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� Preface

Graphs have become a convenient, practical, and efficient tool to model
real-world problems. Their increasing utilization has become common-
place in the natural and social sciences, in computer science, and in
engineering. The development of large-scale communication and com-
puter networks as well as the efforts in biology to analyze the enor-
mous amount of data arising from the human genome project are but
two examples.

Not surprisingly, courses in graph theory have become part of the
undergraduate curriculum of many applied sciences, computer sci-
ence, and pure mathematics courses. Due to the complexity of the
applications, many graduate programs in these areas now include a
study of graph theory.

A multitude of excellent introductory and more advanced textbooks
are on the market. In this book, we address a reader who has been ex-
posed to a first course in graph theory, wishes to apply graph theory
at a higher or more special level, and looks for a book that repeats
the essentials in a new setting, with new perspectives and results.
For this reader, we wish to communicate a working understanding of
graph theory and general mathematical tools. The prerequisites are
previous exposure to fundamental notions of graph theory, discrete
mathematics, and algebra. Therefore, we will not strain the reader’s
patience with definitions of concepts such as equivalence relations or
groups.

The context we chose for this task are graph products and their
subgraphs. This includes Hamming graphs, prisms, and many other
classes of graphs that are either graph products themselves or are
closely related to them—often in surprising, unexpected ways.

xi
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xii Preface

This setting allows us to cover concepts with applications in many
fields of mathematics and computer science. It includes problems
from coding theory, frequency assignment, and mathematical chem-
istry, which are briefly treated to give the reader a flavor of the variety
of the applications.

Many results in this book are recent in the sense that they first
appeared in print around the time this book went to press. We have
taken efforts to present them accurately and efficiently in a unified
environment.

The book is divided into five parts. The first part is a short introduc-
tion to the Cartesian product—the main tool that is used throughout
the remainder of the book. We convey the basic facts about the prod-
uct, and apply them to Hamming graphs and Tower of Hanoi graphs,
that is, to two classes of graphs that naturally appear.

Classic topics of graph theory are treated in Part II. Included are
the fundamental notions of hamiltonicity, planarity, connectivity, and
subgraphs. These standard concepts are introduced in most typical
first courses in graph theory. We include several interesting results
about these basic concepts, which were, somewhat surprisingly, only
recently proved. Nonetheless, many challenging open problems still
exist in these areas. For example, there is the unsettled conjecture
by Rosenfeldt and Barnette that the prism over a 3-connected planar
graph is hamiltonian and the determination of the crossing number of
the so-called “torus graphs.”

A large part of graph theory involves the computation of graphical
invariants. The reason is that many applications in different fields re-
duce to such computations. It turns out that a variety of scheduling
and optimization problems are actually coloring problems in graphs
constructed from the constraints. In Part III, we therefore focus on
several different graph coloring invariants, some standard and some
more recently introduced. In a separate chapter we study the prob-
lem of determining the cardinality of a largest independent set in a
graph. The remaining two chapters of Part III focus on the domination
number of a graph with special emphasis on the famous conjecture of
Vizing.

Distances in graphs represent another major area for applications.
As an example of such an application we present the Wiener index,
which is probably the most explored topological index in mathemati-
cal chemistry. In Part IV, we demonstrate that the Cartesian product
is a natural environment for the standard shortest-path metric. The
starting point for this is the fact that the distance function is addi-
tive on product graphs. The material in this part of the book culmi-
nates in the Graham-Winkler Theorem, asserting that every connected
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graph has a unique canonical, isometric embedding into a Cartesian
product.

Mathematical structures can be properly understood only if one has
a grasp of their symmetries. It also helps to know whether they can
be constructed from smaller constituents. This approach is taken in
Part V. It leads to the prime factorization of graphs and the description
of their automorphism groups. These, in turn, simplify the investiga-
tion of algebraic properties of connected or disconnected graphs with
respect to the Cartesian product. In particular, cancelation properties
are derived and the unique r th root property is proved. Thereafter
follows a chapter on the recent concept of the distinguishing number,
which measures the effort needed to break all symmetries in a graph.
The last chapter shows how the main result on the structure and the
symmetries of Cartesian products lead to efficient factorization algo-
rithms and the recognition of partial cubes.

Every chapter ends with a list of exercises. They are an integral
part of the book because we are convinced that problem solving is not
only at the core of mathematics, but is also essential for the compre-
hension and acquisition of mathematical proficiency. Checking one’s
mastery of ideas is crucial for strengthening self-confidence and self-
reliance. Therefore some of the exercises are computational; others
ask for the proof of a result in the chapter. The easier exercises let the
reader check whether he or she grasps the concepts, but most of the
exercises require an original idea, and a few demand a higher level of
abstraction. Then there are problems whose solution requires the in-
vestigation of numerous cases. The idea for these problems is to find
a way to minimize the effort and to solve some of the cases.

