Alternative Transportation FUELS

Utilisation in Combustion Engines

Alternative Transportation FUELS Utilisation in Combustion Engines

Alternative Transportation FUELS

Utilisation in Combustion Engines

M. K. Gajendra Babu K. A. Subramanian

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20130305

International Standard Book Number-13: 978-1-4398-7282-6 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

Preface			xv
Authors			.xvii
Abbrevia	tions		xix
1. Intro	ductior	n: Land, Sea and Air Transportation	1
1.1	Transp	portation	1
1.2	Modes	of Different Transportation	2
1.3	Indige	nous Production Levels of Crude Oil	
	from E	Different Countries	3
1.4	Impor	t and Export Levels in Different Countries	3
1.5	Refiniı	ng Capacities of Petrol and Diesel Worldwide	9
1.6		y Consumption: World View	
1.7		portation Sector: Current Scenario	
	1.7.1		17
	1.7.2	High-Power Rail Transportation	17
	1.7.3	Aviation Sector: Gas Turbines	17
	1.7.4	Global Vehicle Fleet	18
1.8	Fossil	Fuel Consumption in the Transport Sector	21
	1.8.1	Energy Consumption in Transport Sector: Indian	
		Perspective	24
1.9	GHG I	Emissions from the Transportation Sector	
	1.9.1	Mechanism of GHG Pollutant Formation in Internal	
		Combustion Engines	30
	1.9.2	CO ₂ Emission	30
	1.9.3	N ₂ O Emission	
	1.9.4	CH ₄ Emission	
	1.9.5	Roadmap and Strategy for CO ₂ Emission Reduction	
		by Other Countries	33
1.10	Enviro	onmental Concerns	35
	1.10.1	Near Term: Local Air Pollution	35
	1.10.2	Toxic Air Pollutants	36
	1.10.3		
		Warming Effect	
1.11	Enviro	onmental Standards	
1.12	Sustai	nability Issues	37
		Vehicle Attributes	
	1.12.2	Fuel Attributes	37
Refer	ences		41

2. Conv	vention	al Fuels f	for Land Transportation	43
2.1	Conve	ntional F	uels for Spark Ignition Engines/Vehicles	
2.2	Produ	ction of (Gasoline/Diesel Fuels	
	2.2.1	Primary	v Oil Recovery	
	2.2.2	Seconda	ary Oil Recovery	
	2.2.3	Tertiary	Oil Recovery	
2.3	Refini	ng Proce	ss to Produce Gasoline/Diesel	
	2.3.1		of Unit Processes	
		2.3.1.1	Hydro-Treater	
		2.3.1.2	<i>.</i>	
		2.3.1.3	0	
		2.3.1.4	Alkylation	
		2.3.1.5	Polymerisation	
		2.3.1.6	Isomerisation	53
		2.3.1.7	Reforming	
2.4	Conve		uels for a Spark Ignition Engine	
	2.4.1	Motor C	Gasoline	
		2.4.1.1	Physico-Chemical Properties	
	2.4.2	Liquefie	ed Petroleum Fuels	
		2.4.2.1	Availability of LPG	
		2.4.2.2	Cost of LPG in India	
		2.4.2.3	Production Process of LPG	
	2.4.3	*	essed Natural Gas	
		2.4.3.1	Resources	
		2.4.3.2	Availability of Natural Gas: World View	
		2.4.3.3	Cost Analysis of CNG (United States)	
		2.4.3.4	Natural Gas Production Process	
		2.4.3.5	Natural Gas Purification	73
		2.4.3.6	Advantages of Natural Gas as	
			Transportation Fuel	73
		2.4.3.7	Comparison between CNG and LPG	
		2.4.3.8	Methane Number	
	2.4.4		Iydrocarbons	
	2.4.5		as	
	2.4.6		inants	
	2.4.7			
	2.4.8			
	2.4.9		en	
	2.4.10		en Sulphide	
2 5	2.4.11			
2.5			Puels for Compression Ignition	70
	0		les	
	2.5.1	Diesel 2.5.1.1	Cotono Number	
			Cetane Number	
		2.5.1.2	Density	

			2.5.1.3	Viscosity	
			2.5.1.4	Sulphur Content	79
			2.5.1.5	Distillation Characteristics	
	2.6	Conclu	ision		80
	Proble	ems			80
	Unso	lved Pr	oblems		85
3.	Alter	native	Fuels for	Land Transportation	
	3.1			I	
	3.2			ls for Spark Ignition Engines	
		3.2.1		ased Fuels	
		0.2.1	3.2.1.1	Gas to Liquid Fuel	
		3.2.2	-	en from Fossil Fuel	
		3.2.3		: Alcohol Fuels	
		0.2.0	3.2.3.1	Methanol	
			3.2.3.2	Ethanol	
			3.2.3.2	Propanol	
			3.2.3.3		
		224	3.2.3.5	5	
		3.2.4		: Gaseous Fuels	
			3.2.4.1	Producer Gas	
			3.2.4.2	Biogas	
			3.2.4.3	Bio-Syngas	
			3.2.4.4	Hydrogen	
	3.3			ls for a Compression Ignition Engine	
		3.3.1			
			3.3.1.1	Introduction	
			3.3.1.2	Biodiesel	
		3.3.2		iquid Fuel	
		3.3.3		-Tropsch Diesel	
		3.3.4		yl Ether	
		3.3.5			
	3.4	Conclu	ision		153
	Refer	ences			153
4.	Aviat	ion Fu	els		157
	4.1				
	4.2			equirements of Aircraft Engines	
				Helicopters)	157
	4.3			ine Fuel	
	4.4			ene	
	4.5			atural Gas	
	4.6			ral Gas	
	4.0 4.7			el Blend	
	1 ./	Diouie	361-D1686		101

	4.8	Fische	r–Tropsch Diesel	162
	4.9	Carbo	n-Free Fuel: Compressed and Liquid Hydrogen	162
	4.10	Carbo	n-Neutral and Sustainable Fuel	162
	4.11	Produ	ction Technology of Aviation Fuel	163
	4.12		e and Weight of Aviation Fuel for Smaller- and Large-	
			Aircraft	
	4.13		ion and Effects by Aviation Fuel	
	4.14	Conclu	ision	168
	Refer	ences		169
_				
5.			of Alternative Fuels in Internal Combustion	1 171
	0		hicles	
	5.1		Ignition Engines	
		5.1.1	General Introduction	
		5.1.2	Various Challenges with SI Engine	172
		5.1.3	Preliminary Studies Regarding Combustion Phenomenon	174
		5.1.4	Parameters Affecting Burning Velocity	
		5.1.4	Characterisation of Combustion Process	170
		5.1.6		
		5.1.0	Study of Flame Kernel Growth Development 5.1.6.1 Pre-Breakdown Phase	
			5.1.6.2 Plasma Phase	
			5.1.6.3 Initial Combustion Phase	
		5.1.7	Carburettor, Manifold, Port and Direct In-Cylinder	101
		5.1.7	Injection	101
		5.1.8	Different Methods That Can Be Adapted for Using	191
		5.1.0	CNG in SI Engines	101
		5.1.9	Continuous Injection	
		5.1.10	Timed Manifold Injection	
		5.1.10	Exhaust Gas Recirculation	
		5.1.11	5.1.11.1 Oxides of Nitrogen	
		5.1.12	Ethanol–Gasoline Blends	
		5.1.12	Methanol–Gasoline Blends	
		5.1.14	Butanol–Gasoline Blends	
		5.1.15	Hydrogen	
		5.1.16	Compressed Natural Gas	
		0.1110	5.1.16.1 Difference in Performance and Power	210
			Output between CNG and Gasoline	210
			5.1.16.2 Fuel Consumption	
			5.1.16.3 Brake Thermal Efficiency	
			5.1.16.4 Effect of Speed on Emissions	
		5.1.17	Liquefied Petroleum Gas	
			5.1.17.1 Comparison among Gasoline, CNG, E10	0
			and LPG Fuels	224

