

Surface Chemistry Essentials

This page intentionally left blank

Surface Chemistry Essentials

K. S. Birdi

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20130925

International Standard Book Number-13: 978-1-4398-7179-9 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

Preface				xi	
Chapter 1	Introduction to Surface Chemistry Essentials				
	1.1	What]	Is Surface Chemistry?	1	
	1.2	Essent	ial Surface Chemistry Concepts	3	
Chapter 2	Capil	llarity ar	nd Surface Forces in Liquids (Curved Surfaces)	17	
	2.1	Introdu	uction	17	
	2.2	Origin	of Surface Forces in Liquids	19	
	2.3	Capilla	ary Forces: Laplace Equation, and Liquid		
		Curvat	ture and Pressure (Mechanical Definition)	23	
	2.4	Capilla	ary Rise or Fall of Liquids (Capillary Forces)	29	
	2.5	Soap E	Bubbles: Formation and Stability	33	
	2.6	Measu	rement of Surface Tension of Liquids	37	
		2.6.1	Shape and Weight of Liquid Drops	37	
		2.6.2	The Ring Method (Detachment)	40	
		2.6.3	Plate (Wilhelmy) Method	41	
	2.7	Typica	1 Surface Tension Data of Liquids	42	
		2.7.1	Effect of Temperature and Pressure on the		
			Surface Tension of Liquids	46	
		2.7.2	Different Physical Aspects of Liquid Surfaces	47	
		2.7.3	Heat of Liquid Surface Formation and		
			Evaporation	48	
		2.7.4	Other Surface Properties of Liquids		
		2.7.5	Interfacial Tension of Liquid, –Liquid,	51	
· · · · · · · · · · · · · · · · · · ·					
Appendix 2	A: EII		emperature and Pressure on the Surface Tension of	~~	
	Lic	juids (Co	prresponding States Theory of Liquids)	33	
Chapter 3	Surfa	actant (Se	oaps and Detergents) Solutions: Essential Surface		
I	Properties				
	3.1	Introdu	uction	59	
	3.2	Surfac	e Tension Properties of Aqueous Solutions	63	
		3.2.1	Surface Active Substances (Amphiphiles)	65	
		3.2.2	Aqueous Solution of Surfactants	66	
		3.2.3	Solubility Characteristics of Surfactants in Water	67	
			3.2.3.1 Ionic Surfactants	67	

3.2.3.2

		3.2.4	Micelle	Formation of Surfactants in Aqueous	
			Media (0	Critical Micelle Concentration)	70
			3.2.4.1	Analyses of CMC of Surfactants	74
	3.3	Gibbs	Adsorptio	n Equation in Solutions	77
		3.3.1	Gibbs A	dsorption Theory at Liquid Interfaces	78
		3.3.2	Solubiliz	zation in Micellar Solutions of Organic-	
			Water-Ir	soluble Molecules	89
		3.3.3	Biologic	al Micelles (Bile Salt Micelles)	93
	3.4	Applic	ations of S	Surface Active Agents	93
	0	3.4.1	Washing	g and Laundry (Dry Cleaning)	94
Appendix 3	B: Sol	ubility o	of Organic	Molecules in Water (A Surface	
	Ter	ision–Ca	avity Mod	el Theory)	97
Chapter 4	Mone	omolecu	lar Lipid F	Films on Liquid Surfaces and Langmuir-	
	Blodg	gett Film	1s		101
	4.1	Introd	uction		101
		4.1.1	Apparat	us for Surface Film Studies	103
			4.1.1.1	Monomolecular Films	104
			4.1.1.2	Constant Area Monolaver Film Method	104
		4.1.2	Monolay	ver Structures on Water Surfaces	104
		4.1.3	Self-Ass	embly Monolaver Formation	. 105
		414	States of	Lipid Monolayers Spread on Water	100
			Surfaces		105
			4141	Self-Assembly Monolavers	106
			4142	Gaseous Monolaver Films	107
			4143	Liquid Expanded and Condensed Films	110
			4.1.4. <i>3</i>	Solid Films	110
			т. 1. т. т Л 1 Л 5	Collapse States of Monolaver	110
			4.1.4.3	Assemblies	111
		115	Diverse	Characteristics of Linid Films	112
	4.2	4.1.J Other	Changes	t Water Surfaces Due to Lipid	112
	4.2	Manal	Changes a	at water surfaces Due to Lipid	112
		4.2.1	Channed	Linid Manalanana an Linuid Confaces	115
	4.2	4.2.1 Effect	Charged	Lipid Monolayers on Liquid Surfaces	110
	4.3	Effect	of Lipid N	Ionolayers on Evaporation Rates of	120
		Liquid	S		120
	4.4	Monol	ayers of N	lacromolecules at the Water Surface	122
	4.5	Langn	uir-Blodg	ett (L-B) Films (Transfer of Lipid	
		Monol	ayers on S	olids)	123
		4.5.1	Electrica	al Behavior of L-B Films	125
		4.5.2	Optical	and Related Methods of Optical	
			Absorpt	ion	126
		4.5.3	L-B Dep	oosited Film Structures	127
		4.5.4	Molecul	ar Orientation in Mixed Dye Monolayers	
			on Polyr	ner Surfaces	127
		4.5.5	Applicat	ion of L-B Films in Industry	131
				-	

