
SAILING THE GULF OF 3D DIGITAL CONTENT CREATION

RÉM I AR NAU D • MAR K C. BAR N E S
Foreword by Tim Sweeney

A K h r o n o s G r o u p O p e n S t a n d a r d

SAILING THE GULF OF 3D DIGITAL CONTENT CREATION

A K
PETERS

A K Peters, Ltd.

Arnaud

Barnes

S
AILIN

G
 TH

E G
U

LF O
F

3D
 D

IG
ITAL C

O
N

TE
N

T C
R

EATIO
N

“This book makes available the results of a joint industry effort, spearheaded by Sony
Computer Entertainment, Inc., to create a standard for digital asset exchange that enables
Playstation® 3 to bring more realistic content to life and into the home like never before.”

—Ken Kutaragi, President and CEO Sony Computer Entertainment

“Softimage welcomes the publication of COLLADA: Sailing the Gulf of 3D Digital Con-
tent Creation, where the centerpiece of the digital asset tool chain for the 3D interac-
tive industry is clearly explained and presented for the fi rst time. Softimage is proud to
have contributed to COLLADA since the beginning of its development, and to watch it
grow into a powerful resource supported by the industry as a whole.”
—Gareth Morgan, Senior product manager for Softimage Co., a subsidiary of Avid Technology, Inc.

“The COLLADA initiative is a demonstration of Sony’s leadership and commitment to
the games development industry. Autodesk is very supportive of this effort; it helps the
games community become more productive as it tackles the requirements and opportuni-
ties of new generation consoles.”
 —Marc Petit, VP Media & Entertainment, Autodesk

“This book is an excellent fi rst-hand account of the origins of COLLADA straight from the
people that made it happen. These pages are much more then just an authoritative technical
primer on enabling great content—they are also a glimpse into the passion and vision
that bought COLLADA to life. The Khronos Group is honored to provide a good home to
COLLADA—an open standard that is truly changing the 3D industry.”

—Neil Trevett, President, Khronos Group

“This book presents comprehensive and enlightening coverage of COLLADA from a
practical perspective. NVIDIA is proud of the continuing collaboration on this project,
and we look forward to seeing users fully utilize COLLADA to deploy next-generation
3D rendering content in future graphics applications.”

—Sébastien Dominé, Director of Developer Technology Tools, NVIDIA Corporation

“Getting compatible, reliable, and predictable communications between content creation
applications in a tool chain has long been the dream of developers. At last there is a solution.
The creators of COLLADA have come up with a schema, which is supported by Khronos, an
independent standards body, that allows the applications to communicate in an open
and effi cient manner—an industry standard for 3D interchange is fi nally here.”

—Dr. Jon Peddie, President, Jon Peddie Research

“COLLADA is redefi ning game development and promises, for once, to make it simpler
and more fun to create 3D content. This authoritative book—detailed, engaging and
written by the fathers of COLLADA—will enable game developers to better understand
and benefi t from this popular technology, so they can focus on creating bold new games
instead of maintaining yet another proprietary fi le format.”

—Christian Laforte, President, Feeling Software, Inc

COLLADA

COLLADA

Sailing the Gulf of
3D Digital Content
Creation

Rémi Arnaud
Mark C. Barnes

A K Peters, Ltd.
Wellesley, Massachusetts

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20150121

International Standard Book Number-13: 978-1-4398-6579-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reason-
able efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza-
tion that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Foreword vii

Preface ix

Chapter 1 Introduction to COLLADA 1

Chapter 2 COLLADA Document 19

Chapter 3 COLLADA Geometry 41

Chapter 4 COLLADA Scenes 71

Chapter 5 COLLADA Effects 91

Chapter 6 COLLADA Animations 121

Chapter 7 COLLADA Physics 139

Chapter 8 COLLADA Content Pipeline 165

Appendix A COLLADA Plug-In for 3ds Max 187

Appendix B COLLADA Plug-In for Maya 193

Appendix C SOFTIMAGE|XSI 5.1 Plug-In 209

Appendix D COLLADA FX Plug-In for Maya 217

Appendix E COLLADA 1.4.1 223

Notes 227

vii

Foreword
by Tim Sweeney

In 1963, Ivan Sutherland wrote Sketchpad [57], the world’s fi rst real-time
computer graphics application. In that breakthrough effort, he defi ned the
basic techniques for structuring scene data that are still present in today’s 3D
applications.

In one way, though, Sutherland had it easy. He didn’t have to grapple with
the problem that has frustrated every subsequent developer: interchange, the
process of transporting 3D data between applications.

For more than 40 years, developers have implemented interchange using
ad-hoc data formats and proprietary interchange techniques. Every new
3D modeling program defi nes its own proprietary scene data format and
also implements partial support for importing data from other proprietary
 formats.

