to the modeler input along with the
volume primitive. In a normal render, the volumetric primitive would be
configured with a set of attributes to drive its appearance. In this simple
example the default parameters will be used.

Code |.6. A simple modeling and rendering example

Create a modeling primitive with a single input point
parts.add(1)

geo.setParticles(parts)

input.setGeometry(geo)

input.setVolumePrimitive(prim)

The final step in the volume-modeling process is to add the Modeler
Input to the Modeler and then update the bounds, which configure the

Chapter |

Fundamentals of Volume
Modeling, 75

Modeler, 92
ModelerInput, 97
Rast::PyroclasticPoint,
122

Geometry, 20

Rasterization Primitives, 79

Using Geometry to Guide
Volumetric Primitives, 82

Particles, 21

Geometry Attributes, 24

ModelerInput, 97
Modeler, 92
Defining the Voxel Buffer, 76

<o Section 1.3

Renderer, 204

Volumetric Lighting, 167
PerspectiveCamera, 220
Cameras, 18
Raymarching in PVR, 267
Raymarcher, 268

RaymarchSampler, 285

Light, 292

Occluder, 311

VoxelVolume, 243

o Rendering with PVR 7

voxel buffer so that it encloses all of the primitives in the modeler’s list
of inputs. Once the final resolution of the voxel buffer has been set, the
modeler is executed, which runs each of its inputs and lets them write
their data to the voxel buffer.

Code 1.7. A simple modeling and rendering example

Add input to modeler and rasterize
modeler.addInput(input)
modeler.updateBounds ()
modeler.setResolution(200)
modeler.execute()

Next, we create the rendering-related objects. The Renderer is the
most important one, responsible for firing the rays that are turned into
the pixel values of the final image. Any render requires that a camera be
present; in this example, a PerspectiveCamera is used.

PVR uses raymarching to integrate the volumetric properties in the
scene, but the task is broken into two separate parts. The Raymarcher takes
steps along each ray fired from the final image’s pixels, but the radiance
and transmittance change at each step is determined by a RaymarchSam
pler.

Various types of light sources may be used in PVR to produce illu-
mination of the scene. The task is divided between two classes. Each
Light determines the illumination intensity and direction present at var-
ious points in the scene, but answering queries about how much light
actually arrives at any given point is done by the 0ccluder rather than the
light itself.

Although the modeler produces a voxel buffer after the execute()
method has been called, it is not in a form that the renderer can handle.
Instead, we first wrap it in a VoxelVolume instance, which makes the buffer
renderable.

Code |.8. A simple modeling and rendering example

Rendering classes

renderer = Renderer()

camera = PerspectiveCamera()

raymarchSampler = PhysicalSampler()

raymarcher = UniformRaymarcher()

occluderCamera = SphericalCamera()

occluder = OtfTransmittanceMapOccluder(renderer, occluderCamera, 8)
light = PointLight()

volume = VoxelVolume()

Configure rendering objects
camera.setPosition(V3f(0.0, 0.25, 6.0))
camera.setResolution(V2i(320, 240))

8 The PVR System o

raymarcher.setRaymarchSampler(raymarchSampler)
light.setPosition(V3f(10.0, 10.0, 10.0))
light.setIntensity(Color(1.5))
occluderCamera.setPosition(light.position())
light.setOccluder(occluder)
volume.addAttribute("scattering", V3f(4.0, 6.0, 8.0))
volume.setBuffer(modeler.buffer())

Before the final image can be rendered, the camera, raymarcher, vol-
ume, and light all need to be added to the Renderer. Taken together, the
Volume and Light instances make up the Scene of the render.

The last step before executing the render is to print the scene infor-
mation. The execute() call will then start firing rays through the scene,
which ultimately results in an image that can be saved to disk.

Code 1.9. A simple modeling and rendering example

Connect the renderer with the raymarcher, camera, volume and light
renderer.setRaymarcher(raymarcher)

renderer.setCamera(camera)

renderer.addVolume(volume)

renderer.addLight(light)

Print scene structure and start render
renderer.printSceneInfo()
renderer.execute()

Save image to disk
renderer.saveImage("out/image.png")

PVR reports progress and status information at each step in the pipeline.

The example code above generates the following log output, which gives
feedback on each of the steps in the process.

Code 1.10. The log file generated by the above rendering example

23:01:33 [pvr] Updated bounds to: ((-3 -3 -3), (3 3 3))
] Creating dense buffer
1 Using uniform/matrix mapping
23:01:33 [pvr] Setting voxel buffer resolution to: (200 200 200)
1 Pyroclastic point primitive processing 1 input points
] Rasterization: 22.68%
] Rasterization: 45.09%
23:01:40 [pvr] Rasterization: 67.70%

Rasterization: 90.19%

Time elapsed: 11.2419996
Voxel buffer memory use: 91MB
Scene info:

(VoxelVolume)

a scattering

Chapter |

Renderer, 204
Volume, 233
Light, 292
Scene, 203

Section 1.3

Rendering with PVR

[pvr]
[pvr]
[pvr]
[pvr]
[pvr]
[pvr]
[pvr]
[pvr]
[pvr]
[pvr]
[pvr]
[pvr]

i scattering : (4 6 8)
i Empty space optimization disabled
p Isotropic
(PointLight)
i (1.5 1.5 1.5)
o OtfTransmittanceMapOccluder
Rendering image (320 240) (1 x 1)
44 .23%
88.77%
Time elapsed: 5.51499987
Writing image: out/image.jpg
Done.