5.2	Compi	ression Ig	nition Engines	.229
	5.2.1	Emissio	ns	. 231
	5.2.2	Biodiese	<u>el</u>	.232
		5.2.2.1	Comparison with Other Fuels	.232
		5.2.2.2	Effect of Biodiesel Addition on CO and	
			UBHC Emissions	.235
		5.2.2.3	Effect of Biodiesel Addition on Smoke	
			and CO ₂	.236
		5.2.2.4	Effect of Biodiesel Addition on T_{EG} and NO_x	
		5.2.2.5	Effect of Biodiesel Addition on the	
			Combustion Process	.237
		5.2.2.6	Effect of Biodiesel Addition on Combustion	
			Characteristics	.238
		5.2.2.7	Effect of Injection Pressure on Brake Power	
			and Brake-Specific Fuel Consumption	. 239
		5.2.2.8	Effect of Injection Pressure on Exhaust Gas	
		0.2.2.0	Temperature and Nitrogen Oxides Emission	240
		5.2.2.9	Effect of Injection Pressure on (a) CO and	10
		0.2.2.	(b) UBHC	241
		5.2.2.10	Effect of Injection Pressure on CO_2	
		0.2.2.10	and Smoke	242
		5.2.2.11	Effect of Injection Timing on Brake Power	• = • =
		0.2.2.11	and Brake-Specific Fuel Consumption	242
		5.2.2.12	· · ·	. 212
		0.2.2.12	Temperature (T_{EG}) and NO_x	243
		5.2.2.13		. 240
		0.2.2.10	Emissions	244
		52214	Effect of Injection Timing on CO_2 and Smoke	
	5.2.3		nental Setup for EGR	
	5.2.5	5.2.3.1	Design of Intercooler	
		5.2.3.1	Effect of Using EGR with Biodiesel Blends	
		5.2.3.3	Brake Thermal Efficiency	
		5.2.3.4	Brake-Specific Fuel Consumption	
		5.2.3.5	Calculating Volumetric Efficiency	.234
		5.2.3.6	Engine Emission for Biodiesel with	
			Different Percentage of Exhaust Gas	055
			Recirculation	.255
		5.2.3.7	Engine Combustion Characteristics for	
			Biodiesel with a Different Percentage of	0- 0
			Exhaust Gas Recirculation	
	1	5.2.3.8	Conclusions	
	5.2.4		-Tropsch Diesel	
	5.2.5		yl Ether	
		5.2.5.1	Advantages of DME as Alternative Fuel	.266

		5.2.6	Dual-Fu	el Engine Fuelled with Biodiesel and	
			Hydrog	en	272
		5.2.7	Homoge	eneous Charge Compression Ignition	
			Engine.		276
		5.2.8	Premixe	ed Charged Compression Ignition	278
				Performance Analysis	
			5.2.8.2	Emissions Characteristics	
		5.2.9	Partial H	HCCI	287
			5.2.9.1	Auxiliary Injector Assembly	290
				Optimisation of Auxiliary Injection	
				Duration for Achieving Partial HCCI	291
	5.3	Concl	usion		
	Probl				
6.	Fuel	Qualit	y Charact	erisation for Suitability of Internal	
	Com	bustion	1 Engines	j	313
	6.1			action	
	6.2	Fuel C	Juality St	udy	313
	6.3			f Fuel Properties	
		6.3.1		c Value	
				Procedure	
				Calculation	
		6.3.2	Viscosit	у	319
				Redwood Viscometer	
				Saybolt Viscometer	
		6.3.3		pint	
				Description of Apparatus	
			6.3.3.2		
		6.3.4	Cloud P	oint and Pour Point	
				Description of Apparatus	
			6.3.4.2	Procedure	
	6.4	Emiss	ion Chara	acteristics of Internal Combustion Engines	
	6.5			ometer Study	
	6.6			e Sampling	
	6.7				
	6.8				
	6.9			or	
	6.10			-	
	6.11			Meter	
	6.12	Test B	ench Exp	erimental Study	
		6.12.1	Perform	ance Characteristics of Internal	
				stion Engines	
	6.13	Field 7		y	
				J	

7.				tive Fuelled Internal Combustion Engines	
	7.1	Introdu			
		7.1.1	Objectiv	e of Conducting a Simulation	339
		7.1.2	Problem	-Solving Process	342
		7.1.3	Problem	Definition	342
		7.1.4	After De	fining the Problem	343
		7.1.5	Mathem	atical Model	343
		7.1.6	Comput	ational Method	343
	7.2	Interna		stion Engine Processes	
		7.2.1		cle	
		7.2.2		ycle	
	7.3	Govern		ations for IC Engines	
		7.3.1		al Kinetics	
		7.3.2	General	Combustion Equation	349
	7.4	CI Eng		elling for Alternative Fuels	
		7.4.1		Characteristics	
		7.4.2		haracteristics	
		7.4.3		Delay	
		7.4.4		tion Model	
		7.4.5	Extende	d Zeldovich Mechanism (NO _x Model)	354
		7.4.6		Soot Formation Model	
	7.5	Combu		SI Engine	
		7.5.1		nition	
				Characterisation of Combustion Process	
		7.5.2	Quasi-D	imensional Two-Zone Model for an	
			SI Engir	1e	356
	Proble	ems			357
	Unsol	lved Pro	blems		361
	Nome	enclatur	e		362
		Greek l	Letters		364
	Refer	ences			364
8.	Alter	native I	Powered	Vehicles	367
	8.1	Genera	l Introdu	iction	367
	8.2	Bi-Fuel	Vehicle.		367
		8.2.1	Introduc	ction	367
			8.2.1.1	Advantages of Bi-Fuelled Vehicles as	
				Compared to Conventional Vehicles	370
			8.2.1.2	Disadvantages as Compared to	
				Conventional Vehicles	370
	8.3	Dual-F	uel Vehic	les	370
		8.3.1	Introduc	ction	370
		8.3.2	Benefits	of Dual-Fuel Technology	371
			8.3.2.1	Compared to the Diesel Engine: Dual-Fuel	
				Engine Delivers	372

	8.4	Electri	c Vehicles	
		8.4.1	Advantages of EVs	374
		8.4.2	Disadvantages of EVs	
	8.5	Hybric	l Vehicle	
		8.5.1	Components	
		8.5.2	Working Principle	
	8.6	Fuel C	ell Vehicles	
		8.6.1	Introduction	
		8.6.2	Working Principle of Fuel Cells	
		8.6.3	Types of Fuel Cells	
		8.6.4	Parameters Affecting Power Generation in an FC.	
		8.6.5	Fuel Cell Vehicle	
		8.6.6	Performance	
		8.6.7	Environmental Benefits	
	Refer	ences		
9.	Alter		Fuels for Rail Transportation	
	9.1		uction	
	9.2	Types	of Locomotives	
		9.2.1	Diesel Locomotives	
		9.2.2	Diesel-Electric Locomotive	
	9.3	Altern	ative Locomotives	
		9.3.1	Fuel Cell Locomotives	
		9.3.2	Biodiesel for Locomotives	
	Refer	ences		
10.		native	Fuels for Marine Transportation	
	10.1		uction to Marine Fuels	
		10.1.1	Conventional Fuels	
			10.1.1.1 Distillate Marine Fuels	
			10.1.1.2 Residual Fuels	
	10.2		ative Fuel for Marine Vehicles	
	10.3	-	e/Vehicle Technology	
		10.3.1	Types of Marine Vehicles	
		10.3.2	Types of Marine Engines	
			10.3.2.1 Low-Speed Engines	
			10.3.2.2 Medium-Speed Engines	
			10.3.2.3 High-Speed Engines	
	10.4	A.C. 7	10.3.2.4 Two- and Four-Stroke Diesel Engine	
	10.4		Freatment Technology for an Emission Reduction	
			ve Catalyst Reduction	
		10.4.1	Various Reagents That Are Used for Selective	10-
			Non-Catalytic Reduction	

		10.4.2	NH ₃ Process	401
		10.4.3	Comparison of NH ₃ and Urea Injection Methods	402
	Refer		· · · · · · · · · · · · · · · · · · ·	
11.	Alter	native	Fuels for Aviation (Airbus and Helicopter)	403
	11.1	Introd	uction	403
	11.2	Impor	tance of Air-Mode Transportation	403
	11.3	Perform	mance, Combustion and Emission Characteristics	
		of Aer	o-Engines	405
			Emission	
	11.4	Progre	ess in the Use of Alternative Fuels	
			Aviation Sector	
	Refer	ences		408
12.	Glob	al Warı	ning and Climate Change	409
			uction	
		12.1.1	Effect of Different Modes of Transportation on the	
			Environment	410
		12.1.2	Impact of Air Transport	
		12.1.3	Impact of Road Transport	413
		12.1.4	Impact of Rail Transport	416
		12.1.5	Impact of Marine Transportation	417
		12.1.6	Alternative Fuels and GHGs	
	12.2	Mecha	nism of Global Warming	
	12.3	Contro	ol Avenues for GHG Emissions	
	12.4	The Pr	oposed GHG Emission Standards	
		12.4.1	GHGs Emission Standards	
			12.4.1.1 Roadmap and Strategy for CO ₂ Emission	
			Reduction by Other Countries	
	Probl	ems		
	Unso	lved Pr	oblems	432
	Refer	ences		433

Preface

During the past couple of decades, there has been a large expansion in the transport sector, which resulted in a significant increase in the consumption of petroleum-based fuels such as gasoline and diesel. This situation is likely to pave the way for the depletion of fossil fuel–based reserves and to deteriorate the quality of the environment. Hence, there exists a definite need to stem this problem to the maximum possible extent by exploring the feasibility of using alternative fuels that could pave the way for the sustained operation of the transport sector. In this direction, this book exposes the reader to the assessment of the potential avenues that could be contemplated for using different alternative fuels in the transport sector.