For example, in developing the Unreal Engine, my company has written
importers for fi ve scene fi le formats, and export plug-ins for the three major
3D applications. Each required signifi cant development and testing effort.
What’s worse, every time we wanted to add a new feature, we had to update
fi ve import modules and three export plug-ins.

This is one of those classic software problems that makes a developer
scream: “There must be a better way!”

Finally, there is a better way: COLLADA.

Developed in a cooperative effort between the industry’s leading devel-
opers of applications, games, and platforms, COLLADA is the industry’s
fi rst standard interchange format for digital content. It is an XML-based fi le
format supporting the transfer of common types of 3D data between appli-
cations: 3D models, vertices, polygons, textures, shaders, transformations,
lights, cameras, and much more. Just as importantly, it is an extensible for-
mat that will grow to support increasingly sophisticated 3D features as they
evolve.

viii

Given that 3D interchange is a decades-old problem, one might wonder
why a solution is emerging only now. To answer this, we can look to three
industry trends.

• First, since the advent of the Web and the XML standard in the 1990s,
there has been a growing realization across the computing industry that
standard interchange formats benefi t all users and application vendors.
XML has provided a unifying force because it eliminates the need for debate
about the syntactic nuances of a fi le format, enabling industry groups to
instead focus on defi ning the high-level content and data types in an XML
Schema.

• Second, there has been a blossoming of innovative new 3D tools in recent
years. Where previously an artist would work in one all-compassing
modeling package such as 3D Studio Max, Maya, or Softimage, it is now
common to use many specialized tools every day. For example, artists
working on 3D games frequently use ZBrush for crafting organic objects,
SketchUp for architectural modeling, and Modo for polygon modeling—
as well as Max, Maya, and Softimage for scene composition. This workfl ow
entails frequently moving data between applications.

• Finally, the growth of 3D game development means that hundreds of
thousands of developers now must frequently move data between modeling
applications and real-time game engines. The growing sophistication of
the datasets has further stressed the need for an interchange format.

And now, thanks to COLLADA—and to the many people and companies
whose efforts made it possible—industry-standard 3D interchange is now a real-
ity, and developers and users of 3D software are already starting to benefi t.

For example, my team is replacing the Unreal Engine’s (see Plates XI and
XII) many ad-hoc fi le importing modules and our proprietary content-export
plug-ins with a single, unifi ed COLLADA pipeline. From now on, when we
implement a new feature or data format, we will only have to implement it
once, using industry-standard XML tools, instead of multiple times in differ-
ent code paths. At long last, there is a better way!

More importantly, many new kinds of 3D applications and tools will develop
around the COLLADA standard over the coming years, and COLLADA will
evolve as developers further the state of the art. It is wonderful to see that,
more than 40 years after Sketchpad and the invention of real-time computer
graphics, the industry is continuing to leap forward with such innovations.

Tim Sweeney
Founder, Programmer, CEO

Epic Games

Foreword

ix

Preface

Who Should Read this Book?

COLLADA is an advanced 3D asset description that was created through
the collaboration of many partner companies and was adopted as an offi cial
industry standard by the Khronos Group in January 2006. It is supported by
many commercial and noncommercial tools and is already used by thousands
of developers.

COLLADA technology is freely available. It consists of the following:

• the formal specifi cation document written in a specialized computer
language representation: the COLLADA schema;

• a human-readable specifi cation document, created from the schema, that
describes each element one by one and provides additional guidelines.

This book was created as a guide to the COLLADA 1.4 specifi cation
with the goal of providing readers with all the information that will help
them understand the concepts, learn how the technology is already imple-
mented by various tools, and provide guidance for using COLLADA in
their applications.

 In addition, the authors wanted to provide insight into the design of
COLLADA so that readers could better understand how the design deci-
sions were made and how this standard may evolve. Since COLLADA covers
such a wide spectrum, this information supplements the basic specifi cation
material to help developers understand how this technology is intended to
be used.

Content developers interested in exchanging data between several tools
will fi nd valuable information in this book. Application developers plan-
ning to take advantage of COLLADA in their tool chain and tool provid-
ers wanting to add COLLADA compatibility will fi nd this a very useful
guide.

In addition, this book provides readers with a good review of current
asset pipeline technology and can be used as academic material.

x Preface

Why Is COLLADA Important?

The quantity, complexity, and expected quality of content is growing expo-
nentially with each revision of hardware. Most of the focus so far has been
on providing APIs and programming languages to help with the growing
complexity and cost of software development, but little effort has been made
providing technology to help with content development.

COLLADA’s goal is to foster the development of better content tools by
standardizing a common intermediate representation that encourages better
content quality as well as facilitates the inclusion of many advanced features. A
standard, freely available content description technology such as COLLADA
liberates the content from proprietary formats, empowering developers to
improve the quality and feature set of the content that digital content cre-
ation (DCC) and middleware tools are providing.

