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Drawing on the authors’ two decades of experience in applied modeling and 
data mining, Foundations of Predictive Analytics presents the fundamental 
background required for analyzing data and building models for many practical 
applications, such as consumer behavior modeling, risk and marketing analytics, 
and other areas. It also discusses a variety of practical topics that are frequently 
missing from similar texts. 

The book begins with the statistical and linear algebra/matrix foundation of 
modeling methods, from distributions to cumulant and copula functions to 
Cornish–Fisher expansion and other useful but hard-to-find statistical techniques. 
It then describes common and unusual linear methods as well as popular nonlinear 
modeling approaches, including additive models, trees, support vector machine, 
fuzzy systems, clustering, naïve Bayes, and neural nets. The authors go on to 
cover methodologies used in time series and forecasting, such as ARIMA, GARCH, 
and survival analysis. They also present a range of optimization techniques and 
explore several special topics, such as Dempster–Shafer theory.

An in-depth collection of the most important fundamental material on predictive 
analytics, this self-contained book provides the necessary information for 
understanding various techniques for exploratory data analysis and modeling. 
It explains the algorithmic details behind each technique (including underlying 
assumptions and mathematical formulations) and shows how to prepare and 
encode data, select variables, use model goodness measures, normalize odds, 
and perform reject inference.
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Preface

This text is a summary of techniques of data analysis and modeling that the
authors have encountered and used in our two decades of experience practicing
the art of applied data mining across many different fields. The authors have
worked in this field together and separately for many large and small compa-
nies, including the Los Alamos National Laboratory, Bank One (JPMorgan
Chase), Morgan Stanley, and the startups of the Center for Adaptive Systems
Applications (CASA), the Los Alamos Computational Group, and ID Analyt-
ics. We have applied these techniques to traditional and nontraditional prob-
lems in a wide range of areas including consumer behavior modeling (credit,
fraud, marketing), consumer products, stock forecasting, fund analysis, asset
allocation, and equity and fixed income options pricing.

This book provides the necessary information for understanding the com-
mon techniques for exploratory data analysis and modeling. It also explains
the details of the algorithms behind these techniques, including underlying
assumptions and mathematical formulations. It is the authors’ opinion that
in order to apply different techniques to different problems appropriately, it
is essential to understand the assumptions and theory behind each technique.

It is recognized that this work is far from a complete treatise on the subject.
Many excellent additional texts exist on the popular subjects and it was not
a goal for this present text to be a complete compilation. Rather, this text
contains various discussions on many practical subjects that are frequently
missing from other texts, as well as details on some subjects that are not
often or easily found. Thus this text makes an excellent supplemental and
referential resource for the practitioners of these subjects. This text is self-
contained in that it provides a step-by-step derivation explicitly for each topic
from the underlying assumptions to the final conclusions.

We hope the readers will enjoy reading and using this text, and will find it
to be helpful to better understand the various subjects treated here. You can
find the software package (DataMinerXL library for building predictive mod-
els) and more information on the topics of modeling at the author’s website:
www.DataMinerXL.com.

We would appreciate receiving your suggestions and comments at the con-
tact at www.DataMinerXL.com.

xix
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Chapter 1

Introduction

In this book we cover the essentials of the foundations of statistical model-
ing. We begin with the concepts and properties of statistical distributions,
and describe important properties of the various frequently encountered dis-
tributions as well as some of the more exotic but useful ones. We have an
extensive section on matrix properties that are fundamental to many of the
algorithmic techniques we use in modeling. This includes sections on unusual
yet useful methods to split complex calculations and to iterate with the inclu-
sion/exclusion of specific data points. We describe the characteristics of the
most common modeling frameworks, both linear and nonlinear. Time series
or forecasting models have certain idiosyncrasies that are sufficiently special
so we devote a chapter to these methods.

There is description of how and why to prepare the data for statistical
modeling, including much discussion on practical approaches. We discuss the
variety of goodness measures and how and when they are applied. There
is a section on optimization methods which are required for many of the
training algorithms. We also have description on some of the less well-known
topics such as multidimensional scaling, Dempster–Shafer Theory, and some
practical discussion about simulation and reject inference.