	4.6	Bilaye	r Lipid Membranes (BLMs)	131
	4.7	Divers	e Applications	132
		4.7.1	Vesicles and Liposomes	132
		4.7.2	Applications in Drug Delivery	134
		4.7.3	Diagnostics (Immobilized Enzymes on Solid	
			Surfaces) Techniques and Surface Chemistry	135
Chapter 5	Solid	l Surface	s: Adsorption and Desorption of Different	
	Subs	tances		137
	51	Introdu	iction	137
	5.2	Solid S	Surface Tension: Wetting Properties of Solid	107
	0.2	Surfac	es	139
		5.2.1	Definition of Solid Surface Tension $(\gamma_{1},)$	142
	53	Contac	t Angle of Liquids on Solid Surfaces	143
	5.5 5.4	Measu	rements of Contact Angles at Liquid–Solid	
	2.1	Interfa	ices	143
	55	Adsor	ption of Gases on Solid Surfaces	146
	0.0	5.5.1	Gas Adsorption on Solid Measurement Methods.	. 149
		01011	5.5.1.1 Volumetric Change Methods	. 149
			5.5.1.2 Gravimetric Gas Adsorption Methods	. 149
			5.5.1.3 Gas Adsorption on Solid Surfaces	
			(Langmuir Theory)	. 150
			5.5.1.4 Various Gas Adsorption Equations	. 151
	5.6	Adsor	ption of Substances from Solutions on Solid	
		Surfac	es	152
		5.6.1	Solid Surface Area Determination	154
		5.6.2	Interaction of a Solid with Liquids (Heats of	
			Adsorption)	157
	5.7	Solid S	Surface Roughness (Degree of Roughness)	158
	5.8	Surfac	e Tension of Solid Polymers	159
	5.9	Divers	e Applications	160
		5.9.1	Particle Flotation Technology of Solid Particles	
			to Liquid Surfaces	160
		5.9.2	Polishing of Solid Surfaces	161
		5.9.3	Finely Divided Solid Particles (Powder Surface	
			Technology)	161
		A 1		
Appendix :	SC: Ga	as Adsoi	ption on Solid Surfaces—Essential Principle	165
	T	ieory		165
Chanter 6	Watt	ing Ada	orntion and Cleaning Processes	167

Chapter 6	Wetting, Adsorption, and Cleaning Processes			
	6.1	Introduction	167	
	6.2	Oil Recovery Technology and Surface Forces	167	

	6.3	Applic	ations in Cleaning Processes	. 170			
		6.3.1	Detergency and Surface Chemistry Essential				
			Principles	. 170			
		6.3.2	Water Repellency of Materials	. 172			
	6.4	Evapor	ration Rates of Liquid Drops	. 173			
	6.5	Adhesi	ion between Two Solid Surfaces (Glues)	. 173			
Chapter 7	Colloidal Dispersion Systems: Physicochemical Essential						
	7.1	Introdu	iction	. 177			
	7.2	Colloi	1 Stability (DLVO Theory)	. 181			
		7.2.1	Charged Colloids (Electrical Charge Distribution				
			at Interfaces)	. 183			
		7.2.2	Colloidal Electrokinetic Processes	. 187			
		7.2.3	Stability Criteria of Lyophobic Suspensions:				
			Critical Flocculation Concentration and the				
			Schultze-Hardy Rule	. 189			
	7.3	Kineti	cs of the Coagulation of Colloids	. 192			
		7.3.1	Flocculation and Coagulation of Colloidal				
			Suspensions	. 193			
	7.4	Disper	sion of Solid Particles in Fluids	. 193			
	7.5	Applic	ations of Colloid Systems	. 194			
		7.5.1	Wastewater Treatment and Control (Zeta Potential)	194			
		7.5.2	Steric Stabilization of Solid or Liquid Colloids	. 196			
		7.5.3	Industrial Applications of Colloids	. 198			
Chapter 8	Gas	Bubbles:	Thin Liquid Films and Foams	. 199			
-	0.1	Tutus de		100			
	ð.1	Introdu		. 199			
	8.2	Soap E	Subbles and Foams	. 199			
		8.2.1	Application of Bubbles in Technology	.200			
		8.2.2	Foam Formation (Thin Liquid Films)	. 201			
		8.2.3	Criteria of Foam Stability	.204			
			8.2.3.1 Foam Formation of Beer and Surface				
			Viscosity	.207			
		8.2.4	Antifoaming Agents (Destabilizing Foam				
			Bubbles)	.208			
	8.3	Applic	ations of Foams and Bubbles	.208			
		8.3.1	Water Purification Technology	.208			
		8.3.2	Bubble Foam Purification of Water	.209			
Chapter 9	Emu	lsions, M	licroemulsions, and Lyotropic Liquid Crystals	. 211			
	01	Introdu	action	211			
	0.1	Forme	tion of Emulsions (Oil and Water)	211 212			
	2.4	ronna	tion of Linuisions (On and Water)	. 412			

