
The theory and applications of random dynamical systems (RDS) 
are at the cutting edge of research in mathematics and economics, 
particularly in modeling the long-run evolution of economic systems 
subject to exogenous random shocks. Despite this interest, there 
are no books available that solely focus on RDS in finance and 
economics. Exploring this emerging area, Random Dynamical 
Systems in Finance shows how to model RDS in financial 
applications.

Through numerous examples, the book explains how the theory 
of RDS can describe the asymptotic and qualitative behavior of 
systems of random and stochastic differential/difference equations 
in terms of stability, invariant manifolds, and attractors. The 
authors present many models of RDS and develop techniques for 
implementing RDS as approximations to financial models and option 
pricing formulas. For example, they approximate geometric Markov 
renewal processes in ergodic, merged, double-averaged, diffusion, 
normal deviation, and Poisson cases and apply the obtained results 
to option pricing formulas.

With references at the end of each chapter, this book provides a va-
riety of RDS for approximating financial models, presents numerous 
option pricing formulas for these models, and studies the stability 
and optimal control of RDS. The book is useful for researchers, aca-
demics, and graduate students in RDS and mathematical finance as 
well as practitioners working in the financial industry. 
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Preface

The theory and applications of random dynamical systems (RDS) are at the cutting
edge of research in both mathematics and economics. There are many papers on
RDS and also some books on RDS. As excellent examples we would like to men-
tion Random Dynamical Systems by Ludwig Arnold (Springer, 2003) and Random
Dynamical Systems: Theory and Applications by Rabi Bhattacharya and Mukul Ma-
jumdar (Cambridge, 2007).

Random dynamical systems have especially been studied in many contexts in eco-
nomics, particularly in modeling long run evolution of economic systems subject to
exogenous random shocks.

There are some papers on applications of RDS in economics, and a few papers on
RDS in finance. However, there is no book containing any consideration of RDS in
finance. Thus, this is the right time to publish a book on this topic.

Finance modeling with RDS is in its infancy. Our book is the first book that contains
applications of random dynamical systems in finance.

In this way, the book is useful not only for researchers and academic people, but also
for practitioners who work in the financial industry and for graduate students spe-
cializing in RDS and finance.

Anatoliy Swishchuk
Calgary, AB, Canada

Shafiqul Islam
Charlottetown, PEI, Canada
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Chapter 1

Introduction

This book is devoted to the study of random dynamical systems (RDS) and their ap-
plications in finance. The theory of RDS, developed by L. Arnold and co-workers,
can be used to describe the asymptotic and qualitative behavior of systems of random
and stochastic differential/difference equation in terms of stability, invariant mani-
folds, attractors, etc. Usually, a RDS consists of two parts: the first part is a model
for the noise path, leading to a RDS, and the second part is the dynamics of a model.

In this book, we present many models of RDS and develop techniques in the RDS
which can be implemented in finance.

Let us present just a few of many examples that can be used in finance or/and
economics.

One of the examples of a model of RDS that can be used in finance is a geometric
Markov renewal process (GMRP) for a stock price, which is defined as follows (see
Chapter 6 for details):

St := S0

v(t)

∏
k=1

(1+ρ(xk)), t ∈ R+,

where function ρ(x)>−1 is continuous and bounded on phase space X of a Markov
chain xn, n ∈ Z+, ν(t) is a counting process. This model is a generalization of
Cox-Ross-Rubinstein binomial model for stock price (see [4], Chapter 6) and Aase’s
geometric compound Poisson process (see [1], Chapter 6).

The second example of a model of RDS that can be used in economics is a Ram-
sey (see [10], Chapter 13) stochastic model for capital that takes into account the
delay and randomness in the production cycle (see Chapter 13 for details):

dK(t) = [AK(t−T )−u(K(t))C(t)]dt +σ(K(t−T ))dw(t)

where K is the capital, C is the production rate, u is a control process, A is a positive
constant, σ is a standard deviation of the “noise” w(t). The “initial capital”

K(t) = φ(t), t ∈ [−T,0],

1



2 Introduction

is a continuous bounded positive function and depends not only on current t, but also
on the past before t.

One more example is associated with a model for a stock price S(t) that includes
regime switching, delay, noise and Poisson jumps (see Chapter 12 for details):

dS(t) = [a(r(t))S(t)+µ(r(t))S(t− τ)]dt +σ(r(t))S(t−ρ)dW (t)
+

∫∞
−1 yS(t)ν(dy,dt).

This model includes not only the current state of the stock price S(t), but also, e.g.,
histories, S(t− τ) and S(t−ρ), where ρ and τ are delayed parameters, and sudden
shocks (Poisson jumps).