1.1 What Is a Model?

In its most general definition, a model is a representation of something. It
could be a static model that just “sits there” or it could be a dynamic model
that represents some kind of process. Examples of static models include a
woman walking down a fashion runway wearing some new designer clothes, and
she represents how a person would look wearing these clothes. A model of the
atom is a conceptual representation of a nucleus with tightly bound protons
and neutrons surrounded by a cloud of electrons in various complex orbital
shells. A model airplane is typically a smaller and simpler representation of
the real object. Examples of dynamic models might be a set of equations that
describe how fluid flows through passageways, traffic flowing in cities, stock
values rising and falling in time.

Models are usually simpler representations of more complicated systems.

1
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We build models to help us understand what is going on, how things inter-
act, or to predict what may happen as things change or evolve. Models could
be physical objects or algorithms (a set of rules and/or equations). For algo-
rithmic models they could be first principles or statistical. For first principle
models we examine a system and write down a set of rules/equations that
describe the essence of the system, ignoring complicating details that are less
important. The first principles models could be differential equations that de-
scribe a dynamical system or they could be a set of evolutional rules that are
written down from expert knowledge of the system’s processes.

We are guided in modeling by observing the real system to be modeled.
We do our best to understand the important elements of the system, what
features characterize the system, what changes, what are the possible depen-
dencies, and what are the important characteristics we are interested in. This
observation guides us in constructing the model, either through the first prin-
ciples or in building a statistical model. Sometimes the process is so complex
or unknown that we cannot begin to write down first principles equations,
but our observations are sufficient that we have many data examples of the
system to be modeled. In these cases we can build a statistical model. The
remainder of this book will deal with issues around such statistical modeling.

1.2 What Is a Statistical Model?

A statistical model is typically a set of equations with adjustable param-
eters that we “train” using the many data observations. Invariably we have
an overdetermined system, where we have many more data examples than ad-
justable parameters, and we desire the “best” set of parameters that allow our
equations to fit the data as best as possible. The structure of the equations
can be very simple or very complex. It could be a simple linear combination
of parameters times system characteristics, or it could be a highly complex
nonlinear combination of characteristics and parameters. Our modeling task
has several components: (1) a set of equations/rules with adjustable parame-
ters, (2) a set of data that entails examples of the system that we are trying to
model, (3) a concept of goodness of fit to the data, and (4) a set of rules that
tells us how to adjust the parameters to increase the goodness of the model
fit.

The set of parameter-adjusting rules are usually obtained from the good-
ness of fit measure, often differentiating an objective function with respect to
the fitting parameters and setting it to zero, thus finding the set of parameters
that are at least locally optimal. One can consider the objective function as a
model error surface that floats above a hyperplane of the parameter space, and
our desire is to find the minimum of this error surface in this hyperplane. If the
error surface is simple we may have an easy-to-find location with the global
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minimum over the set of all possible parameter values. This is the case with
linear regression using a mean square error objective, where the error surface
is a paraboloid over the hyperplane of the set of parameters. Often, however,
this fitting surface is complex and has multiple local valleys in which we can
be trapped as we traverse the hyperplane of possible parameters in search of
the minimum. Many techniques exist to help us avoid getting trapped in these
local minima regions, such as gradient search with momentum, simulated an-
nealing where the step size starts off large and decreases, or genetic algorithms.
The more complex the model, the more complex the fitting surface, and the
more likely we need to be careful about local versus global minima.

1.3 The Modeling Process

The process of building a model is a blend of both science and art, as are
most endeavors. There is a straightforward formulaic process that we follow,
and at each step we are guided by intuition and experience. Here are the basic
steps in building a statistical model:

1. Define the goals. What are we trying to achieve? What is the outcome
we are trying to predict? Under what situations will the model be used and
for what purposes? Understand what will determine a good model.

2. Gather data. What data is available, in what form, with what quality?
How many records (we use the term record interchangeably with data point)
will we have? What fields (or model inputs) might be available? How far back
in time does the data go, and how relevant are the older records? Generally,
modelers want as much data as possible.

3. Decide the model structure. Should we do a linear regression, logistic
regression, or a nonlinear model, and if so, which kind? What time frames
and/or populations should be used for model development and validation?
What are the inputs, the output(s), and the measure of goodness? A good
approach might be to try a simple linear model as a baseline and then try
various nonlinear models to see if one can do better. Choices of model structure
require experience and deep knowledge of the strengths and weaknesses of each
technique. Important characteristics to consider in the choice of technique
include continuous or categorical (classification) output, number of records,
likely dimensionality, and amount of data noise.