		9.2.1 Types of Oil_Water Emulsions	213
		9.2.2 Oil-in-Water Emulsions	
		9.2.3 Water-in-Oil Emulsions	
		924 Hydrophilic_Lipophilic Balance Values of	
		Fmulsifiers	214
		0.2.5 Methods of Emulsion Formation	
		9.2.5 Methods of Elliusion Formation	
		9.2.0 Elliusion Stability and Analysis	
		9.2.0.1 Elliusion Drop Size Analysis	
		9.2.0.2 Electrical Ellusion Stability	
	0.2	9.2.7 Orientation of Molecules at OII–water Inte	riaces 220
	9.3		
		9.3.1 Some Typical Emulsion Recipes	
		9.3.1.1 Cleaning and Polishing Emulsion	is
		9.3.1.2 Microemulsion Detergents	
		9.3.2 Characteristics and Stability of Emulsions	
	9.4	Lyotropic Liquid Crystals	
		9.4.1 Liquid Crystal Phases	
		9.4.2 Lyotropic Liquid Crystals	
		9.4.3 Theory of Liquid Crystal Formation	
		9.4.4 Industrial Applications of Liquid Crystals.	
	9.5	Applications of Emulsions	
		9.5.1 Cosmetics and Personal Care Industry	
		9.5.1.1 Fundamentals of Skin Creams an	ıd
		Recipes	
		9.5.2 Paint Industry and Colloid Aspects	234
	9.6	Emulsion Stability and Structure	
		9.6.1 Diverse Emulsion Technology	
		9.6.1.1 Nanoemulsion Technology	
		9.6.1.2 Microemulsion Technology for O	bil
		Reservoirs	
Chapter 10	Essen	tial Surface and Colloid Chemistry in Science and	
chapter 10	Indus	trv	239
	maas		239
	10.1	Introduction	
	10.2	Food Emulsions (Milk Industry)	
		10.2.1 Milk: Composition and Emulsion Chemistr	ry242
		10.2.1.1 Milk-Fat Structure: Fat Globules	
		10.2.1.2 Milk Lipids: Functional Propertie	es244
		10.2.1.3 The Casein Micelle	
	10.3	Applications of Scanning Probe Microscopes to Su	rface
		and Colloid Chemistry	
		10.3.1 Domain Patterns in Monomolecular Film	
		Assemblies	
	10.4	Drug Delivery Design	
	10.5	Building and Cement Industry	

10.6	Frackir	ng Industry: Gas and Oil Recovery from Shale	
	Deposi	ts	255
10.7	Other I	ndustrial Applications	256
	10.7.1	Paper Industry (Surface and Colloid Aspects)	256
	10.7.2	Inks and Printers (Colloid Chemistry)	256
	10.7.3	Theory of Adhesives and Adhesion	256
	10.7.4	Oil Spills and Cleanup Processes on Oceans	258
	10.7.5	Photographic Industry (Emulsion Films)	260
	10.7.6	Fire Fighting and Diverse Applications of Foams .	260
	10.7.7	Coal Slurry Applications	260
References			263
Appendix: Comm	on Funda	amental Constants	267
Index			269

Preface

The subject related to surface chemistry is recognized as being an important area of a special branch of chemistry in everyday life. Due to the extensive literature devoted to this subject, it was realized that a book comprising only *essential* coverage would be useful. Thus, the aim of this book is to present and describe the essential details of surface chemistry. This need also arises from the fact that the area of applications in industry of this science is now extensive.