Chapter 1 briefly highlights several modes of transport and their effect on the environment, while Chapters 2 and 3 discuss conventional and alternative fuels for land transport. Fuels for the aviation sector are covered in Chapter 4. Experimental investigations relating to the utilisation of alternative fuels in internal combustion engines are reported in Chapter 5. Fuel quality characterisation and a modelling of alternative-fuelled engines are briefly highlighted in Chapters 6 and 7, respectively. Chapter 8 briefly describes alternative-powered vehicles. Potential alternative fuels for rail, marine and aviation applications are presented in Chapters 9, 10 and 11, respectively. Chapter 12 highlights potential global warming and climate change on account of utilising conventional and alternative fuels. Some of the material in this book is based on the authors' own experience at different laboratories around the globe.

We are indeed grateful to the College of Engineering, Guindy, Chennai; Indian Institute of Technology, Madras; Indian Institute of Technology, Delhi; Indian Institute of Petroleum, Dehradun; University of Tokyo; University of Melbourne; University of Manchester Institute of Science and Technology; and Hosei University for providing the necessary facilities for us to undertake some of the research activities indicated in this book.

We wish to acknowledge the support extended by our teachers and former colleagues who motivated us in our early stages. Notable among them are Professors B.S. Murthy, T. Asanuma, T. Obokata, H.C. Watson, D. Winterbone, Satoshi Okajima, A. Ramesh, P.A. Janakiraman, and T.R. Jagadeesan and Drs. P.A. Laksminarayanan and K. Kumar.

The contributions made by our former research scholars Drs. D.S. Khatri, Alok Kumar, P.G. Tewari, K. Subba Reddi, and Ragupathy during their PhD programs and our MTech scholars Silesh, Kavitha Kuppula, Supriya Sukla, Jaspreet Hira, and Ameet Srivastave have been used in some chapters. We are grateful for the sponsorship provided by the Department of Science and Technology under the Funds for Improvement in Science and Technology (FIST) as some of the results generated under this scheme are used in the book.

We thank Vinay C. Mathad, project associate, for his hard work in bringing the book to a proper shape. His contribution to the book is invaluable as he devoted a considerable amount of time to draw figures, format manuscripts and develop numerical problems.

We acknowledge our research scholars Subhash Lahane, Venkateshwaralu, B.L. Salvi, Ashok Kumar, Sunmeet Singh and MTech scholars Charan, Vaibav Vasuntre, Ram Kumar Bhardan, Apporva Milind Moon and Navin Shukla for their contribution in searching the relevant literature for the book.

Our sincere thanks to the Centre for Energy Studies, IIT, Delhi, for encouraging us to write this book. We thank the management of RMK Engineering College, Chennai, for permitting us to use their facilities during the preparation of this book.

Finally, we wish to thank our family members for extending their support during the preparation of this book.

M.K. Gajendra Babu K.A. Subramanian

Authors

M.K. Gajendra Babu is a senior professor at RMK Engineering College, Chennai after retiring from the Indian Institute of Technology (IIT), Delhi, where he had served as professor and head of the Centre for Energy Studies. He was also a Henry Ford Chair Professor at IIT Madras and a visiting faculty at the University of Tokyo, University of Melbourne, University of Manchester, and University of Hosei, Japan.

Dr. Babu has been working in the field of computer simulation, alternative fuels, instrumentation, and emission controls for internal combustion engines for the past 44 years.

Dr. Babu has published about 250 research papers in several national and international journals and conferences. He is a Fellow of the Society of Automotive Engineers (SAE) International. He has been awarded the Indian Automobile Engineer of the Year award, the Indian Society of Technical Education's Anna University Outstanding Academic Award, the Indian Society of Environment's honorary fellowships from A. P. J. Abdul Kalam and the SAE India Foundation's Automotive Education Award for his outstanding contribution to automotive education in India.

K.A. Subramanian is an associate professor in the Centre for Energy Studies, Indian Institute of Technology (IIT), Delhi. He is a former scientist in the Indian Institute of Petroleum.

Dr. Subramanian's research area includes utilisation of alternative fuels (biodiesel, compressed natural gas, hydrogen, etc.) in internal combustion engines, the development of the homogeneous charge compression ignition (HCCI) concept engine, greenhouse control in transport engines, sustainable power generation using a hybrid energy system, computer simulation, and computational fluid dynamics (CFD). He is involved in several R&D projects, including the development of a biodiesel–CNG-based dual-fuel diesel engine, the utilisation of enriched biogas in automotive vehicles, and hydrogen utilisation in a multicylinder spark ignition engine. A patent application has been filed in his name.

Dr. Subramanian has jointly supervised three doctoral scholars and supervised about 10 PhD scholars. He was nominated to participate in the project Study Mission on Energy Efficiency, sponsored by the Asian Productivity Organization, Japan in 2009.

Abbreviations

AC	Alternate current
AFVs	Alternate fuel vehicles
AK	Antiknock
Al_2O_3	Alumina
ASTM	American Standards Testing Material
ATR	Auto thermal reforming
B0 (or) D100	Diesel
B20	20% Biodiesel + 80% diesel
B40	40% Biodiesel + 60% diesel
B60	60% Biodiesel + 40% diesel
B80	80% Biodiesel + 20% diesel
BD	Biodiesel
BIS	Bureau of Indian Standards
BMEP	Brake mean effective pressure
BP	Brake power
BSEC	Brake specific energy consumption
BSFC	Brake specific fuel consumption
BTL	Biomass to liquid
Btoe	Billion tonnes of oil equivalent
C ₂ H ₅ OH	Ethanol
$C_3H_6O_3$	Dimethyl carbonate
C ₃ H ₇ OH	Propanol
C ₄ H ₉ OH	Butanol
CĂFE	Corporate average fuel economy
CAGR	Compound annual growth rate
CDM	Clean development mechanism
CFC	Chloro fluoro carbons
CFR	Cooperative Fuel Research
CH ₃ OH	Methanol
CH ₄	Methane
CI	Compression ignition
CI engine	Compression ignition engine
CN	Cetane number
CNG	Compressed natural gas
Co	Cobalt
CO	Carbon monoxide
CO_2	Carbon dioxide
CR CR	Compression ratio
CRC	Coordinating Research Council
CRDI	Common rail direct injection
	common run uncer injection

OTT	
CTL	Coal to liquid
Cu	Copper
CVS	Constant volume sample
°C	Degree Celsius
DC	Direct current
DC	Discounted cost
DEE	Diethyl ether
DICI	Direct injected compression ignition engine
DISI	Direct injection spark ignition engine
DME	Dimethyl ether or Di methyl ether
E10	Ethanol 10%
E15	15% Ethanol + 85% gasoline
E30	30% Ethanol + 70% gasoline
E70	70% Ethanol + 30% gasoline
E85	Ethanol 85%
E95	Ethanol 95%
EAMA	European Automobile Manufacturer's Association
EGR	Exhaust gas recirculation
EPEEE	European Program on Emissions, Fuels and Engine Technologies
EU	European Union
EU27	European Union of 27 member states
EV	Electrical vehicles
FBP	Final boiling point
FC	Fuel cell
FCC	Fluidised catalytic converter
FCV	Fuel cell vehicles
Fe	Iron
FFA	Free fatty acids
Fp	Finished product
Fpe	Finished products to the end user
FRJ	Fermentation renewable jet
FSU	Former Soviet Union
FT	Fischer–Tropsch
F–T Diesel	-
FTS	Fischer–Tropsch synthesis
g/km	Gram per kilometre
g/kWh	Gram per kilowatt hour
G-8	Group of eight
GDI	Gasoline direct ignition
GDP	Gross domestic product
GHGs	Green house gases
GTL	Gas to liquid
GWP	Global warming potential
H_2	Hydrogen
H_2 H_2O	Water
1120	muci