4. Prepare the data. Assemble the data records into the appropriate
form for the model. Encode the data into inputs, using expert knowledge
as much as possible. Appropriately normalize the numerical data and encode
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the categorical data fields. Examine distributions for appropriateness and take
care of outliers. Separate data into the desired training, testing, and validation
sets.

5. Variable selection and elimination. In this step, which may or may
not be associated with candidate models, variables are examined for the im-
portance to the models and selected or eliminated. Some variable selection
methods are stand alone (filters) and others (wrappers) are integrated with a
particular model methodology. Generally in this step a list of candidate good
variables rank ordered by importance is decided.

6. Build candidate models. Begin building models and assessing the
model goodness. We may begin with baseline linear models and then try to
improve using more complex nonlinear models. In this and all phases it is
important to keep in mind the environment in which the model will be imple-
mented.

7. Finalize the model. Select among the candidates the most appropriate
model to be implemented. Document the model as needed.

8. Implementation and monitoring. Here the model is embedded into
the necessary system process, and monitoring steps are built to examine the
model performance in ongoing use.

1.4 Modeling Pitfalls

There are many possible traps and difficulties in the model building pro-
cess. Here we list a few in each of the above-mentioned modeling steps:

1. Define the goals—pitfalls. Lack of clarity around problem definition.
Problems being defined too narrowly. Sometimes a larger, more important
problem can be solved, broader than the one specifically being targeted. Lack
of understanding how and where the model will be used. Sometimes key data
will not be available for the model when implemented.

2. Gather data—pitfalls. Using data too old or otherwise not relevant
going forward. Not excluding records of types that will not be seen by the
model when implemented. Not considering additional key data sources (fea-
tures/inputs) or data sets (records) that might be available.

3. Decide the model structure—pitfalls. Using too simple a model
(rarely a problem). Using too complex a model (more often a problem). Using
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a modeling methodology that is not appropriate for the nature of the data
(sizes, dimensions, noise...).

4. Prepare the data—pitfalls. Not cleaning or considering outliers
(some techniques are robust to outliers; many are not). Not properly scaling
data. Inefficient encoding of categorical variables. Not eliminating fields that
will not be available or will be different going forward. Not giving enough
thought to building special expert variables. Not recognizing inherent data
bias, including not having data from important categories of records.

5. Variable selection and elimination—pitfalls. Relying on only linear
variable selection or compression techniques (e.g., PCA). Too much reliance
on simply eliminating correlated variables. Not examining all model inputs
(distributions, outliers). Keeping too many variables, making it hard for mod-
eling, interpretation, implementation, or model maintenance. Target leakage,
where the output value to be predicted is inadvertently and inappropriately
hiding in one of the input variables. (Important note—Look carefully and
skeptically at any variables that seem to be TOO good in the model.)

6. Build candidate models—pitfalls. Going deep on a single specialized
technique instead of at first trying a broad spectrum of methods. Not doing
a simple linear model as a baseline. Not doing proper training/testing as one
examines candidate models. Overfitting.

7. Finalize the model—pitfalls. Not rebuilding the final model opti-
mally using all the appropriate data. Improperly selecting the final model
without consideration to some implementation constraints. Lack of proper
model documentation.

8. Implementation and monitoring—pitfalls. Errors in the implemen-
tation process: data input streams, variable encodings, algorithm mistakes,
simple bugs around special cases. Not monitoring model ongoing performance
(inputs, outputs, predictive power).

1.5 Characteristics of Good Modelers

Good modelers can come from a wide range of technical backgrounds.
They typically have an undergraduate and a graduate degree in any one of
a handful of scientific disciplines, including computer science, mathematics,
statistics, engineering, and physics. Physicists make some of the best modelers
because of the rigorous applied mathematical exposure, and the trained ability
to eliminate all but the essential nature of a problem. Applied mathematicians
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have built up a repertoire of the tools needed for modeling and are not afraid of
jumping into any new algorithmic technology. Engineers, like physicists, have
a keen sense of what is essential to the system being modeled. Statisticians
are awash in the foundations of the tools underlying most of the modeling
techniques. Anyone with any of these backgrounds has the essential baseline
skills to become a good modeler.

What are the characteristics that are important to be a good modeler?

1. Technical competence. Mastery of the advanced math and statistics
fundamentals, such as those found in this book. Very good programming skills
since everything is done in software, and one needs the ability to quickly and
efficiently code one’s new ideas. These are the basic tools of the trade. A bonus
is experience with very large, messy data sets. Given these as backgrounds,
good modelers will have complete in-depth understanding of every modeling
technique they are using rather than just running some commercial software.
This deep understanding is the only way one can make good choices between
possible techniques and allow the possible modifications of existing algorithms.