Dynamical systems are mathematical models of real-world problems and they
provide a useful framework for analyzing various physical (see [7] and [9] in Chap-
ter 3), engineering, social, and economic phenomena (see [37] in Chapter 3). A ran-
dom dynamical system is a measure-theoretic formulation of a dynamical system
with an element of randomness. A deterministic dynamical system is a system in
which no randomness is involved in the development of future states of the system.
The fundamental problem in the ergodic theory of deterministic dynamical systems
is to describe the asymptotic behavior of trajectories defined by a deterministic dy-
namical system. In general, the long-time behavior of trajectories of a chaotic de-
terministic dynamical system is unpredictable (see [2] in Chapter 2). Therefore, it
is natural to describe the behavior of the system as a whole by statistical means. In
this approach, one attempts to describe the dynamics by proving the existence of
an invariant measure and determining its ergodic properties (see [2] in Chapter 2).
In particular, the existence of invariant measures which are absolutely continuous
with respect to Lebesgue measure is very important from a physical point of view,
because computer simulations of orbits of the system reveal only invariant mea-
sures which are absolutely continuous with respect to Lebesgue measure (see [18]
in Chapter 3). The Birkhoff Ergodic Theorem (see [2] in Chapter 2) states that if
τ : (X ,B,µ)→ (X ,B,µ) is ergodic and µ−invariant and E is a measurable subset
of X then the orbit of almost every point of X occurs in the set E with asymptotic
frequency µ(E).

The Frobenius–Perron operator Pτ is the main tool for proving the existence of
absolutely continuous invariant measures (acim) of a transformation τ . It is well
known that f is the density of an acim µ under a transformation τ if and only if
Pτ f = f . In 1940, Ulam and von Neumann found examples of transformations hav-
ing absolutely continuous invariant measures. In 1957, Rényi (see [35] in Chapter 3)
defined a class of transformations that have an acim. Rényi’s key idea of using distor-
tion estimates has been used in the more general proofs of Adler and Flatto (see [2] in
Chapter 3). In 1973, Lasota and Yorke (see [10] in Chapter 2) proved a general suf-
ficient condition for the existence of an absolutely continuous invariant measure for
piecewise expanding C2 transformations. Their result was an important generaliza-
tion of Rényi’s (see [35] in Chapter 3) result using the theory of bounded variation
and their essential observation was that, for piecewise expanding transformations,
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the Frobenius–Perron operator is a contraction. The bounded variation technique has
been generalized in a number of directions (see [27] in Chapter 3). In Chapter 2 of
this book, we briefly review deterministic dynamical systems, ergodic theory, the
Frobenious–Perron operator, invariant measures, and stochastic perturbations. Many
of these fundamental results in Chapter 2 of this book will be useful for Chapters
3–4. For more detailed results on the existence, properties, and approximations of
invariant measures for deterministic dynamical systems, see the book by Boyarsky
and Góra (see [2] in Chapter 2). The book by Ding and Zhou, (see [4] in Chapter 2)
is another good reference for deterministic dynamical systems.

Random dynamical systems provide a useful framework for modeling and ana-
lyzing various physical, social, and economic phenomena (see [9], [37], and [38] in
Chapter 3). A random dynamical system of special interest is a random map where
the process switches from one map to another according to fixed probabilities (see
[34] in Chapter 3) or, more generally, position dependent probabilities (see [3–6] and
[16] in Chapter 3]. The existence and properties of invariant measures for random
maps reflect their long-time behavior and play an important role in understanding
their chaotic nature. Random maps have applications in the study of fractals (see
[7] in Chapter 3), in modeling interference effects in quantum mechanics (see [9] in
Chapter 3), in computing metric entropy (see [38] in Chapter 3), and in forecasting
the financial markets (see [3] in Chapter 3). In 1984, Pelikan (see [34] in Chapter 3)
proved sufficient conditions for the existence of acim for random maps with constant
probabilities. Morita (see [32] in Chapter 3) proved a spectral decomposition theo-
rem. In Chapter 3 of this book, we first present a general setup for a random dynami-
cal system from Arnold’s sense (see [1] in Chapter 3). Then we present skew product
and random maps with constant probabilities. Some fundamental results on the prop-
erties of the Frobenius–Perron operator for random maps with constant probabilities
are also presented in Chapter 3. We present necessary and sufficient conditions for
the existence of absolutely continuous invariant measures for random maps. More-
over, we present two important properties of invariant measures for random maps
with constant probabilities. At the end of Chapter 3, we present some applications of
random maps in finance.