Hints and solutions to the exercises are collected at the end of the
book.

We cordially thank Drago Bokal, Mietek Borowiecki, Boštjan Brešar,
Ivan Gutman, Bert Hartnell, Iztok Peterin, and Simon Špacapan for in-
valuable comments, remarks and contributions to the manuscript. We
are especially grateful to Amir Barghi, a graduate student at Dartmouth
College, for a careful reading of the entire manuscript. His suggestions
led to improvements in the presentation at numerous places in the
text.

The manuscript was tested in courses at the University of Mari-
bor, Slovenia; the Montanuniversität Leoben, Austria; and Furman Uni-
versity, Greenville, SC, United States. We wish to thank our students
Matevž Črepnjak, Michael Hull, Marko Jakovac, Luka Komovec, Aneta
Macura, Michał Mrzygłód, Mateusz Olejarka, Katja Prnaver, Jeannie
Tanner, and Joseph Tenini for remarks that helped to make the text
more accessible.
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Last, and certainly not least, we wish to thank Charlotte Hender-
son, our associate editor, and the other staff at A K Peters, Ltd., for
the professional support and handling of our book that every author
desires. Special thanks are extended to Alice and Klaus Peters for their
involvement and expertise offered at all stages of publication.

W. Imrich, S. Klavžar, and D.F. Rall
Leoben, Maribor, Greenville
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1 The Cartesian Product

Throughout this book the Cartesian product will be the leading ac-
tor. With its help, the reader will develop a deeper understanding of
graph theory. In addition, the reader will learn about important new
concepts such as circular colorings, L(2,1)-labelings, prime factoriza-
tions, canonical metric embeddings, and distinguishing numbers.

In this chapter, we define the Cartesian product and introduce fibers
and projections as important tools for further investigations. We also
show that a product graph is connected if and only if its factors are
connected. Along the way, we list several examples of Cartesian prod-
ucts. In particular, we observe that line graphs of complete bipartite
graphs are products of complete graphs, and we show that these are
the only products that are line graphs.

1.1 Definitions, Fibers, and Projections
Before we define the Cartesian product, we list some conventions to
be used throughout the book. We write g ∈ G instead of g ∈ V(G) to
indicate that g is a vertex of G, and |G| = |V(G)| for the number of
vertices. An edge {u,v} of a graph G is denoted as uv . Sometimes,
particularly when dealing with edges in products, we also write [u,v].

The Cartesian product of two graphs G and H, denoted G�H, is a
graph with vertex set

V(G�H) = V(G)× V(H), (1.1)

that is, the set {(g,h) | g ∈ G,h ∈ H}.
The edge set of G�H consists of all pairs [(g1, h1), (g2, h2)] of

vertices with [g1, g2] ∈ E(G) and h1 = h2, or g1 = g2 and [h1, h2] ∈
E(H).

For example, Figure 1.1 depicts P4�P3 (left) and C7�K2 (right). To
the first example, we remark that Cartesian products Pm�Pn of two

3
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4 Part I. Cartesian Products

Figure 1.1. Cartesian products P4�P3 (left) and C7�K2 (right).

paths on m and n vertices are called complete grid graphs, and their
subgraphs are known as grid graphs. Such graphs appear in many
applications, for instance in the theory of communication networks.

Note that K2�K2 = C4, that is, the Cartesian product of two edges
is a square. This is the motivation for the introduction of the notation
� for the Cartesian product.1

We can also define the edge set by the relation

E(G�H) = (E(G)× V(H)) ∪ (V(G)× E(H)), (1.2)

where the edge (e,h) of G�H, with e = [g1, g2] ∈ E(G), h ∈ H,
has the endpoints (g1, h), (g2, h), and the edge (g, f ), with g ∈ G,
f = [h1, h2] ∈ E(H), has the endpoints (g,h1), (g,h2).

Since edges in simple graphs can be identified with their (unordered)
sets of endpoints, the preceding two definitions of the edge set of
G�H are equivalent.

Combining Equations (1.1) and (1.2), we obtain yet another, even
more concise characterization of the Cartesian product of two graphs
G and H; see Gross and Yellen [49, p. 238]:

G�H = (G × V(H)) ∪ (V(G)×H).

Here
G × V(H) =

⋃
h∈H
(G × {h}) ,

and every G × {h} is a copy of G. We denote it by Gh and call it a
G-fiber.2 Analogously, V(G) × H is the union of the H-fibers gH =
{g} ×H.