2. Curiosity. The best modelers are those who are innately curious. They
drill into something that just does not look or feel right. If there is something
that they do not completely understand they dig deeper to find out what is
going on. Frequently the best results come from inadvertent discoveries while
chasing a vague feeling around a mystery.

3. Common sense and perspective. One needs the ability to drill deep
without losing sight of the big picture. A good modeler is constantly making
appropriate judgments about what is more and less important, focusing the
pursuit in the directions that provide the most overall value without plunging
down a rabbit hole.

4. Passion for data. The best modelers have an unbridled passion for
everything about data—lots and lots of data. One can never get enough data.
Never say no to data. One needs to understand everything about the data:
where it came from, where it will come from, the quality, robustness, and sta-
bility of the data. A lot of effort needs to go into data cleansing, standardizing
and organizing. A good data steward will build libraries of data for present
and future uses. Data is the lifeblood of statistical model builders. It is the
foundation of all our models and everything we do. It is better to use basic
techniques on good data sets than to use complex, sophisticated techniques
on poor quality data.

5. Tenacity. There are many processes involved in good model building
and it is important to do each step well without cutting corners. It is tempting
to jump around in the model searching process while sometimes a more rig-
orous, organized search method is appropriate. Tenacity is also an important
part in the curiosity characteristic in the chasing down of loose ends.
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6. Creativity. Always be questioning your modeling technique. Is it the
most appropriate for your particular problem and data set? Look for possible
modifications of the algorithms that might help, for example, model training
rules, data weighting, fuzzifying rather than using sharp boundaries. Don’t be
afraid to modify algorithms based on need or hunches. Watch for the possi-
bility of broadening of the problem objective to some higher-order goal that
may be of more use.

7. Communication skills. A useful characteristic for modelers is the
ability to explain the essence of the model to nontechnical people. This would
include aspects such as what inputs are used, what is the output modeled,
what are the strengths, weaknesses, and performance of the model, the nature
of the algorithmic structure, the training and testing process, and opinions
about robustness and stability based on various statistical tests. A desired
skill is to be able to explain complex processes in clear, concise nontechnical
language. This requires complete understanding of all the underlying aspects
and details of the model, data, and process.

8. Ability to work in teams. Modelers are frequently required to work in
teams, where a complex modeling task is divided up into subtasks. Ability to
work well together with good cooperation, communication, and helping each
other is very important.

1.6 The Future of Predictive Analytics

Statistical modeling is a booming field. There is an explosion of data every-
where, being collected more and more around ever-increasing and ubiquitous
monitoring of many processes. Data continues to grow and hardware is suc-
cessfully struggling to keep up, both in processing power and large volume
data repositories. New data repository structures have evolved, for exam-
ple the MapReduce/Hadoop paradigm. Cloud data storage and computing
is growing, particularly in problems that can be separable, using distributed
processes. Data sizes of terabytes are now the norm. Predictive Analytics is
an exciting and growing field!

Data can be broadly categorized as either structured or unstructured.
Structured data has well-defined and delimited fields, and this is the usual
type of data used in statistical modeling. More often now we have the need to
incorporate unstructured data, such as free text, speech, sound, pictures and
video. These formats require sophisticated encoding techniques, and many cur-
rently exists and more continue to emerge. Generally we reduce these unstruc-
tured data sets to structured fields through these specialized data encoding
methodologies that are particular to the characteristics of the unstructured
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data and the particular problem to be modeled. It is likely that we will need
to deal more and more with these unstructured data in the future.

Statistical modeling can also be divided into two broad categories: search
and prediction. For search problems we try to identify categories of data and
then match search requests with the appropriate data records. In prediction
problems we try to estimate a functional relationship, so we can provide an
output to a set of inputs. These prediction statistical models are in general
the types of modeling problems that are considered in this text.



Chapter 2

Properties of Statistical Distributions

This chapter presents common distributions widely used in data analysis and
modeling. Fully understanding these distributions is key to understanding the
underlying assumptions about the distributions of data. The next chapter
will discuss various aspects of matrix theory, which is a convenient vehicle to
formulate many of these types of problems.