© 2008 Taylor & Francis Group, LLC

HC	Hydrocarbons
HCV	Higher commercial vehicles
HDS	Hydro desulphurisation
HDT	Hydro treating
HEV	Hybrid electric vehicle
Hp	Horse power
HRJ	Hydro-treated renewable jet
HVAC	Heating ventilation and air conditioning
IATA	
IBP	International Airline Industry Association Initial boiling point
IC	Internal combustion
ICAO	
	International Civil Aviation Organization
ICE	Internal combustion engine Intermediate fuel oil
IFO	
IMEP	Indicated mean effective pressure
IPCC	Intergovernmental Panel on Climate Change
IT	Injection timing
JASO	Japanese Automobile Standard Organization
K	Kelvin
kg	Kilogram
km	Kilometre
km/h	Kilometre per hour
KOH	Potassium hydroxide
kW	Kilowatt
Lb-ft	Pounds-foot
LCV	Light commercial vehicles
LH ₂	Liquefied hydrogen
LNG	Liquefied natural gas
LOME	Line seed oil methyl ester
LPG	Liquefied petroleum gas
m ³	Cubic metre
M15	15% Methanol + 85% gasoline
M85	85% Methanol + 15% gasoline
MAP	Manifold absolute pressure
MEA	Mono-ethanol amine
MJ	Mega Joule
mm	Millimetre
MMT	Million metric tons
MON	Motor octane number
Mpg	Miles per gallon
Mph	Miles per hour
MT	Million ton
MTBE	Methyl tetra butyl ether
MTOE	Million ton oil equivalent
MUV	Multi-utility vehicle

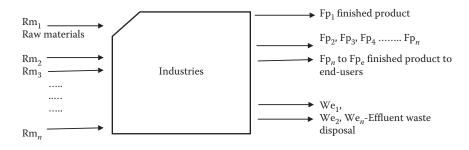
© 2008 Taylor & Francis Group, LLC

NT	». T'ı
N_2	Nitrogen
N_2O	Nitrous oxide
NaOH	Sodium hydroxide
NASA	National Aeronautical Space Association
NEDC	New European Driving Cycle
NGV	Natural gas vehicles
NH_3	Ammonia
NO_x	Oxides of nitrogen
O_3	Ozone
OC	Operating fuel cost
OECD	Organization for Economic Co-operation and Development
OEM	Original Engine Manufacturer
ON	Octane number
PAH	Poly aromatic hydrocarbon
PAHC	Polycyclic aromatic hydrocarbon
PISI	Port injected spark ignition engine
PJ	Pico Joule
PM	Particulate matter
POX	Partial oxidation
ppm	Parts per million
psi	Pounds square inch
PV	Photo voltaic
R&D	Research & Development
RFO	Refined fuel oil
Rm	Raw material
RON	Research octane number
RPK	revenue passenger kilometre
rpm	Revolutions per minute
S	Seconds
SCR	Selective catalytic reduction
SEC	Specific energy consumption
SI	Spark ignition
SI engine	Spark ignition engine
SiO_2	Silicon oxide
SIT	Self-ignition temperature
SMD	Sauter mean diameter
SMR	Steam methane reforming
SO_x	Sulphur oxides
SPK	Synthetic paraffinic kerosene
SRM	Steam reforming method
SUV	Sports utility vehicles
TAN	Total acid number
TBN	Total base number
TC	Transportation cost
T_{EG}	Exhaust temperature

TFp	Transportation cost of finished product from downstream of industries to retailer
TFpe	Transportation cost of finished product from retailer to end user
TRm	Transportation cost of raw material
TWe	Transportation cost of waste effluent
UBHC	Unburnt hydrocarbon
UC	Utility cost
UHC/UBHC	Unburnt hydrocarbons
UKCCC	United Kingdom Committee on Climate Change
US/USA	United States/United States of America
We	Waste effluent
Wh/kg	Watt-hour/kilogram
Wh/L	Watt-hour/litre
WOT	wide open throttle
WTW	Well to wheel
wt/wt	weight by weight
XTL	Anything to liquid (synthesis fuel)
ZEV	Zero emission vehicles
ZnO	Zinc oxide
ZnO_2	Zinc dioxide

1

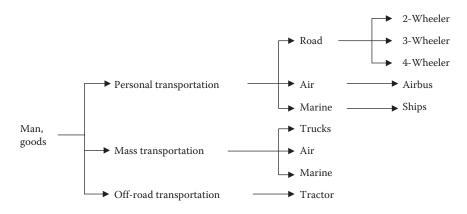
Introduction: Land, Sea and Air Transportation

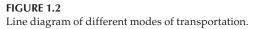

1.1 Transportation

Transportation can be defined as the movement of people, livestock and all types of goods from one place to another through the use of self-power, manpower, motor power or combinations of any two or all of the above. Nature is a good example of movement as planets rotate in their orbit around the sun. Six billion people in the world have to journey from their origin/home/ house to other places for their education, office work, industry and other general purposes. The materials normally transported include commodities such as food items and industrial goods from the origin of production to the customer's destination for the survival of human life.

A raw material has to be moved from its source to end-users as depicted in Figure 1.1. Raw materials (Rm_1 , Rm_2 , Rm_3 , ..., Rm_n) have to be transported from their place of origin to upstream of an industry. The finished products (Fp_1 , Fp_2 , Fp_3 , ..., Fp_n) have to be transported from downstream of an industry to the retailer's end and then to the end-users (Fp_1 , Fp_2 , Fp_3 , ..., Fp_n). The waste effluent (We_1 , We_2 , We_3 , ..., We_n) from the industry needs to be disposed of to a safe place in view of its environmental concern. Thus, the transportation cycle of consumer goods is completed in this manner for most of the industries such as cement, paper, sugar and petrochemical. Total transportation cost could be written as a summation of all transportation costs such as raw materials, finished product to retailer, retailer to end-users and waste effluent disposal, as shown in Equation 1.1

Total transport cost
$$\sum_{i}^{n} \text{TRm}_{i} = \sum_{i}^{n} \text{TFp}_{i} \sum_{i}^{n} \text{TFpe}_{i} \sum_{i}^{n} \text{TWe}_{i}$$
 (1.1)


where *i* = 1,2,3,4,..., *n*.



Schematic diagram of transportation of raw materials to end-users.

1.2 Modes of Different Transportation

A line diagram showing different modes of transportation is given in Figure 1.2. Two-, three- and four-wheelers are used for personal transportation for travelling short distances, whereas air mode transportation is used for longer distances. In case of mass transportation, heavy goods are transported using land mode transportation by internal combustion engine-powered vehicles and locomotives. Air mode is used for light goods and it is the fastest service that is preferred by all sectors. However, it is an expensive mode of transportation that is used in situations depending on the emergency or time-bound activities. Even though sea mode transportation is the cheapest as compared to other modes, it is only possible for ocean-bounded countries.

1.3 Indigenous Production Levels of Crude Oil from Different Countries

The indigenous production of crude oil, shale oil, oil sands and NGLs (the liquid content of natural gas from where this is recovered separately) from different countries is given in Table 1.1. A comparison of the production of crude oil from different countries is shown in Figure 1.3.

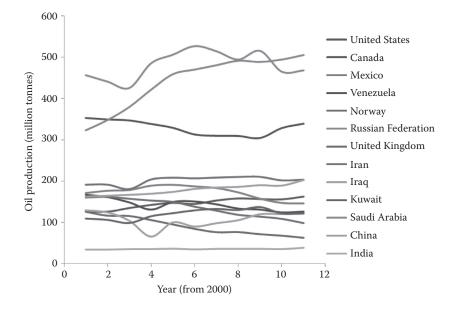
1.4 Import and Export Levels in Different Countries

The production and import scenarios of the United States, China and India are shown in Figure 1.4a, b and c. The United States imports 68% of its crude oil requirement (Figure 1.4a), whereas India imports 79% of its crude oil requirement from other countries, as shown in Figure 1.4c. Trade movements of crude oil from different countries are shown in Table 1.2. Details of India's crude oil production and import from other countries are shown in Figure 1.5.

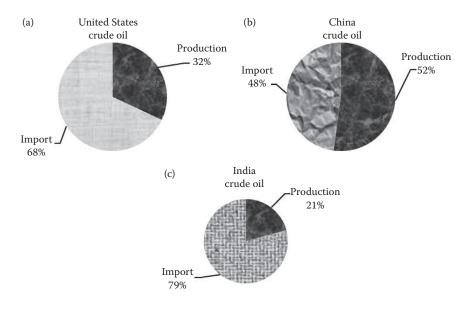
- Europe's energy deficit remains roughly at today's levels for oil and coal but increases by 65% for natural gas (Figure 1.6). This is matched by gas production growth in the former Soviet Union (FSU) [4].
- Among energy-importing regions, North America is an exception, with growth in biofuel supplies and unconventional oil and gas turning today's energy deficit (mainly oil) into a small surplus by 2030.
- In aggregate, today's energy importers will need to import 40% more in 2030 than they do today, with deficits in Europe and Asia Pacific met by supply growth in the Middle East, the FSU, Africa and South and Central America.
- China's energy deficit increases by 0.8 Btoe (billion tonnes of oil equivalent, spread across all fuels) while India's import requirement grows by 0.4 Btoe (mainly oil and coal). The rest of Asia Pacific remains a big oil importer at similar levels to today.
- Asian energy requirements are partially met by increased Middle East and African production, but the rebalancing of global energy trade as a result of the improved net position in the Americas is also a key factor [4].
- Import dependency, measured as the share of demand met by net imports, increases for most major energy importers except the United States (Figure 1.7).