Position dependent random maps are more general random maps where the prob-
abilities of choosing component maps are position dependent. Góra and Boyarsky
(see [14] in Chapter 4) proved sufficient conditions for the existence of acim for ran-
dom maps with position dependent probabilities. Bahsoun and Góra proved sufficient
average expanding conditions for the existence of acim for position dependent ran-
dom maps in one and higher dimensions (see [2] in Chapter 4), weakly convex and
concave position dependent random maps (see [5] in Chapter 3). Bahsoun, Góra, and
Boyarsky proved the sufficient condition for the existence of Markov switching ran-
dom map with position dependent switching matrix (see [3] in chapter 4). In Chapter
4 of this book, we first present position dependent random maps and properties of
the Frobenius–Perron operator. Then we present the existence of invariant measures
for random maps, Markov switching random maps in one and higher dimensions.
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Froyland (see [14] in Chapter 3) extended Ulam’s method for a single transforma-
tion to random maps with constant probabilities (see [34] in Chapter 3). Góra and
Boyarsky proved the convergence of Ulam’s approximation for position dependent
random maps (see [14] in Chapter 4). For Markov switching random maps, Froyland
(see [14] in Chapter 3) considered the constant stochastic irreducible matrix W and
proved the existence and convergence of Ulam’s approximation of invariant mea-
sures. In Chapter 4 of this book, we also present numerical schemes for the approx-
imation of invariant measures for position dependent random maps. Applications of
position dependent random maps in finance are presented at the end of Chapter 4 of
this book.

Chapter 5 is devoted to the study of random evolutions (REs). In mathematical
language, a RE is a solution of stochastic operator integral equation in a Banach
space. The operator coefficients of such equations depend on random parameters.
The random evolution (RE), in physical language, is a model for a dynamical sys-
tem whose state of evolution is subject to random variations. Such systems arise in
many branches of science, e.g., random Hamiltonian and Shroedinger’s equations
with random potential in quantum mechanics, Maxwell’s equation with a random re-
flective index in electrodynamics, transport equation, storage equation, etc. There are
a lot of applications of REs in financial and insurance mathematics (see [11], Chap-
ter 5). One of the recent applications of RE is associated with geometric Markov
renewal processes which are regime-switching models for a stock price in financial
mathematics, which will be studied intensively in the next chapters. Another recent
application of RE is a semi-Markov risk process in insurance mathematics (see [11],
Chapter 5). The REs are also examples of more general mathematical objects such as
multiplicative operator functional (MOFs) (see [7, 10], Chapter 5), which are random
dynamical systems in Banach space. The REs can be described by two objects: 1) op-
erator dynamical system V (t) and 2) random process x(t). Depending on structure
of V (t) and properties of the stochastic process x(t) we have different kinds of REs:
continuous, discrete, Markov, semi-Markov, etc. In this chapter we deal with vari-
ous problems for REs, including martingale property, asymptotical behavior of REs,
such as averaging, merging, diffusion approximation, normal deviations, averaging,
and diffusion approximation in reducible phase space for x(t) rate of convergence for
limit theorems for REs.

Chapters 6–9 deal with geometric Markov renewal processes (GMRP) as a spe-
cial case of REs. We study approximation of GMRP in ergodic, merged, double av-
eraged, diffusion, normal deviation, and Poisson cases. In all these cases we present
applications of the obtained results to finance, including option pricing formulas.

In Chapter 6 we introduce the geometric Markov renewal processes as a model
for a security market and study these processes in a series scheme. We consider its
approximations in the form of averaged, merged, and double averaged geometric
Markov renewal processes. Weak convergence analysis and rates of convergence of
ergodic geometric Markov renewal processes, are presented. Martingale properties,
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infinitesimal operators of geometric Markov renewal processes are presented and a
Markov renewal equation for expectation is derived. As an application, we consider
the case of two ergodic classes. Moreover, we consider a generalized binomial model
for a security market induced by a position dependent random map as a special case
of a geometric Markov renewal process.

In Chapter 7 we study the geometric Markov renewal processes in a diffusion
approximation scheme. Weak convergence analysis and rates of convergence of er-
godic geometric Markov renewal processes in a diffusion scheme are presented. We
present European call option pricing formulas in the case of ergodic, double aver-
aged, and merged diffusion geometric Markov renewal processes.

Chapter 8 is devoted to the normal deviations of the geometric Markov renewal
processes for ergodic averaging and double averaging schemes. Algorithms of av-
eraging define the averaged systems (or models) which may be considered as the
first approximation. Algorithms of diffusion under balance condition define diffu-
sion models which may be considered as the second approximation. In this chapter
we consider the algorithms of construction of the first and second approximation in
the case when the balance condition is not fulfilled. Some applications in finance are
presented; in particular, option pricing formulas in this case are derived.

