

Game Development Tools

Game Development Tools

Marwan Y. Ansari, Editor

Cover Image: “The Iron Worker and King Solomon,” engraving by John Sartain after the painting by Christian Schussele, courtesy of the Scottish Rite Masonic Museum
and Library.

The image depicts the story of an ancient tool maker. According to Jewish legend recorded with the painting:

When the temple of Jerusalem was completed King Solomon gave a feast to the artificers employed in its construction. On unveiling the throne it was found that a smith
had usurped a seat of honor on the right of the king’s place, not yet awarded, whereupon the people clamored and the guard rushed to cut him down.

“Hold! Let him speak,” commanded Solomon.

“Thou hast, O King, invited all craftsmen but me, yet how could these builders raise the temple without the tools I have fashioned?”

“True,” decreed Solomon, “The seat is his of right. All honor to the iron worker.”

Like the vital but underappreciated iron worker whose tools made possible the building of the temple at Jerusalem, creators of game development tools may too often go
unnoticed but their tools are the essential prerequisites to all that is possible in computer games.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130822

International Standard Book Number-13: 978-1-4398-6772-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

For my sons,

Mason and M.J.

The difficult we do right away; the impossible takes a little longer

Contents

Preface xiii

I Philosophy and Methodology 1

1 Taming the Beast: Managing Complexity
in Game Build Pipelines 3
Fernando Navarro
1.1 Introduction . 3
1.2 The Asset Build Pipeline . 4
1.3 Dependencies . 8
1.4 How to Determine Dependencies 8
1.5 How to Use Dependencies to Your Benefit 9
1.6 Advanced Techniques . 11
1.7 Minimizing the Impact of Build Failures 14
1.8 Conclusions . 16
Bibliography . 16

2 Game Streaming: A Planned Approach 19
Jeffrey Aydelotte and Amir Ebrahimi
2.1 Introduction . 19
2.2 Integrating Streaming from Day One 24
2.3 Passive Requests: The Art of Asset Streaming 25
2.4 Bluer Skies . 26
2.5 Conclusion . 26
Bibliography . 27

3 Workflow Improvement via Automatic Asset Tracking 29
Matt Greene and William Smith
3.1 Introduction . 29
3.2 Historical Drawbacks of Manual Asset Tracking 29
3.3 Automatically Building an Asset Database Using the Xbox 360 . 30

vii

viii Contents

3.4 Rapid Development of the MATT Tool Using Python 31

3.5 Automating In-Game Search with the BugViewer 35

3.6 Lessons Learned . 36

4 Continuous Integration for Games 39
Steven Ramirez
4.1 Introduction . 39

4.2 Build Pipelines: How Do They Work? 39

4.3 Using CCNet and More! . 42

4.4 Conclusion . 52

Bibliography . 52

5 Persistence Management of Asset Metadata and Tags 53
Jaewon Jung
5.1 Introduction . 53

5.2 Usual Metadata . 54

5.3 Tags . 56

5.4 Other Considerations . 59

5.5 Conclusion . 61

Bibliography . 61

6 Real-Time Tool Communication 63
Alan Kimball
6.1 Introduction . 63

6.2 Integrated Editors . 63

6.3 Real-Time Communication . 64

6.4 Properties . 64

6.5 Robust Data . 65

6.6 Null Checking . 66

6.7 Copying Data . 67

6.8 Complicated Assets . 68

6.9 Conclusion . 68

7 Robust File I/O 71
Alan Kimball
7.1 Introduction . 71

7.2 Existing Technologies . 71

7.3 Object Databases . 72

7.4 Disk Image . 73

7.5 Conclusions . 76

Contents ix

II Buildable Tools 77

8 Real-Time Constructive Solid Geometry 79
Sander van Rossen and Matthew Baranowski
8.1 Introduction . 79

8.2 The CSG Algorithm . 81

8.3 Mesh Optimization . 92

8.4 Conclusions . 95

Bibliography . 96

9 A COLLADA Toolbox 97
Rémi Arnaud
9.1 Introduction . 97

9.2 Conformance Test . 98

9.3 Schema Validation . 100

9.4 Editing a COLLADA Document 104

9.5 Coherency Test . 107

9.6 Patching XML Notepad . 110

9.7 Unique ID, Name versus ID . 112

9.8 XPath . 114

9.9 Absolute versus Relative Paths 117

9.10 Refinery . 118

9.11 XSLT . 121

9.12 Conclusion . 124

Bibliography . 124

10 Shape-Preserving Terrain Decimation and Associated Tools 127
David Eberly
10.1 Introduction . 127

10.2 The Decimation Algorithm . 128

10.3 Processing the Lofted Roads . 137

10.4 Variations in the Content Pipeline 140

10.5 An Example . 143

Bibliography . 144

11 In-Game Audio Debugging Tools 145
Simon Franco
11.1 Introduction . 145

11.2 Tools to Debug Sound Systems 145

11.3 Conclusion . 167

x Contents

12 Pragmatic XML Use in Tools 169
Amir Ebrahimi
12.1 Introduction . 169
12.2 XML Specification . 169
12.3 Parsing XML . 171
12.4 Enter Stage: XML Serialization 176
12.5 Minimaxima: A Case Study . 187
12.6 Conclusion . 189
Bibliography . 190

13 Low Coupling Command System 193
Gustavo A. Carrazoni
13.1 Introduction . 193
13.2 The Most Basic Command . 193
13.3 Low Coupling . 194
13.4 Improvements to the Command System 198
Bibliography . 201