_
•
—
ш
8
<
F.

r Sources Such as Biomass	
scludes Lignid Fuels from Oth	
ude Oil. Shale Oil. Oil Sands and NGLs (Exclud	
oduction of Cr	and Coal Derivatives)


4

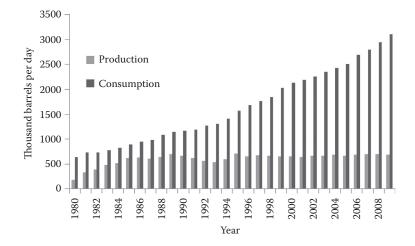
and Coal Derivatives)											
Production (Million											
Tonnes)	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
United States	352.6	349.2	346.8	338.4	329.2	313.3	310.2	309.8	304.9	328.6	339.1
Canada	126.9	126.1	135.0	142.6	147.6	144.9	153.4	158.3	156.8	156.1	162.8
Mexico	171.2	176.6	178.4	188.8	190.7	187.1	183.1	172.7	157.7	147.5	146.3
Argentina	40.4	41.5	40.9	40.2	37.8	36.2	35.8	34.9	34.1	33.8	32.5
Brazil	63.2	66.3	74.4	77.0	76.5	84.6	89.2	90.4	93.9	100.4	105.7
Colombia	35.3	31.0	29.7	27.9	27.3	27.3	27.5	27.6	30.5	34.1	39.9
Ecuador	20.9	21.2	20.4	21.7	27.3	27.6	27.7	26.5	26.2	25.2	25.2
Peru	4.9	4.8	4.8	4.5	4.4	5.0	5.1	5.1	5.3	6.4	6.9
Trinidad and Tobago	6.8	6.5	7.5	7.9	7.3	8.3	8.3	7.2	6.9	6.8	6.5
Venezuela	167.3	161.6	148.8	131.4	150.0	151.0	144.2	133.9	131.5	124.8	126.6
Other South and	6.6	6.9	7.8	7.8	7.3	7.2	7.0	7.1	7.0	6.7	6.6
Central America											
Azerbaijan	14.1	15.0	15.4	15.5	15.6	22.4	32.5	42.8	44.7	50.6	50.9
Denmark	17.7	17.0	18.1	17.9	19.1	18.4	16.7	15.2	14.0	12.9	12.2
Italy	4.6	4.1	5.5	5.6	5.5	6.1	5.8	5.9	5.2	4.6	5.1
Kazakhstan	35.3	40.1	48.2	52.4	60.6	62.6	66.1	68.4	72.0	78.2	81.6
Norway	160.2	162.0	157.3	153.0	149.9	138.2	128.7	118.6	114.2	108.8	98.6
Romania	6.3	6.2	6.1	5.9	5.7	5.4	5.0	4.7	4.7	4.5	4.3
Russian Federation	323.3	348.1	379.6	421.4	458.8	470.0	480.5	491.3	488.5	494.2	505.1
Turkmenistan	7.2	8.0	9.0	10.0	9.6	9.5	9.2	9.8	10.3	10.4	10.7
United Kingdom	126.2	116.7	115.9	106.1	95.4	84.7	76.6	76.8	71.7	68.2	63.0
Uzbekistan	7.5	7.2	7.2	7.1	9.9	5.4	5.4	4.9	4.8	4.5	3.7
Other Europe and Eurasia	22.4	22.2	23.6	24.0	23.5	22.0	21.7	21.6	20.6	19.6	18.2
Iran	191.3	191.4	180.9	203.7	207.8	206.3	208.2	209.7	209.9	201.5	203.2


© 2008 Taylor & Francis Group, LLC

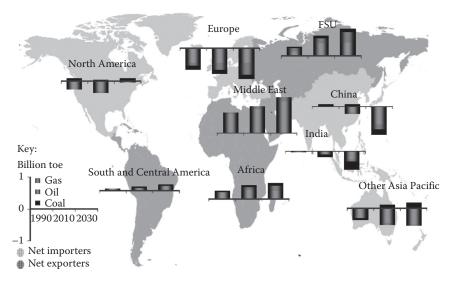
Iraq	128.8	123.9	104.0	66.1	100.0	90.0	98.1	105.2	119.5	119.8	120.4
Kuwait	109.1	105.8	98.2	114.8	122.3	129.3	132.7	129.9	137.2	121.7	122.5
Oman	46.4	46.1	43.4	39.6	38.1	37.4	35.7	34.5	35.9	38.7	41.0
Qatar	36.1	35.7	35.2	40.8	46.0	47.3	50.9	53.6	60.8	57.9	65.7
Saudi Arabia	456.3	440.6	425.3	485.1	506.0	526.8	514.3	494.2	515.3	464.7	467.8
Syria	27.3	28.9	27.2	26.2	24.7	22.4	21.6	20.6	19.8	18.6	19.1
United Arab Emirates	122.1	118.0	110.2	124.5	131.7	137.3	145.5	140.7	142.9	126.3	130.8
Yemen	21.3	21.5	21.5	21.1	19.9	19.6	17.9	16.3	14.4	13.5	12.5
Other Middle East	2.2	2.2	2.2	2.2	2.2	1.6	1.4	1.6	1.5	1.7	1.7
Algeria	66.8	65.8	70.9	79.0	83.6	86.4	86.2	86.5	85.6	9.77	77.7
Angola	36.9	36.6	44.6	42.8	54.5	69.0	69.69	82.5	92.2	87.4	90.7
Chad	Ι	Ι	Ι	1.2	8.8	9.1	8.0	7.5	6.7	6.2	6.4
Brazzaville	13.1	12.1	12.3	11.2	11.6	12.6	14.3	11.7	12.4	13.9	15.1
Egypt	38.8	37.3	37.0	36.8	35.4	33.9	33.7	34.1	34.6	35.3	35.0
Equatorial Guinea	4.5	8.8	11.4	13.2	17.4	17.7	16.9	17.3	17.2	15.2	13.6
Gabon	16.4	15.0	14.7	12.0	11.8	11.7	11.7	11.5	11.8	11.5	12.2
Libya	69.5	67.1	64.6	69.8	76.5	81.9	84.9	85.0	85.3	77.1	77.5
Nigeria	105.4	110.8	102.3	109.3	119.0	122.1	117.8	112.1	103.0	99.1	115.2
Sudan	8.6	10.7	11.9	13.1	14.9	15.0	16.3	23.1	23.7	23.6	23.9
Tunisia	3.7	3.4	3.5	3.2	3.4	3.4	3.3	4.6	4.2	4.0	3.8
Other Africa	7.2	6.6	6.7	6.8	8.1	7.7	7.6	8.3	8.1	7.7	7.1
Australia	35.3	31.8	31.5	26.6	24.8	24.5	23.2	23.5	23.7	21.9	23.8
Brunei	9.4	9.9	10.2	10.5	10.3	10.1	10.8	9.5	8.5	8.2	8.4
China	162.6	164.8	166.9	169.6	174.1	181.4	184.8	186.3	190.4	189.5	203.0
India	34.2	34.1	35.2	35.4	36.3	34.6	35.8	36.1	36.1	35.4	38.9
Indonesia	71.5	67.9	63.0	57.3	55.2	53.1	48.9	47.5	49.0	47.9	47.8
Malaysia	33.7	32.9	34.5	35.6	36.5	34.4	33.5	34.2	34.6	33.1	32.1
Thailand	7.0	7.5	8.2	9.6	9.1	10.8	118	12.5	13.3	13.7	13.8
Vietnam	16.2	17.1	17.3	17.7	20.8	19.4	17.8	16.4	15.4	16.8	18.0
Other Asia Pacific	9.4	9.1	9.0	9.1	10.5	12.5	13.2	13.9	14.7	14.3	13.6
Total world	3611.8	3601.6	3584.2	3701.1	3877.0	3906.6	3916.2	3904.3	3933.7	3831.0	3913.7

© 2008 Taylor & Francis Group, LLC

FIGURE 1.3 Comparison of production of crude oil from different countries.

