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“I cannot agree more with the driving vision of the authors. ... Very few structural
engineers think about the relationship of the model to the structure. As I have complained
often in question form ‘Is the exact analysis of an approximate model good enough to
serve as an approximate analysis of the exact model?’ I sense that Dym and Williams
are on the same page.”
—Mete A. Sozen, Kettelhut Distinguished Professor of Structural Engineering, Purdue University

“The authors, in their book Analytical Estimates of Structural Behavior, have done an
excellent job of demonstrating the value of the classical approach in a modern
digital world.”
—Bungale S. Taranath, Corporate Consultant, DeSimone Consulting Engineers

With the increasing reliance on computer-based approaches in structural analysis, it
is becoming even more important for structural engineers to recognize that they are
dealing with models of structures, not with the actual structures. Analytical Estimates
of Structural Behavior presents an integrated approach to modeling and estimating the
behavior of structures.

This book encourages readers to think about structures and their models in a way that
is rooted in classic elementary elasticity—depending less on advanced mathematical
techniques and more on the dimensions and magnitudes of the underlying physics. The
authors stretch the mold, emphasizing and more explicitly describing the modeling
process. The focus is on learning which calculations to perform and how to validate
and interpret the results—skills that will be increasingly useful for professional engineers.

Taking a unique approach, Analytical Estimates of Structural Behavior is suitable for
advanced undergraduates, as well as graduate students and practitioners, who want to
spend less time and effort generating numbers, and more time understanding what
those numbers mean.
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Preface

We intend this book to explicitly return the notion of modeling to the anal-
ysis of structures by presenting an integrated approach to modeling and 
estimating structural behavior. The advent of computer-based approaches 
to structural analysis and design over the last 50 years has only accentuated 
the need for structural engineers to recognize that we are dealing with mod-
els of structures, rather than with the actual structures. Further, as tempt-
ing as it is to run innumerable computer simulations, closed-form estimates 
can be effectively used to guide and to check numerical results, as well as 
to confirm in clear terms physical insights and intuitions. What is truly 
remarkable is that the way of thinking about structures and their models 
that we propose is rooted in classic elementary elasticity: It depends less 
on advanced mathematical techniques and far more on thinking about the 
dimensions and magnitudes of the underlying physics.

A second reason for this book is our concern with traditional classroom 
approaches to structural analysis. Most introductory textbooks on struc-
tural analysis convey the subject as a collection of seemingly unrelated 
tools available to handle a set of relatively specific problem types. A major 
divide on the problem-type axis is the distinction drawn between struc-
tures that are statically determinate and those that are not. While this also 
logically conforms to a presentation in an order that reflects the respec-
tive degree of difficulty of application, it is often not seen by students as a 
coherent view of the discipline. Perhaps reflecting a long-standing split in 
professional affiliations, the classical approaches to structural analysis are 
often presented as a field entirely distinct from its logical underpinnings in 
mechanics, especially applied mechanics.

Finally, as noted before, the advent of the computer and its ubiquitous 
use in the classroom and in the design office has led structural engineer-
ing faculty to include elementary computer programs within a shrinking 
structural curriculum. Thus, students seem to spend more time and effort 
generating numbers, with less time and effort spent on understanding what 
meaning—if any—to attach to the numbers that are generated with these 
programs. This tendency has only strengthened as computers have become 
still more powerful. Still more unfortunate is that this approach empha-
sizes another growing dissonance in the education of engineering students: 
Problems in structural behavior and response continue to be formulated 
largely in mathematical terms, while solutions are increasingly sought with 
computer programs.

We have based this book on the premise that it is now even more impor-
tant to understand basic structural modeling, with strong emphasis on 
understanding behavior and interpreting results in terms of the limitations 
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xii Preface

of the models being applied. In fact, we would argue that the generation of 
numerical analyses for particular cases is, in the “real world,” increasingly 
a task performed by technicians or entry-level engineers, rather than by 
seasoned professional engineers. As numerical analysis becomes both more 
common and significantly easier, those structural analysts and designers 
who know which calculations to perform, how to validate and interpret those 
calculations, and what the subsequent results mean will be the most highly 
regarded engineers. The knowledge needed to do these tasks can often be 
encapsulated and illustrated with the ability to obtain and properly use 
analytical, closed-form estimates—or, in other words, the ability to obtain 
and properly use “back of the envelope” models and formulas.