14 Object-Oriented Data 203
Alan Kimball
14.1 Introduction . 203
14.2 Data Inheritance . 203
14.3 Constants . 207
14.4 Conclusion . 209

15 Improving Remote Perforce Usage 211
Mike O’Connor
15.1 Introduction . 211
15.2 Remote Reality . 211
15.3 Productive by Proxy . 212
15.4 Here Comes a New Challenger . 212
15.5 A Parallel Approach . 213
15.6 Putting It All Together . 214
15.7 Conclusion . 215

III Third-Party Tools 217

16 Vector Displacement in the Sculpting Workflow 219
Craig Barr
16.1 Introduction . 219
16.2 Overview: Vector Displacement 220

Contents xi

16.3 Creating Vector Displacement Maps: A Workflow Example
in Mudbox . 222

16.4 Vector Displacement and the Art Pipeline: Further Applications
and Considerations . 226

16.5 Conclusion . 229
Bibliography . 229

17 Optimizing a Task-Based Game Engine 231
Yannis Minadakis
17.1 Introduction . 231
17.2 From Threads to Tasks . 232
17.3 Profiling a Task-Based Game Engine 236
17.4 Task, Task, Task . 248

18 Efficient Texture Creation with Genetica 249
Ichiro Lambe and Atlas Roufas
18.1 Introduction . 249
18.2 Genetica’s Workflow and Philosophy 250
18.3 Principles for Efficient Asset Creation 254
18.4 Conclusion . 265

19 Reducing Video Game Creation Effort with Eberos GML2D 267
Frank E. Hernandez and Francisco R. Ortega
19.1 Introduction . 267
19.2 Reducing Effort . 276
19.3 Conclusion . 277
Bibliography . 278

20 YAML for C++ : Applied Data-Driven Design 279
Sebastien Noury and Samuel Boivin
20.1 Introduction . 279
20.2 YAML Ain’t Markup Language 280
20.3 Seamless C++ Integration . 281
20.4 Applying DDD to Real-World Scenarios 282
20.5 Conclusion . 285
Bibliography . 285

21 GPU Debugging and Profiling with NVIDIA Parallel Nsight 287
Kumar Iyer and Jeffrey Kiel
21.1 Introduction . 287
21.2 Debugging a Full Direct3D Frame with the Graphics Inspector . 288
21.3 Debugging an HLSL Shader . 295

xii Contents

21.4 Profiling a Direct3D Frame using GPU Hardware Counters . . . 299
21.5 Tracing Activity across Your CPU and GPU 304
21.6 Conclusion . 308

22 FBX Games Development Tools 309
Trevor Adams and Mark Davies
22.1 Introduction . 309
22.2 Exporting and Importing Game Assets 309
22.3 Extracting the Information from the .fbx File 316
22.4 FBX for QuickTime as a Game Development Tool 317

About the Contributors 319

Index 325

Preface

Many might expect the preface of this book to try to convince the prospective
reader of the importance of tool creation and design in the hopes of making a
sale. Although a sale would be nice, I think the fact that you are reading the
preface in contemplation of a purchase (or even after the purchase) shows that you
already know the value of tools in games and software development. So, rather
than preaching the value of the topic, why don’t I spend these few pages the way
Jim Blinn suggested, writing a preface that serves as a link between the author’s
mind and the reader’s wallet in an effort to convince the reader not of the premise
of the book, but rather that it will be a valuable addition to their library.

Originally, I wanted each article to describe something that the reader would
be able to build. Now, however, it’s obvious that was flawed thinking. A number
of contributors submitted proposals on third-party tools (such as Genetica, Mudd
Box, and FBX) that were clearly valuable because they give the reader another
insight into how these tools may be used in their development pipelines.

Not only are there articles on third-party tools, I also received many articles on
philosophical topics such as managing complexity, planning game streaming, and
continuous integration. Due to the quality of these proposals, it became clear that
the book would become more than just a set of recipes for do-it-yourself tools.

Many articles have relevant and valuable insight to aid in decision making and
planning your asset pipeline such as “Workflow Improvement via Automatic Asset
Tracking” (Chapter 3) and “Real Time Tool Communication” (Chapter 6).

Just as important is the sampling of third-party tools where developers of Intel’s
Threading Building Blocks (TBB) library discuss “Optimizing a Task-Based Game
Engine” (Chapter 17) and Autodesk provides an article on vector displacement
maps and using FBX (Chapter 16).

In the area of do-it-yourself tools, we have an equally impressive lineup. The
“Low Coupling Command System” (Chapter 13) is explained as well as a method for
“Improving Remote Perforce Usage” (Chapter 15). Our authors also contributed
in-depth articles on “Real-Time Constructive Solid Geometry” (Chapter 8) and
“Shape-Preserving Terrain Decimation and Associated Tools” (Chapter 10). Vir-
tually all games programmers have heard of or already use COLLADA. Even though
the wide-range implementations can make it difficult to write robust code, “A COL-
LADA Toolbox” (Chapter 9) will help make your code more bulletproof.

xiii

xiv Preface

You will find the book is divided into three parts. Out of the gate, we have
philosophical articles in the first part, followed by the do-it-yourself tools in the
second part, and finally, third-party tools in the last part. Ultimately, time will tell
if this is as useful as I hope it will be.

My choice in the cover art was made for several reasons. Originally I was going
to pick a screen shot from one of the tools covered in the book, but after some
reflection, I remembered seeing a painting at a Masonic temple where my lodge
used to meet in Riverside, Illinois. Right away, it struck me as the perfect cover
art.