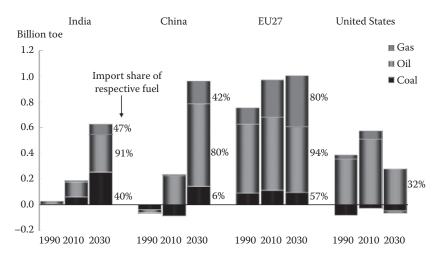


Production and import scenarios of crude oil in the (a) USA, (b) China and (c) India. (Adapted from IEA World Energy Outlook, www.iea.org, 2009; www.petroleum.nic.)


^{© 2008} Taylor & Francis Group, LLC

ITAUE INTOVERTIENTS OF CIT AND THE OFF	NN NT I NN I										
Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Imports (Thousand Barrels Daily)											
United States	11,092	11,618	11,357	12,254	12,898	13,525	13,612	13,632	12,872	11,453	11,689
Europe	11,070	11,531	11,895	11,993	12,538	13,261	13,461	13,953	13,751	12,486	12,094
Japan	5329	5202	5070	5314	5203	5225	5201	5032	4925	4263	4567
Rest of the world	15,880	16,436	16,291	17,191	18,651	19,172	20,287	22,937	23,078	24,132	25,160
Total world	43,371	44,787	44,613	46,752	49,290	51,182	52,561	55,554	54,626	52,333	53,510
Exports (Thousand Barrels Daily)											
United States	890	910	904	921	991	1129	1317	1439	1967	1947	2154
Canada	1703	1804	1959	2096	2148	2201	2330	2457	2498	2518	2599
Mexico	1814	1882	1966	2115	2070	2065	2102	1975	1609	1449	1539
South and Central America	3079	3143	2965	2942	3233	3528	3681	3570	3616	3748	3568
Europe	1967	1947	2234	2066	1993	2149	2173	2273	2023	2034	1888
Former Soviet Union	4273	4679	5370	6003	6440	7076	7155	8334	8184	7972	8544
Middle East	18,944	19,098	18,062	18,943	19,630	19,821	20,204	19,680	20,128	18,409	18,883
North Africa	2732	2724	2620	2715	2917	3070	3225	3336	3260	2938	2871
West Africa	3293	3182	3134	3612	4048	4358	4704	4830	4587	4364	4601
Asia Pacific	3736	3914	3848	3978	4189	4243	4312	6004	5392	5631	6226
Rest of the world	940	1506	1551	1361	1631	1542	1359	1656	1363	1323	637
Total world	43,371	44,789	44,613	46,752	49,290	51,182	52,561	55,554	54,626	52,333	53,510
Source: Adapted from BP Statistica	Statistical Review of World Energy, http://www.bp.com/statistical review, June 2011	World Ene	rgy, http:/	/www.bp	.com/stati	stical revie	w, June 201	11.			

TABLE 1.2



Net imports and exports of gas, oil and coal—world view. (Adapted from BP Energy Outlook 2030, London, January 2012.)

- The import share of oil demand and the volume of oil imports in the United States will fall below the 1990s levels, largely due to the rising production of domestic shale oil and ethanol, displacing crude imports. The United States also becomes a net exporter of natural gas.
- In China, imports of oil and natural gas rise sharply as the growth in demand outpaces domestic supply. Oil continues to dominate

Import dependency rises in Asia and Europe. (Adapted from BP Energy Outlook 2030, London, January 2012.)

China's energy imports, although gas imports increase by a factor of 16. China also becomes a major importer of coal.

- India will increasingly have to rely on imports of all three—oil, coal and natural gas—to supply its growing energy needs.
- European net imports (and imports as a share of consumption) rise significantly due to the declining domestic oil and gas production and rising gas consumption. Virtually all of the growth in net imports is from natural gas [4].

1.5 Refining Capacities of Petrol and Diesel Worldwide

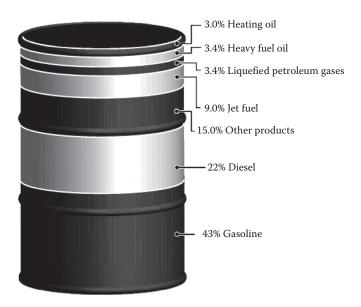
People have used naturally available crude oil for thousands of years. The ancient Chinese and Egyptians, for example, burned oil to produce light. Before the 1850s, Americans often used whale oil for light. When whale oil became scarce, people began looking for other oil sources. In some places, oil seeped naturally to the surface of ponds and streams. People skimmed this oil and made it into kerosene. Kerosene was commonly used to light America's homes before the arrival of the electric light bulb.

As demand for kerosene grew, a group of businessmen hired Edwin Drake to drill for oil in Titusville, PA. After much hard work and slow progress, he discovered oil in 1859. Drake's well was 21.18 metres deep, very shallow as compared to today's wells. Drake refined the oil from his well into kerosene for lighting. Gasoline and other products made during refining were simply thrown away because people had no use for them. In 1892, the horseless carriage, or automobile, solved this problem since it required gasoline. By 1920, there were nine million motor vehicles in the United States and gas stations were opening everywhere.

Although research has improved the odds since Edwin Drake's days, petroleum exploration today is still a risky business. Geologists study underground rock formations to find areas that might yield oil. Even with advanced methods, only 23% of exploratory wells found oil in 2009. Developmental wells fared slightly better as 38% of them found oil.

When the potential for oil production is found onshore, a petroleum company brings in a 15–30 m drilling rig and raises a derrick that houses the drilling tools. Today's oil wells average 1600 m deep and may sink below 6000 m. The average well produces about 10 barrels of oil a day.

Oil's first stop after being pumped from a well is an oil refinery. A refinery is a plant where crude oil is processed. Sometimes, refineries are located near oil wells, but usually the crude oil has to be delivered to the refinery by ship, barge, pipeline, truck or train. After the crude oil has reached the refinery, large cylinders store the oil until it is ready to be processed. Tank farms are sites with many storage tanks.


An oil refinery cleans and separates the crude oil into various fuels and by-products. The most important one is gasoline. Some other petroleum products are diesel fuel, heating oil and jet fuel.

Refineries use many different methods to make these products. One method is a heating process called distillation. Since oil products have different boiling points, the end products can be distilled, or separated. For example, asphalts have a higher boiling point than gasoline, allowing the two to be separated.

Refineries have another job. They remove contaminants from the oil. A refinery removes sulphur from gasoline, for example, to increase its efficiency and to reduce air pollution. Nine per cent of the energy in the crude oil is used to operate the refineries. The various products that are produced from one barrel of oil (1 barrel of oil = 159.11 L) are shown in Figure 1.8. The refining capacity of different countries is shown in Table 1.3.

1.6 Energy Consumption: World View

Crude oil is the world's largest total primary energy consumed as shown in Table 1.4. The crude oil-derived diesel and gasoline fuels are used as fuels in internal combustion engine-powered vehicles. However, some countries like Russia mostly use natural gas due to its abundant availability. It is clearly seen that crude oil usage influences the economic development of a country. If the crude oil cost fluctuates, there is an unstable economic development of a nation.

FIGURE 1.8 Products produced from a barrel of oil.

It can be observed from Figure 1.9 that economic growth is always associated with growth in energy consumption and associated emission. The growth rates of primary energy consumption, GDP and CO_2 emission were 4.9%, 4.7% and 4.7%, respectively. Passenger transportation by car is the highest for all countries as compared to other modes as shown in Table 1.5. The second largest transportation is by air for EU27 and the United States. The freight transportation for EU27, the United States, Japan, China and Russia is shown in Table 1.5. The rail transportation for freight is the highest in the United States, whereas sea transport is the highest in China. It is dependent on the geological structure and the country's political policy.

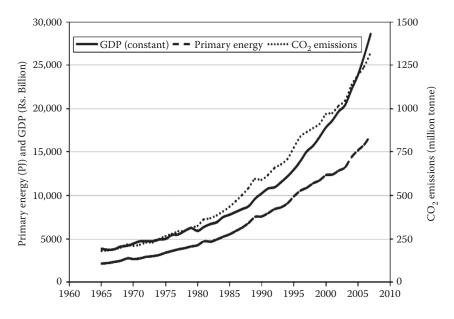
Based on the above discussion for different countries, it could be concluded that the passenger car, air and bus play a vital role for passenger transportation, whereas the rail and sea modes play a pivotal role for freight transportation.

