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PREFACE

Nonstandard analysis is one of the the great achievements of modern ap­
plied mathematical logic. In addition to the important philosophical achieve­
ment of providing a sound mathematical basis for using infinitesimals in anal­
ysis, the methodology is now well established as a tool for both research and 
teaching, and has become a fruitful field of investigation in its own right. It 
has been used to discover and prove significant new standard theorems in 
such diverse areas as probability theory and stochastic analysis, functional 
analysis, fluid mechanics, dynamical systems and control theory, and recently 
there have been some striking and unexpected applications to additive number 
theory.

A conference on Nonstandard Methods and Applications in Mathematics 
(NS2002) was held in Pisa, Italy from June 12-16 2002. This was originally 
planned as a special section in the very successful first joint meeting of the 
American Mathematical Society and the Unione Matematica Italiana. In 
order to accommodate the large number of mathematicians interested in the 
field, a satellite conference, hosted by the Universitá di Pisa and held at the 
Domus Galilaeana, was added during the days preceding the main AMS/UMI 
meeting. A complete list of the registered participants appears later in this 
forward.

This volume is a byproduct of NS2002. Not a proceedings per se, it is 
a collection of peer-reviewed papers solicited from some of the participants 
with the aim of providing something more timely than a textbook, but less 
ephemeral than a conventional proceedings. To that end, the volume contains 
both survey papers on topics for which other surveys are either dated or 
nonexistent, and research articles on applications too recent to have received 
attention in older volumes.

One of the included papers, on an infinitesimal approach to calculus, de­
serves special mention. The use of infinitesimals in the teaching of calculus is 
of course not at all new, though they began to disappear from textbooks late in 
the 19th century due to concerns about their theoretical underpinnings. (Even 
today most instructors use infinitesimals in teaching applications, such as vol­
umes of rotation, as they are more natural and compelling than Riemann sums

V ll



Vill PREFACE

in this context.) Any foundational concerns were of course completely dis­
pelled by Abraham Robinson’s work, and at least two calculus textbooks and 
several introductory analysis texts using infinitesimals have since appeared. By 
beginning the course with some basic rules for working in an extension of the 
real number system, such books make it possible to offer completely correct 
proofs to beginning students, proofs which better encapsulate mathematical 
intuition than do more conventional arguments.

A few months prior to NS2002, the organizers learned that an infinitesimal 
approach to calculus was being adopted by some high school teachers in 
Geneva, Switzerland. This was the first attempt we had heard of to use a 
modern infinitesimal approach at the high school level. Curious about the 
effort — which appeared to be independent of (and different than) the earlier 
approaches of Keisler et al — we asked one of the course’s designers, Richard 
O’Donovan, to come to our meeting and report on their work. The paper 
here. Nonstandard analysis at pre-university level: naive magnitude analysis by 
O’Donovan and his colleague John Kimber describes their approach

We are grateful to the Istituto Nazionale di Alta Matematica, Gruppo 
Nazionale per le Strutture Algebriche, Geome-triche e le loro Applicazioni 
(INdAM-GNSAGA), and to the University of Pisa Interdepartmental Center 
for the Study of Complex Systems (CISSC). for the financial support which 
made NS2002 possible. We are also grateful to the Domus Galilaeana of Pisa 
for hosting part of the congress.

Thanks also to the ASL, in particular to C. Ward Henson and to Steffen 
Lempp, for their assistance at all stages of producing this volume.

The program comprised a total of thirty-three talks, including the following 
invited lectures:

N.J. Cutland (Hull, UK): Nonstandard techniques in stochastic fluid dy­
namics

H. Osswald (München, Germany): Malliavin calculus on Banach space 
valued continuous functions

F. Diener (Nice, France): Nonstandard tree model for financial mathemat­
ics: Beyond the continuous Black-Scholes approximation for vanilla and 
barrier options

M. Wolff (Tübingen, Germany): Discrete approximation o f spaces and 
operators

V. Bend (Pisa, Italia): Numerosities o f labelled sets: A new way o f counting
T. Nakamura (Tsuda, Japan): Construction o f a path-space measure for 

the Ornstein- Uhlenbeck process by infinitesimal random walks
A. Madntyre (London, UK): Ultraproducts o f cohomology theories
J.L. Bell (Western Ontario, Canada): Real lines in smooth infinitesimal 

analysis
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H. J. Keisler (Wisconsin, USA): Products o f Loeb spaces
K. Hrbacek (CUNY, USA): Nonstandard set theory
P.A. Loeb (Illinois, USA): Base operators in analysis and a generalization 

o f monads
R. Jin (Charleston, USA): Nonstandard analysis and density problems: 

Introduction and recent developments
D.A. Ross (Hawaii, USA): Nonstandard measure constructions: Examples 

and problems
S. Albeverio (Bonn, Germany): No title

The following is a complete list of registered participants in NS2002:
Eva Aigner, Petr Andreyev, David Ballard. Stefano Baratella, John Bell, 

Vieri Benci, Eric Benoit, Alessandro Berarducci, Josef Berger, Ouahiba 
Cherikh, Nigel Cutland, Francine Diener, Mauro Di Nasso, Antonino Drago, 
Ruggero Ferro, Marco Forti, Eberhard Gerlach, Guido Gherardi, Paolo Gior­
dano, Karel Hrbacek. Chris Impens, Renling Jin, Vladimir Kanovei. Jerome 
Keisler, Giacomo Lenzi, Steven Leth, Peter Loeb, Angus Macintyre, Na­
talia Martins, Vladimir Molchanov, Mojtaba Moniri, Toru Nakamura, Vi­
tor Neves, Siu-Ah Ng, Richard O’Donovan, Horst Osswald, Yves Peraire, 
Hans Ploss, Emiliano Rago, Giuseppe Randazzo, Hermann Render, Sergio 
Rodrigues, David Ross, Peter Schuster, Joao Teixeira, Hans Vernaeve, Guy 
Wallet, Manfred Wolff, Beate Zimmer.