This page intentionally left blank

Fundamentals

This page intentionally left blank

The Basics

2.1 Time and Motion Blur

One of the key requirements of a production renderer is that it must
handle the effects of time-varying properties robustly. Because a camera
shutter (see Figure 2.1) stays open over a finite amount of time, we must
account for changes in the scene during that time period. Attributes
that often change with time are object position (transformation motion
blur), object shape (deformation motion blur), and camera position and
orientation (camera motion blur). For a rendering solution to be useful
in a production context, each of these must be handled.

Time itself can have multiple different reference frames, each of which
can be useful in a renderer. Film and television rely on showing a se-
quence of images that change quickly enough to give the illusion of mo-
tion. Each of these images is referred to as a frame, and an integer number
can be assigned to each frame, making for a convenient reference frame
for time.

Time can, of course, also be measured in seconds. If we consider an
animation containing 48 frames, running at 24 frames per second, we
have two seconds of material, given that the frame rate is the standard 24
frames per second (often abbreviated fps). If we start numbering frames
at 1, we can convert between time (f) and frame number (F) using a
simple formula:

‘o F-1
~ frames per second’

14 The Basics o

45° shutter angle 90° shutter angle 180° shutter angle

@ @ ¢

<— Frame interval —

o1 oo I]
!

Exposure time

Figure 2.1. A motion picture camera shutter uses a rotating disk as its shutter.
By varying the size of the open section, a certain shutter angle and exposure time
is achieved.

A third way of looking at time is to define it in the time interval
bounded by the camera shutter opening and closing. Here we can con-
sider a parametric measure of time that is unitless and is defined only
within a [0, 1] interval.

The shutter is usually not open for the entire duration of a frame.
Most motion pictures are filmed using a shutter angle of 180° [Burum 07],
a notion that warrants some explaining. A motion picture camera’s shut-
ter is most often a rotating disk with an adjustable slot, which in turn
controls how long the exposure of each film frame is. The degree mea-
sure refers to the angle the slot occupies on the disk, meaning that at
180° the shutter is open 50% of the time and is closed 50% of the time.
In computer graphics, this is more often expressed as a fraction called
shutter length or motion blur length, and the corresponding value to 180°
is 0.5.

We often refer to the actual time that the camera shutter is open as dt,
and we can find it using the frame rate and shutter angle or motion blur
length:

_ motion blur length shutter angle/360°

dt = = .
frames per second frames per second

A strict and consistent definition and handling of the various time
frames is important in a renderer, and in PVR, they are actual class types,
which prevents accidental misinterpretation. Time in seconds is defined
by the Time class, whereas shutter open/close time is defined by PTime.
PVR does not deal with frame time directly.

Chapter 2

<& Section 2.1 o Time and Motion Blur 15

Code 2.1. The Time class

class Time
{
public:
explicit Time(const float t)
: m_value(t)
{1}
operator float() const
{ return m_value; }
float value() const
{ return m_value; }
private:
float m_value;
+

Code 2.2. The PTime class

class PTime

{
public:
explicit PTime(const float t)
: m_value(t)
{1}
operator float() const
{ return m_value; }
float value() const
{ return m_value; }
private:
float m_value;
+

In PVR, the motion of particles and geometry is represented using the
Geometry Attributes, 24 v (for velocity) point attribute (see Section 2.4). Velocity vectors are always
defined in m/s, meters per second. Motion vectors are different from
velocity vectors; they refer to motion in the current shutter open/close
interval and thus only have the length unit m. Any velocity vector can be
converted to a motion vector through the formula

m=70-dt.

2.1.1 Render Globals

When designing a renderer, there is always a certain amount of informa-
tion that pertains to all parts of the renderer. Rather than passing a set of
variables to every single rendering function, it is quite common to use an

16 The Basics o

object that is globally accessible to store such information. In PVR, this
class is called RenderGlobals.

The RenderGlobals class stores pointers to the current scene as well as
to the render camera. Information relating to time is also available in the
class. When a new render frame is initiated, the rendering class config-
ures RenderGlobals by calling the static setupMotionBlur() method. After
that, any of PVR’s components can access dt through the RenderGlobals: :
dt() method.