Essentially, the moral of the painting is about recognizing the labor of the tool
maker. The story goes that at the completion of King Solomon’s Temple, a great
feast was held in honor of the craftsmen and artisans who accomplished the great
undertaking. Having sat in the honored location at the right of King Solomon,
the ironworker earned the ire of the craftsmen and artisans. After his breach of
protocol was brought to the king’s attention, the ironworker was asked to account
for his taking the seat of honor before the king could invite someone to take it.
Not discounting the work of the craftsmen and artisans, the ironworker explained
that without his tools, they would not have been able to build such as magnificent
structure. Acknowledging the ironworker’s point, King Solomon let him stay in the
seat of honor.

Now, I did not start my career in the hopes of being a tool maker. You might
agree with me that very few of us in the field of video games do. Tools still need
to be made though, and we can’t all be engine programmers, shader writers, and
artisans. Having been a driver developer, a demo developer, a shader writer, a
physics programmer, a video game developer, and even a data base developer (long
ago!), what I have noticed is that every company needs a tools developer. Invariably,
though, the tools developers always feel (and actually are, IMHO) that they are
undervalued.

Not many people can get excited about a new 3D Studio Max exporter or a
nice library that handles exceptions well. Given the need for the role, and being
undervalued, I thought the painting of “King Solomon and the Iron Worker” a
perfect choice for this book.

Every large undertaking, such as this, is done with the help and support of
many friends and family. Listing each person would, of course, be prohibitive and
would probably take up half the book. Sadly, I’m sure that I’ll leave someone out,
and I hope they don’t take it personally. Everybody forgets something, right?

First and foremost, I would like to thank my family for their support in this
process. I am lucky to have been given the time to organize this work when I
probably should have been doing things like cutting the grass or washing the dishes.
Thank you Jackie, Mason, and M.J.

The staff at A K Peters was invaluable during this process. Going from con-
tributor to editor is a bit daunting, and Alice Peters’ and Sarah Cutler’s faith and
support was incredible. Selecting the articles was no small feat. Drew Card, Dave

Preface xv

Gosselin, and Jon Greenberg kept me from cutting some articles that turned out to
be about a thousand times better than I would have foreseen on my own: thanks
fellas. Of course, the authors of this book are not to be forgotten. Each of them
gave up personal time as well as time with their friends and families to help. I must
give a special thank you to Sebastien Noury, Jaewon Jung, and Amir Ebrahimi
for helping me proofread some of the drafts. Also, thank you to Craig Barr and
Mark Davies for spending the time talking out some fine points of their articles
and working particularly diligently to ensure that their articles were as forthcom-
ing as possible. A personal thank you to Victor Lerias and Mike Irby, colleagues of
mine, whose levity during a work crunch (which interfered with this project) made
everything a little less stressful. A thank you cannot be forgotten for the Scottish
Rite Masonic Museum and Library and especially for Maureen Harper for helping
us get the rights for the artwork on the front cover.

Also, I’d like to just list a few folks who have helped me in little or big ways
over the years but I simply don’t have enough space to include the reasons: R.W.
Br. Raymond J. Babinski, R.W. Br. Vytoutas V. Paukstys, the members of Azure
Lodge 1153, Western Springs, Illinois, A.F. and A.M., Eric Haines, Dr. Roselle
Wolfe, Dr. Henry Harr, Mr. Dan Keibles, Mr. James Deacy, Narayan Nayer,
Maher and Marty Ansari, and C. Scott Garay (last but never least).

Finally, a special thank you to Wolfgang Engel. Wolfgang first got me started
publishing articles in Shader X2 and has kept in touch ever since. His high standard
of excellence in the ShaderX and GPU Pro series is something that everyone has
come to expect and something that all books of that nature now strive for. Thanks
Wolfgang.

—Marwan Y. Ansari

Part I
Philosophy and Methodology

It’s never easy trying to decide which path to take when starting a large project.
Should you write your own exporter? Should you use something off the shelf? Each
has its own set of advantages and drawbacks, but unless you have gone down that
road before, it’s often difficult to know what the cost of the pitfalls really are.

This part offers some guidance into how you might structure various parts of
your next large project or how you might begin to approach refactoring some areas
of your current code base.

To name just a few, we start with Chapter 1: “Taming the Beast: Managing
Complexity in Game Build Pipelines” to discuss different approaches that will be
useful in various aspects of your next or current game. Chapter 3 discusses “Work-
flow Improvement via Automatic Asset Tracking.” However, general strategies can
be applied to lower-level functionality as we see in Chapter 7: “Robust File I/O.”

1

Taming the Beast: Managing
Complexity in Game Build Pipelines

Fernando Navarro

1.1 Introduction

It is not a secret. Game companies face fierce competition to attract gamer’s
attention. Every holiday season, many products compete for the honor of being
played. As a consequence, games need to be bigger, nicer, even funnier! Their
plots need to be deeper and longer. Game scripts use many more levels, scenarios,
and quests. Engines struggle to squeeze all the computing power to render highly
detailed textures, models, and animations. Playing online and using downloaded
content is also a must. In short, games have become awfully complex.

From a technical point of view, each title requires more assets and increasingly
more complex relations among them. For artists to raise the quality level, they
need to rely on tools that allow quick iteration. Releasing a multiplatform game is
also the norm for many publishers.

Every aspect of the current generation of games proves more challenging for
the production pipeline. Traditional designs are no longer capable of handling
such pressure, and these not-so-old models do not scale well. New approaches are
required.