1Some authors use the term box product for the Cartesian product.
2In Product Graphs [66], fibers are referred to as layers.
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Chapter 1. The Cartesian Product 5

Figure 1.2. Projection pC4 : C4�P3 → C4.

For a given vertex v = (g,h), we also write Gv = Gh, and respec-
tively, vH = gH. Clearly Gv can also be defined as the subgraph of
G�H induced by {(x,h) | x ∈ G}, and the mappingϕ : V(Gh)→ V(G)
defined by

ϕ : (x,h)� x

is a bijection that preserves adjacency and nonadjacency. Such a bijec-
tion is called a graph isomorphism. One can say Gh and G are isomor-
phic, or in symbols, Gh � G.

Sometimes we also write G = H for isomorphic graphs. Thus, G =
H may mean that G and H have the same vertex and edge sets or that
G and H are isomorphic. For example, the phrase “G is a K2” or the
equation “G = K2” both mean that G is isomorphic to K2.

In contrast, for two G-fibers Gv and Gw of a product G�H, the
statement Gv = Gw expresses that these fibers are identical, whereas
Gv � wH really means only that the two fibers are isomorphic because
Gv ≠ wH; in fact, |Gv ∩ wH| = 1.

Note that G�H � H�G, and that K1�G � G�K1 � G. In other
words, Cartesian multiplication is commutative and K1 is a unit (see
Exercise 3).

For a product G�H, the projection pG : G�H → G is defined by

pG : (g,h)� g.

It is clear what we mean by pH . See Figure 1.2 for the projection pC4

of C4�P3 onto C4.
Under the projections pG or pH , the image of an edge is an edge or a

single vertex. Such mappings are called weak homomorphisms. Clearly,
the mapping ϕ : V(Gh) → V(G) defined above is the restriction of pG
to Gh.
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6 Part I. Cartesian Products

More generally, let U be a subgraph of G�H. We follow common
practice and define pGU as the subgraph of G with the vertex set

{pG(v) | v ∈ U}

and edge set

{[pG(u),pG(v)] | [u,v] ∈ E(U), pG(u) ≠ pG(v)}.

1.2 Connectedness and More Examples
We continue with the following simple, yet fundamental observation
about Cartesian products.

Lemma 1.1. A Cartesian product G�H is connected if and only if both
factors are connected.

Proof: Suppose G�H is connected. We have to prove that both G and
H are connected. Clearly, it suffices to prove it for G. Let g and g′ be
any two vertices of G, and let h ∈ H be arbitrary. Then there is a path
P in G�H from (g,h) to (g′, h), and pGP ⊆ G contains a path from g
to g′.

Conversely, assume that G and H are connected. We have to show
that there is a path between any two arbitrarily chosen vertices (g,h)
and (g′, h′) of G�H. Let R be a g,g′-path and S an h,h′-path. Then

(R × {h})∪ ({g′} × S)

is a (g,h),(g′, h′)-path; see Figure 1.3. �

Before continuing with new concepts related to Cartesian products,
we take a break with two examples: prisms and line graphs of complete
bipartite graphs.

Prisms over graphs appear in many situations and are defined as
follows. Let G be a graph. Then the prism over G is the graph obtained
from the disjoint union of graphs G′ and G′′, both isomorphic to G, by
joining any vertex of G′ with its isomorphic image in G′′. An example
of a prism is shown in Figure 1.4.

From our point of view, the prism over G is the Cartesian product

G�K2 .

Let G be a graph. Then the vertex set of the line graph L(G) of G
consists of the edges of G. Two vertices of L(G) are adjacent if the
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Chapter 1. The Cartesian Product 7

H
Gg g′

h

h′

(g,h)

(g′, h′)

S

R

Figure 1.3. G�H is connected provided G and H are connected.

Figure 1.4. A graph (left) and the prism over it (right).

corresponding edges of G are adjacent. Note that a vertex of degree d
in G yields a complete subgraph Kd in L(G).

For instance, for any n ≥ 2, L(K1,n) = Kn and L(Pn) = Pn−1.
Let m,n ≥ 2 and consider the complete bipartite graph Km,n with

the bipartition {u1, u2, . . . , um}, {w1,w2, . . . ,wn}. Then the vertex set
of L(Km,n) is

{uiwj | 1 ≤ i ≤m,1 ≤ j ≤ n} .
Vertices uiwj and ui′wj′ are adjacent in L(Km,n) if and only if i = i′
and j �= j′, or j = j′ and i �= i′. This implies that

L(Km,n) = Km�Kn .

In fact, these are the only connected line graphs that are Cartesian
products, as the following result of Palmer asserts.

Proposition 1.2. [97] Let X be a connected graph. Then L(X) is a non-
trivial Cartesian product if and only if X = Km,n, m,n ≥ 2.