Most science students are taught physicochemical principles pertaining to gases, liquids, and solids. The matter around us is recognized to be made of these three states of matter. However, in university chemistry textbooks, only a chapter or two is devoted to the science of surface and colloid chemistry. At technical schools the case is the same; in general, it is the case worldwide. The science of surface and colloid chemistry is one of the most important in technology. The most common examples include:

Soap bubbles Foam (fire fighting) Raindrops Combustion engines Food products Air pollution (fog, smog, sandstorms) Wastewater treatment Washing and cleaning Corrosion Cosmetics Paint and printing; adhesion; friction Oil and gas production, and shale oil/gas recovery (fracking process) Oil spills Plastics and polymers Biology and pharmaceuticals Milk products (milk, cheese) Cement Adhesives Coal (coal slurry transport)

Science students are increasingly interested in the application studies to realworld systems. Colloid and surface chemistry offers many opportunities to apply this knowledge to understanding everyday and industrial examples.

The main purpose of this book is to guide chemistry and physics students with backgrounds in the area to the level where they are able to understand many natural phenomena and industrial processes, and are able to widen their application potential to new areas of research. The text is carefully arranged such that much involved mathematical treatment of this subject is mostly given as references. However, students should be able to do this and still maintain a good understanding of the fundamental principles involved.

Furthermore, this book contains useful data from real-world examples, which helps to explain and stimulate the reader to consider both fundamental theory and industrial applications. The latter is expanding rapidly and every decade brings new application areas in this science. Accordingly, pertinent references are provided for the more advanced students and scientists from other fields (such as biology, geology, the pharmaceutical industry, medical science, astronomy, and plastics).

Important sample questions and answers are included wherever appropriate in various sections, with detailed data and discussion. Although the text is primarily aimed at students, researchers will also find some topics of interest. A general high school background in chemistry or physics is all that is required to follow the main theme in this book.

During the past decades, it has become more obvious that students and scientists of chemistry and engineering should have some understanding of surface and colloid chemistry. The textbooks on physical chemistry do introduce this subject, but there is generally only a short chapter. Modern nanotechnology is another area where the role of surface chemistry is important. The medical diagnostic applications are another area, where both microscale and surface reactions are determined by different aspects of surface and colloid chemical principles. Drug delivery is mostly based on lipid vesicles (self-assembly structure), which are stabilized by various surface forces.

The book presents essentials and some basic considerations with respect to liquid and solid surfaces. After this introduction, the liquid–solid interface phenomenon is described. Following this, the colloid chemistry systems are discussed. The essential principles of emulsion science and technology aspects are presented. In the last chapter, more complex application examples are described. These are examples where different concepts of surface and colloid chemistry are involved in some mixed manner.

1 Introduction to Surface Chemistry Essentials

1.1 WHAT IS SURFACE CHEMISTRY?

Science is concerned with knowledge of the structures of matter (defined as solids, liquids, and gases) (Figure 1.1). Modern technology has shown that one needs a much more detailed picture of these structures in all kinds of processes (chemical industry and technology and natural biological phenomena). The modern application industry of science is clearly the most important area for mankind's demands (with regard to future challenges: drinking water, energy resources, food, clean air, transportation, housing, health and medicine, etc.).

Matter exists as:

- gas,
- liquid, and
- solid,

as has been recognized by classical science: Solid phase \rightarrow Liquid phase \rightarrow Gas phase

Experiments show that molecules that are situated at the *interfaces* (e.g., between gas–liquid, gas–solid, liquid–solid, liquid₁–liquid₂, solid₁–solid₂) are known to behave differently (Figure 1.2) than those in the bulk phase (Bakker, 1928; Adam, 1930; Bancroft, 1932; Partington, 1951; Harkins, 1952; Davies and Rideal, 1963; Defay et al., 1966; Gaines, 1966; Matijevic, 1969; Aveyard and Hayden, 1973; Fendler and Fendler, 1975; Chattoraj and Birdi, 1984; Birdi, 1989, 1997, 2002CD, 1999, 2002, 2009, 2010a, 2010b; Adamson and Gast, 1997; Rosen, 2004; Schramm, 2005; Somasundaran, 2006; Kolasinski, 2008; Miller and Neogi, 2008; Somarajai and Li, 2010; Barnes, 2011). Typical examples are:

Liquid surfaces

Surfaces of oceans, lakes, and rivers Lung surface, biological cells surfaces

Solid surfaces Road surfaces (car tire) Adhesion, glues, tapes

FIGURE 1.1 The molecular structure of a gas, liquid, and solid.

```
Cement industry
Paper industry
Construction industry (tunnels, etc.)
Liquid–solid interfaces
Washing and cleaning (dry cleaning)
Wastewater treatment
Air pollution
Power plants
```


FIGURE 1.2 Bulk phase (liquid or solid) and surface phase (molecular dimension).