The organizers note with sadness the death in May 2004 of our friend and 
colleague David Ballard. David was an invited participant in NS2002. and his 
work in the foundations of nonstandard set theory was intriguing and highly 
original.

The Editors 
Nigel J. Cutland, Hull 
Mauro Di Nasso, Pisa 

David A. Ross, Honolulu



http://taylorandfrancis.com


FOUNDATIONS



http://taylorandfrancis.com


THE EIGHTFOLD PATH TO NONSTANDARD ANALYSIS

VIERI BENCI, MARCO FORTI, AND MAURO DI NASSO

Abstract. This paper consists of a quick introduction to the “hyper-methods” of nonstandard 
analysis, and of a review of eight different approaches to the subject, which have been recently 
elaborated by the authors.

Those who follow the noble Eightfold 
Path are freed from the suffering and 
are led ultimately to Enlightenment.

(Gautama Buddha)

Introduction. Since the original works [39,40] by Abraham Robinson, many 
different presentations to the methods of nonstandard analysis have been 
proposed over the last forty years. The task of combining in a satisfactory 
manner rigorous theoretical foundations with an easily accessible exposition 
soon revealed very difficult to be accomplished. The first pioneering work 
in this direction was W.A.J. Luxemburg’s lecture notes [36]. Based on a 
direct use of the ultrapower construction, those notes were very popular in 
the “nonstandard” community in the sixties. Also Robinson himself gave a 
contribution to the sake of simplification, by reformulating his initial type- 
theoretic approach in a more familiar set-theoretic framework. Precisely, in 
his joint work with E. Zakon [42], he introduced the superstructure approach, 
by now the most used foundational framework.

To the authors’ knowledge, the first relevant contribution aimed to make 
the “hyper-methods” available even at a freshman level, is Keisler’s book [33], 
which is a college textbook for a first course of elementary calculus. There, 
the principles of nonstandard analysis are presented axiomatically in a nice 
and elementary form (see the accompanying book [32] for the foundational 
aspects). Among the more recent works, there are the “gentle” introduction 
by W.C. Henson [26], R. Goldblatt’s lectures on the hyperreals [25], and 
K.D. Stroyan’s textbook [44].

2000 Mathematics Subject Classification. 26E35 Nonstandard analysis; 03E65 Other hypothe­
ses and axioms.

During the preparation o f  this paper the authors were supported by M IU R  PR IN  grants 
“M etodi variazionali e topologici nello studio di fenomeni non lineari” and “M etodi logici nello 
studio di strutture geometriche, topologiche e insiemistiche”.

Nonstandard Methods and Applications in Mathematics
Edited by N. J. Cutland, M. Di Nasso, and D. A. Ross 
Lecture Notes in Logic, 25
©  2006, Association for Symbolic Logic 3



4 VIERI BENCI. MARCO FORTE AND MAURO DI NASSO

Recently the authors investigated several different frameworks in algebra, 
topology, and set theory, that turn out to incorporate explicitly or implicitly 
the “hyper-methods”. These approaches show that nonstandard extensions 
naturally arise in several quite different contexts of mathematics. An inter­
esting phenomenon is that some of those approaches lead in a straightfor­
ward manner to ultrafilter properties that are independent of the axioms of 
Zermelo-Fraenkel set theory ZFC.

Contents. This article is divided into two parts. The first part consists 
of an introduction to the hyper-methods of nonstandard analysis, while the 
second one is an overview of eight different approaches to the subject recently 
elaborated by the authors. Most proofs are omitted, but precise references are 
given where the interested reader can find all details.

Part I contains two sections. The longest Section 1 is a soft introduction 
to the basics of nonstandard analysis, and will be used as a reference for 
the remaining sections of this article. The three fundamental “hyper-tools” 
are presented, namely the star-map, the transfer principle, and the saturation 
property, and several examples are given to illustrate their use in the prac­
tice. The material is intentionally presented in an elementary (and sometimes 
semi-formal) manner, so that it may also serve as a quick presentation of 
nonstandard analysis for newcomers. Section 2 is focused on the connec­
tions between the hyper-extensions of nonstandard analysis and ultrapowers. 
In particular, a useful characterization of the models of hyper-methods is 
presented in purely algebraic terms, by means of limit ultrapowers.

Each of the eight Sections 3-10 in Part II presents a different possible “path” 
to nonstandard analysis. The resulting eight approaches, although not strictly 
equivalent to each other, are all suitable for the practice, in that each of them 
explicitly or implicitly incorporates the fundamental “hyper-tools” introduced 
in Section 1.