In Chapter 9, we introduce the Poisson averaging scheme for the geometric
Markov renewal processes. Financial applications in Poisson approximation schemes
of the geometric Markov renewal processes are presented, including option pricing
formulas.

Chapter 10 considers the stochastic stability of fractional (B,S)-security markets,
that is, financial markets with a stochastic behavior that is caused by a random pro-
cess with long-range dependence, fractional Brownian motion. Three financial mod-
els are considered. They arose as a result of different approaches to the definition
of the stochastic integral with respect to fractional Brownian motion. The stochastic
stability of fractional Brownian markets with jumps is also considered. In Appendix,
we give some definitions of stability, Lyapunov indices, and some results on rates
of convergence of fractional Brownian motion, which we use in our development of
stochastic stability.

In Chapter 11, we study the stochastic stability of random dynamical systems
arising in the interest rate theory. We introduce different definitions of stochastic sta-
bility. Then, the stochastic stability of interest rates for the Black-Scholes, Vasicek,
Cox-Ingersoll-Ross models and their generalizations for the case of random jump
changes are studied.

The subject of Chapter 12 is the stability of trivial solution of stochastic differ-
ential delay in Ito’s equations with Markovian switchings and with Poisson bifurca-
tions. Throughout the work stochastic analogue of second Lyapunov method is used.
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Some applications in finance are considered as well.

RDS in the form of stochastic differential delay equations and their optimal con-
trol have received much attention in recent years. Delayed problems often appear
in applications in physics, biology, engineering, and finance. Optimal controls of de-
layed RDS in finance in some specific and general settings are considered in Chapters
13 and 14, respectively.

Chapter 13 is devoted to the study of optimal control of random delayed dy-
namical systems and their applications. By using the Dynkin formula and solution of
the Dirichlet-Poisson problem developed in Chapter 5, the Hamilton-Jacobi-Bellman
(HJB) equation and the inverse HJB equation are derived. Application is given to a
stochastic model in economics (stochastic Ramsey’s model).

In Chapter 14 the problem of RDS arising in optimal control theory for vector
stochastic differential delay equations (SDDEs) and its applications in mathemati-
cal finance and economics is studied. By using the Dynkin formula and solution of
the Dirichlet-Poisson problem developed in Chapter 5, the Hamilton-Jacobi-Bellman
(HJB) equation and the converse HJB equation are derived. Furthermore, applica-
tions are given to an optimal portfolio selection problem and a stochastic Ramsey
model in economics.

The analogue of the Black-Scholes formula for vanilla call option price in condi-
tions of (B,S)-securities market with delayed/past-dependent information is derived
in Chapter 15. A special case of a continuous version of GARCH is considered. The
results are compared with the results of the Black and Scholes (1973) formula.

All references are provided at the end of each chapter.

Thus, the book contains a variety of RDS which are used for approximations of
financial models, studies of their stability and control, and presents many option pric-
ing formulas for these models.

The book will be useful for researchers and academics who work in RDS and
mathematical finance, and also for practitioners working in the financial industry.
It will also be useful for graduate students specializing in the areas of RDS and
mathematical finance.



Chapter 2

Deterministic Dynamical Systems and
Stochastic Perturbations

2.1 Chapter overview

In this chapter we review deterministic dynamical systems and their invariant mea-
sures. Deterministic dynamical systems are special cases of random dynamical sys-
tems, and theories of deterministic dynamical systems play an important role for
the study of random dynamical systems. The existence and properties of absolutely
continuous invariant measures for deterministic dynamical systems reflect their long-
time behavior and play an important role in understanding their chaotic nature. The
Frobenius–Perron operator for deterministic dynamical systems is one of the key
tools for the study of invariant measures for deterministic dynamical systems. In
Chapter 3 and Chapter 4 we will see that the Frobenius–Perron operator for random
dynamical systems is a combination of the Frobenius–Perron operator of the individ-
ual component systems which are deterministic dynamical systems. In this chapter
we focus our special attention on the class of piecewise monotonic and expanding
deterministic dynamical systems. Moreover, we present stochastic perturbations of
deterministic dynamical systems. For the Frobenius–Perron operator and existence
of invariant measures we closely follow [2, 4, 9, 10] and the references therein. For
the stochastic perturbations we closely follow [7, 8, 9, 11] and the references therein.