The importance of new solutions is so obvious that terms such as content man-
agement or asset pipeline have become frequent guests in the agenda of many
management meetings.

With this in mind, we are going to discuss different approaches that will be
helpful during the design, implementation, and refactoring of content processing and
asset build pipelines. Even if these notes do not represent a specific implementation,
they describe generic methods that can be used to reduce downtime and improve
efficiency. Many of them are orthogonal and can be implemented independently
without requiring a full revamp of the system. These guidelines are a combination

3

4 I Philosophy and Methodology

of common sense tips, answers to the evaluation of practical ”what if...?” scenarios
and information scattered across the Internet.

1.2 The Asset Build Pipeline
The term asset build pipeline can be found in many wordy flavors: content pipeline,
asset build pipeline, build pipeline, pipeline or simply build. Under this concept,
each company can fit a radically different implementation of a system whose main
duty is transforming assets. In order to give a clear overview of what it represents,
we will briefly describe its contents and its (sometimes) blurry limits.

1.2.1 What Is Included and What Is Not
As far as this chapter is concerned, we will consider the asset build pipeline as
covering any processes designed to transform raw assets as produced by the digital
content creation tools or DCCs (3D modeling or animation packages, image paint-
ing software, audio editing suites, in-house editors, . . .) to the files that can be
loaded by the game in a fully cooked or temporary form. In their simplest form,
the associated processes are executed at each user’s workstation and are the main
method to push content from the DCC into the game. Figure 1.1 shows the loca-
tion of the system as part of the global set of production tools and how the system
connects to each one.

In general terms, the asset build is a framework that allows the execution of
generic transformation tasks. Each square node in Figure 1.2 represents a single
step that massages a set of inputs into one or many output files. This conversion is
the result of executing a compiler, a script, or a tool that transforms data so it can

Figure 1.1. Block diagram of a content production pipeline, showing the tools and
exchange formats involved in the production of game assets.

1. Taming the Beast: Managing Complexity in Game Build Pipelines 5

Figure 1.2. Diagram showing an imaginary dependency graph. Compilers are displayed
as rounded boxes, with a different color representing alternative transformation steps.
Dependencies connect compilers, input files, and output files. Explicit and implicit de-
pendencies are drawn as solid and dotted lines respectively. (See Color Plate I.)

be consumed by the game. Each input is modeled as a dependency for the node,
the node becomes a direct dependency for each of the outputs, and the outputs
themselves are dependencies for later processing steps. In its minimal implemen-
tation, the system will be composed of a method to extract the dependencies, so a
set of tasks can be scheduled and executed.

Our focus will be on the framework itself, not on the details of each individual
compiler. Each compiler can integrate complex conversions involving geometry,
image and sound processing, database accesses, etc. which can also probably be
implemented using alternative methods. Together with custom editors and tools,
they deserve an independent discussion and will not be covered in this chapter.

We have implicitly assumed that the target of a build is the production game
assets. From a broader point of view, other professional environments use con-
ceptually similar frameworks that are wired to compile source code, render and
postprocess CG images, process natural language, crunch physics simulations, or

6 I Philosophy and Methodology

untangle the mysteries of DNA sequences [Xoreax Advanced Grid Solutions 01,Sun
Microsystems 11, Pande lab Stanford University 11]. These frameworks can also
benefit from what is explained in the following sections.

1.2.2 Features and Design Decisions
In this section, we list the requirements for a hypothetically ideal system. We
also group the requirements according to degrees of desirability. Most of them are
purposely open and, in some cases, vague. You as a designer need to find what each
of them means depending on your particular environment and the characteristics
of your project.

As a common-sense rule, you should clearly determine the constraints, complex-
ity, and targets of your system. A careful study will help in answering the single
most important question you need to ask yourself: Do I really need to implement my
own solution, or can I use an off-the-shelf product like XNA Build, SCons, Make-
files, Jam, . . . ? Even if the vast majority of projects require some sort of build
pipeline, adapting an existing package can be a wise decision that may eventually
save your company a significant amount of development and support time.

Your project will also impose alternative requirements and priorities. The fol-
lowing list tries to cover a wide set of situations. Even if some of them are just
guidelines, they have to be seriously considered, as they are the source of project
failures and frequent design pitfalls. As general as they are, use them as a starting
point after which you will probably want to consider more specialized features that
are not included here.

Required features of a build.

� Given a set of input and target files, the build must be able to automatically
determine what files need to be processed and in which order.

� It must be able to handle the amount and complexity of transformations
required to process each file.

� It must be able to detect processing errors and report them accordingly.

� It must be able to handle a variety of sources of data. A generic system needs
to be agnostic of the contents of the processed files.

� It must be able to produce assets for a number of target platforms.

� It must finish within a reasonable time frame and always within the con-
straints defined by the project.

� Finally, a key factor for its success: It must provide a smooth user experience.
Even if internally complex, an effort needs to be made to make it look simple,
clear, fast, or at least to keep users informed.

1. Taming the Beast: Managing Complexity in Game Build Pipelines 7

Desirable features of a build.

� Provide granularity and allow executions on reduced sets of assets.

� Allow quick iteration for the most common asset types or at least provide
alternative tools for them.

� Signal any issues as early as possible. Any user should be able to understand
any errors, warnings, and important messages.

� Handle broken or missing data. On any issues, a partial build may be a valid
result. A failed build should be the last option.

� Design it to be resilient to machine failure. Hundreds of users may be relying
on the service, so on server failure, it must continue working even if it is in a
degraded mode.