It can be seen from the above discussion that the world economic development is primarily based on crude oil. However, the oil resources gradually deplete year after year as the demand increases steeply. The reserve-to-production ratio of fossil fuels such as oil, natural gas and coal is shown in Figure 1.10. If this ratio of oil reduces below a minimum value, it results in severe worldwide energy crisis. If the demand continues at the same rate and no new oilfield is explored, the oil resources may get depleted in about 50 years. Otherwise, it may not be possible to meet the required demand. As the crude oil price fluctuates, it affects the economic development of a country directly. The average crude oil price for the year 2008 peaked about 100 \$/barrel as compared to the past couple of decades as shown in Figure 1.11. In countries that have a higher

Refinery Capacities from Various Countries	Countries										
Capacity (Thousand Barrels Daily)	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
United States	16,595	16,785	16,757	16,894	17,125	17,339	17,443	17,594	17,672	17,688	17,594
Canada	1861	1917	1923	1959	1915	1896	1914	1907	1951	1976	1914
Mexico	1481	1481	1463	1463	1463	1463	1463	1463	1463	1463	1463
Argentina	626	619	619	620	623	627	623	634	634	635	638
Brazil	1849	1849	1854	1915	1915	1916	1916	1935	2045	2095	2095
Netherlands Antilles	320	320	320	320	320	320	320	320	320	320	320
Venezuela	1269	1269	1269	1269	1284	1291	1294	1303	1303	1303	1303
Other South and Central America	2207	2189	2234	2229	2235	2251	2260	2310	2356	2335	2351
Belgium	770	785	803	805	782	778	774	745	745	823	823
France	1984	1961	1987	1967	1982	1978	1959	1962	1971	1873	1703
Germany	2262	2274	2286	2304	2320	2322	2390	2390	2366	2362	2091
Greece	403	412	412	412	412	418	425	425	425	425	440
Italy	2485	2485	2485	2485	2497	2515	2526	2497	2396	2396	2396
Netherlands	1277	1278	1282	1282	1284	1274	1274	1236	1280	1280	1274
Norway	318	307	310	310	310	310	310	310	310	310	310
Russian Federation	5655	5628	5590	5454	5457	5522	5599	5596	5549	5527	5555
Spain	1330	1330	1330	1347	1372	1377	1377	1377	1377	1377	1427
Sweden	422	422	422	422	422	422	422	422	422	422	422
Turkey	713	713	713	713	693	613	613	613	613	613	613

 TABLE 1.3
 Refinery Capacities from Various Co

United Kingdom	1778	1769	1785	1813	1848	1819	1836	1819	1827	1757	1757
Other Europe and Eurasia	6002	5912	5754	5691	5687	5650	5537	5573	5559	5596	5705
Iran	1597	1597	1597	1607	1642	1642	1727	1772	1805	1860	1860
Iraq	740	740	740	740	740	743	748	755	744	763	856
Kuwait	740	759	809	606	931	931	931	931	931	931	931
Saudi Arabia	1806	1806	1810	1890	2075	2100	2100	2100	2100	2100	2100
United Arab Emirates	440	674	711	645	620	620	620	625	673	673	673
Other Middle East	1168	1170	1248	1248	1248	1248	1283	1339	1345	1491	1491
Total Africa	2897	3164	3228	3177	3116	3224	3049	3037	3171	3022	3292
Australia	828	815	829	756	763	711	694	733	734	734	740
China	5407	5643	5933	6295	6603	7165	7865	8399	8722	9479	10,121
India	2219	2261	2303	2293	2558	2558	2872	2983	2992	3574	3703
Indonesia	1127	1127	1092	1057	1057	1057	1133	1157	1068	1106	1158
Japan	5010	4705	4721	4683	4567	4529	4542	4598	4650	4621	4463
Singapore	1255	1255	1255	1255	1255	1255	1255	1255	1385	1385	1385
South Korea	2598	2598	2598	2598	2598	2598	2633	2671	2712	2712	2712
Taiwan	732	874	1159	1159	1159	1159	1140	1197	1197	1197	1197
Thailand	899	1064	1068	1068	1068	1078	1125	1125	1175	1240	1253
Other Asia Pacific	1403	1512	1487	1416	1410	1428	1435	1443	1459	1605	1662
Total world	82,473	83,469	84,183	84,468	85,355	86,147	87,427	88,552	89,446	91,068	91,791


S. No.	Region	Oil (MT)	Natural Gas (MTOE)	Coal (MTOE)	Nuclear Energy (MTOE)	Hydroelectricity (MTOE)	Total (MTOE)
	Total North America	1025.5	736.6	531.3	212.7	158.3	2664.4
2	Total South and Central America	256	121.2	22.5	4.7	158.4	562.9
ю	Total Europe and Eurasia	913.9	952.8	456.4	265	182	2770
4	Total Middle East	336.3	311	9.2	I	2.4	629
ß	Total Africa	144.2	84.6	107.3	2.7	22	360.8
9	Total Asia Pacific	1206.2	446.9	2151.6	125.3	217.1	4147.2
	Total world	3882.1	2653.1	3278.3	610.5	740.3	11,164.3

(Year: 2009)	
ferent F	
⁷ Consumption by 1	- /
World Energy	

TABLE 1.4

© 2008 Taylor & Francis Group, LLC

14

Trends in GDP, primary energy consumption and CO_2 emission in India. 1 U.S. dollar = INR 54.020 (on September 2012). (Adapted from D. R. Balachandra and N. H. Ravindranath, *Journal of Policy*, 38, 6428–6438, 2010.)

GDP growth rate, the high dependency on crude oil import from other countries leads to unstabilised economic growth. The solution to this problem lies in the exploration of alternative fuels for sustainable transportation.

1.7 Transportation Sector: Current Scenario

The primary modes of transportation are land, air and water. The land mode plays a pivotal role in personal, mass and off-road transportation as already depicted in Figure 1.2. The personal transport over a short distance is normally done by two-, three- and four-wheelers.

- *Man—personal transportation:* Two-wheeler (motorbike, mopeds and scooters), three-wheeler (auto), four-wheeler (car, MUV), bus (six-wheeler)
- *Mass transportation:* Three- (LCV), four- (LCV and HCV), six- and more wheelers (HCV)
- *Off-road transportation:* Tractors and farm equipments such as tillers and grinders

777.9

7.5

288.3

1135.5

2379.7

1559.9

4868.6

186.6^e

89.9

404.6

81

Freight Transport (Billon Tonnes Kilometre)

346.4

22.3

_

187.5

5.5^d

124.8

175.9

51.6

0.9

122.6

216.3

2116.2

64

2464.0

85.0

TABLE	1.5					
Passen	ger and Freight Transport f	rom Differ	ent Counti	ries		
		Passeng	er Transpor	t (Billon Pa	assenger Ki	lometre)
S. No.	Mode of Transport	EU27	USA	Japan	China	Russia
1	Passenger car	4725	7201.8ª	769.1 ^b	1263.6 ^c	_

Source: Adapted from Eurostat, Japan Statistics Bureau, US Bureau of Transportation Statistics, Goskom STAT (Russia), National Bureau of Statistics of China, International Transport Forum. EU and transport in figures, Statistical pocket book 2010, European Union 2010.

546.7

409.2

89.0

40.9

561

1877.7

442.7

145.3

124.1

1498.0

243

37.1

21.1

0.6

977.8

1922.9

2656.6

472.3

814.2

333.0

^a United States: including light trucks/vans.

Bus + trolley bus + coach

Air (domestic/intra-EU-27)

Railway

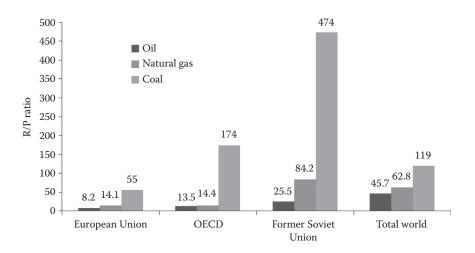
Road

Rail

Tram + metro

Waterborne

^b Japan: including light motor vehicles and taxis.


Sea (domestic/intra-EU-27)

^c China: including buses and coaches.

Inland waterways

Oil pipeline

- ^d Japan: included in railway passenger kilometre (pkm).
- e China: oil and gas pipelines.

FIGURE 1.10

Fossil fuel reserves to production (R/P) ratio. (Adapted from Repowering Transport—A Cross-Industry Report, World Economic Forum, Geneva, February 2011.)

© 2008 Taylor & Francis Group, LLC

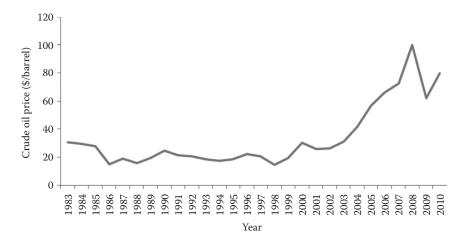
2

3

4

5

6


1

2

3

4

5

Crude oil price from the year 1983 to 2010. (Adapted from IEA World Energy Outlook, www. iea.org, 2009.)

The statistical data of vehicles in India and around the globe are given in Table 1.6. The engine power of a passenger car normally lies in the range of 15–300 kW.