2.2 Deterministic dynamical systems

Let (X ,B,µ) be a normalized measure space where X is a set, B is a σ -algebra of
subsets of X and µ is a measure such that µ(X) = 1. Let ν be another measure on
(X ,B). The measure µ is absolutely continuous with respect to ν if for any A ∈
B with ν(A) = 0, we have µ(A) = 0. Let I = [a,b] be an interval of the real line
R. Throughout this chapter, we consider X = I = [0,1] and we denote by VI(·) the
standard one dimensional variation of a function on [0,1] and let BV (I) be the space
of functions of bounded variations on I equipped with the norm ‖ · ‖BV= VI(·)+
‖ · ‖1, where ‖ · ‖1 denotes the L1 norm on L1(I,B,µ).

Definition 2.1 Let τ : I→ I be a transformation such that for any initial x∈ I, the nth
iteration of x under τ is defined by τn(x) = τ ◦ τ ◦ . . .◦ τ(x) n times. The transforma-

7
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Figure 2.1 The piecewise expanding map τ .

tion τ : I→ I is non-singular if for any A∈B with µ(A)= 0, we have µ(τ−1(A))= 0.
The transformation τ preserves the measure µ or the measure µ is τ-invariant if
µ(τ−1(A)) = µ(A) for all A ∈ B. In this case the quadruple (X ,B,µ,τ) is called a
deterministic dynamical system. A family B∗ of subsets of I is a π-system if and
only if B∗ is closed under intersections.

The following Theorem (Theorem 3.1.1 in [2]) is useful for checking whether a trans-
formation preserves a measure:

Theorem 2.2 [2] Let (I,B,µ) be a normalized measure space and τ : I → I be a
measurable transformation. Let B∗ be a π− system that generates B. Then µ is τ-
invariant if µ(τ−1(A)) = µ(A) for any A ∈ B∗.

Example 2.1 Consider the measure space ([0,1],B,λ ), where B is σ -algebra on
[0,1] and λ the Lebesgue measure on [0,1]. Let τ : [0,1]→ [0,1] be a map (see
Figure 2.1) defined by

τ(x) =



3x, 0≤ x < 1
3 ,

3x−1, 1
3 ≤ x < 2

3 ,

3x−2, 2
3 ≤ x≤ 1,

For any interval [x,y] ⊂ [0,1], τ−1([x,y]) = [ x
3 ,

y
3 ]∪ [

x+1
3 , y+1

3 ]∪ [ x+2
3 , y+2

3 ] and



Deterministic dynamical systems 9

λ (τ−1([x,y])) = λ ([ x
3 ,

y
3 ]∪ [

x+1
3 , y+1

3 ]∪ [ x+2
3 , y+2

3 ]) = y− x = λ ([x,y]). By Theorem
2.2, the transformation τ is λ -invariant. Thus, ([0,1],B,λ ,τ) is a deterministic dy-
namical system.

2.2.1 Ergodicity and Birkhoff individual ergodic theorem

Let τ : [0,1]→ [0,1] be a measure preserving transformation and x0 ∈ [0,1]. The
Birkhoff ergodic theorem allows us to study the statistical behavior of orbit {x0,x1 =
τ(x0), . . . ,xn = τ(xn−1}. If τ is ergodic, then the Birkhoff ergodic theorem provides
more specific information of the orbit. Let A be a measurable set of [0,1] and χA be
the characteristic function on A. For any i ∈ {0,1, . . . ,n}, xi = τ i(x0) ∈ A if and only
if χA(τ

i(x0)) = 1.

Definition 2.3 A measure-preserving transformation τ : (X ,B,µ)→ (X ,B,µ) is er-
godic if for any B ∈ B such that τ−1B = B, we have µ(B) = 0 or µ(X \B) = 0.

Ergodicity of a measure preserving transformation τ : [0,1]→ [0,1] is an indecom-
posability property such that if τ has this indecomposability property then the study
of τ cannot be split into separate parts. The following Theorem (Theorem 3.2.1 in
[2], see also [4]) is useful for checking whether a transformation is ergodic:

Theorem 2.4 [2] Let τ : (I,B,µ)→ (I,B,µ) be a measure preserving transforma-
tion. Then the following statements are equivalent:

1. τ is ergodic.

2. If f is measurable and ( f ◦ τ)(x) = f (x) almost everywhere, then f is constant
almost everywhere.

3. If f ∈ L2 and ( f ◦ τ)(x) = f (x) almost everywhere, then f is constant almost
everywhere.

Theorem 2.5 Birkhoff’s ergodic theorem for deterministic dynamical systems [2,
9]: Let τ : (I,B,µ)→ (I,B,µ) be µ-invariant and f ∈ L1(I,B,µ). Then there exists
a function f ∗ ∈ L1(X ,B,µ) such that for µ−almost all x ∈ I the limit of the time
averages 1

n+1 ∑
n
k=0 f (xk) exists and

1
n+1

n

∑
k=0

f (xk)→ f ∗, (2.2.1)

µ− almost everywhere. Moreover, if τ is ergodic and µ(X) = 1, then f ∗ is constant
µ a.e. and f ∗ =

∫
X f dµ.

