

Topics in Graph Theory

Graphs and Their Cartesian Product

Wilfried Imrich • Sandi Klavžar • Douglas F. Rall

Topics in Graph Theory

Topics in Graph Theory

Graphs and Their Cartesian Product

Wilfried Imrich
Sandi Klavžar
Douglas F. Rall

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2008 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20150227
International Standard Book Number-13: 978-1-4398-6533-0 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.
Visit the Taylor \& Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com

To our wives Gabi, Maja, and Naomi.
Without their love, patience, encouragement, support, and understanding, the chances of this book being published would have been infinitesimal at best.

Contents

Preface xi
I Cartesian Products 1
1 The Cartesian Product 3
1.1 Definitions, Fibers, and Projections 3
1.2 Connectedness and More Examples 6
1.3 Products of Several Factors 8
1.4 Exercises 9
2 Hamming Graphs and Hanoi Graphs 11
2.1 Hypercubes and Hamming Graphs 11
2.2 Hanoi Graphs 13
2.3 Exercises 15
II Classic Topics 17
3 Hamiltonian Graphs 19
3.1 Conditions for Hamiltonicity 19
3.2 Hamiltonian Products 20
3.3 Hamiltonian Prisms 25
3.4 Exercises 26
4 Planarity and Crossing Number 29
4.1 Planar Products 29
4.2 Crossing Numbers of Products of Cycles 31
4.3 More Exact Crossing Numbers 35
4.4 Exercises 36
5 Connectivity 37
5.1 Vertex-Connectivity 37
5.2 Edge-Connectivity 42
5.3 Exercises 44
6 Subgraphs 45
6.1 Nontrivial Subgraphs 45
6.2 Characterizations 47
6.3 Basic Trivial Subgraphs 49
6.4 Exercises 50
III Graphical Invariants 53
7 Independence 55
7.1 Definitions 55
7.2 Lower Bounds 56
7.3 Upper Bounds 59
7.4 Exercises 61
8 Graph Colorings 63
8.1 Vertex Colorings 64
8.2 Generalized Colorings 67
8.3 Circular Colorings 69
8.4 Exercises 71
9 Additional Types of Colorings 73
9.1 List Colorings 73
$9.2 \quad L(2,1)$-labelings 75
9.3 Edge Colorings 78
9.4 Exercises 79
10 Domination 81
10.1 Definitions and Notation 81
10.2 Bounds for γ in Terms of Other Invariants 84
10.3 Exercises 86
11 Domination in Cartesian Products 89
11.1 Binary Codes 89
11.2 Multiplicative Results 91
11.3 Lower Bounds 92
11.4 Exercises 95
IV Metric Aspects 97
12 Distance Lemma and Wiener Index 99
12.1 Distance Lemma 99
12.2 Applications of the Distance Lemma 101
12.3 Exercises 103
13 Products and Boxes 105
13.1 Boxes 105
13.2 Metric Boxes 108
13.3 Exercises 111
14 Canonical Metric Representation 113
14.1 Representation α 113
14.2 Properties and Applications of α 117
14.3 Exercises 120
V Algebraic and Algorithmic Issues 123
15 Prime Factorizations 125
15.1 Uniqueness for Connected Graphs 126
15.2 Automorphisms 128
15.3 Exercises 131
16 Cancelation and Containment 133
16.1 Cancelation Properties 134
16.2 Containment Properties 136
16.3 Exercises 137
17 Distinguishing Number 139
17.1 Examples and Products of Two Factors 139
17.2 Cartesian Powers of Graphs 142
17.3 Exercises 145
18 Recognition Algorithms 147
18.1 The Structure Theorem 147
18.2 A Polynomial Factorization Algorithm 149
18.3 Recognizing Partial Cubes 150
18.4 Exercises 152
Hints and Solutions to Exercises 153
References 191

Preface

Graphs have become a convenient, practical, and efficient tool to model real-world problems. Their increasing utilization has become commonplace in the natural and social sciences, in computer science, and in engineering. The development of large-scale communication and computer networks as well as the efforts in biology to analyze the enormous amount of data arising from the human genome project are but two examples.

Not surprisingly, courses in graph theory have become part of the undergraduate curriculum of many applied sciences, computer science, and pure mathematics courses. Due to the complexity of the applications, many graduate programs in these areas now include a study of graph theory.

A multitude of excellent introductory and more advanced textbooks are on the market. In this book, we address a reader who has been exposed to a first course in graph theory, wishes to apply graph theory at a higher or more special level, and looks for a book that repeats the essentials in a new setting, with new perspectives and results. For this reader, we wish to communicate a working understanding of graph theory and general mathematical tools. The prerequisites are previous exposure to fundamental notions of graph theory, discrete mathematics, and algebra. Therefore, we will not strain the reader's patience with definitions of concepts such as equivalence relations or groups.