COLLADA also provides a metric that developers can use to evaluate the
best tool for their needs (conformance test) and to validate content against
the specifi cation (schema validation).

Being a standard ratifi ed by many companies, COLLADA also ensures the
permanence of the availability of the content. It is particularly important in
the current context of market consolidation where companies and tools can
cease to exist without warning.

The reliance on a particular DCC tool’s proprietary format forces develop-
ers to store the entire DCC tool and operating system along with the propri-
etary data for archival purposes. Games created 20 years ago are resurfacing
today as classics, not unlike classic motion picture revivals. Game data was a
perennial asset then, but the open-source nature of COLLADA and its Uni-
code data encoding helps to alleviate this problem.

Unfortunately, for vendors who dominate the market, there is a clear
business advantage in having an opaque storage format and exposing it only
through a limited, proprietary interface, because their customers’ data is cap-
tured in the proprietary format of the tools they use. Since most of the data is
stored in this format, competitors will not have access to all of it, and the cost
of changing tools becomes proportional to the amount of content that the
developer has already developed. This also makes it impossible for other ven-
dors to provide innovative technologies easily. Even if another vendor added
advanced features to their own tools, those features could not and would not
be used by most developers until they became available in the main vendor’s
access interface and storage format. As time passes, customer innovation and
creativity is compromised as well because they cannot author content that
their DCC tool doesn’t support. Luckily there is a counter balance: since

xi

developers have to be able to access the data they need, a tool that would
enable them to create content without providing access to it would not be
useful for this market. DCC vendors have created application frameworks that
enable their customers to plug in custom tools to compensate for the lack of
features and to enable content import and export. This has become a large
secondary market that diverts time and energy away from the true goals of
advancing the features and capabilities of DCC tools. However, the tremen-
dous cost of this market dynamic is becoming too great for the market to
bear. A new approach is needed.

Why We Wrote This Book

The idea of writing a book on COLLADA to help with the adoption of the
technology has been slowly germinating, but what really triggered this book
happened during the Dublin Eurographics conference in 2005. At the end of
a presentation about COLLADA, several questioners asked about the avail-
ability of additional material in order to use the technology in the professional
or academic world.

Alice and Klaus Peters were also attending the conference, where they
encouraged one of the authors to work on this project. Their trust, profes-
sionalism, knowledge of the business of technical publishing, and respect for
the author’s work are the main reasons this book has been written.

We hope you have as much fun reading this book as we had writing it.

About the Authors

Rémi Arnaud joined Sony Computer Entertainment US R&D in January
2003 as the graphics architect for the PlayStation®3 graphics API. Rémi has
a wide range of experience in designing application interfaces, software tools,
and runtimes for real-time graphics applications. He obtained his PhD in
real-time image synthesis while working in the R&D department of Thomson
Training and Simulation (Paris, France) designing visual systems for custom
hardware and high-end workstations. He then moved to the US and worked
for Silicon Graphics, where he was in charge of adding high-end features to
IRIS Performer, a multiprocessor optimized scene-graph application. Dur-
ing this time, one of the features added through a hardware and software
extension was the calligraphic light point capability mandatory for the most
advanced civil aircraft training simulators (FAA Level D). The necessity to
add this capability to content creation tools brought Rémi to collaborate with
Mark Barnes for the fi rst time. Rémi and one of his colleagues, Christopher

Preface

xii

Tanner, soon caught the Silicon Valley start-up virus and created Intrinsic
Graphics and codesigned the respected Alchemy cross-platform middleware
solution for game development.

Mark Barnes joined Sony Computer Entertainment US R&D in July
2003 as a member of the graphics team where he is leading the effort on
COLLADA. Mark’s experience and knowledge in the fi eld of visual simu-
lation includes database tools, distributed processing, and real-time graph-
ics. Mark was a member of the system software team supporting the Ver-
tical Motion Simulator (VMS) laboratory at NASA Ames Research Center
for several years, developing and improving real-time software for graphics,
data acquisition, and simulation execution. The VMS lab was also the fi rst
customer of an innovative 3D modeling tool called Multigen. Mark eventu-
ally accepted a position at Multigen-Paradigm, Inc. (then Software Systems),
where he became responsible for the OpenFlight database format and IRIS
Performer tools and integration. He was also an engineer on the innovative
SmartScene project. During this period of time, Mark established close work-
ing relationships with the Performer team at Silicon Graphics (SGI) that was
soon to include Rémi Arnaud. Subsequently, Mark was an engineering man-
ager of Muse Communications, Inc., developing advanced virtual environ-
ment software for the Internet. He also worked as a staff engineer at IVAST,
Inc., developing MPEG-4 client systems.