� Implement fine file control. Avoid master files that cannot be simultaneously
edited or automatically merged. They will become a bottleneck.

� Design it to be extensible and scalable. Games are dynamic environments and
evolve over time. Expect new requirements at the final stages of the project.

� Use conceptually simple models. It will allow more efficient execution, de-
buging, and maintenance. Remember that complexity has a direct impact on
development costs. Downtime and support also determine the final budget of
a project.

� Do not reinvent the wheel. Use existing libraries, reuse modules, apply design
patterns and follow known good practices.

Optional features of a build.

� Support changes in the file formats of input and output files. Otherwise, full
rebuilds may be required.

� Reduce the overhead of the system. Allow fast starts and retries. Null builds
should be quick.

� Offload computation. Large sets of similar assets and complex or slow trans-
formations can be processed by number crunching machines or computing
farms.

� Focus on efficiency. Rely on advanced techniques such as caching, file reusing,
and proxying.

� Provide methods to prevent pollution from broken or malfunctioning hosts
and tools to clean and purge caches.

8 I Philosophy and Methodology

� Split the pipeline into several independent steps. Frequently, dependency
extraction can start and end without executing any compilation steps. A task
scheduler can be fed based on an execution plan built from the dependencies.
Packaging of development versions, daily builds, and release candidates may
be postprocesses.

1.3 Dependencies
Automatic asset building can be thought of as the execution of a series of steps
determined by a complex recipe. A given step can be safely executed only after all
its requirements, or dependencies, are satisfied. On the other hand, a node needs
to be reevaluated only when its direct dependencies or the dependencies of their
direct dependencies differ in a significant way. Knowing that, the order in which
the tasks are executed will be fully determined by the overall set of dependencies.

1.4 How to Determine Dependencies
Establishing the correct build dependencies is a conceptually simple process: it
requires the construction of a directed acyclic graph (DAG) resulting from the ag-
gregation of each node’s dependencies. Frequently, these dependencies are modeled
at the file level, but finer grained approaches can also be used. In the later case,
dependencies are extracted from the files themselves.

We will assume each processing step is deterministic; that is, it always pro-
duces the same output for a given set of inputs. Even if this is not a requirement,
advanced techniques such as caching and proxing can be greatly simplified. There-
fore, any processing that relies on random number generation, timestamps, IDs,
and references to other objects will need to be carefully designed.

There are two basic methods that can be used to determine the full set of
dependencies.

Hardcoded dependencies. This is the most primitive approach, as dependencies
and order of execution are hardcoded into the scripts. As such, each new entity
requires an update of the system. The asset build simply executes every known
step in the order determined by static dependency data. Because files are compiled
assuming every dependency is ready, this approach restricts flexibility. Missing
inputs due to user error may be difficult to avoid and debug. Smart scheduling
is also out of the capabilities of the framework. This method is the equivalent to
batch and shell scripts or really simple makefiles. It can only be used in simple
scenarios where dependencies are described at file level only.

Automatic extraction. Each compilation step is represented as a templated de-
scription of the inputs that are required, the outputs that are produced, and the
parameters used in the execution of the compiler. The full set of inputs and the

1. Taming the Beast: Managing Complexity in Game Build Pipelines 9

templates are used to generate a full graph of explicit dependencies. These depen-
dencies are gathered without any knowledge of the contents of the source files by
applying the recipe that matches a given set of input and output file types.

The build will rely on dynamic dependency extraction when the dependencies
cannot be known in advance, they are stored inside a file, or this file is produced
during the build process itself. In these cases, a scanner will read, parse and extract
the relevant implicit dependencies to be added to the overall set. This means that
areas of the DAG are not known until the build has started and the corresponding
scanners are triggered. Implicit dependency scanning has been successfully used in
systems such as SCons and Waf [Knight 11,Nagy 10].

In general, everything that can possibly modify the result of a compilation step
needs to be tracked as a dependency. As such, it may be desirable to track the
version, compiler command line, and execution environment.

1.5 How to Use Dependencies to Your Benefit

1.5.1 Determine Dependencies as Early as Possible
There are many advantages to establishing dependencies as early as possible in
the pipeline. Knowing the dependencies even before the asset build is invoked can
potentially reduce the complexity of the system and the size of any transient data.
The cost of extracting asset dependencies in the DCC is small and will be amortized
by the amount of times they are used. Scanner execution is minimized, and larger
areas of the graph can be fully determined in advance. This makes the system
more predictable, increases system stability, and reduces processing time. Both
early data validation and smart scheduling become more feasible. This same data
can be used by DCC plugins to track references and allow the production team to
forsee the implications of changing a given asset.

As desirable as this is, early determination can only extract the dependencies
from the assets that are directly processed inside the DCCs. Figure 1.2 represents
the nodes without input dependencies on the left side of the graph. In most sce-
narios, static determination can define large areas of the DAG but needs to be
complemented with alternative methods.

1.5.2 Dependency Granularity: Coarse or Fine Level
In many situations, a file can be considered an atomic entity that provides a high
enough level of granularity. In some other cases, when, for example, hundreds of
compiler instances share the same file as an input, finer dependencies can be an
interesting option. By using file-specific scanners, the graph can be populated with
detailed information. In case the original file is updated, only the tasks in the path
whose refined dependencies have changed will need to be reevaluated. This may

10 I Philosophy and Methodology

imply a reduction of orders of magnitude in the number of tasks compared to tasks
using coarser dependencies, just by avoiding redundant compiler executions.