Section 3 is about a modified version of the so-called superstructure ap­
proach, where a single superstructure is considered both as the standard and 
the nonstandard universe (see [3].) In Section 4, we present the purely al­
gebraic approach introduced in [6, 7], which is based on the existence of a 
“special” ring homomorphism. Starting from such a homomorphism, we 
define in a direct manner a superstructure model of the hyper-methods, as 
defined in Section 3.

In Section 5, the axiomatic theory *ZFC of [17] is presented, that can be 
seen as an extension of the superstructure approach to the full generality of 
set theory. Section 6 is dedicated to the so-called Alpha Theory, an axiomatic 
presentation that postulates five elementary properties for an “ideal” (infinite) 
natural number a  (see [4].) These axioms suffice for defining a star-map on 
the universal class of all mathematical objects.

Section 7 deals with topological extensions, a sort of “topological comple­
tions” of a given set X, introduced and studied in [9, 18]. These structures
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are topological spaces *X where any function /  : X  —> X  has a continuous 
★ -extension, */ : *X —> *X, and where the ★ -extension *A of a subset A C X  is 
simply its closure in *X. Hyper-extensions of nonstandard analysis, endowed 
with a natural topology, are characterized as those topological extensions that 
satisfy two simple additional properties. Moreover, several important features 
of nonstandard extensions, such as the enlarging and saturation properties, 
can be naturally described in this topological framework. Section 8, following 
[24], further simplifies the topological approach of the preceding section. By 
assuming that the ★ -extensions of unary functions satisfy three simple “preser­
vation properties” having a purely functional nature, one obtains all possible 
hyper-extensions of nonstandard analysis.

Section 9 deals with natural ring structures that can be given to suitable 
subspaces of β Ζ , the Stone-Čech compactification of the integers Z (see [19].) 
Such rings turn out to be sets of hyperintegers with special properties that 
are independent of ZFC. In the final Section 10, we consider a new way of 
counting that has been proposed in [5] and which maintains the ancient prin­
ciple that “the whole is larger than its parts”. This counting procedure is 
suitable for those countable sets whose elements are “labelled” by natural 
numbers. We postulate that this procedure satisfies three natural “axioms of 
compatibility” with respect to inclusion, disjoint union, and Cartesian prod­
uct. As a consequence, sums and products of numerosities can be defined, and 
the resulting semi-ring of numerosities becomes a special set of hypernatural 
numbers, whose existence is independent of ZFC.

Disclaimer. A disclaimer is in order. By no means the approaches presented 
here have been choosen because they are better than others, or because they 
provide an exhaustive picture of this field of research. Simply, this article 
surveys the authors’ contributions to the subject over the last decade. In 
particular, throughout the paper we stick to the so-called external viewpoint 
of nonstandard methods, based on the existence of a star-map * providing an 
hyper-extension *A for each standard object A. This is to be confronted with 
the internal approach of Nelson’s 1ST [37], and other related nonstandard set 
theories where the standard predicate s t  is used in place of the star-map (cf. 
e.g. the recent book [30]; see also Hrbacek’s article in this volume). Extensive 
treatments of nonstandard analysis based on the internal approach are given 
e.g. in the books [21, 22, 38].

Part I -  The “Hyper-methods”

§1. What are the “hyper-methods”? Roughly, nonstandard analysis essen­
tially consists of two fundamental tools: the star-map * and the transfer 
principle. In most applications, a third fundamental tool is also considered, 
namely the saturation property.
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There are several different frameworks where the methods of nonstandard 
analysis (the “hyper-methods”) can be presented. The goal of this section is 
to introduce the basic notions in such a way that their formulations do not 
depend on the specific approach that one is adopting. Of course, there is a 
price we have to pay to reach this generality. Sometimes, the definitions as 
given here are not entirely formalized (at least from the point of view of a 
logician). However we are confident that they are still sufficiently clear and 
unambiguous to the point that some “practitioners” may find them suitable 
already. To reassure the suspicious reader, we anticipate that each of the eight 
Sections 3-10 consists of a specific approach where all notions presented here 
are given rigorous foundations.

Besides the fundamental tools and definitions, this section also contains 
the definition of internal element, sketchy proofs of the first consequences of 
the definitions, as well as a bunch of relevant examples. It is not a complete 
introduction (e.g. overspill and hyperfinite sets are not treated), but it may be 
used as a first reading for beginners interested in nonstandard analysis.

1.1. The basic definitions. In order to correctly formulate the fundamental 
tools of hyper-methods, we need the following

D efinition 1.1. A universe U is a nonempty collection of “mathematical 
objects” that is closed under subsets (i.e. ö C i  g U ^  a G U) and closed 
under the basic mathematical operations. Precisely, whenever A, B e  U, we 
require that also the union A U B, the intersection A П B, the set-difference 
A \  B, the ordered pair (A,B),  the Cartesian product A x B, the power set 
V{A) = {a I a Ç A},  the function-set B A =  { /  | /  : A —> B }, all belong to 
U.1 A universe U is also assumed to contain (copies of) all sets of numbers 
N, Z, Q, R, C G U, and to be transitive, i.e. members of U belong to U (in 
formulae: a e A e V  => a

The notion of “mathematical object” includes all objects used in the or­
dinary practice of mathematics, namely: numbers, sets, functions, relations, 
ordered tuples, Cartesian products, etc. It is well-known that all these no­
tions can be defined as sets and formalized in the foundational framework of 
Zermelo-Fraenkel axiomatic set theory ZFC.2 For sake of simplicity, here we 
consider them as primitive concepts not necessarily reduced to sets.