Acknowledgments

Several contributors have helped the authors to create this book.
Daniel Horowitz from NVIDIA, in addition to his role of chairman of the

COLLADA FX sub-working group, has been very generous to contribute the
entire content for Chapter 5, “COLLADA Effects.’’

Christian Laforte from Feeling Software has provided 3 appendices to this
book: “COLLADA Plug-In for 3ds Max,” “COLLADA Plug-In for Maya,’’
and “COLLADA FX Plug-In for Maya.”

Alexandre Jean-Claude from Avid/Softimage has provided the “SOFT-
IMAGE|XSI 5.1 Plug-In” appendix.

Special thanks to Altova GmbH for putting together a wonderful application
called XMLSpy that we used to create many of the illustrations in this book.

The authors are deeply grateful to Sony Computer Entertainment (SCE)
for accepting and fi nancing this R&D project. In particular, we extend our
thanks to Dominic Mallinson, Director of US R&D, and to Senior Man-
ager Attila Vass, who have given their trust and support to this project and
encouraged the authors to create this book in their free time. Ken Kutaragi,

Preface

xiii

CEO/President of SCE, Masayuki Chatani, Corporate Executive and CTO
of SCE, and Teiji Yutaka, Vice President, R&D Division of SCEI, are to be
thanked for having accepted the COLLADA strategy and inclusion in the
PlayStation®3 software SDK.

The COLLADA team at SCE has provided many hours of hard work to cre-
ate several revisions of the specifi cation and sample software. Gàbor Nagy has
participated in many aspects of the design, chaired the Physics sub-working
group, created many demonstrations, and integrated COLLADA in his own
modeler, Equinox 3D. Lilli Thompson created the fi rst COLLADA confor-
mance test, relentlessly tracked issues, and created a good deal of COLLADA
content. Richard Stenson led the effort of delivering COLLADA to PS3
developers. Andy Lorino edited the COLLADA schema and developed the
COLLADA DOM API. Robin Green wrote the fi rst COLLADA FX speci-
fi cation, the largest single part of COLLADA, and chaired the sub-working
group. Greg Corson worked on the COLLADA RT and the COLLADA
DOM libraries, tracking and fi xing many bugs. Three interns also helped
with the COLLADA project: Daniel Horn helped implement the fi rst viewer,
Fabien Goslin created sample code, and Philippe David created the Refi nery
asset conditioner.

Many people at Sony Computer Entertainment provided help and sup-
port to this project: Lia Adams, Geoff Audi, Michael Budwig, Guy Burdick,
David Coombes, Erwin Coumans, Mark Deloura, Nat Duca, Jason Doig,
Ellen Finch, Richard Forster, Roy Hashimoto, Alan Heirich, Masatomo Ito,
Tatsuya Iwamoto, Vangelis Kokkevis, Antoine Labour, Dmitri Makarov,
Bruno Matzdorf, Axel Mamode, Care Michaud-Wideman, Ed Owen, J. Pat-
ton, Amy Pilkington, Sébastien Rubens, Aoki Sachiyo, Vlad Stamate, Pip Stu-
art, Gregg Tavares, Andrew Walker, Yoshinori Washizu, Mike Weiblen, Rob
Withey, and Mason Woo.

COLLADA design would not have been possible without the participation
of many people from several other companies.

Jeff Yates, now working at Havok, believed in the project since its inception,
participated in the design, and created the fi rst 3ds Max plug-in when he was
working at Discreet. Jean-Luc Corenthin and his management, Michel Kri-
palani and Marc Petit, have since managed this project at Autodesk/ Discreet.

 Gordon Bradley working at Autodesk/Alias participated in the design
and wrote the initial plug-in for Maya. Joyce Janczyn, Jeröme Maillot, Michel
Besner, Kevin Tureski, and Steven Roselle have provided support for the
 project.

Alexandre Jean-Claude from Avid/Softimage created the plug-in for XSI
and is still working on this project and providing help with the design. Many

Preface

xiv

other people helped at Softimage: Gareth Morgan, Marc Stevens, James Rog-
ers, Alain Laferrière, Simon Inwood, Luc Bolduc, and Takashi Umezawa.

The team at Feeling Software (Christian Laforte, Guillaume Laforte,
Zhang Jian, Antoine Azar, Alfred Leung and Misako Matsumoto) provided
COLLADA with fantastic, professional-grade plug-ins for 3ds Max and Maya,
as well as extensions such as COLLADA FX and COLLADA Physics for Maya
and are now working on the COLLADA 1.4 conformance test.

The Emdigo team (Christopher Tanner, Cédric Perthuis, Steve Gleizt-
mann, and Rory Mather) participated in the design, created the fi rst version
of the COLLADA DOM, and took the risk of using COLLADA as the core
of their technology for their start-up.