We note that it is more than the outline of topics that sets apart this book 
from others. That outline, to be described immediately, is not what we would 
expect to find in a first course in structural analysis. In fact, much of what we 
have included in Chapters 3–7 derives from articles we have published in the 
various research journals (see the references and bibliographies at the end 
of each chapter). The common theme of these articles and of Chapters 3–7 is 
the development of effective analytical estimates of the responses of certain 
structural models. So, we hope to stretch the mold of traditional approaches 
to structural analysis—and especially how our colleagues teach structural 
analysis—to emphasize and more explicitly describe the modeling process, 
and thus present a more conscious view of estimating and assessing struc-
tural response.

We finally note that while this book is not intended as a text for a first 
course in structural analysis, we certainly think it is accessible to advanced 
undergraduates as well as to graduate students and practitioners. It does 
not require deep knowledge of advanced structural mechanics models or 
techniques:

•	 We use the principle of minimum total potential energy to derive 
governing equations and boundary conditions, but those equations 
can be derived in other ways or even simply accepted.

•	 We introduce extensions of the Castigliano theorems and Rayleigh 
quotients for discrete systems, laying a foundation for applying 
them to continuous systems.

The mathematical skills that will be exercised are more about applying tech-
niques of dimensional analysis, reasoning about physical dimensions, and 
reasoning about the relative sizes of mathematical terms and using appro-
priate expansions to determine limits and limiting behavior.

K13250.indb   12 05/01/12   12:16 PM



xiiiPreface

Organization

This book is organized as follows. In Chapter 1 we outline some important 
principles and techniques of mathematical modeling, including dimensional 
analysis, scaling, linearity, and balance and conservation laws. In Chapter 2 
we review basic structural models, including structural supports and mate-
rials, as well as some general considerations of load paths, redundancy, 
determinacy, and stability. We also review there the concept of idealization, 
and we complete the chapter by bringing discretization under the modeling 
umbrella as well.

In Chapter 3 we use subsets of two-dimensional elasticity theory to recon-
sider two classic structural mechanics problems so as to explore how we 
develop and express physical intuition. First, we rederive the traditional 
fourth-order Euler–Bernoulli beam equation and boundary conditions and 
then use these results to estimate ranges of validity for beam models. Intuition 
issues emerge as we interpret both boundary conditions, the beam’s physi-
cal parameters, and the nature of the loading—in particular, the transition 
from sets of concentrated loads to a uniform load. We illustrate how planar 
truss configurations behave as beams and use two-dimensional elasticity to 
derive another classical problem, the static response of pressure-loaded cyl-
inders, and show how our physical intuitions can lead us astray.

In Chapter 4 we demonstrate how the behavior of arches under lateral load 
can be tracked as it varies from beam behavior at small values of an arch 
parameter (i.e., arches with very small rises) to purely compressive arch behav-
ior when the arch parameter is large (i.e., for large arch rises). It is also shown 
that the behavior “flips” when the load applied is axial, rather than lateral.

In Chapter 5 we introduce two methods of analyzing coupled discrete sys-
tems, in part to lay a foundation for their application to continuous systems 
in our two final chapters, and in part just to ensure a common background 
for readers who may not be familiar with either or both of the techniques 
described. First, we describe recently developed extensions of Castigliano’s 
theorems, and then we introduce Rayleigh’s quotient for estimating the fun-
damental frequencies of coupled spring-mass oscillators. Then, in Chapter 6 
we apply the extension of Castigliano’s second theorem to derive simple, yet 
quite accurate estimates of the transverse displacements of structures mod-
eled in terms of coupled Timoshenko beams (e.g., tall buildings). Finally, in 
a similar vein, in Chapter 7 we use Rayleigh quotients to analyze the dimen-
sional behavior of and calculate numerical values of fundamental frequen-
cies of structures modeled in terms of Euler–Bernoulli, Timoshenko, and 
coupled-beam systems (e.g., again, potential models of tall buildings).
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1

1
Mathematical Modeling for 
Structural Analysis

Summary

The dictionary defines a model as “a miniature representation of something; 
a pattern of something to be made; an example for imitation or emulation; 
a description or analogy used to help visualize something (e.g., an atom) 
that cannot be directly observed; a system of postulates, data and inferences 
presented as a mathematical description of an entity or state of affairs.” This 
definition suggests that modeling is an activity, a cognitive activity in which 
one thinks about and makes models to describe how devices or objects of 
interest behave. Thus, it is important to remember that when we describe 
or formulate a problem in words, draw a sketch (e.g., a free-body diagram), 
write down or derive a formula, and crank through to get some numbers, we 
are modeling something. In each of these activities we are formulating and 
representing a model of the problem in a modeling language. And as we go 
from words to pictures to formulas to numbers, we must be sure that we are 
translating our problem correctly and consistently. We have to maintain our 
assumptions, and at the right level of detail.