The basic distributions found in data analysis begin with the simplest, the
uniform distribution, then the most common, the normal distribution, then a
wide variety of special distributions that are commonly found in many aspects
of data analysis from consumer modeling and finance to operations research.
Many of these distributions are fundamental to standard statistical tests of
data relevance (chi-squared, Student’s t...). For example, the non-central chi-
squared distribution is found to be important in the solution of interest rate
models in finance.

The central limit theorem is used explicitly or implicitly throughout sta-
tistical analysis and is core to examining statistical properties of compound
phenomenon.

First a word about naming conventions. To make a clear differentia-
tion between density functions, distribution functions, and cumulative den-
sity/distribution functions we will use the convention of a probability distri-
bution function (pdf) as the density function, and when we integrate over
some domain we have the cumulative distribution function (cdf).

2.1 Fundamental Distributions

2.1.1 Uniform Distribution

The simplest distribution is the uniform distribution over the interval from
zero to one, U(0, 1). Its pdf is

u(x) =

{
1 if x ∈ (0, 1)
0 otherwise.

(2.1)

Most modern computer languages provide random number generators for the
uniform distribution. It can be used to generate random variables with other

9
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distributions and we will discuss this in a later section of this chapter, when
we discuss random number generators.

2.1.2 Details of the Normal (Gaussian) Distribution

The most common distribution is the normal distribution, also known
as the Gaussian distribution or a bell-shaped curve. Because of its central
importance in all statistical modeling we describe here a fairly extensive set of
fundamental properties and characteristics. The normal distribution N [µ, σ2],
with mean µ and variance σ2, is

ϕ
(
x, µ, σ2

)
=

1√
2πσ2

e−
(x−µ)2

2σ2 . (2.2)

The standard normal distribution, N [0, 1], has zero mean and unit standard
deviation,

ϕ(x) =
1√
2π
e−x

2/2. (2.3)

Its cumulative distribution function (cdf) is

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt. (2.4)

It can be expressed in terms of the complementary error function

Φ(x) = 1− 1
2erfc

(
x/
√

2
)
, (2.5)

or in terms of the error function

Φ(x) = 1
2 + 1

2erf
(
x/
√

2
)
, (2.6)

where

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt and erf(x) =
2√
π

∫ x

0

e−t
2

dt (2.7)

are the complementary error function and the error function, respectively, and
they satisfy erf(x) + erfc(x) = 1.

Asymptotic Expansion of the Normal Distribution

The asymptotic expansion of Φ(x) is

Φ(x) ∼ −ϕ(x)

[
1

x
− 1

x3
+

1 · 3
x5

+ ...+ (−1)
k (2k − 1)!!

x2k+1

]
x < 0 (2.8)

and

1− Φ(x) ∼ ϕ(x)

[
1

x
− 1

x3
+

1 · 3
x5

+ ...+ (−1)
k (2k − 1)!!

x2k+1

]
x > 0. (2.9)
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The right-hand side overestimates if k is even and underestimates if k is odd.
The leading order approximation is

Φ(x) ∼ − 1
xϕ(x) x→ −∞

Φ(x) ∼ 1− 1
xϕ(x) x→∞.

(2.10)

We can directly work on the integration to obtain the asymptotic expansion.
For x < 0 we have

Φ(x) = 1√
2π

∫ x
−∞ e−t

2/2dt

= 1√
2π

∫ 0

−∞ e−(x+t)2/2dt

= e−x
2/2

√
2π

∫ 0

−∞ e−(xt+t2/2)dt

= e−x
2/2

√
2π

1
−x
∫ ∞

0
e
−
(
t+ t2

2x2

)
dt

= − 1
xϕ(x) I(x),

(2.11)

where

I(x) =

∫ ∞
0

e
−
(
t+ t2

2x2

)
dt. (2.12)

Clearly it is easy to see that I(−∞) =
∫ ∞

0
e−tdt = 1. The higher-order terms

are

I(x) =
∞∑
k=0

∫ ∞
0
e−t 1

k!

(
−t2
2x2

)k
dt

=
∞∑
k=0

(−1)k

k!

(
1

2x2

)k ∫ ∞
0
e−tt2kdt

=
∞∑
k=0

(−1)k

k!

(
1

2x2

)k
(2k)!

=
∞∑
k=0

(−1)
k (2k−1)!!

x2k .