The AGEIA team (Stan Melax, Andy Hess, Emmanuel Marquez, Grady
Hannah, John Ratcliff, Mikael Skolones, and Greg Stoner) helped tremen-
dously with the design of COLLADA Physics.

The NVIDIA team (Sébastien Dominé, Ignacio Castano, Daniel Horowitz,
and Chris Maughan) really embraced COLLADA for their software tools strat-
egy and is providing COLLADA with great tools and design contributions.

The Khronos Group is doing a wonderful job, particularly Neil Trevett
(President), Elizabeth Riegel (marketing), Andrew Riegel (events), and Tony
DeYoung (webmaster).

There are many other people involved and supporting COLLADA. Our
deepest apologies for any not included here: Farshid Almassizadeh (Elec-
tronic Arts), Karthic Bala (Vicarious Vision), Adam Billyard (Criterion
Software), Steven Collins (Havok), David Burke (Epic Games), Mark Daly
(NVIDIA), Patrick Doane (XLGames), Jerome Durand (EkoSystem), Cass
Everitt (NVIDIA), Chris Grimm (ATI), Jason Hoerner (THQ), Chas Inman
(NVIDIA), Chris Keogh (Havok), Mark J. Kilgard (NVIDIA), Bill Licea-
Kane (ATI), Mikael Lagré (Blender), Kathleen Maher (Peddie Research),
Bryan Marshall (Codemasters), Nathan Martz (Double Fine Productions),
Jay Moore (GarageGames), Kari Pulli (Nokia), Callan Mclnally (ATI),
Tom McReynolds (NVIDIA), Kevin Norman (Maxis/EA), Bruno Pata-
tas (ViaRender Systems), Jon Peddie (Peddie Research), Nicholas Perret
(Omegame), Mark Rein (Epic Games), Randi Rost (3Dlabs), Tim Swee-
ney (Epic Games), Kevin Thacker, Stephen Wilkinson (Nokia), Chris Wynn
(NVIDIA), Jenny Zhao (Vicarious Vision/Emdigo).

Rémi Arnaud would like to give a very special thanks to his wife, Cécile,
and his two kids, Melody and Nicolas, for enduring many hours alone while
he worked on this book, and for their love and support.

Mark Barnes gives a heartfelt thanks to Amy Arreola for her love, compas-
sion, and inspiration.

Preface

xv

Trademarks

In alphabetic order:
3ds Max is a registered trademark of Autodesk, Inc.
AGEIA, PhysX, and NovodeX are trademarks of AGEIA Technologies, Inc.
COLLADA is a trademark of Sony Computer Entertainment, Inc.
FX Composer is a trademark of NVIDIA Corporation.
Glide is a trademark or registered trademark of 3dfx Interactive, Inc., and

NVIDIA Corporation.
Google and Google Earth are trademarks of Google, Inc.
Havok, Havok Physics, Havok Animation, and Havok Complete are regis-

tered trademarks of Havok and Telekinesys Research Limited.
Half-Life is a registered trademark of Valve Corporation.
HOOPS is a trademark or registered trademark of TechSoft America or its

subsidiaries in the United States and in other countries.
Intrinsic Alchemy is a trademark of Intrinsic Graphics, Inc.
IRIS GL is a trademark of SGI, Inc.
Khronos is a trademark of the Khronos Group, Inc.
Maya is a registered trademark of Autodesk, Inc.
Modo is a trademark of Luxology, LLC.
OpenFlight is a trademark of Multigen-Paradigm, Inc.
OpenGL and OpenGL ES are registered trademarks of SGI, Inc.
DirectX is a registered trademark of Microsoft Corporation.
RenderMan is a registered trademark of Pixar Animation Studios.
RenderWare is a trademark or registered trademark of Criterion Software

Limited in the U.S. and/or other countries.
Softimage is a registered trademark of Avid Technology, Inc.
Unreal is a registered trademark of Epic Games, Inc.
W3C is a registered trademark of the Massachusetts Institute of Technol-

ogy (MIT), European Research Consortium for Informatics and Mathemat-
ics (ERCIM), or Keio University (Keio) on behalf of the W3C.

XMLSpy is a registered trademark of Altova GmbH.
Zbrush is a registered trademark of Pixologic, Inc.

All other trademarks, service marks, trade names, or product names men-
tioned are the property of their respective owners.

Preface

1

Overview

This chapter explains why the COLLADA technology has been developed.
It provides a global view, defi nes the problems addressed by the technology,
the main actors, and the goals and perspectives for this new technology. It
provides an historic overview and information on how COLLADA is being
designed and adopted. The goal is to give the reader an insight into how the
design choices are made and how this technology might evolve.

Problem Domain

An interactive application is composed of two major components:

1. the application, which provides information in real time to the user and the
means to interact with it;

2. the content, which contains the information through which the application
navigates and provides a view to the user.