- Liquid–liquid interfaces (oil–water systems) Emulsions (cosmetics, pharmaceutical products) Diverse industries
- Oil and gas, and shale oil recovery (fracking technology), paper and printing, milk products

1.2 ESSENTIAL SURFACE CHEMISTRY CONCEPTS

The science of surface chemistry covers a very large area, and therefore some essential concepts are delineated here. More details will be covered in the rest of the book, and real practical examples will be analyzed. The classical physical chemistry will be applied throughout the book, along with suitable literature references. However, some essential principles will be delineated in appendices in each chapter.

As a typical example, reactions taking place at the surface of oceans (such as solubility of oxygen, CO_2 , etc.) will be expected to be different than those observed inside the seawater. Further, in some instances, such as oil spills, one can easily realize the importance of the role of surface of oceans (Figure 1.3). It has been found that part of oil evaporates, while some sinks to the bottom, and the main part remains floating on the surface of water. This process is one of the major areas of surface chemistry applications. It is also obvious that the surface of oceans plays an important role in everyday life.

It is also well known that the molecules situated near or at the interface (i.e., liquid-gas) will interact differently with respect to each other than the molecules in the bulk phase (Figure 1.4). The essential aspects of this important subject will be described extensively in this book. The intramolecular forces acting would thus be different in these two cases. In other words, all processes occurring near any interface will be dependent on these molecular orientations and interactions. Furthermore, it has been pointed out that, for a dense fluid, the repulsive forces

FIGURE 1.3 Ocean surface and oil spill (evaporation, solution, sinking, floating states).

FIGURE 1.4 Surface molecules.

dominate the fluid structure and are of primary importance. The main effect of the repulsive forces is to provide a uniform background potential in which the molecules move as hard spheres. The molecules at the interface would be under an *asymmetrical* force field, which gives rise to the so-called surface tension or interfacial tension (Figure 1.4) (Chattoraj and Birdi, 1984; Birdi, 1989, 1997, 1999, 2002; Adamson and Gast, 1997).

At a molecular level, when one moves from one phase to another, that is across an interface, this leads to adhesion forces between liquids and solids, which is a major application area of surface and colloid science (Figure 1.5).

The resultant force on molecules will vary with time because of the movement of the molecules; the molecules at the surface will be pointed downward into the bulk phase. The nearer the molecule is to the surface, the greater the magnitude of the force due to *asymmetry*. The region of asymmetry plays a very important role. Thus, when the surface area of a liquid is increased, some molecules must move from the interior of the continuous phase to the interface. Surface tension of a liquid is the force acting normal to the surface per unit length of the interface, thus tending to decrease the surface area. The molecules in the liquid phase are surrounded by neighboring molecules and these interact with one another in a symmetrical way.

FIGURE 1.5 Intermolecular forces around a molecule in the bulk liquid (dark) and around a molecule on the surface (light) layer.

The state of solid–liquid–gas phases may be described in a simpler way as follows. These phases may be compared with a football field with people as atoms (or molecules):

- There are people sitting in their seats (solid phase).
- There are people moving in and out of their seats (liquid phase).
- There are players running around in the field (gas phase).

Note that the distance between players on the field is much larger and variable (even including collisions, exactly what also happens in the gas molecules) than those sitting in their seats, which is analogous to molecules in a gas.

In the gas phase, where the density is 1000 times lesser than in the liquid phase, the interactions between molecules are very weak as compared to in the dense liquid phase. Thus when one crosses the line from the liquid phase to the gas phase, there is a change in density of factor 1000. This means that while in liquid phase a molecule occupies a volume that is 1000 times smaller than when in the gas phase. The interfacial region is found to be of molecular dimension. Some experiments show it to be of one or few molecules thick.

Surface tension is the differential change of free energy with change of surface area. An increase in surface area requires that molecules from the bulk phase are brought to the surface phase. The same is valid when there are two fluids or a solidliquid; it is usually designated interfacial tension. A molecule of a liquid attracts the molecules that surround it and in turn it is attracted by them (Figure 1.5). For the molecules that are inside a liquid, the resultant of all these forces is neutral and all of them are in equilibrium by reacting with each other. When these molecules are on the surface, they are attracted by the molecules below and by the lateral ones, but not toward the outside. The result is a force directed inside the liquid. In turn, the cohesion among the molecules supplies a force tangential to the surface. So, a fluid surface behaves like an elastic membrane that wraps and compresses the liquid below the surface molecules. The surface tension expresses the force with which the surface molecules attract each other. It is common observation that due to the surface tension it takes some effort for some bugs to climb out of the water in lakes. On the contrary, other insects, such as marsh treaders and water striders, exploit the surface tension to skate on the water without sinking (Figure 1.6).