Code 2.3. RenderGlobals

class RenderGlobals
{
public:
// Typedefs
typedef boost::shared_ptr<const pvr::Render::Scene> SceneCPtr;
typedef boost::shared_ptr<const pvr::Render::Camera> CameraCPtr;
// Exceptions
DECLARE_PVR_RT_EXC(BadFpsException, "Bad frames per second value:");
DECLARE_PVR_RT_EXC(BadShutterException, "Bad shutter value:");
// Main methods

static void setupMotionBlur(const float fps, const float shutter);
static void setScene(SceneCPtr scene);

static void setCamera(CameraCPtr camera);

// Accessors

static float fps();

static float shutter();

static float dt();

static SceneCPtr scene();
static CameraCPtr camera();

private:
// Data members
static float ms_fps;
static float ms_shutter;
static float ms_dt;

static SceneCPtr ms_scene;
static CameraCPtr ms_camera;

2.1.2 Function Curves

So far, we have mentioned motion blur, but we have not yet showed how
time-varying properties can be represented. PVR treats properties that
change with time as one-dimensional functions that are linearly interpo-
lated to find sub-sample values. (See, for example, Figure 2.2.)

In most cases, time-varying properties change gradually and smoothly
over time and can be described well using only two time samples: one
at the shutter open time and one at shutter close. In other cases, such as

Section 2.1 o Time and Motion Blur 17

Value

0.0 0.2 0.4 0.6 0.8 1.0

Time

Figure 2.2. A function curve using four samples and linear interpolation.

a camera with “shake” applied, the changes can be drastic and sudden,
requiring more than two samples to accurately describe the change in po-
sition, orientation, etc. In order to support arbitrary intra-frame motion,
PVR handles these time-varying properties using the Util::Curve class.
Each Curve can contain as many samples as is necessary, and in-between
values are then linearly interpolated.

Code 2.4. Curve

class Curve

{
public:
// Main methods
void addSample(const float t, const T &value);
T interpolate(const float t) const;
size_t numSamples() const;

const SampleVec& samples() const;
std::vector<float> samplePoints() const;

std::vector<T> sampleValues() const;

void removeDuplicates();

static CPtr average(const std::vector<CPtr> &curves);
private:

R

18 The Basics o

PTime
AN
Shutter open Shutter close
[at | Time
1 1 >
T T g
Frame 1 Frame 2
F=1 F=2
t=0.0 t=0.5/fps t = 1.0/fps
Pt=0.0 Pt=1.0 Pt=2.0

Figure 2.3. PVR’s temporal coordinate frames.

The curve class is templated and can theoretically be used to store any
type of data that can be interpolated. The most commonly used types,
however, are

typedef Curve<float> FloatCurve;
typedef Curve<Color> ColorCurve;
typedef Curve<Vector> VectorCurve;
typedef Curve<Quat> QuatCurve;

When a Curve is used in PVR, the time dimension is assumed to line
up with PTime, such that t = 0.0 refers to the start of the frame and
the shutter open time. The end of the shutter interval falls at ¢t = 1.0,
which matches the PTime definition. When constructing a curve, it is most
common to have information about how a given attribute changes from
frame to frame. If we let tﬁ; = 0.0 be the PTime of the current frame start,
then the equivalent PTime for the next frame start can be found through
the expression
1

motion blur length’

i+1 _
tp - =

Figure 2.3 illustrates PVR’s definition of time reference frames for a
motion blur length of 0.5.

2.2 Cameras

The camera classes in PVR are very simple, and their implementations
should provide no surprises to the reader. Most parameters are assumed

Chapter 2

PTime, 15

Section 2.2

o Cameras 19

to be temporally varying, meaning that properties such as position, ori-
entation, and field of view may change over the course of the current
frame. In support of this, all of the calls to the camera that depend on
time use the PTime concept, where 0.0 is assumed to be the start of the
current frame, i.e., when the shutter opens, and 1.0 is the time that the
shutter closes.

This book assumes the reader is familiar with common computer
graphics conventions for camera projection calculations. For a thorough
introduction to cameras in computer graphics, [Watt 00] and [Pharr and
Humpbhreys 10] are good sources.

2.2.1 Camera Coordinate Spaces

PVR’s world space is right-handed, but its camera space is left-handed.
By default, a camera with no rotation looks down the negative z-axis in
world space, and down positive z in camera space. The camera’s x- and
y-axes line up with the world space, with x to the right and y facing up.
(See Figure 2.4.)

Screen space defines the projected view of the camera, with x = 1
indicating the left edge of the camera’s view, x = 1 therightedge, y = 1
the bottom edge, and y = 1 the top edge. The depth dimension has no
negative range, instead putting z = 0 at the near plane of the projection
and z = 1 at the far plane. (See Figure 2.5.)

PVR also uses a second projection space, which is called NDC space.
NDC stands for normalized device coordinates and changes the x and y
ranges of the projection to the [0,1] range. (See Figure 2.6.)

Far plane

Near plane .-~ ’

World origin

Camera space

Figure 2.4. PVR’s camera space conventions.