COLLADA focuses on the domain of interactive applications in the enter-
tainment industry, where the content is three-dimensional and is a game or
related interactive application. Therefore, the user of the application will be
referred to as the player.

The types of information that can be provided to the player depend on
the output devices available. Most games use one or several screens to display
the visual information, sometimes a system with stereo visualization, and a
set of speakers for the audio information. Often, some physical sensation can
be rendered, as simple as a vibrating device embedded in the joystick, or as
sophisticated as a moving cabin in arcade settings.

The application may output, or render, several sensors at the same time,
often in different places. An observer is a term that defi nes a group of sensors
that move together. For example, an observer in a (virtual) car may have at
least two visual sensors to represent the out-of-the-windows view (in this case,

1

Introduction to
COLLADA

Chapter 1: Introduction to COLLADA2

the view through the windshield) and the rear-mirror view. Several observ-
ers, which may be simultaneous users, can be displayed together by the same
application, for example, in split-screen games where two or more players are
sharing the same screen.

The content must include all data required by all the sensors that the appli-
cation wants to use. The content can have multiple representations stored,
partially sharing some of the elements. For example, if the content represents
a landscape, different materials may be needed to represent the four seasons.
The different representations of the data are called scenes.

Another type of interactive application is a training simulator in which the
goal is to teach the user how to behave in real situations. These applications
are not games, and the trainees’ reactions when they make a deadly mistake in
a simulation make this quite clear. COLLADA does not focus on simulation
applications, but it could certainly be used in this domain as well [1].

The computer-generated animation movie industry is also very interested
in COLLADA. This application is completely scripted, not interactive. That
industry’s goal is to be able to produce previsualization of scenes that look as
fi nal as possible, in a very small amount of time, which is why they are inter-
ested in integrating game technology in their production process.

Other types of applications may also profi t from COLLADA, but its goal
is to concentrate on interactive game applications, not to expand the problem
domain. Other applications that require the same type of technologies will
indirectly benefi t from it.

Separation between Content and Runtime
The fi rst interactive real-time applications rendering three-dimensional
graphics required very expensive dedicated hardware and were used mainly in
training simulation. Physical separation between content and runtime did not
exist in the early applications (such as in the GE Apollo lunar landing trainer)
[2]. The content was embedded in the code, or more specifi cally, some sub-
routine was coded to render a specifi c part of the content. Eventually, effort
was made to store the embedded content as data arrays, and the code became
increasingly generic so it could render all kinds of data.

The next logical step was to separate the data physically from the code.
This allowed creating several products with the same application, but with
different data. More products were defi ned by the data itself, and content
creation soon became a completely separate task.

The real-time application was then referred to as the runtime, and the
content for the runtime was stored in the runtime database. In the game
industry, the runtime is called the game engine.

3

Digital content creation (DCC) tools were created, but the data structures
and algorithms used for modeling did not match with the data that can be
processed in real time by the application. DCC tools were also used by the
movie industry for the production of computer-generated movies in which an
advanced rendering engine was attached to the tool to produce a set of still
images that compose the frames of the movie.

DCC tools and advanced rendering techniques, such as ray tracing [3] or
shader languages such as RenderMan [4], required more advanced concepts
than a real-time application could handle. Mathematical descriptions of sur-
faces such as splines and Bézier surfaces became necessary in the computer-
aided design (CAD) market [5].

Interactive applications needed both the advanced modeling techniques
and the simpler representation usable in real time. Because of this, compila-
tion techniques, used to create binary executable code from high-level lan-
guages, were adapted for the content processing. The database used in the
DCC tool was therefore called the source. The data compiler takes the source
data and creates the runtime data.

Figure 1.1. Content pipeline synopsis.

The runtime database soon became too large to fi t in the memory of the
target system. The content had to be sliced and paged in real time, depend-
ing on where the observers were. This quite challenging problem sometimes
required specifi c hardware assistance and necessitated a very specifi c encoding
of the content. Specifi c algorithms had to be developed for terrain paging [6]
and texture paging [7].

Because of economic constraints, severe limitations exist in hardware tar-
geted by the game industry. The data must be organized in the most opti-
mal way possible. For performance optimization, many game applications use
their own fi le system and combine the various elements in a single fi le. Some
developers run optimization programs for hours to fi nd the best placement
of the elements for better interactivity. The idea is to optimize seek time and
place data accordingly. This is very similar to the optimization section of a
compiler, with a complexity similar to the NP-complete salesman optimiza-
tion problem [8].

Separation between Content and Runtime

Chapter 1: Introduction to COLLADA4

Another example of paging technology used outside the game industry is the
Google Earth application [9]. This application enables the user to look down
on the planet from any altitude and render a view based on satellite altimetery
and imagery information. It is the result of generalizing the terrain- and image-
 paging technology developed for high-end simulation applications [10].