Application of the Birkoff ergodic theorem: Let A ∈ B. Then ∑
n
k=0 χA(xk) is

the number of points of the orbit {x0,x1 = τ(x0), . . . ,xn = τ(xn−1} in A and
1

n+1 ∑
n
k=0 χA(xk) is the relative frequency of the elements of {x0,x1 = τ(x0), . . . ,xn =
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τ(xn−1}. If we replace f ∈ L1 by the characteristic function χA on the measurable set
A⊂ [0,1] and if τ is ergodic and µ(I) = 1 then by the Birkoff ergodic theorem 2.5,

1
n+1

n−1

∑
k=0

χA(τ
k(x))→ µ(A), (2.2.2)

µ− almost everywhere and thus the orbit of almost every point of I occurs in the set
A with asymptotic frequency µ(A).

Example 2.2 Consider the transformation τ in Example 2.1. τ preserves the
Lebesgue measure λ and τ is λ -ergodic. Consider the measurable sets Ei of [0,1]
where Ei = [ i

5 ,
i+1

5 ], i = 0,1,2,3. Let x0 be any initial point in [0,1]. By the Birkoff
ergodic theorem 2.5

1
n+1

n−1

∑
k=0

χAi(τ
k(x0))→ λ (Ei) =

1
3
, (2.2.3)

2.2.2 Stationary (invariant) measures and the Frobenius–Perron operator for
deterministic dynamical systems

Consider the measure space (I,B,λ ) and letM(I) = {m : m is a measure on I}, that
is, M(I) is the space of measures on (I,B). Let τ : ([a,b],B,λ )→ (I,B,λ ) be a
piecewise monotonic non-singular transformation on the partition P of I where P =
{I1, I2, . . . , IN} and τi = τ|Ii . Let µ << λ , that is, µ is absolutely continuous with
respect to λ . The transformation τ induces an operator O onM(I) defined by

O(µ)(A) = µ(τ−1(A)).

Non-singularity of τ implies that O(µ) << λ . Suppose that µ has a density f ∈
D = { f ∈ L1(I,B,µ) : f ≥ 0 and ‖ f ‖1= 1} with respect to λ . Then by the Radon-
Nikodyn Theorem, µ(A) =

∫
A f dλ for any measurable set A ∈ B. Since µ has a

density f , the induced measure O(µ) also has a density Pτ f . Thus,

O(µ)(A) =
∫

A
Pτ f dλ = µ(τ−1(A)) =

∫
τ−1(A)

f dλ .

Clearly, Pτ : L1(I,B,λ )→ L1(I),B,λ ) is a linear operator. The above operator Pτ

defined by ∫
A

Pτ f dλ =
∫

τ−1(A)
f dλ (2.2.4)

is known as the Frobenius-Perron operator. Let A = [0,x]. Then∫ x

0
Pτ f dλ =

∫
τ−1([0,x])

f dλ .

Differentiating on both sides of (2.2.4) with respect to Pτ we get

Pτ f dλ =
d
dx

∫
τ−1([0,x))

f dλ . (2.2.5)
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Figure 2.2 The map τ .

Example 2.3 Let τ : [0,1]→ [0,1] be defined by

τ(x) =

 3x, x ∈ [0, 1
3 ]

− 9
8 x+ 11

8 , x ∈ [ 1
3 ,1].

See Figure 2.2. If x >= 1
4 , then τ−1([0,x]) = [0, 1

3 x]∪ [ 11
9 −

8
9 x,1]. If 0≤ x < 1

3 , then
τ−1([0,x]) = [0, 1

3 x]. Therefore, Then τ−1([0,x]) = [0, 1
3 x]∪{[ 11

9 −
8
9 x,1]∩A}, where

A = [ 1
3 ,1]. For any f ∈ L1(0,1),

Pτ f dλ =
d
dx

∫
τ−1([0,x])

f dλ

=
d
dx

∫
[0, 1

3 x]∪{[ 11
9 −

8
9 x,1]∩A}

f (x)dλ

=
d
dx

[∫ x
3

0
f (x)dλ +

∫ 1

11
9 −

8
9 x

f (x)χA(x)dλ

]

= f (
x
3
)+

8
9

f (
11
9
− 8

9
x)χJ(x),

where J = τ(A) = [ 1
4 ,1].