Hyper-Tool #  1: STAR-MAP.
The star-map is a function * : U —► V between two universes that 
associates to each object A G U its hyper-extension {or nonstandard

1 Clearly, here we implicitly assume that A and B are sets, otherwise these operation don’t 
make sense. The only exception is the ordered pair, that makes sense for all mathematical objects 
A and B.

2 E.g. in ZFC, an ordered pair (a , b) is defined as the Kuratowskipair { { a } ,  {a, 6 }};  an «-tuple 
is inductively defined by (a \ , . . . ,  an, a„+\) =  ((a \ , . . . ,  an), an+1); an «-place relation R  on A is
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extension) *A £ V. It is assumed that *n = n for all natural numbers 
n £ N, and that the properness condition *N ф N holds.

It is customary to call standard any object A £ U in the domain of the 
star-map, and nonstandard any object B £ V in the codomain. The adjective 
standard is also often used in the literature for hyper-extensions *A £ V.

We remark rightaway that one could directly consider a single universe U = 
V. Doing so, the traditional distinction between standard and nonstandard 
objects is overcome.3 We point out that in all approaches appeared in the 
literature, the standard universe is taken to be large enough so as to include 
all mathematical objects under consideration.

We are now ready to introduce the second powerful tool of nonstandard 
methods. It states that the star-map preserves a large class of properties.

Hyper-Tool #  2: TRANSFER PRINCIPLE.
Let P(a i , . . . ,  a„) be a property o f the standard objects a \ , . . . ,  an 
expressed as an “elementary sentenceThen P(a \ , . . .  ,an) is true if  
and only if  the same sentence is true about the corresponding hyper­
extensions *an. That is:

The transfer principle (also known as Leibniz principle) is given a rigorous 
formulation by using the formalism of mathematical logic and, in particular, 
by appealing to the notion of bounded quantifier formula in the first-order 
language of set theory. Here we only give a semi-formal definition, and refer 
the reader to §4.4 of [12] for a rigorous treatment.

D efinition 1.2. We say that a property P(x  į , . . . ,  xn) of the objects x \ , . . . ,  
xn is expressed as an elementary sentence if the following two conditions are 
fulfilled:

(1) Besides the usual logic connectives (“not”, “and”, “or”, “if . . .  then”, 
“if and only if”) and quantifiers (“there exists”, “for all”), only the 
basic notions of function, value of a function at a given point, relation,

identified with the set R Ç An o f  я-tuples that satisfy it; a function /  : A —► B is identified 
with its graph {(a , b) £  A x  B \ b =  f { a ) } \  and so forth. As for numbers, complex numbers 
C =  R x R/  «  are defined as equivalence classes o f  ordered pairs o f  real numbers, and the 
real numbers R are defined as equivalence classes o f  suitable sets o f  rational numbers (namely, 
Dedekind cuts or Cauchy sequences). The rational numbers Q are a suitable quotient ZxZ/«, 
and the integers Z are in turn a suitable quotient N x N / « .  The natural numbers o f  ZFC are 
defined as the set ω o f  von Neum ann naturals: 0 =  0 and η +  1 =  n U { « }  (so that each natural 
number η =  { 0 , 1 , . . . , «  — 1} is identified with the set o f  its predecessors.) We remark that these 
definitions are almost compulsory in order to obtain a set theoretic reductionist foundation, but 
certainly they are not needed in the ordinary development o f  analysis.

3This matter will be discussed in Section 3 (see Definition 3.3) and Section 5.
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domain, codomain, ordered «-tuple, ith component of an ordered tuple, 
and membership E, are involved.

(2) The scopes of all universal quantifiers V (“for all”) and existential quan­
tifiers 3 (“there exists”) are “bounded” by some set.

A quantifier is bounded when it occurs in the form “for every x E X ” or 
“there exists y  E F ”, for some specified sets X, Y . Thus, in order to correctly 
apply the transfer principle, one has to stick to the following rule.

Rule o f the thumb. Whenever considering quantifiers: “Vx . . . ” or 
“3 y . . .  ”, we must always specify the range of the variables, i.e. 
we must specify sets X  and Y  and reformulate: “V x E X ... ” 
and “3 y  E Y . . .  ”. In particular, all quantifications on subsets:
“V x C X  . . . ” or “3 x C X  ... ”, must be reformulated in the form 
“Vx E V { X ) . . . ” and “Зх  e V { X ) . . . ” respectively, where V(X)  
is the powerset of X . Similarly, all quantifications on functions 
f  : A —► B, must be bounded by B A, the set of all functions from 
A t o B .

We are now ready to give the

FUNDAMENTAL DEFINITION:
A model o f hyper-methods (or a model o f nonstandard analysis) is 
a triple (* ; U ; V ) where * : U —► V is a star-map satisfying the 
transfer principle.

1.2. Some applications of transfer. We now show a few simple applications 
of the transfer principle, aimed to clarify the crucial notion of elementary 
sentence.