Insects that move about on the surfaces of lakes are actually also collecting food from the surface of the water. Another well-known example is the floating of a metal needle (or any object heavier than water) on the surface of water (Figure 1.6). The surface of a liquid under tension maintains a sort of skin-like structure. In other words, energy is required to carry any object from the air through the surface of a liquid. The surface of a liquid can thus be regarded as the plane of potential energy. It may be assumed that the surface of a liquid behaves as a membrane (at a molecular scale) that stretches across and needs to be broken in order to penetrate. One

FIGURE 1.6 An insect (many different kinds of insects, including mosquitoes) strides on the surface of water.

observes this tension when considering that a heavy iron needle (heavier than water) can be made to float on a water surface when carefully placed (Figure 1.7).

The reason a heavy object can float on water is due to the fact that in order for it to sink it must overcome the surface forces. Of course, if one merely drops the metal object it will overcome the surface tension force and sink. This clearly shows that at any liquid surface a tension exists (surface tension) that needs to be broken when any contact is made between the liquid surface and the material (here, the metal needle). There are ample examples on the surfaces of rivers and lakes, where stuff is seen floating about. Based on the same principles, it has been found that the smooth hull of a ship exerts less resistance to sail than a rough bottom, thus saving energy.

FIGURE 1.7 An iron needle (or any similar metal object) floats on the surface of water (only if carefully placed, otherwise it should sink due to gravity forces). The best procedure is to place the metal object on a piece of paper, and then place the paper on the surface of the water. As the paper sinks, the metal object remains floating.

Definition of liquid interfaces:

- 1. Liquid and vapor or gas (for example, ocean surface and air)
- 2. Liquid₁ and liquid₂ immiscible (water-oil, emulsion)
- 3. Liquid and solid interface (water drop resting on a solid, wetting, cleaning of surfaces, adhesion)

Definition of solid surfaces or interfaces:

1. Solid₁-solid₂ (cement, adhesives)

An analogous case would be when the solid is crushed and the surface area increases per unit gram (Figure 1.8). For example, finely divided talcum powder has a surface area of 10 m² per gram. Active charcoal exhibits surface areas corresponding to over 1000 m² per gram. This is an appreciable quantity and its consequence will be shown later. Qualitatively, it should be noted that work has to be put into the system when the surface area increases (both for liquids or solids or any other interface). Cement is mainly based on the energy used to make the particles as small as possible, such that the cost is dependent on this process.

The surface chemistry of small particles is an important part of everyday life (such as, dust, talcum powder, sand, raindrops, and emissions). Let us define what is meant by *colloid chemistry* and its relation to surface chemistry. This was already defined a century ago by Thomas Graham. A particle having dimensions in the range of 10^{-9} m (10 A) to 10^{-6} m (1 µm) was considered to be colloidal. The nature and relevance of colloids is one of the main current research topics (Birdi, 2002, 2010a). Colloids are an important class of materials, intermediate between bulk and molecularly dispersed systems. The colloid particles may be spherical, but in some cases one dimension can be much larger than the other two (as in a needlelike shape). The size of particles also determines whether they can be seen by the naked eye. Colloids are not visible to the naked eye or under an ordinary optical microscope.

than a micrometer

FIGURE 1.8 Formation of fine (colloidal) particles (such as talcum powder, active charcoal, or cement). (The size is less than a micrometer.)

FIGURE 1.9 Soap bubble of thickness (micrometer or less).

The scattering of light can be suitably used to see such colloidal particles (such as dust particles). The size of colloidal particles then may range from 10^{-4} to 10^{-7} cm. The units used are as follows:

$$1 \ \mu m = 10^{-6} \ m$$

$$1 \ nm = 10^{-9} \ m$$

$$1 \ \text{Å} \ (\text{Angstrom}) = 10^{-8} \ \text{cm} = 0.1 \ \text{nm} = 10^{-10} \ \text{m}$$

Nanodimension can be imagined by considering the following simple examples: Hair: 1/1000th diameter is about nanosize. The thickness of soap bubbles varies from micro- to nanometer colored rings (in Figure 1.9). Actually, a soap bubble is the closest thing that can be seen by the naked eye that is of molecular dimension.