The context we chose for this task are graph products and their subgraphs. This includes Hamming graphs, prisms, and many other classes of graphs that are either graph products themselves or are closely related to them-often in surprising, unexpected ways.

This setting allows us to cover concepts with applications in many fields of mathematics and computer science. It includes problems from coding theory, frequency assignment, and mathematical chemistry, which are briefly treated to give the reader a flavor of the variety of the applications.

Many results in this book are recent in the sense that they first appeared in print around the time this book went to press. We have taken efforts to present them accurately and efficiently in a unified environment.

The book is divided into five parts. The first part is a short introduction to the Cartesian product-the main tool that is used throughout the remainder of the book. We convey the basic facts about the product, and apply them to Hamming graphs and Tower of Hanoi graphs, that is, to two classes of graphs that naturally appear.

Classic topics of graph theory are treated in Part II. Included are the fundamental notions of hamiltonicity, planarity, connectivity, and subgraphs. These standard concepts are introduced in most typical first courses in graph theory. We include several interesting results about these basic concepts, which were, somewhat surprisingly, only recently proved. Nonetheless, many challenging open problems still exist in these areas. For example, there is the unsettled conjecture by Rosenfeldt and Barnette that the prism over a 3 -connected planar graph is hamiltonian and the determination of the crossing number of the so-called "torus graphs."

A large part of graph theory involves the computation of graphical invariants. The reason is that many applications in different fields reduce to such computations. It turns out that a variety of scheduling and optimization problems are actually coloring problems in graphs constructed from the constraints. In Part III, we therefore focus on several different graph coloring invariants, some standard and some more recently introduced. In a separate chapter we study the problem of determining the cardinality of a largest independent set in a graph. The remaining two chapters of Part III focus on the domination number of a graph with special emphasis on the famous conjecture of Vizing.

Distances in graphs represent another major area for applications. As an example of such an application we present the Wiener index, which is probably the most explored topological index in mathematical chemistry. In Part IV, we demonstrate that the Cartesian product is a natural environment for the standard shortest-path metric. The starting point for this is the fact that the distance function is additive on product graphs. The material in this part of the book culminates in the Graham-Winkler Theorem, asserting that every connected
graph has a unique canonical, isometric embedding into a Cartesian product.

Mathematical structures can be properly understood only if one has a grasp of their symmetries. It also helps to know whether they can be constructed from smaller constituents. This approach is taken in Part V. It leads to the prime factorization of graphs and the description of their automorphism groups. These, in turn, simplify the investigation of algebraic properties of connected or disconnected graphs with respect to the Cartesian product. In particular, cancelation properties are derived and the unique $r^{\text {th }}$ root property is proved. Thereafter follows a chapter on the recent concept of the distinguishing number, which measures the effort needed to break all symmetries in a graph. The last chapter shows how the main result on the structure and the symmetries of Cartesian products lead to efficient factorization algorithms and the recognition of partial cubes.

Every chapter ends with a list of exercises. They are an integral part of the book because we are convinced that problem solving is not only at the core of mathematics, but is also essential for the comprehension and acquisition of mathematical proficiency. Checking one's mastery of ideas is crucial for strengthening self-confidence and selfreliance. Therefore some of the exercises are computational; others ask for the proof of a result in the chapter. The easier exercises let the reader check whether he or she grasps the concepts, but most of the exercises require an original idea, and a few demand a higher level of abstraction. Then there are problems whose solution requires the investigation of numerous cases. The idea for these problems is to find a way to minimize the effort and to solve some of the cases.

Hints and solutions to the exercises are collected at the end of the book.

We cordially thank Drago Bokal, Mietek Borowiecki, Boštjan Brešar, Ivan Gutman, Bert Hartnell, Iztok Peterin, and Simon Špacapan for invaluable comments, remarks and contributions to the manuscript. We are especially grateful to Amir Barghi, a graduate student at Dartmouth College, for a careful reading of the entire manuscript. His suggestions led to improvements in the presentation at numerous places in the text.

The manuscript was tested in courses at the University of Maribor, Slovenia; the Montanuniversität Leoben, Austria; and Furman University, Greenville, SC, United States. We wish to thank our students Matevž Črepnjak, Michael Hull, Marko Jakovac, Luka Komovec, Aneta Macura, Michał Mrzygłód, Mateusz Olejarka, Katja Prnaver, Jeannie Tanner, and Joseph Tenini for remarks that helped to make the text more accessible.