1.5.3 Out-of-Order Evaluation
The DAG contains patterns that provide interesting advantages. Certain asset
types, mainly those located on the left of Figure 1.2, are usually numerous, in-
dependent of any other assets, and their compilation steps are similar. Textures,
meshes, skeletons and skinning data, animations, prerendered videos, audio and
speech files are examples of these assets.

By precompiling these files, complete areas of the graph can be evaluated offline,
so the processed files are available even before an instance of the asset build is
started. Since no interdependencies exists, these tasks can be easily distributed and
calculated in parallel. For this to be effective, any output files need to be stored and
reused using caching techniques (see Section 1.6.1). Existing packages can reduce
the complexity of the implementation [Xoreax Advanced Grid Solutions 01,Electric
Cloud, Inc. 11,Sun Microsystems 11].

Continuous integration techniques that have traditionally been employed with
source code [Duvall et al. 07] can also be used with certain asset types. Changelists
added to a versioning system can be monitored for assets that can potentially
be built and cached. As with the original approach, a farm of servers may be
responsible for the execution of the corresponding tasks.

The need for this approach and the associated complexity has to be considered
in light of the characteristics of each particular scenario, but in general they can be
easily implemented once a caching strategy is in place.

1.5.4 Limiting the Scope of the Build
In the same way that certain asset types can be precompiled, we can also reduce the
extension of the dependency graph by ignoring specific asset types. Builds focused
on providing quick iteration may not require the generation of a fresh copy of every
single output file, even if their dependencies say otherwise. For example, audio files
can be safely ignored when the intention is testing meshes and textures. In other
cases, the build can be reduced following gameplay-related divisions: levels, quests,
cutscenes, and global assets are frequently self-contained and independent.

For this to work, with the dependency graph already determined, every node
that will produce a file that can be ignored is tagged as inactive. Any dependencies
that lead to these nodes can be safely disabled, given that they are not required
by any other active nodes. After the DAG has been processed, only nodes that are
still active are scheduled for execution.

In some other situations, it is interesting to consider regions of the graph as a
whole. Any dependencies entering the selected area can be considered inputs for
an alternative node representing the region. The same occurs with outputs and the

1. Taming the Beast: Managing Complexity in Game Build Pipelines 11

dependencies that originate inside and crossing this area’s borders. If none of the
inputs have changed, the area can be safely tagged as fully processed.

Knowing that the number of dependencies can be as large as several million,
pruning areas can provide big savings both in the size of the data sets and the
number of tasks that will ultimately be executed. The advantages will become
evident after knowing the details of the proxying techniques of Section 1.6.3.

1.5.5 Dump the Dependency Graph
Once the dependency graph has been built, dump it to a file! Later builds can read
it and use the contents as a starting point. An updated DAG can be built at a
reduced cost, allowing faster start-up times. Moreover, many implicit dependencies
will be ready, with a considerable reduction of the number of scanner executions.
The chances of performing conceptually simple but technically difficult tasks, such
as giving an estimate of a build time, are also improved. If none of the task
templates have been modified, any subsequent builds will only need to regenerate
the areas of the graph whose inputs have changed. “What has changed” can be
redefined based on the expectations of the current build: a quick, incremental build
focused on a single level, a full build, replacement of a few objects, etc.

Another important consequence is the fact that graph generation and task
scheduling are now decoupled. This provides interesting opportunities: Tool up-
dates become more localized, and the determination and evaluation of tasks become
independent. It is even possible to use alternative schedulers optimized for quick
turnaround, make use of heavy parallelism, or rely on the facilities of certain com-
puting hosts, or use simple heuristics such as first-come, first-serve, etc.

Finally, the information contained in the dependency graph can be invaluable for
finding and studying bottlenecks, locating areas for improvement, and fine-tuning
the system. Understanding how such a complex system is performing may be a
daunting task in the absence of execution data and clear logs. Simple formats such
as plain text, xml, .doc, or GraphML and tools like Microsoft Excel and languages
supporting xquery or even the command grep can be invaluable.

1.6 Advanced Techniques

1.6.1 Caching
This method focuses on file reuse and is heavily inspired by the equivalent sys-
tems for source-code compilation. A successful example is the CCache package
[Tridgell 11].

With a caching scheme, the outputs of compilation steps are stored in a repos-
itory. During the evaluation of each node, the scheduler checks for the existence
of a cached result that corresponds to the given set of input nodes. In the event
of a cache hit, the result can be efficiently retrieved. Cache misses fall back to a

12 I Philosophy and Methodology

standard compilation that includes uploading the results to the cache server. It is
up to the designer to allow the method of populating the server from users’ work-
stations and dedicated machines. In general, any result is acceptable, independent
of its origin.

Establishing how the set of input dependencies are determined, stored, and
queried is a fundamental decision. Simple methods such as filenames and times-
tamps may be inaccurate as they do not fully represent the contents of the files.
Hashes, signatures, and file digests are popular alternatives. They can be calculated
using different variations of the CRC, MD5, or SHA algorithms. In general, any
method capable of converting a variable-length stream into a fixed-length key is
valid. For our practical needs, the methods need to generate keys with low collision
probability; that is, for two different files, the probability of generating the same
key is really low.

Hashes can also be combined together, so several dependencies can be repre-
sented by a single key. For a combined hash, a successful search in the database
will retrieve a file that has been compiled from all the inputs whose hashes were
merged.

Cached results can be stored in many ways. Two of the most common methods
are versioning systems and dedicated servers:

Versioning systems. Compiled results are stored in a versioning system (Perforce,
Alienbrain, CVS, SVN, Git). Cache population and cache hits are, in fact, reposi-
tory check-ins and retrievals.