Since there are many ways in which devices and behaviors can be 
described—words, drawings or sketches, physical models, computer pro-
grams, or mathematical formulas—it is worth refining the foregoing dic-
tionary definition to define a mathematical model as a “representation in 
mathematical terms” of the behavior of real devices and objects. Our pri-
mary modeling language is mathematics, so we must be able to translate 
fluently into and from mathematics.

Scientists use mathematical models to describe observed behavior or results, 
explain why that behavior and those results occurred as they did, and predict 
future behaviors or results that are as yet unseen or unmeasured. Engineers 
use mathematical models to describe and analyze objects and devices 
in order to predict their behavior because they are interested in designing 
devices and processes and systems. Design is a consequential activity for 
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2 Analytical Estimates of Structural Behavior

engineers because every new airplane or building, for example, represents a 
model-based prediction that the plane will fly and the building stand with-
out dire, unanticipated consequences. Further, as practicing engineers, we 
must always remember that we are dealing with models of a problem—
models of reality. Thus, if our results do not match experimental data or intu-
itive expectations, we may well have a model that is simply wrong. So it 
is especially important in engineering to ask: How are such mathematical 
models or representations created? How are they validated? How are they 
used? Is their use limited and, if so, how?

To answer these and related questions, this chapter first sets out some 
basic principles of mathematical modeling and then goes on to describe 
briefly:

•	 abstraction and scaling
•	 dimensional consistency and dimensional analysis
•	 conservation and balance laws
•	 the assumption of linear behavior

Principles of Mathematical Modeling

Mathematical modeling is a principled activity that has principles behind it 
as well as methods that can be successfully applied. The principles are over-
arching or metaprinciples that are almost philosophical in nature, and they 
can be phrased as questions (and answers) about modeling tasks we need 
to perform and their purposes. That is, builders of mathematical (and other 
types of) models must identify

 a. The need for the model: Why is this being done?
 b. The data sought: What information is being sought?
 c. The available relevant data: What is known (i.e., What is given?)
 d. The circumstances that apply: What can be assumed?

 e. The governing physical principles: How should this model be viewed?
 f. The equations that will be used, the calculations that will be made, 

and the answers that will result: What will the model predict?

 g. The tests to be made to validate the model and ensure its consistency 
with its principles and assumptions: Are the predictions valid?

 h. The tests to be made to verify the model and ensure its usefulness 
in terms of the initial reason it was done: Can the predictions be 
verified?
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3Mathematical Modeling for Structural Analysis

 i. Parameter values that are not adequately known, variables that 
should have been included, and/or assumptions that could be 
removed (i.e., can an iterative “model-validate-verify-improve-
predict” loop be implemented? Can the model be improved?)

 j. What will be done with the model: How will the model be used?

These identified tasks and questions can also be visually portrayed (see 
Figure 1.1).

Object or System
(To be modeled)

Why is this being done?
What information is being sought?

Model
Variables and Parameters

Can the model be improved?

What is given?
What can be assumed?
How should this model be viewed?
What will this model predict?

Model Predictions Test

Valid, Accepted Predictions

Are the predictions valid?
Can the predictions be verified?

Figure 1.1
A graphical overview of mathematical modeling shows how the questions asked during a prin-
cipled approach to model building relate to the development of that model. (Dym, C. L. 2004. 
Principles of Mathematical Modeling, 2nd ed. By permission of Elsevier Academic Press.)
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4 Analytical Estimates of Structural Behavior

It is worth noting that the last principle (used?) is often considered early in 
the modeling process, along with why? and find?, because the way a model 
is to be used is often intimately connected with the reason it is created. Note 
too that this list of questions and instructions is not an algorithm for build-
ing a good mathematical model. However, the underlying ideas are key to 
mathematical modeling, as they are key to problem formulation generally. 
Thus, the individual questions will recur often during the modeling process, 
so the list should be regarded as a general approach to ways of thinking about 
mathematical modeling.