Example 1.3. By condition (1) of Definition 1.2, the following are all ele­
mentary sentences: “/  is a function with domain A and codomain Æ”; “6 is 
the value taken by /  at the point я ”;66R in an «-place relation on A"; “C is the 
Cartesian product of A and B ”. Thus by transfer, we get that “*/ : *A —> *B 
is a function with domain *A and codomain *2?”; “*Z? = *f(*a) is the value 
taken by *f  at the point *«”, i.e. *(/(«)) =  *f(*a); “*R is an «-place relation 
on *A”; and “*C = *A x *B is the Cartesian product of *A and *B”.

Example 1.4. The inclusion and all basic operations on sets are preserved 
under the star-map, with the only relevant exceptions of the powerset and 
the function-set (see Example 1.9 below). In fact the properties: 66A C 5 ”; 
“C = A U B ”; “C =  A П B ”; and “C = A \  B ” can all be formulated as 
elementary sentences. For instance, 66A C B ” means that “Vx E A. x  e B ”, 
etc. By transfer we obtain that “*A Ç *B”; “*C = *A U *B”; “*C = *A П *B”; 
and “*C = *A\ *B”.

Example 1.5. Let /  : A ^  B be any given standard function. Then the
images f {A ' )  =  { f  (a) \ a E A'} of subsets A' C A , and the preimages
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= {a e A I / (a) G B'} of subsets B r C B, are both preserved 
under the star-map, i.e. * (/(^ '))  =  and *{f~l {B')) =  * f ~ l (*Bf). In
particular, *Range(/) =  Ran ge(*/), and so /  is onto if and only if* / is. It is 
also easily shown that /  is 1-1 if and only if */ is.

Two more relevant properties are the following: *{a e A \ f  (a) = g(a)} = 
{a e*A  I *f(a)  = *g(a)}, a n d O ra p h ^ )  =  Graph(*/). All these properties 
are proved by direct applications of the transfer principle. E.g. the last equality 
is proved by transferring the elementary sentence:

“x G Graph ( / )  if and only if there exist a G A and b e B 
such that b = f ( a )  and x =  (a, b)”.

Example 1.6. Let A be a nonempty standard set, and consider the property: 
“< is a linear ordering on A". Notice first that < is a binary relation, hence 
*< is a binary relation on *A. By definition, < is a linera ordering if and only 
if it satisfies the following three properties, that are expressed by means of 
bounded quantifiers.

Then we can apply the transfer principle and obtain that “*< is a linear ordering 
on *A".

Example 1.7. It directly follows from condition (1) of Definition 1.2 that 
the hyper-extension of an и-tuple of standard objects A = (a\ , . . . ,  an) is 
*A = (*ai , . . . ,  *an). Similarly, if A = {a\ , . . . ,  an} is a finite set of standard 
objects, then its star-extension is *A = {*tfi,. . . ,  *an}. This is proved by 
applying transfer to the following elementary sentence:

“a\ G A and . . .  and a„ G A and for all x e A, x =  a\ or . . .  or x =  an”

Notice that for every standard set A, {*a \ a e A} C *A (apply transfer to 
all sentences “a e A"). In the last example we have seen that the inclusion 
is actually an equality when A is finite. But this is never the case when A is 
infinite, as a consequence of the properness condition *N ^  N.

Proposition 1.8. Let A be an infinite standard set A. Then the inclusion 
{*a I a G A} C *A is proper.

Proof. Fix a standard map /  : A —► N which is onto. Then *f : *A —> *N 
is onto as well. Now assume by contradiction that all elements in *A are of 
the form *a for some a e A. Then:

against the properness condition *N ф N. Ч
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Example 1.9. Let A and B be any standard sets. By transferring the 
sentences: “V x e T{A),  My E x, y  E A ” and “V/ E B A, /  is a func­
tion with domain A and codomain 5 ”, it is proved that *Р(Л) C V(*A), 
and *(Æ^) C *2?*̂ , respectively. Arguing similarly as in Example 1.7, one 
easily shows that these inclusions are equalities whenever both A and B 
are finite. In the infinite case, the inclusions are proper (cf. Proposition 
1.25).

1.3. The basic sets of hypernumbers. Let us now concentrate on the hyper­
extensions of sets of numbers.

D efinition 1.10. The elements of *N, *Z, IQ, *R and *C are called hyper­
natural, hyperinteger, hyperrational, hyperreal, and hypercomplex numbers, 
respectively.

Besides natural numbers, for convenience it is also customary to assume that 
*z = z for all numbers z. In this case, we have the inclusions N c  *N, Z c  *Z, 
Q C *Q, R C *R, and C c t  (the inclusions are proper by Proposition 1.8). 
Whenever confusion is unlikely, some asterisks will be omitted. For instance, 
we shall use the same symbols + and · to denote both the sum and product 
operations on N, Z, (Q, R, C and the corresponding operations defined on the 
hyper-extensions *N, *Z, IQ, *R, *C. Similarly for the ordering <.

In the next proposition we itemize the first properties of hypernumbers, all 
obtained as straightforward applications of the transfer principle.

Proposition 1.11.
1. *Z is a commutative ring, *Q is an ordered field, *R is a real-closed field, 

and *C is an algebraically closed field ;4
2. Every non-zero hypernatural number v E *N has a successor v + 1 and a 

predecessor v — 1 ;5
3. (N, <) is an initial segment o f  (*N, <), i.e. if  v E *N \  N, then v > n for all 

n e N;
4. For every positive ξ E *R there exists a unique v E *N such that v < ξ < 

v + 1 .In  particular, *N is unbounded in *R;
5. The hyperrational numbers *Q, as well as the hyper irrational numbers 

* (R \  (Q) — *R \  IQ, are dense in *R;6
6. Let Z  be any o f the sets N, Z, (Q or R, and consider the open interval 

(a,b) = {x E X  I a < x < b] determined by numbers a < b in Z.