This approach works well in those cases where each file is compiled with a
single set of inputs and where the most recent version is generally usable by any
build. Every source and its compiled results can be checked in at the same time.
Syncing to the latest version of the repository will mostly retrieve files that do not
need further recompilation. This approach is not so flexible when files are processed
with variable compiler flags and dependencies. In these cases, the versioning system
needs to be complemented with an external database capable of linking each hash
with a given version.

Dedicated servers. The use of dedicated servers represents the most flexible ap-
proach. A cache server can integrate sophisticated algorithms, but in its most basic
configuration it can be built from a database and a file server. In some circum-
stances the hash management system is accessed through an ad hoc interface that
implements advanced querying features. They will be described in the following
sections.

Not to be overlooked: These machines must be able to support high disk/net-
work loads as well as to efficiently handle concurrent uploads and downloads. In
general, file accesses will range from a few bytes to several gigabytes. However,
the distribution is usually biased to files containing metadata and art assets due

1. Taming the Beast: Managing Complexity in Game Build Pipelines 13

to these files being more numerous and having reduced variability in their input
dependencies.

As pointed out before, with the server being a central resource, in the case of
failure the build needs to rely on alternative servers or be able to work in a degraded
mode.

1.6.2 Results That Are Close Enough
In some cases, it is desirable to use compiled files, cached or not, even if they have
not been generated from exactly the same set of dependencies. For certain types of
nodes, and assuming the game code supports it, a result that has been generated
from the closest set of inputs may be used without significant differences in the
game experience. This option is especially interesting with files that are generated
after long compilation processes. Examples of this are precomputed lighting, baked
ambient occlusion, collision meshes, and navigation data. The advantages are clear
compared to the standard approach, where a change in a single mesh triggers a
complete reevaluation.

Without loss of generality, file hashes can be calculated using smart methods
that ignore the parts of the file that cannot modify the compiled result. Good
candidates are comments, annotations, and object and material names that are not
externally referenced.

1.6.3 Proxies
This second technique tries to avoid unnecessary work, namely, compilations and
cache transfers, by performing lightweight evaluations of regions of the DAG. While
similar in nature to the optimizations considered in Section 1.5, proxies are designed
so the build can operate using file hashes instead of the original files.

The relationship between a file and its hash can be exploited in many different
ways:

� During dependency generation and early scheduling, a file can be fully repre-
sented by its hash. The file needs to be transfered to the client’s hard disk in
just a few situations. For example, cache retrievals can be delayed until we
have clearly determined that the file is going to be read by a compiler or a
scanner.

� The hashes of the outputs of a compilation can be stored and retrieved from
a cache server. This allows the dependency graph to be updated without
requiring the execution of any compilers.

� Implicit dependencies can also be cached, so the evaluation of certain scanners
may not be needed.

14 I Philosophy and Methodology

A build can avoid unnecessary compilations by simply determining the hashes
of inputs and outputs and using them to update the dependency graph. Cascading
this process can complete large regions of the DAG. In the best cases, a build
may replace several compiler executions by repeated hash retrievals, completely
bypassing any intermediate results that are needed to produce the final files.

1.7 Minimizing the Impact of Build Failures
In a production environment, it is as important to implement the right technology
as it is to ensure a seamless operation of the system. Build systems are operated
as part of organic environments where new content is delivered in increasingly
tighter deadlines. The evolution of every project will impose a relaxation of the
assumptions that were accepted during the initial design process. All of this pushes
against the stability of the system and may imply frequent system updates.

As worrying as it looks, a progressive degradation of the system is to be ex-
pected. On the brighter side, there are simple approaches that can improve the
chances of success. These methods, without tackling the source of the problems,
will surely raise user satisfaction.

1.7.1 Exploit the Difference between an Error
and a Warning

Most content creators are interested in propping and previewing their assets in
game and are not so concerned about the latest version of every asset. With this
in mind, the system’s priority becomes completing partial builds that accurately
represent views of a reduced set of assets. This is true even if, on the global picture,
some other second priority areas may display artifacts.

Let’s assume every system incidence is treated as an error and, as such, forces the
build to stop. Applying simple statistics, if we consider that each asset is processed
with a nonzero probability of failure, the chances of successfully completing a build
are extremely low.

It becomes evident that a correct level of criticality needs to be assigned to
each build message. For example, in the context of a geometry compiler, finding
polygons with irregular shapes may be a reason to avoid generating the processed
mesh. In the context of the whole build, this situation certainly has a less dramatic
relevance.

Fatal errors should be the exception. In many cases, failed compilations can
be logged as a warning, and their outputs replaced with placeholder assets. These
fallback mechanisms do not fix the source of the problem, so additional maintenance
will be added to the workloads of the support team. The issues may be solved
via changes in the code and data, or, in some other cases, they will involve the
artist updating the assets. Clearer messaging will increase the opportunities for
the content creators to be able to identify and fix the problems by themselves.

1. Taming the Beast: Managing Complexity in Game Build Pipelines 15

In this context, multiple message categories need to be defined. Each infor-
mation displayed will fall into one of them. A trivial approach that is commonly
accepted classifies messages, in order of increasing importance, as debug, verbose,
information, warning, error, and fatal error. Logs tagged using this simple method
can also be easily filtered.

1.7.2 Early Data Validation and Reporting

Early validation can improve the user experience in many ways. First, it will quickly
point out problems that otherwise would only be found after minutes or even hours
of computation. It can also give a better idea of if the build will finish successfully
or if fundamental pieces of data are missing or corrupted.