Last, and certainly not least, we wish to thank Charlotte Henderson, our associate editor, and the other staff at A K Peters, Ltd., for the professional support and handling of our book that every author desires. Special thanks are extended to Alice and Klaus Peters for their involvement and expertise offered at all stages of publication.
W. Imrich, S. Klavžar, and D.F. Rall

Leoben, Maribor, Greenville
April 2008

Part I

Cartesian Products

The Cartesian Product

Throughout this book the Cartesian product will be the leading actor. With its help, the reader will develop a deeper understanding of graph theory. In addition, the reader will learn about important new concepts such as circular colorings, $L(2,1)$-labelings, prime factorizations, canonical metric embeddings, and distinguishing numbers.

In this chapter, we define the Cartesian product and introduce fibers and projections as important tools for further investigations. We also show that a product graph is connected if and only if its factors are connected. Along the way, we list several examples of Cartesian products. In particular, we observe that line graphs of complete bipartite graphs are products of complete graphs, and we show that these are the only products that are line graphs.

1.1 Definitions, Fibers, and Projections

Before we define the Cartesian product, we list some conventions to be used throughout the book. We write $g \in G$ instead of $g \in V(G)$ to indicate that g is a vertex of G, and $|G|=|V(G)|$ for the number of vertices. An edge $\{u, v\}$ of a graph G is denoted as $u v$. Sometimes, particularly when dealing with edges in products, we also write $[u, v$].

The Cartesian product of two graphs G and H, denoted $G \square H$, is a graph with vertex set

$$
\begin{equation*}
V(G \square H)=V(G) \times V(H), \tag{1.1}
\end{equation*}
$$

that is, the set $\{(g, h) \mid g \in G, h \in H\}$.
The edge set of $G \square H$ consists of all pairs [$\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)$] of vertices with $\left[g_{1}, g_{2}\right] \in E(G)$ and $h_{1}=h_{2}$, or $g_{1}=g_{2}$ and $\left[h_{1}, h_{2}\right] \in$ $E(H)$.

For example, Figure 1.1 depicts $P_{4} \square P_{3}$ (left) and $C_{7} \square K_{2}$ (right). To the first example, we remark that Cartesian products $P_{m} \square P_{n}$ of two

Figure 1.1. Cartesian products $P_{4} \square P_{3}$ (left) and $C_{7} \square K_{2}$ (right).
paths on m and n vertices are called complete grid graphs, and their subgraphs are known as grid graphs. Such graphs appear in many applications, for instance in the theory of communication networks.

Note that $K_{2} \square K_{2}=C_{4}$, that is, the Cartesian product of two edges is a square. This is the motivation for the introduction of the notation \square for the Cartesian product. ${ }^{1}$

We can also define the edge set by the relation

$$
\begin{equation*}
E(G \square H)=(E(G) \times V(H)) \cup(V(G) \times E(H)), \tag{1.2}
\end{equation*}
$$

where the edge (e, h) of $G \square H$, with $e=\left[g_{1}, g_{2}\right] \in E(G), h \in H$, has the endpoints $\left(g_{1}, h\right),\left(g_{2}, h\right)$, and the edge (g, f), with $g \in G$, $f=\left[h_{1}, h_{2}\right] \in E(H)$, has the endpoints $\left(g, h_{1}\right),\left(g, h_{2}\right)$.

Since edges in simple graphs can be identified with their (unordered) sets of endpoints, the preceding two definitions of the edge set of $G \square H$ are equivalent.

Combining Equations (1.1) and (1.2), we obtain yet another, even more concise characterization of the Cartesian product of two graphs G and H; see Gross and Yellen [49, p. 238]:

$$
G \square H=(G \times V(H)) \cup(V(G) \times H)
$$

Here

$$
G \times V(H)=\bigcup_{h \in H}(G \times\{h\}),
$$

and every $G \times\{h\}$ is a copy of G. We denote it by G^{h} and call it a G-fiber. ${ }^{2}$ Analogously, $V(G) \times H$ is the union of the H-fibers ${ }^{g} H=$ $\{g\} \times H$.

[^0]

Figure 1.2. Projection $p_{C_{4}}: C_{4} \square P_{3} \rightarrow C_{4}$.

For a given vertex $v=(g, h)$, we also write $G^{v}=G^{h}$, and respectively, ${ }^{v} H={ }^{g} H$. Clearly G^{v} can also be defined as the subgraph of $G \square H$ induced by $\{(x, h) \mid x \in G\}$, and the mapping $\varphi: V\left(G^{h}\right) \rightarrow V(G)$ defined by

$$
\varphi:(x, h) \mapsto x
$$

is a bijection that preserves adjacency and nonadjacency. Such a bijection is called a graph isomorphism. One can say G^{h} and G are isomorphic, or in symbols, $G^{h} \cong G$.

Sometimes we also write $G=H$ for isomorphic graphs. Thus, $G=$ H may mean that G and H have the same vertex and edge sets or that G and H are isomorphic. For example, the phrase " G is a K_{2} " or the equation " $G=K_{2}$ " both mean that G is isomorphic to K_{2}.