4 Recall that an ordered field is real-closed if every positive element is a square, and every 
polynomial o f  odd degree has a root. A field is algebraically closed if all non-constant polynomials 
have a root.

5 We say that ζ' is the successor o f  ξ (or ξ is the predecessor of ξ') if ξ < ξ' and there exist no 
elements ζ such that ξ < ζ <  ξ ' .

6I.e.. for all ξ < ζ in *R, there exist .v e  *Q and y  e \  *Q such that ξ < x. y  < ζ.
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Then the hyper-extension \ a f i )  =  {ξ E *Z | a < ξ < h}. Similar 
equalities also hold for intervals o f the form  [a .b ), (a.b]. (a.b). (—oc, h] 
and [a, +oo).

As a consequence of property (3) above, the elements of *N \  N are called 
infinite. More generally:

D efinition 1.12. A hyperreal number ξ E *M is infinite if either ξ > v or 
ξ < -v  for some v E *N \  N. Otherwise we say that ξ is finite. We call 
infinitesimal those hyperreal numbers ε E *R such that - r  < ε < r for all 
positive reals r E R. In this case we write ε ~  0.

The following properties are easily seen:7 ε Φ 0 is infinitesimal if and only 
if its reciprocal l /ε is infinite; if ξ and ζ  are finite, then also ξ + ζ  and ξ · ζ  are 
finite; if ε, η ~  0, then also ε + 7 ~ 0; ΐ ί ε ~ 0  and ξ is finite, then ε ·ξ  ~  0: if ω 
is infinite and ξ is not infinitesimal, then ω · ξ is infinite; if ε φ  0 is infinitesimal 
but ξ is not infinitesimal, then ξ /ε  is infinite; if ω is infinite and ξ is finite, then 
ξ/ω  ~  0; etc.

Infinitesimal and infinite numbers can be seen as formalizations of the 
intuitive ideas of “small” number and “large” number, respectively. Also the 
idea of “closeness” can be formalized as follows.

D efinition 1.13. The hyperreal numbers ξ and ζ  are infinitely close \ϊξ  — ζ  
is infinitesimal. In this case, we write ξ ~  ζ.

Clearly, ~  is an equivalence relation. The completeness of the real numbers 
R  yields the following result.

Theorem 1.14 (Standard part). For every finite ξ e *M, there exists a unique 
real number r e R  (called the “standard part” o f ξ ) such that ξ ~  r.

Proof. The least upper bound r = sup{tf E R | a < ξ} has the desired 
property. Ч

The next interesting result shows that in a way the hyperrationals already 
“incorporate” the real numbers (see e.g. [45, Thm. 4.4.4] and [14, Ch.II, 
Thm. 2]).

Theorem 1.15. Let *Qb be the ring o f finite hyperrationals, and let 3 be the 
maximal ideal o f its infinitesimals. Then R and *Qh/3  are isomorphic as ordered 
fields.

1.4. Correctly applying the transfer principle. From the examples presented 
so far, one might (wrongly) guess that applying the transfer principle merely 
consists in putting asterisks * all over the place. It is not so, because — as we 
already pointed out — only elementary sentences can be transferred. We now 
give three relevant examples aimed to clarify this matter.

7In fact, they hold in any non-archimedecm field (the archimedean property is defined in 
Example 1.18).
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Example 1.16. Recall the well-ordering property of N:
“Every nonempty subset o f  N has a least element”.

By applying the transfer principle to this formulation, we would get that “Every 
nonempty subset of *N has a least element”. But this is clearly false (e.g. the 
collection *N \  N of infinite hypernaturals has no least element, because if v is 
infinite, then v — 1 is infinite as well). We reached a wrong conclusion because 
we transferred a sentence which is not elementary (the universal quantifier is 
not bounded). However, we can easily overcome this problem by reformulat­
ing the well-ordering property as the following elementary sentence: “Every 
nonempty element o f V(N) has a least element", where 'P(N) is the powerset of
N. (Notice that the property66X  has a least element” is elementary, because it 
means: “there exists x E X  such that for all y e X ,x  < y ”.) We can now cor­
rectly apply the transfer and get: “Every nonempty element of*V(N) has a least 
element", where it is intended that the ordering on *N is the hyper-extension 
of the ordering on N. The crucial point here is that *F(N) is properly included 
in F(*N) (see Proposition 1.25 below).

Example 1.17. Recall the completeness property of real numbers:
“Every nonempty subset o f R which is bounded above, has a l.u.b."

As in the previous example, if we directly apply transfer to this formulation, 
we reach a false conclusion, namely: “Every nonempty subset of *R which is 
bounded above, has a l.u.b.” (e.g. the set of infinitesimals is bounded above 
but has no least upper bound). Again, the problem is that the sentence above 
is not elementary because it contains a quantification over subsets. To fix 
the problem, we simply have to consider the powerset P(R) and reformulate: 
“Every nonempty element ofV(Җ) which is bounded above has a l.u.b.”. Thus, 
by the transfer principle, we have a least upper bound for each upper-bounded 
element of *F(R) (which is a proper subset of V(*R), see Proposition 1.25 
below).