Properties of the Frobenius–Perron operator operator Pτ [2, 9]: It is not difficult
to show that the Frobenius–Perron operator operator Pτ of a transformation τ has the
following useful properties:
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1. Linearity: the Frobenius-Perron operator operator is a linear operator, that is

Pτ(α f +βg) = αPτ f +βPτ g,

where α,β are real numbers and f ,g ∈ L1.

2. Positivity: Let f ∈ L1 and assume f ≥ 0. Then Pτ f ≥ 0.
3. Contraction Property: Pτ : L1→ L1 is a contraction. It means that for any f ∈ L1

‖ Pτ f ‖1≤‖ f ‖1

4. Preservation of Integrals: Pτ preserves integrals, i.e.,
∫

I f dλ =
∫

I Pτ f dλ ;
5. Composition Property: Let τ : I→ I and σ : I→ I be non-singular, then

Pτ·σ f = Pτ ·Pσ f

Moreover,
Pτn f = Pn

τ f

6. Adjoint Property: If f ∈ L1 and g ∈ L∞, then

< Pτ f ,g >=< f ,Uτ gdλ >

For more details of the above properties see [2, 4, 9].

Definition 2.6 A transformation τ : [0,1]→ [0,1] is piecewise monotonic if there
exists a partition 0 = x0 < x1 < · · ·< xn = 1 and a constant r ≥ 1 such that

1. |τ ′(x)|> 0 for x ∈ (xi−1,xi), i = 1,2, . . . ,n.
2. τ|(xi−1,xi) is a r times continuously differentiable function which can be extended to

a r times continuously differentiable function on the closed interval [xi−1,xi], i =
1,2, . . . ,n.

A transformation τ : [0,1]→ [0,1] is piecewise expanding if τ is piecewise mono-
tonic and |τ ′(x)|> 1 for x ∈ (xi−1,xi), i = 1,2, . . . ,n.

Example 2.4 The map τ : [0,1]→ [0,1] (see Figure 2.3) defined by

τ(x) =
{ x

2 , 0≤ x < 1
2 ,

2x−1, 1
2 ≤ x≤ 1,

is piecewise monotonic and the tent map τ : [0,1]→ [0,1] (see Figure 2.4) defined by

τ(x) =
{

2x, 0≤ x≤ 1
2 ,

2−2x, 1
2 ≤ x≤ 1,

is piecewise expanding.
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Figure 2.3 The piecewise monotonic map τ .

Figure 2.4 The tent map τ .
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Representation of the Frobenius–Perron operator Pτ [2]: Let τ : [0,1]→ [0,1] be a
piecewise monotonic transformation with respect to the partition 0 = x0 < x1 < · · ·<
xn = 1= {I1, I2, . . . , In}. For each 1≤ i≤ n, let Di = τ([xi−1, i]) and gi : Di→ [xi−1,xi]
is defined by gi(x) = τ

−1
|Di

. Piecewise monotonicity of τ implies that gi exists for each
1≤ i≤ n. Let A ∈ B. Then τ−1(A) = ∑

n
i=1 gi(A∩Di) and {A∩Di}1≤i≤n is a family

of mutually disjoint sets. For f ∈ L1(I),∫
A
(Pτ( f ))(x)dλ =

∫
τ−1(A)

f dλ

=
∫

∑
n
i=1 gi(A∩Di)

f dλ

=
n

∑
i=1

∫
gi(A∩Di)

f dλ

=
n

∑
i=1

∫
A∩Di

f (gi(x))|g′i(x)|dλ

=
n

∑
i=1

∫
A

f (gi(x))|g′i(x)|χDi(x)dλ

=
∫

A

n

∑
i=1

f (τ−1
i (x))

τ ′(τ−1
i (x))

χτ(xi−1,xi)(x)dλ

(Pτ( f ))(x) =
n

∑
i=1

f (τ−1
i (x))

τ ′(τ−1
i (x))

χτ(xi−1,xi)(x), (2.2.6)

for any measurable set A and f ∈ L1(I). Equation (2.2.6) is the representation of the
Frobenius–Perron operator Pτ . Equation (2.2.6) can also be rewritten as

(Pτ( f ))(x) = ∑
y∈{τ−1(x)}

f (y)
τ ′(y)

, (2.2.7)

Example 2.5 Let τ : [0,1]→ [0,1] be the logistic map (see Figure 2.5) defined by
τ(x) = 4x(1−x). It is not difficult to show that τ is piecewise monotonic with respect
to the partition {x0,x1,x2}= {0, 1

2 ,1}.

τ
−1
1 (x) =

1
2
− 1

2

√
1− x, τ

−1
2 (x) =

1
2
+

1
2

√
1− x,

|τ ′(τ−1
1 (x))| = |τ ′(τ−1

2 (x))|= 4
√

1− x.