Such applications handle only static data and have limited interactivity for
the user to move around in the environment. However, most applications,
especially in the entertainment industry, require the content to be highly
dynamic. For example, animated objects are needed, either objects moving
independently in a scene (moving object) or prescripted animations con-
trolled by various parameters, such as a windsock depending on the direction
and speed of the wind, or a feature like a bridge that can have different repre-
sentations depending on whether or not it has been destroyed.

The objects in the runtime database are often organized in a graph, where
each branch represents the relative position of the objects or different choices
of multiple representations. This data organization is commonly referred to
as the scene graph, and several runtime technologies have been developed to
exploit this [11].

Some early rendering techniques used a particular organization of the scene
graph to determine how the objects hide each other in the view, such as the
BSP method [12]. Early hardware accelerator performance was greatly affected
by the objects sent outside of the camera’s fi eld of view, so scene graphs were
organized with a container-type relation. All the “children’’ bounding volumes
are enclosed in the “parent’’ bounding volume; therefore a culling operation
can cut entire branches if the parent is not in the fi eld of view.

More complex dynamic behavior is now required for interactive applica-
tions. The content needs to evolve following direct interaction with the user.
This can be physical interaction with the virtual representation of the user in
the application, or it can be indirectly linked to user interaction, such as when
a pile of boxes collapses if one of the boxes is removed. Very complex control
systems are developed to combine scripted animation, artifi cial intelligence
(AI), physical simulation, and user control.

In other words, the content must be designed for interactivity, not only for
the interaction with the user but also for the interactivity between the differ-
ent elements of the content. The relationship between objects is much more
complex, and the scene-graph technology is reaching its limit in capacity,
because the graph becomes too complex and overloaded with many interde-
pendent relationships. The dynamic nature of the entertainment application
is such that the scene-graph technology is not suffi cent to manage all of the
content. Instead, hybrid techniques are developed, often targeting a specifi c

5

game genre. Fortunately, modern rendering hardware performance is less
impacted by sending objects outside the fi eld of view, so the main rendering
optimization that the scene-graph technology required is no longer an issue.

The process of creating the runtime database from the source database
has become more complex and resource-intensive over time. The simple link
between the content creation and the runtime is now an entity of its own,
called the content pipeline. With the need for larger and more interactive con-
tent, game developers have to spend substantial resources on this technology.

The Content Pipeline

The content pipeline is composed of the following elements:

• digital content creation (DCC) tools used by artists to create the source data;
• the exporter, a program written for a given DCC tool that permits the

content to be extracted from the DCC tool;
• the conditioning pipeline, a set of programs that apply several transformations

to the content, such as geometry cleaning and optimizing for fast rendering;
• the runtime database, specifi cally encoded for a given runtime and often for

a given target platform.

Figure 1.2. The content pipeline.

A novice may ask why it is necessary to write an exporter, since the DCC
tool already saves the data in the source database, or why an importer couldn’t
be created as part of the conditioning pipeline tools. There are, in fact, many
diffi culties that make these solutions impractical.

The main problem is that the format used by the DCC tool is often pro-
prietary, so it is not possible to write an importer. Even when the format is
available, it may be very complex to read and require knowledge of the DCC
tool algorithms that are not available to users.

In practice, the exporter is an integral part of the pipeline, since it is already
doing some processing on the source data, utilizing the DCC built-in func-
tions to convert internal representation to a more usable format. From the
point of view of compiler technology, the exporter is actually the front end of

The Content Pipeline

Chapter 1: Introduction to COLLADA6

the data compiler, and the data produced by the exporter is the intermediate
format.

To enable users to extract the data, DCC tools typically offer a software
development kit (SDK) that provides an application programming interface
(API) to interact with the internal representations. Some DCC tools provide
different APIs, depending on the type of data most often needed by the appli-
cation. For instance, a game SDK is sometimes provided specifi cally to help
game developers.

DCC tool vendors prefer providing and supporting SDKs rather than pub-
lishing the details of their internals and supporting developers tinkering with
reading their proprietary fi les directly. The main reason for DCC tools to
do this is that they need to be able to provide new releases. If there were
applications depending on a given internal structure, this would make major
improvements very diffi cult. It is thus much easier to hide the internals and
provide stability at the SDK level.

Therefore, application developers are forced to create exporters. Even with
the relative stability of the SDK, developers must still continuously update
their exporters if they want to keep up with new releases of tools. Experience
shows that developers often decide to stick to one specifi c release of a particu-
lar DCC tool for a given production, since the cost and risk associated with
constantly updating the content pipeline is too intensive. This also affects the
development of advanced technology by DCC vendors for game developers
who are in the middle of a game-development cycle.