As suggested by the last examples, restricting to elementary sentences is not 
a limitation, because virtually all mathematical properties can be equivalently 
rephrased in elementary terms.

Another delicate aspect that needs some caution, is the possibility of mis­
reading a transferred sentence, once all asterisks * have been put in the right 
place. A relevant example is given by the archimedean property.

Example 1.18. The archimedean property of real numbers can be expressed 
in this elementary form:

“For all positive jc g R, there exists n E N such that n x >  1”.
By transfer, we obtain: “For all positive ξ E *R, there exists v E *N such that 
ν·ξ  > 1”. Notice that this sentence does not express the archimedean property 
of *R, because the element v could be an infinite hypernatural.
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Clearly, the hyperreal field *R is not archimedean (in fact, an ordered field 
is non-archimedean if and only if it contains non-zero infinitesimals). In 
particular R and *R are not isomorphic. We remark that this phenomenon of 
non-isomorphic mathematical structures that cannot be distinguished by any 
elementary sentence, is indeed the very essence of nonstandard analysis (and 
more generally, of model theory, a branch of mathematical logic).

1.5. Internal elements. We now introduce a fundamental class of objects in 
nonstandard analysis.

D e f i n it io n  1.19. An internal object is any element ξ e *X belonging to 
some hyper-extension *X. An element ξ e V of the nonstandard universe is 
external if it is not internal.

Notice that all hyper-extensions *X are internal, because e.g. *X e *Y, 
where Y = {X }  is the singleton of X . We remark that in most foundational 
approaches proposed in the literature, the collection of internal objects is as­
sumed to be transitive, i.e. if b e B and B is internal, then b is internal as well.8

The following useful theorem is a straightforward consequence of the trans­
fer principle and ofthe definition ofinternal object (see e.g. [12, Prop. 4.4.14]).

T h e o r e m  1.20 (Internal Definition Principle). I f  P(x, x \ , . . . ,  x n) is an el­
ementary sentence and B, B \ , . . . ,  Bn are internal objects, then also the set 
{x  G B I P(x, B \ , . . . ,  Bn)} is internal.

By direct applications of this principle, the following is proved.
P r o p o s it i o n  1.21.
1. The collection T o f internal sets is closed under union, intersection, set- 

difference, finite sets and tuples, finite Cartesian products, and under images 
and preimages o f internal functions',

2. For every standard set A, *P(A) = V{*A) Π I  is the set o f all internal 
subsets of*A;

3. For all standard sets A and B, *(BA) =  (*B А) П 1  is the set o f all internal 
functions from *A to *B\

4. I f  C,D  G l  are internal, then V{C)C\T (the set o f all internal subsets o f C) 
and (D c ) Π T  (the set o f all internal functions from C to D) are internal.

The notion of internal set is useful to correctly apply the transfer principle. 
In fact, any quantification on subsets or functions, can be transferred to 
a quantification on internal subsets or internal functions, respectively. For 
instance, let us go back to Examples 1.16 and 1.17. The well-ordering of N is 
transferred to: “Every nonempty internal subset of *N has a least element”. 
The completeness of R transfers to: “Every nonempty internal subset of *R 
that is bounded above has a l.u.b.”.

8 The matter o f  transitivity o f  the class o f  internal sets gives rise to interesting considerations 
in the foundations o f  nonstandard set theories (cf. Hrbacek’s remarks in Subsection 3.3 o f  [29].)
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Another example is the following.
Example 1.22. The well-ordering property of N implies that: “There is no 

decreasing function /  : N —> N”. Then, by transfer, “There is no internal 
decreasing function g :*N —» *N”.9

In general, we can state the following
Rule o f the thumb. Properties about subsets or about functions of 
standard objects, transfer to the corresponding properties about 
internal subsets or internal functions, respectively.

We can use the above considerations to prove that certain objects are exter­
nal.

Example 1.23. The set *N \  N of the infinite hypernatural numbers is ex­
ternal because it has no least element. Also N is external, otherwise the 
set-difference *N \  N would be internal.10 The set of infinitesimal hyperreal 
numbers is another external collection, because it is bounded above but with 
no least upper bound.

An easy example of external function is the following.
Example 1.24. Letg : *N —► *N be the function such that g{n) =  n 'ún e N, 

and g(v) =  0 if v e *N \  N. Then g is external, otherwise its range N would 
be internal.

As a consequence of Proposition 1.21, the above Examples 1.23 and 1.24 
show that *P(N) fi V(*N) and *(Nn) ψ *N*n. More generally, we have

Proposition 1.25.
1. Every infinite internal set has at least the size o f the continuum, hence it 

cannot be countable. In particular, for every infinite standard set A , the 
inclusion *V(A) c  V{*A) is proper;

2. I f  the standard set A is infinite and B contains at least two elements, then 
the inclusion *{BA) c  *B*A is proper.

We warn the reader that getting familiar with the distinction between inter­
nal and external objects is probably the hardest step in learning nonstandard 
analysis.

1.6. The saturation principle. The star-map and the transfer principle suf­
fice to develop the basics of nonstandard analysis, but for more advanced 
applications a third tool is also necessary, namely:

Countable Saturation Principle: Suppose {Вп}пещ C *A is a countable fam ­
ily o f internal sets with the ‘finite intersection property”. Then the inter­
section f)n£N в п Ф 0 is nonempty.