It is most important to have a clear picture of why a model is wanted or 
needed. For example, a first estimate of the available power generated by 
a dam on a large river—say, the famed Three Gorges Dam on the Yangtze 
River in the People’s Republic of China—would not require a model of the 
dam’s thickness or the strength of its foundation. On the other hand, its 
height would be essential, as would some model and estimates of river 
flow quantities. By way of contrast, a design of the actual dam would need 
a model that incorporates all of the dam’s physical characteristics (e.g., 
dimensions, materials, foundations) and relates them to the dam site and 
the river flow conditions. Thus, defining the task is the first essential step in 
model formulation.

The next step would be to list what is known—for example, river flow quan-
tities and desired power levels—as a basis for listing variables or parameters 
that are not yet known. One should also list any relevant assumptions. For 
example, levels of desired power may be linked to demographic or economic 
data, so any assumptions made about population and economic growth 
should be spelled out. Assumptions about the consistency of river flows and 
the statistics of flooding should also be spelled out.

Which physical principles apply to this model? The mass of the river’s 
water must be conserved, as must its momentum, as the river flows, and 
energy is both dissipated and redirected as water is allowed to flow through 
turbines in the dam (or spill over the top!). Mass must be conserved, within 
some undefined system boundary, because dams do accumulate water mass 
from flowing rivers. There are well-known equations that correspond to 
these physical principles. They could be used to develop an estimate of dam 
height as a function of power desired. The model can be validated by ensur-
ing that all equations and calculated results have the proper dimensions, 
and it can be exercised against data from existing hydroelectric dams to get 
empirical data and validation.

If the model is inadequate or fails in some way, an iterative loop is then 
entered in which one cycles back to an earlier stage of the model building to 
reexamine any assumptions, known parameter values, the principles cho-
sen, the equations used, the means of calculation, and so on. This iterative 
process is essential because it is the only way that models can be improved, 
corrected, and validated.
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5Mathematical Modeling for Structural Analysis

Abstraction and Scale (I)

Consider now issues of scale, of relative size. Size, whether absolute or rela-
tive, is very important because it affects both the form and the function of 
those objects or systems being modeled. Scaling influences—indeed, often 
controls—the way objects interact with their environments, for objects in 
nature, the design of experiments, or the representation of data by smooth, 
nice-looking curves. This section briefly discusses the ideas behind abstrac-
tion and scale, with further details to follow later.

Abstraction, Scaling, and Lumped elements

An important decision in modeling is choosing an appropriate level of detail 
for the problem at hand and thus knowing what level of detail is prescribed 
for the attendant model. This process is called abstraction and it typically 
requires a thoughtful and organized approach to identifying those phenom-
ena that will be emphasized—that is, to answering the fundamental ques-
tion about why a model is being sought or developed. Further, thinking 
about finding the right level of abstraction or the right level of detail often 
requires finding the right scale for the model being developed. Stated dif-
ferently, thinking about scaling means thinking in terms of the magnitude 
or size of quantities measured with respect to a standard that has the same 
physical dimensions.

For example, the linear elastic spring is used to model more than just the 
force–extension relation of simple springs such as old-fashioned butcher’s 
scales or automobile springs. For example, F = kx can be used to describe 
the static load-deflection behavior of a diving board, where the spring con-
stant k will reflect the stiffness of the diving board taken as a whole, which 
in turn reflects more detailed properties of the board, including the mate-
rial of which it is made and its own dimensions. The validity of using a 
linear spring to model the board can be confirmed by measuring and plot-
ting the deflection of the board’s tip as it changes with standing divers of 
different weights.

The classic spring equation is also used to model the static and dynamic 
behavior of tall buildings as they respond to wind loading and to earth-
quakes. These examples suggest that a simple, highly abstracted model 
of a building can be developed by aggregating various details within the 
parameters of that model. That is, the stiffness k for a building, as with 
the diving board, would be a lumped element that aggregates a great deal 
of information about how the building is framed, its geometry, its materi-
als, and so on. For both the diving board and the tall building, detailed 
expressions of how their respective stiffnesses depended on their respec-
tive properties would be needed. It is not possible to do a detailed design 
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