Let f ∈ L1(I), then by (2.2.6)

(Pτ( f ))(x) =
2

∑
i=1

f (τ−1
i (x))

τ ′(τ−1
i (x))

χτ(xi−1,xi)(x)

=
f ( 1

2 −
1
2

√
1− x)

4
√

1− x
+

f ( 1
2 +

1
2

√
1− x)

4
√

1− x

=
1

4
√

1− x

(
f (

1
2
− 1

2

√
1− x)+ f (

1
2
+

1
2

√
1− x)

)
.
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Figure 2.5 The logistic map τ = 4x(1− x).

Definition 2.7 Let P = {I1, I2, . . . , In}, Ii = (xi−1,xi), i = 1,2, . . . ,n be a partition of
I, τ : I→ I and τi = τ|Ii

. For each i = 1,2, . . . ,n if τi is a homeomorphism from Ii to a
connected union of intervals of P then τ is called a Markov transformation. For each
i= 1,2, . . . ,n if τi is linear then τ is called a piecewise linear Markov transformation.

Example 2.6 τ : [0,1]→ [0,1] defined by

τ(x) =
{ 1

2 + x, 0≤ x≤ 1
2 ,

2−2x, 1
2 ≤ x≤ 1,

is a piecewise Markov transformation on the partition P = {0, 1
2 ,

3
4 ,1}.

The class of piecewise linear Markov transformations is a simple class of piece-
wise monotonic transformations and the matrix representation of the corresponding
Frobenius–Perron operator can be calculated easily. In fact, it is a matrix which fol-
lows from the following theorem [2]:

Theorem 2.8 (Theorem 9.2.1 in [2]) Let τ : (I,B,λ ) → (I,B,λ ) be a piece-
wise linear Markov transformation with respect to the partition {I1, I2, . . . , In} =
{x0,x1, . . . ,xn}. Then there exists a n× n matrix Mτ such that Pτ f = f MT

τ for ev-
ery piecewise constant f = ( f1, f2, . . . , fn). The matrix Mτ = (mi j) is defined by

mi j =
λ (Ii∩ τ−1(I j))

λ (Ii)
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Figure 2.6 The map τ
∗ which is the second iteration of the tent map in Figure 2.4.

Example 2.7 Let τ : [0,1]→ [0,1] be the tent map (see Figure 2.4)

τ(x) =
{

2x, 0≤ x≤ 1
2 ,

2−2x, 1
2 ≤ x≤ 1,

and τ∗ : [0,1]→ [0,1] (see Figure 2.6) is given by τ∗(x) = τ2(x). It can be easily
checked that τ∗ is a piecewise linear Markov on the partition {0, 1

4 ,
1
2 ,

3
4 ,1}. By the

Theorem 2.8, the matrix representation of Pτ∗ is M∗τ where

Mτ∗ =



1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4


.

Theorem 2.9 [2] Let τ : I,B,λ )→ (I,B,λ ) be a non-singular transformation. Then
Pτ has a fixed point f ∗ ∈ L1, f ∗ ≥ 0 if and only if the measure µ = f ∗ · λ defined
by µ(A) =

∫
A f ∗dλ is τ−invariant, that is, if and only if µ(τ−1(A) = µ(A) for all

measurable set A.

Proof Assume µ(τ−1(A)) = µ(A) for any measurable set A. Then∫
τ−1(A)

f ∗dλ =
∫

A
f ∗dλ
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Figure 2.7 The map τ in Example 2.8.

and therefore ∫
A

Pτ f ∗dλ =
∫

A
f ∗dλ .

Since A ∈ B is arbitrary, Pτ f ∗ = f ∗ a.e.
Conversely, assume Pτ f ∗ = f ∗ a.e. Then∫

A
Pτ f ∗dλ =

∫
A

f ∗dλ = µ(A).

By definition,

µ(A) =
∫

A
Pτ f ∗dλ =

∫
τ−1(A)

f ∗dλ = µ(τ−1(A)).

Example 2.8 Let τ : [0,1]→ [0,1] be a piecewise linear Markov transformation on
the partition {0, 1

4 ,
1
2 ,

3
4 ,1} defined by

τ(x) =



3x+ 1
4 , 0≤ x < 1

4 ,

2(x− 1
4 ),

1
4 ≤ x < 1

2 ,

2−2(x+ 1
4 ),

1
2 ≤ x < 3

4 ,

−3x+ 13
4 , 3

4 ≤ x≤ 1.

It can be easily checked that τ is piecewise linear Markov on the partition