1.7.1 Mass Transportation: Diesel Buses and Trucks

The medium distance is generally covered by public transportation such as buses. The mass transportation for goods and raw material is also undertaken by trucks, lorries and light commercial vehicles. Goods from industries to retailers are transported by trucks. The local distribution is undertaken by a three- or four-wheeled LCV.

1.7.2 High-Power Rail Transportation

The larger-distance transportation is usually done by using rail transportation. The advantages of rail transportation are lower travel cost and fast services due to a free traffic. However, it cannot provide services like road transport.

1.7.3 Aviation Sector: Gas Turbines

Air transportation is the second largest sector for passenger transportation in several developed countries. Gas turbines are used in airbuses. The growth in this sector has been significant due to an enhanced increase in economic growth. The fuels used for the airbus are aviation kerosene and jet fuels. NO_x and CO_2 are major pollutants in the aviation sector. In addition to this, noise pollution is another irritant to the public.

© 2008 Taylor & Francis Group, LLC

71,025,312

12,546,841

1,120,369

3,368,923

2,125,676

2,748,686

5022

298

1151

735

Number of

Vehicles in the

World

117,264,312

165,641,327

196,565,887

268,794,513

255,615,515

25,680,124

26,415

56,200

418,899

43,457

TABLE 1.6			
Statistical Data of Vehicles (2008)			
	Range of Engine Power		Number of Vehicles in
Mode of Transport	(in kW)	Type of Engine	India

SI, 2/4 stroke

SI, 4 stroke

SI, 4 stroke

CI, 4 stroke

SI/CI, 4 stroke,

SI/CI, 2/4 stroke

CI, 2/4 stroke

SI, 4 stroke

SI, 4 stroke

0.75 - 7

15-75

75-200

35-150

120-300

400-3000

45-1500

45 - 2700

3 - 150

TA

Road Transport Mopeds, scooters

cars

cars

and motorcycles Small passenger

Large passenger

Light commercial

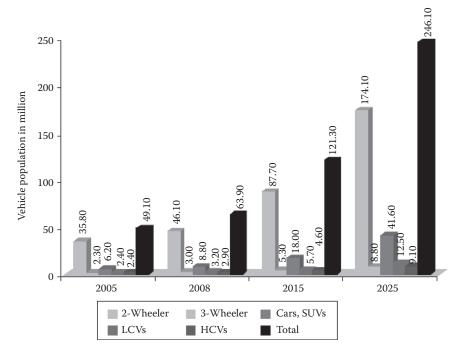
Heavy commercial

Agricultural

Rail Transport Railway

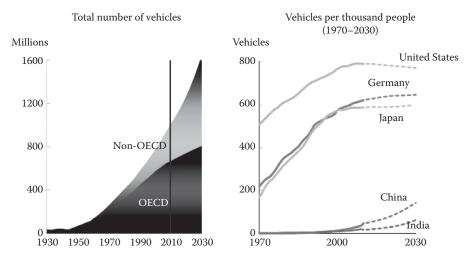
locomotives Air Transport Helicopters

Aeroplanes

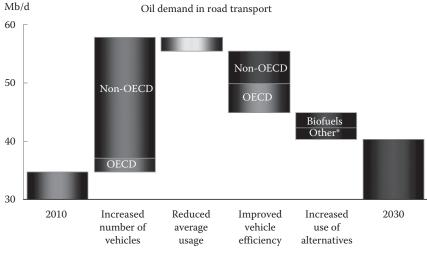

Marine Transport

Ships 3500-22,000 CI, 2/4 stroke Source: Adapted from www.data.worldbank.org.

1.7.4 Global Vehicle Fleet


The global vehicle fleet (commercial vehicles and passenger cars) will grow rapidly—by 60% from around 1 billion today to 1.6 billion by 2030 (Figure 1.13). Most of the growth will be in the developing world with some mature markets at saturation levels. More than three quarters of the total fleet growth will occur in the non-OECD countries, where the vehicle population will rise from 340 million to 840 million over the next 20 years—a 21/2-fold inscrease (Figure 1.12). From 2010 to 2030, the vehicle density per 1000 population will grow from approximately 50 to 140 in China (5.7% p.a.) and from 20 to 65 in India (6.7% p.a.) as shown in Figure 1.13. China is expected to follow a slower path to vehicle ownership than is seen historically in other countries. This reflects the impact of current and assumed future policies, designed to limit oil import dependency and congestion, including rising fuel taxation, widespread mass transportation options and relatively uneven income distribution [4].

Transport fuel in 2030 is expected to be dominated by oil (87%) and • biofuels (7%). Other fuels gain share, such as natural gas and electricity (4% and 1%, respectively, in 2030), are constrained by limited policy support combined with a general lack of infrastructure in all but a handful of markets.


Projections of vehicle fleet. (Adapted from Asian Development Bank (ADB), Energy efficiency and climate change considerations for on-road transport in Asia, Asian Development Bank, Philippines, 2006.)

- Despite the projected 60% increase in vehicles over the next 20 years, energy consumption in total transport is forecast to grow only 26% (1.2% p.a.—down from 1.9% p.a. between 1990 and 2010).
- The growth rate of energy (Figure 1.13) used for transport declines due to accelerating improvements in fuel economy and the impact of high oil prices on driving behaviour. Vehicle saturation in the OECD countries and a likely increase in taxation (or subsidy reduction) and the development of mass transportation in the non-OECD countries are other factors.
- Vehicle fuel economy improvements are driven by a tightening policy (CO₂ emission limits in Europe and corporate average fuel economy (CAFE) standards in the United States), which is enabled by improving technology. Prices also play a role, since high fuel costs provide an additional incentive to improve vehicle efficiency [4].
- Assuming no changes to vehicle usage, efficiency and the use of alternatives, oil demand in road transport would increase by a massive 23 Mb/d over the next 20 years, more than the total projected

Growth of global vehicle fleet. (Adapted from BP Energy Outlook 2030, London, January 2012.)

* Includes GTL, CTL, CNG, LNG and electricity.

FIGURE 1.14

Oil demand in road transport.

oil demand growth (16 Mb/d), mostly due to more vehicles in the non-OECD countries. Instead, we project oil demand growth for road transport to be 6 Mb/d. Vehicle fuel economy is forecast to improve by 1.1% p.a. in both the OECD and non-OECD countries as shown in Figure 1.14. These efficiency gains are equivalent to 11 Mb/d by

20

2030—saving approximately half of the incremental oil demand that would otherwise be required under the above 'no change' case.

- Average miles driven per vehicle is expected to fall (saving 2.4 Mb/d) as high fuel prices (partly due to rising taxes or reduced subsidies), congestion and mass transit outweigh the impact of rising incomes.
- Biofuels make up more than half of the incremental demand for alternative fuels in transport. The use of electric vehicles and compressed natural gas/liquefied natural gas (CNG/LNG) is growing, but there are still barriers delaying the scale-up. Alternative fuels, therefore, are not expected to have a material impact until 2030 [4].

1.8 Fossil Fuel Consumption in the Transport Sector

Transportation and fossil fuels are currently inextricably linked; more than 60% of the 84 million barrels of oil consumed every day powers the world's cars, trucks, planes and other modes of transportation [2,5] and more than 96% of current energy supply to the transport sector is from liquid fossil fuels. Many studies of energy usage in the transport sector show a significant growth in demand in the years ahead. The ramifications of this dependency are becoming more transparent every year. The increasing concentration of conventional oil production in fewer geographies and the increasing cost of new liquid fuels have combined to generate significant unease at the global and national levels regarding the security of supply (Figure 1.15a and b). Indeed, many countries rely on imported crude oil and refined oil products to fuel their transport sectors, and that dependence will only become more severe in the coming decade. U.S. crude oil imports are projected by the International Energy Agency (IEA) to account for 80% of the total consumed by 2020, up from 65% in 2008; China's reliance on imports will increase to 68% from 49% over this same time period.

Recent increases in the price of oil and persistent volatility in energy prices have exacerbated these concerns, and most forecasts point to even higher energy costs in the years to come (Figure 1.16).

The global transport sector consumes about 2200 million tonnes of oil equivalent (MTOE) of energy each year. Of this, more than 96% comes from oil, comprising over 60% of the world's total oil production (Figure 1.17). Road transport accounts for the majority of this energy consumption, with light-duty vehicles (LDVs) accounting for about 52% of the total, while buses and trucks combined represent a 21% share. While air and marine transport each account for roughly 10% of global transport energy consumption, aviation is by far the fastest-growing sector, with a forecast increase in revenue-tonne-kilometres of ~5.1% per year to 2030. The rail sector accounts for roughly 3% of total transport-related energy consumption.