In contrast, for two G-fibers G^{v} and G^{w} of a product $G \square H$, the statement $G^{v}=G^{w}$ expresses that these fibers are identical, whereas $G^{v} \cong{ }^{w} H$ really means only that the two fibers are isomorphic because $G^{v} \neq{ }^{w} H$; in fact, $\left|G^{v} \cap{ }^{w} H\right|=1$.

Note that $G \square H \cong H \square G$, and that $K_{1} \square G \cong G \square K_{1} \cong G$. In other words, Cartesian multiplication is commutative and K_{1} is a unit (see Exercise 3).

For a product $G \square H$, the projection $p_{G}: G \square H \rightarrow G$ is defined by

$$
p_{G}:(g, h) \mapsto g .
$$

It is clear what we mean by p_{H}. See Figure 1.2 for the projection $p_{C_{4}}$ of $C_{4} \square P_{3}$ onto C_{4}.

Under the projections p_{G} or p_{H}, the image of an edge is an edge or a single vertex. Such mappings are called weak homomorphisms. Clearly, the mapping $\varphi: V\left(G^{h}\right) \rightarrow V(G)$ defined above is the restriction of p_{G} to G^{h}.

More generally, let U be a subgraph of $G \square H$. We follow common practice and define $p_{G} U$ as the subgraph of G with the vertex set

$$
\left\{p_{G}(v) \mid v \in U\right\}
$$

and edge set

$$
\left\{\left[p_{G}(u), p_{G}(v)\right] \mid[u, v] \in E(U), p_{G}(u) \neq p_{G}(v)\right\} .
$$

1.2 Connectedness and More Examples

We continue with the following simple, yet fundamental observation about Cartesian products.

Lemma 1.1. A Cartesian product $G \square H$ is connected if and only if both factors are connected.

Proof: Suppose $G \square H$ is connected. We have to prove that both G and H are connected. Clearly, it suffices to prove it for G. Let g and g^{\prime} be any two vertices of G, and let $h \in H$ be arbitrary. Then there is a path P in $G \square H$ from (g, h) to $\left(g^{\prime}, h\right)$, and $p_{G} P \subseteq G$ contains a path from g to g^{\prime}.

Conversely, assume that G and H are connected. We have to show that there is a path between any two arbitrarily chosen vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ of $G \square H$. Let R be a g, g^{\prime}-path and S an h, h^{\prime}-path. Then

$$
(R \times\{h\}) \cup\left(\left\{g^{\prime}\right\} \times S\right)
$$

is a $(g, h),\left(g^{\prime}, h^{\prime}\right)$-path; see Figure 1.3.
Before continuing with new concepts related to Cartesian products, we take a break with two examples: prisms and line graphs of complete bipartite graphs.

Prisms over graphs appear in many situations and are defined as follows. Let G be a graph. Then the prism over G is the graph obtained from the disjoint union of graphs G^{\prime} and $G^{\prime \prime}$, both isomorphic to G, by joining any vertex of G^{\prime} with its isomorphic image in $G^{\prime \prime}$. An example of a prism is shown in Figure 1.4.

From our point of view, the prism over G is the Cartesian product

$$
G \square K_{2} .
$$

Let G be a graph. Then the vertex set of the line graph $L(G)$ of G consists of the edges of G. Two vertices of $L(G)$ are adjacent if the

Figure 1.3. $G \square H$ is connected provided G and H are connected.

Figure 1.4. A graph (left) and the prism over it (right).
corresponding edges of G are adjacent. Note that a vertex of degree d in G yields a complete subgraph K_{d} in $L(G)$.

For instance, for any $n \geq 2, L\left(K_{1, n}\right)=K_{n}$ and $L\left(P_{n}\right)=P_{n-1}$.
Let $m, n \geq 2$ and consider the complete bipartite graph $K_{m, n}$ with the bipartition $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\},\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. Then the vertex set of $L\left(K_{m, n}\right)$ is

$$
\left\{u_{i} w_{j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

Vertices $u_{i} w_{j}$ and $u_{i^{\prime}} w_{j^{\prime}}$ are adjacent in $L\left(K_{m, n}\right)$ if and only if $i=i^{\prime}$ and $j \neq j^{\prime}$, or $j=j^{\prime}$ and $i \neq i^{\prime}$. This implies that

$$
L\left(K_{m, n}\right)=K_{m} \square K_{n} .
$$

In fact, these are the only connected line graphs that are Cartesian products, as the following result of Palmer asserts.

Proposition 1.2. [97] Let X be a connected graph. Then $L(X)$ is a nontrivial Cartesian product if and only if $X=K_{m, n}, m, n \geq 2$.

[^0]: ${ }^{1}$ Some authors use the term box product for the Cartesian product.
 ${ }^{2}$ In Product Graphs [66], fibers are referred to as layers.