Efficient data validation may focus on metadata files: entity and hierarchical
data, compilation and run-time information, and gameplay balancing among others.
On the other hand, asset contents tend to be too specific for a generic system, and
they represent big volumes of data, so it is not always suitable for early validation.

As such, metadata can be processed using simple tests aimed at finding dupli-
cates and detecting missing references and assets, empty data records, inconsistent
hierarchies, files with unexpected sizes, or malformed XML data.

Even if early validation is not a complete solution and does not cover all possible
data paths, it can be complemented with asset data validation as part of the export
process. The next section explains this approach.

1.7.3 Prevent Data Corruption

Data corruption is always a possibility in a environment where files are edited
concurrently using tools that are under constant development. In the worst cases,
corrupted data can produce a meltdown of the whole system and bring the team
to a halt.

In order to limit the extent of the damage, local data validation must be per-
formed before metadata and assets can be submitted to the versioning system. In
some cases, the checks detailed in Section 1.7.2 will suffice. In other cases, a quick
compilation at the time the asset is exported from the DCC will be beneficial.
However, the ultimate proof of damage is a full build. For efficiency reasons, this
approach is not always feasible. In all cases, every check-in must be properly la-
beled, and in the event of data corruption, user builds can be forced to use the
latest data known to be safe.

Fixing corrupted data and eliminating build warnings are usually manual pro-
cesses. They need to be performed by staff capable of checking the integrity of
each file format and applying the corresponding updates. We encourage the use
of human readable formats such as XML that allow simple editing, diffing, and
merging operations.

16 I Philosophy and Methodology

It is also worth considering the fact that a defective tool may generate corrupted
data that can pollute the caches. In these cases, any derived files need to be purged
and replaced by recompiled assets. Cleaning operations are frequent, not only due
to errors, but also as a maintenance operation. Removing the files compiled with
a given version of a tool, uploaded from a certain client, or not referenced for a
period of time are common duties in any system.

1.8 Conclusions
In this chapter, we have presented a series of approaches that can improve the
chances of setting up an asset build pipeline that is both efficient and resilient to
failure. These directions will prove useful for both new and existing frameworks.

As initially stated, these are a set of guidelines and checkpoints that can an-
ticipate common pitfalls and design issues, the reader may be faced with when
implementing a complex systems like this.

The never-ending search for the perfect AAA game will eventually challenge
each of these ideas. However, we think this chapter offers some insight into different
alternatives that build engineers can use to keep their systems up and running and
enjoy a satisfied user base.

Bibliography
[Duvall et al. 07] Paul Duvall, Stephen M. Matyas, and Andrew Glover. Contin-

uous Integration: Improving Software Quality and Reducing Risk. Addison-
Wesley, 2007.

[Electric Cloud, Inc. 11] Electric Cloud, Inc. “Electric Cloud Home.” Available at
http://www.electric-cloud.com/, 2011.

[Knight 11] Steven Knight. “SCons: A Software Construction Tool.” Available at
http://www.scons.org/, 2011.

[Nagy 10] Thomas Nagy. “Waf: The Flexible Build System.” Availabkle at http:
//code.google.com/p/waf/, 2010.

[Pande lab Stanford University 11] Pande lab Stanford University. “Fold-
ing@Home.” Available at http://folding.stanford.edu/, 2011.

[Sun Microsystems 11] Sun Microsystems. “Grid Engine.” Available at http://
gridengine.sunsource.net/, 2011.

[Tridgell 11] Andrew Tridgell. “CCache: A Fast Compile Cache.” Available at
http://ccache.samba.org/, 2011.

1. Taming the Beast: Managing Complexity in Game Build Pipelines 17

[Xoreax Advanced Grid Solutions 01] Xoreax Advanced Grid Solutions. “Incred-
ibuild.” Available at http://www.xoreax.com/, 2001.

2

Game Streaming:
A Planned Approach

Jeffrey Aydelotte and Amir Ebrahimi

2.1 Introduction
The game industry has gradually been shifting away from traditional boxed titles
and toward digital distribution. As of the writing of this chapter, Steam, a digital
distribution service operated by Valve, currently has over 1,100 titles available
through its service [Steam 10]. You might be hard pressed to find that many
titles on the shelves at your local retail store. It’s no surprise that this shift is
occurring, as the numbers are there to back it up. In early 2010, Valve announced
that it saw a 205% increase in Steam’s unit sales year over year [O’Connor 10].
On September 20th of that very same year, NPD announced that PC digital game
downloads surpassed retail unit sales by three million units [Riley 10]. Traditional
game retailers finally took notice too, as GameStop announced in late 2009 that
they would begin offering digital downloads, which they began testing in early
2010 [Paul 09].

With this shift towards digital distribution, it’s not only important to provide a
digital download, but it has become increasingly important to provide instant play.
OnLive, a streaming game service, mitigates downloads by moving them to a central
location: its own servers [OnLive 10]. There are inherently difficult problems that
OnLive has had to solve and continues to address in order to provide that service
to gamers, namely, overall bandwidth and latency. For the rest of game developers
who are not building their games this way, streaming game assets to the client is
de rigueur.

Some games on Steam are developed in such a way that players can begin
playing the game before it finishes downloading. However, streaming has yet to
get the same widespread attention in a game production as memory budgets, poly
counts, textures limits, and bone counts. If that were not the case, then more
of our games would be instantly playable. Just as with traditional categories for

19