9We remark that there are models o f  hyper-methods where (external) decreasing functions 
g : *N —> *N exist.

10 Here N C *N is seen as an element o f  the nonstandard universe.
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Recall that a family of sets B has the finite intersection property if П/Lı Ф 0
for all choices of finitely many B \ , . . . ,  Bn <G B. In several contexts, stronger 
saturation principles are considered where also families of larger size are 
allowed. Precisely, let / t bea  given uncountable cardinal.

Fundamental Tool #  3: «-SATURATION PROPERTY.
Suppose B Ç *A is a family o f internal subsets o f some hyper­
extension *A, and suppose \B\ < «. I fB  has the ‘ finite intersection 
property”, then f]B  0.

In this terminology, countable saturation is Hi -saturation. The next example 
illustrates a relevant use of saturation.

Example 1.26. Let (X4 τ) be a Hausdorif topological space with character 
«, hence each point x  e X  has a base of neighborhoods λίχ of size at most 
«. Clearly, the family of internal sets Bx = {*/ | I  e λίχ } has the finite 
intersection property. If we assume «+-saturation,11 the intersection μ{χ) = 
П/€М 7̂  0· In the literature, μ(χ)  is called the monad of x. Notice that 
μ(χ)  Π џ{у)  =  0 whenever x y, since X  is Hausdorif. Monads are the 
basic ingredient in applying the hyper-methods to topology, starting with the 
following characterizations (see e.g. [35, Ch.III]):

• A Ç X  is open if and only if for every x e A, μ(α) Ç *A;
• C Ç X  is closed if and only if for every x C, μ(χ)  Π *C = 0;
• K  Ç X  is compact if and only if *K  Ç 1JvGä: μ{χ).

Sometimes in the literature, the following weakened version of saturation is 
considered, where only families of hyper-extensions are allowed.

D efinition 1.27 {n-enlarging property). Supposed C A is a family of sub­
sets of some standard set A , and suppose that |JF| < «. If T  has the “finite 
intersection property4’, then ф 0.* 12

We remark that the «+-enlarging property suffices to prove the nonstandard 
characterizations for open, closed and compact sets.

§2. Ultrapowers and hyper-extensions. In this section we deal with the con­
nections between ultrapowers and the hyper-extensions of nonstandard anal­
ysis. In particular, we will see that, up to isomorphisms, hyper-extensions are 
precisely suitable subsets of ultrapowers, namely the proper limit ultrapowers. 
This characterization theorem will be used in Part II of this article to show 
that the given definitions actually yield models of the hyper-methods.

n « + denotes the successor cardinal o f  n. Thus \B\ < k + is the same as \B\ <  k .
12We remark that the enlarging property is strictly weaker than saturation, in the sense that 

there are models o f  the hyper-methods where the «-enlarging property holds but «-saturation 
fails.
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2.1. Ultrafilters and ultrapowers. Recall that a f i l t e r  f  on a set I  is a 
nonempty family of subsets of /  that is closed under intersections and su­
persets, i.e.

• If A , B  G T  then А (Л  B  G T \
• If A  G T  and B  2  A , then also B  G T .

A typical example of filter on a set /  is the F rech e t f i l t e r  T r  of cofinite 
subsets.

D e f i n it io n  2.1. An u ltra f ilte r  U  on I  is a filter that satisfies the additional 
property: A  ^  I  \ A  e U .

It is easily shown that ultrafilters on I  are those non-trivial filters with are 
maximal with respect to inclusion.13 As a consequence of the definition, if a 
finite union A \  U · · · U A n e U  belongs to an ultrafilter, then at least one of 
the Aį G U .

First examples are the p r in c ip a l ultrafilters Uį =  { A  C I  \ i e  A } ,  where i 
is a fixed element of / .  Notice that an ultrafilter is non-principal if and only 
if it contains no finite sets (hence, if and only if it includes the Frechet filter). 
The existence of non-principal ultrafilters is proved by a straight application 
of Zorn’s lemma.

Given an ultrafilter U  on the set / ,  consider the following equivalence 
relation =u on functions with domain /:

The u ltra p o w e r  of a set X  modulo U  is the quotient set:

where we denoted by [ f ] u  = { g  G X 1 \ f  = u  g }  the equivalence class of 
/ .  When the ultrafilter U  is clear from the context, we simply write [ /] . X  is 
canonically embedded into its ultrapower X JU by means of the d ia g o n a l m a p  
d  : X i—► [cx \, where c x : /  —► X  is the constant function with value x.

The ultrapower construction is commonly used to obtain models of hyper­
methods. Indeed, models of hyper-methods are fully characterized by means 
the generalized notion of limit ultrapower (see Theorem 2.10 below.)

Ultrafilters naturally arise in hyper-extensions.

D e f i n it io n  2.2. Let X  be any standard set, and let a  e  * X . The u ltra f ilte r  
g e n e r a te d  by a  G *X, is the following family of subsets of X :

It is readily verified that U a is actually an ultrafilter on X .  Moreover, U a is 
non-principal if and only if a  Ф *x for all x G X .

13 By the trivialfilter on I  we mean the collection V (I  ) o f  all subsets o f  I .