(2.13)

Therefore we have

Φ(x) = − 1

x
ϕ(x)

∞∑
k=0

(−1)
k (2k − 1)!!

x2k
, x < 0. (2.14)

The Multivariate Normal Distribution

Some integrals related to the Gaussian distribution are useful. The first
one is the normalization ∫ ∞

−∞
dx e−x

2

=
√
π. (2.15)
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Let a be a positive real number. Through transformation of the x variable we
have ∫ ∞

−∞
dx e−ax

2

= (π/a)
1/2

(2.16)

and ∫ ∞
−∞

dx e−(ax2+bx) = (π/a)
1/2

eb
2/(4a). (2.17)

Also handy is ∫ ∞
−∞

dxxe−(ax2+bx) = − b

2a
(π/a)

1/2
eb

2/(4a). (2.18)

Another useful related integral that is not easy to find is

In(a) =

∫ ∞
0

dxxne−ax
2

, a > 0. (2.19)

This branches depending on whether or not n is even or odd:

I2n(a) =
(2n− 1)!

√
π

22n(n− 1)!
a−(n+1/2) and I2n+1(a) =

1

2
n! a−(n+1). (2.20)

The generalization to p-dimensional integration is straightforward. If we
let A be an n × n positive definite and symmetric square matrix and B a
p-dimensional vector, we have∫ ∞

−∞
dpx e−

1
2x
TAx+BT x =

(
(2π)

p

detA

)1/2

e
1
2B

TA−1B (2.21)

and ∫ ∞
−∞

dpxxixj e
− 1

2x
TAx =

(
(2π)

p

detA

)1/2

(A−1)ij . (2.22)

Distributions can easily be extended into higher dimensions. In a
p-dimensional space, the multi-dimensional normal distribution function,
N [µ, Σ], is

f(x) =
1

(2π)
p/2

(det Σ)
1/2

e−
1
2 (x−µ)TΣ−1(x−µ), (2.23)

where the mean µ now is a vector and the standard deviation now is the
covariance matrix Σ. If x ∼ N [µ, Σ] (read this as “x is a random variable dis-
tributed as N [µ, Σ]”), then any linear combinations of x, Ax+b, are normally
distributed. Note that

E[Ax] = AE[x] = Aµ (2.24)

and
var[Ax] = A var[x]AT = AΣAT . (2.25)
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Here E[x] is the expectation of x and var[x] is the variance of x. We have

E[Ax+ b] = Aµ+ b (2.26)

and
var[Ax+ b] = AΣAT . (2.27)

We therefore have
Ax+ b ∼ N [Aµ+ b, AΣAT ]. (2.28)

Here we give a proof that the linear combination of the normally dis-
tributed variables is normally distributed. Since the characteristic function
(discussed in Section 2.10) uniquely determines a distribution function, we can
use it to prove that variables have a normal distribution. Letting y = Ax+ b,
its characteristic function is

E
[
eik

T y
]

= E
[
eik

T (Ax+b)
]

= E
[
ei(A

T k)
T
x+ikT b

]
= ei(A

T k)
T
µ− 1

2 (AT k)
T

Σ(AT k)+ikT b

= eik
T (Aµ+b)− 1

2k
T (AΣAT )k.

(2.29)

Therefore y is normally distributed:

y ∼ N [Aµ+ b, AΣAT ]. (2.30)

As a special case, if x ∼ N [0, I] and A is a square matrix, and AAT = 1,
then Ax ∼ N [0, I].

Given a collection of xi ∼ N [µi, σ
2
i ], i = 1, 2, ..., n and they are indepen-

dent of each other, then (x1, x2, ..., xn) ∼ N [µ,Σ], where µ = (µ1, µ2, ..., µn)T

and Σ = diag(σ2
1 , σ

2
2 , ..., σ

2
n). Let y =

n∑
i=1

xi, i.e., A = (1, 1, ..., 1) and b = 0,

then we have

y =

n∑
i=1

xi ∼ N

[
n∑
i=1

µi,

n∑
i=1

σ2
i

]
. (2.31)

If we partition the x-space into separate regions we can identify several
properties. Let the partitions of x and the covariance matrix be

x− µ =

[
x1 − µ1

x2 − µ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, (2.32)

with dimensions p1 for x1 and p2 for x2. By direct integration we can prove
that the marginal distribution of a multiple normal distribution is normal,
namely,∫

dp2x2f(x1, x2) =
1

(2π)
p1/2(det Σ11)

1/2
e−

1
2 (x1−µ1)TΣ−1

11 (x1−µ1). (2.33)


