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Foreword

These notes are based on “Topics in Galois Theory,” a course given by
J-P. Serre at Harvard University in the Fall semester of 1988 and written
down by H. Darmon. The course focused on the inverse problem of Galois
theory: the construction of field extensions having a given finite group G
as Galois group, typically over Q but also over fields such as Q(T ).

Chapter 1 discusses examples for certain groups G of small order. The
method of Scholz and Reichardt, which works over Q when G is a p-group
of odd order, is given in chapter 2. Chapter 3 is devoted to the Hilbert
irreducibility theorem and its connection with weak approximation and
the large sieve inequality. Chapters 4 and 5 describe methods for showing
that G is the Galois group of a regular extension of Q(T ) (one then says
that G has property GalT ). Elementary constructions (e.g. when G is a
symmetric or alternating group) are given in chapter 4, while the method of
Shih, which works for G = PSL2(p) in some cases, is outlined in chapter 5.
Chapter 6 describes the GAGA principle and the relation between the
topological and algebraic fundamental groups of complex curves. Chapters
7 and 8 are devoted to the rationality and rigidity criterions and their
application to proving the property GalT for certain groups (notably, many
of the sporadic simple groups, including the Fischer-Griess Monster). The
relation between the Hasse-Witt invariant of the quadratic form Tr (x2) and
certain embedding problems is the topic of chapter 9, and an application
to showing that Ãn has property GalT is given. An appendix (chapter 10)
gives a proof of the large sieve inequality used in chapter 3.

The reader should be warned that most proofs only give the main ideas;
details have been left out. Moreover, a number of relevant topics have been
omitted, for lack of time (and understanding), namely:

a) The theory of generic extensions, cf. [Sa1].
b) Shafarevich’s theorem on the existence of extensions of Q with a given

solvable Galois group, cf. [NSW], chap. IX.
c) The Hurwitz schemes which parametrize extensions with a given Ga-

lois group and a given ramification structure, cf. [Fr1], [Fr2], [Ma3].
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x Foreword

d) The computation of explicit equations for extensions with Galois group
PSL2(F7), SL2(F8), M11, . . ., cf. [LM], [Ma3], [Ma4], [Ml1], . . .

e) Mestre’s results [Me3] on extensions of Q(T ) with Galois group 6 ·A6,
6 ·A7, and SL2(F7).

We wish to thank Larry Washington for his helpful comments on an
earlier version of these notes.

Paris, August 1991.

H. Darmon J-P. Serre

For the second edition of these Notes, some corrections have been made,
and the references have been updated.

Paris, June 2004

J-P. Serre
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Notation

If V is an algebraic variety over the field K, and L is an extension of K, we
denote by V (L) the set of L-points of V and by V/L the L-variety obtained
from V by base change from K to L. All the varieties are supposed reduced
and quasi-projective.

An is the affine n-space; An(L) = Ln.
Pn is the projective n-space; Pn(L) = (L(n+1) − {0})/L∗; the group of

automorphisms of Pn is PGLn = GLn/Gm.
If X is a finite set, |X| denotes the cardinality of X.
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Introduction

The question of whether all finite groups can occur as Galois groups of an
extension of the rationals (known as the inverse problem of Galois theory)
is still unsolved, in spite of substantial progress in recent years.

In the 1930’s, Emmy Noether proposed the following strategy to attack
the inverse problem [Noe]: by embedding G in Sn, the permutation group
on n letters, one defines a G-action on the field Q(X1, . . . , Xn) = Q(X).
Let E be the fixed field under this action. Then Q(X) is a Galois extension
of E with Galois group G.

In geometric terms, the extension Q(X) of E corresponds to the projec-
tion of varieties: π : An −→ An/G, where An is affine n-space over Q.
Let P be a Q-rational point of An/G for which π is unramified, and lift
it to Q ∈ An(Q̄). The conjugates of Q under the action of Gal(Q̄/Q) are
the sQ where s ∈ HQ ⊂ G, and HQ is the decomposition group at Q. If
HQ = G, then Q generates a field extension of Q with Galois group G.

A variety is said to be rational over Q (or Q- rational) if it is birationally
isomorphic over Q to the affine space An for some n, or equivalently, if its
function field is isomorphic to Q(T1, . . . , Tn), where the Ti are indetermi-
nates.

Theorem 1 (Hilbert, [Hi]) If An/G is Q-rational, then there are infinitely
many points P,Q as above such that HQ = G.

This follows from Hilbert’s irreducibility theorem, cf. §3.4.

Example: Let G = Sn, acting on Q(X1, . . . , Xn). The field E of Sn-
invariants is Q(T1, . . . , Tn), where Ti is the ith symmetric polynomial, and
Q(X1, . . . , Xn) has Galois group Sn over E: it is the splitting field of the
polynomial

Xn − T1X
n−1 + T2X

n−2 + · · · + (−1)nTn.

Hilbert’s irreducibility theorem says that the Ti can be specialized to in-
finitely many values ti ∈ Q (or even ti ∈ Z) such that the equation

Xn − t1X
n−1 + t2X

n−2 + · · · + (−1)ntn = 0

xiii