In surface chemistry there is a great need for suitable range of dimensions as needed for a variety of systems. As seen here, the range of dimensions is manyfold. Accordingly, a unit Angstrom ($\mathring{A} = 10^{-8}$ cm) was used for systems of molecular dimension (famous Swedish scientist). However, the most common unit is the nanometer (10^{-9} m), which is mainly used for molecular scale features. In recent years, nanosize (nanometer range) particles are of much interest in different applied science systems (*nano* from Greek and means "dwarf"). Nanotechnology is actually strongly getting a boost from the last decade of innovation, as reported in the surface and colloid literature (Rao, 2011). In fact, light scattering is generally used to study the size and size distribution of such systems. Since colloidal systems consist of two or more phases and components, the interfacial area to volume ratio becomes very significant. Colloidal particles have a high surface area to volume ratio compared with bulk materials. A significant proportion of the colloidal molecules lie within, or close to, the interfacial region. Hence, the interfacial region has significant control over the

FIGURE 1.10 Brownian motion. Dust particles in the air are sometimes observed moving in jumps. This is due to molecular collisions between the gas molecules and the dust particles.

properties of colloids. To understand why colloidal dispersions can either be stable or unstable we need to consider the following:

- 1. The effect of the large surface area to volume ratio (for example, 1000 m² surface area per gram of solid [active charcoal])
- 2. The forces operating between the colloidal particles
- 3. Surface charges are very important characteristics of such systems.

There are some very special characteristics that must be considered about colloidal particle behavior: size and shape, surface area, and surface charge density. The *Brownian motion* of the particles is a much-studied field (Figure 1.10). The *fractal* nature of surface roughness has recently been shown to be of importance (Birdi, 1993). Recent applications have been reported where *nanocolloids* have been employed. It is thus found that some terms are needed to be defined at this stage. The definitions generally employed are as follows. *Surface* is a term used when one considers the dividing phase between:

- Gas-liquid
- Gas-solid

Interface (Figure 1.11) is the term used when one considers the dividing phase:

- Solid–liquid (colloids)
- Liquid₁-liquid₂ (oil-water, emulsion)
- Solid₁-solid₂ (adhesion, glue, cement)

It is obvious that surface tension may arise due to a degree of unsaturation of the bonds that occurs when a molecule resides at the surface and not in bulk. The term *surface tension* is used for solid–vapor or liquid–vapor interfaces. The term *interfacial tension* is more generally used for the interface between two liquids (oil–water), two solids, or a liquid and solid. It is, of course, obvious that in a one-component

FIGURE 1.11 Different interfaces: (a) solid–gas (air), (b) liquid–gas (air), (c) solid–liquid, (d) solid 1–solid 2. (*Continued*)

system the fluid is uniform from the bulk phase to the surface. However, the *orientation* of the surface molecules will be different from those molecules in the bulk phase in all systems. For instance, in the case of water, the orientation of molecules inside the bulk phase will be different from those at the interface. The hydrogen bonding will orient the oxygen atom toward the interface. The question one may ask, then, is how sharply does the density change from that of being fluid to that of gas

FIGURE 1.11 (*Continued*) Different interfaces: (a) solid–gas (air), (b) liquid–gas (air), (c) solid–liquid, (d) solid 1–solid 2.

(a change by a factor of 1000). Is this transition region a monolayer deep or many layers deep? Many studies have been reported where this subject has been investigated. *Gibbs adsorption theory* (Defay et al., 1966; Chattoraj and Birdi, 1984; Birdi, 1989, 1999, 2002, 2009, 2010a) considers the surface of liquids to be monolayer. The surface tension of water decreases appreciably with the addition of very small quantities of *soaps and detergents*. Gibbs adsorption theory relates the change in

surface tension to the change in soap concentration. The experiments that analyze the spread monolayers are also based on one molecular layer. The latter data conclusively indeed verifies the Gibbs assumption (as described later). Detergents and other (soaps, etc.) similar kinds of molecules are found to exhibit self-assembly characteristics. The subject related to self-assembly monolayer (SAM) structures will be treated extensively (Birdi, 1999). However, no procedure that can provide information by a direct measurement exists. This subject will be described later herein. The composition of the surface of a solution with two components or more would require additional comments.

Colloids (the Greek word for "glue-like") are a wide variety of systems consisting of finely divided particles or macromolecules (such as, glue, gelatin, proteins) which are found in everyday life. Typical colloidal suspensions that are found in everyday life are provided in Table 1.1. Further, colloidal systems are widespread in their occurrence and have biological and technological significance. There are three types of colloidal systems (Adamson and Gast, 1997; Lyklema, 2000; Birdi, 2002, 2009; Dukhin and Goetz, 2002):

- 1. In simple colloids, clear distinction can be made between the disperse phase and the disperse medium, for example, simple emulsions of oil-in-water (O/W) or water-in-oil (W/O).
- 2. Multiple colloids involve the coexistence of three phases of which two are finely divided, for example, multiple emulsions (mayonnaise, milk) of water-in-oil-in-water (W/O/W) or oil-in-water-in-oil (O/W/O).
- 3. Network colloids have two phases forming an interpenetrating network, for example, polymer matrix.

The colloidal (in the form as solids or liquid drops) stability is determined by the free energy (surface free energy or the interfacial free energy) of the system. The

idal Systems	
Continuous	System Name
Gas	Aerosol fog, spray
Liquid	Foam, thin films, froth, fire extinguisher foam
Liquid	Emulsion (milk), mayonnaise, butter
Liquid	Sols, AgI, photography films, suspension wastewater, cement, oil recovery (shale oil), coal slurry
Serum	Biocolloids (blood, blood coagulants)
Collagen	Bone, teeth
Solid	Solid emulsion (toothpaste)
Gas	Solid aerosol (dust)
Solid	Solid foam (polystyrene), insulating foam
Solid	Solid suspension/solids in plastics
	idal Systems Continuous Gas Liquid Liquid Liquid Serum Collagen Solid Gas Solid Solid

TABLE 1.1

main parameter of interest is the large surface area exposed between the dispersed phase and the continuous phase. Since the colloid particles move about constantly, their dispersion energy is determined by the Brownian motion. The energy imparted by collisions with the surrounding molecules at temperature T = 300 K is 3/2 k_BT = 3/2 1.38 10^{-23} 300 = 0.6 10^{-20} J (where k_B is the Boltzmann constant). This energy and the intermolecular forces would thus determine the colloidal stability.

In the case of colloid systems (particles or droplets), the kinetic energy transferred on collision will be thus $k_B T = 10^{-20}$ J. However, at a given moment there is a high probability that a particle may have a larger or smaller energy. Further, the probability of total energy several times $k_B T$ (over 10 times $k_B T$) becomes very small. The instability will be observed if the ratio of the barrier height to $k_B T$ is around 1 to 2 units.

The idea that two species $(\text{solid}_1-\text{solid}_2)$ should interact with one another, so that their mutual potential energy can be represented by some function of the distance between them, has been described in the literature. Furthermore, colloidal particles frequently adsorb (and even absorb) ions from their dispersing medium (such as in groundwater treatment and purification). Sorption that is much stronger than what would be expected from dispersion forces is called *chemisorption*, a process that is of both chemical and physical interest. For example, in a recent report it was mentioned that finely divided iron particles could lead to enhanced photosynthesis in oceans (resulting in the binding of large amounts of CO₂ from air). This could lead to control of the global warming effect. In fact, specific processes are being investigated that will lead to effective carbon capture (i.e., CO₂ capture) from such industries as coal (Krungleviclute et al., 2012).

As one knows from experience, oil and water do not mix (Figure 1.12), which suggests that these systems are dependent on the oil–water interface. The liquid₁–liquid₂ (oil–water) interface is found in many systems, most important is the world of *emulsions*.

The trick in using emulsions is based on the fact that one can apply both water and oil (the latter is insoluble in water) simultaneously. Further, one can then include other molecules that may be soluble in either phase (water or oil). This obviously leads to the common observation where we find thousands of applications of emulsions. It is very important to mention here that nature actually uses this trick in most of the major biological fluids. The most striking example is milk. The emulsion chemistry of milk is one of the most complex, and has still not been well investigated. Paint consists of polymer molecules dispersed in the water phase. After application, water evaporates leaving behind a glossy layer of paint.

In fact, the state of mixing oil and water is an important example of interfacial behavior at liquid₁–liquid₂. Emulsions of oil–water systems are useful in many aspects of daily life: milk, foods, paint, oil recovery, pharmaceutical, and cosmetics.

When olive oil is mixed with water, upon shaking, one will get the following:

- About 1 mm diameter oil drops are formed.
- After a few minutes the oil drops merge together and two layers (oil and water) are again formed.

FIGURE 1.12 (a) Oil-water phases, (b) emulsion (oil drops mixed with water).

However, if suitable substances are added, which changes the surface forces, the olive oil drops that are formed can be very small (micrometer range). The latter leads to a stable emulsion.

The emulsion stability is basically stable depending on the size of the oil drops, in addition to other factors, dispersed in the water phase.

Low stability = large oil drops Long stability = small drops Very long stability = microsize drops In addition, these considerations are important with regard to the different systems as follows: paints, cements, adhesives, photographic products, water purification, sewage disposal, emulsions, chromatography, oil recovery, paper and print industry, microelectronics, soap and detergents, catalysts, and biology (cell, virus). In some oil–surfactant–water–diverse components, liquid crystal (LC) phases (lyotropic LC) are observed. These lyotropic LC are indeed the basic building blocks in many applications of emulsions in technology. LC structures can be compared with a layer cake where each layer is molecular thick. It is thus seen that surface science pertains to investigations that take place at two different phases. This page intentionally left blank