Interestingly, there is also a business advantage since this locks developers
into using given vendors and restricts the window of time in which competi-
tors can have a chance at acquiring a new customer. Retooling often happens
only when new hardware is introduced, whether it is a new-generation con-
sole or a new type of hardware such as a mobile phone. Even then, switching
from one DCC tool to another is problematic because of the artists’ familiar-
ity with a given DCC tool interface.

Exporter development is not an easy task, but it is forced upon developers.
All game developers agree that creating and maintaining an exporter is very
time consuming. Nevertheless, they also understand that the content pipeline
is a piece of technology they have to master and cannot depend on pieces that
are not perfect.

Not only is the resulting game content limited by the game developer’s
capacity in developing a good content pipeline, but more often, better tools
or technologies cannot be introduced because of the lack of fl exibility in the
design of content pipelines.

COLLADA was created to address this worrisome situation.

7

Problem Description

To export the data, developers have to design a format in which to export it.
This is no simple task, especially because the format must be fl exible enough
to withstand changes in requirements during the development process, such
as introducing new data types.

Once the data is exported, developers still have to write an importer for
this data into their content processing facility. Some developers try to solve
the problem by having the entire content pipeline contained in the exporter
code, so that the output of the export process is directly in the format needed
by the runtime. This approach is often problematic since the plug-in interface
is not designed to handle such complex applications. It is also the cause of
major maintenance problems when the DCC application SDK is evolving and
because of the complete lock-in to a given DCC tool and often to a specifi c
version of this tool.

Another approach developers take is to limit the input data to the simplest
data, such as geometry, texture mapping, images, and animation curves, and
to create a set of integrated tools to create the remaining data, often including
the game engine as the means to visualize the data. This proves to be a quite
successful approach for developers whose goal is to concentrate on a specifi c
subset of game applications and who can create their content with a relatively
small team. Such a tool, if well designed and implemented, provides artists
and game designers with a very short feedback loop between content creation
and its visualization in the runtime. On the other hand, this approach has
several limitations. For example, the edits made in the tool cannot be pushed
up the pipeline; therefore, if the input data needs to be modifi ed, all the edits
have to be done again. Another drawback is that it is impossible to use exter-
nal technologies without integrating those directly into the tool itself.

 These approaches are in fact contrary to the improvement of the situa-
tion, which should be to require an opening up of the tool pipeline to enable
developers to use a variety of independent tools, easing the introduction of
new technologies, and making possible the adaptation of the content pipeline
to be used by larger teams and for all genres of games.

The Zoo

Content pipelines often use more than one intermediate format, since each
tool may have its own export format or may not provide an SDK or plug-
in facilities for developers to use their own format. In other words, this is a
zoo!

Problem Description

Chapter 1: Introduction to COLLADA8

The data is exported from the modeler in a given format. An independent
tool is used to adjust some properties that the DCC tool does not understand,
then another tool is used to gather several assets into a game level, which is
then sent to the fi nal optimizer that will create the game-specifi c runtime
format. Each of those tools may very well use independent and incompatible
formats since it is diffi cult to create one format for all. It is so much more
convenient for individuals to create their own tools rather than having to col-
laborate and spend valuable time on making compromises.

Figure 1.3. A typical zoo.

This process has several limitations.

• The content pipeline is one-way. Therefore, changes cannot be saved back
into the source database. When changes need to be done from the source,
the data must go through the entire processing of the content pipeline
before they can be seen in the level-editor tool. This process takes time,
thus impacting productivity.

• The tools are not interchangeable, which often creates situations where
data have to be propagated through “back doors’’ when a change occurs
in the process.

• There is no easy way to create shortcuts in the process to enhance
productivity.

Artists need to see their work running in the runtime. Ideally, they need
to be able to do so without having to go through the entire content pipeline
process. Therefore, a separate path, called the fast-path, needs to be created
in parallel. To maintain the highest possible performance, only the data that
is modifi ed will go through the fast-path; the rest of the data will be loaded
in the optimized runtime format. During production, it is necessary for the
game engine to be capable of loading both the optimized data and the inter-
mediate format.

9

A Common Intermediate Format

Everything would be much simpler if all the tools in the content pipeline
could export and import a well-defi ned common format. Developers would
not need to write and maintain their own exporters, and the data would be
available directly to the content pipeline.

COLLADA’s goal is to foster the development of a more advanced content
pipeline by standardizing a common intermediate representation, encourag-
ing better quality content, and bringing many advanced features to the stan-
dard. COLLADA should be the transport mechanism between the various
tools in the content pipeline.

But is it possible to establish such a common format?
DCC tools have been developed independently and may have very differ-

ent ways of describing the data. Some tools have very specifi c attributes that
some developers want to use in their pipeline but which would be impossible
to export from other DCC tools. Defi ning a set of common representations
that can be exported by all the tools and making sure that the tool-specifi c
parameters can still be represented is a hard task.

The DCC Vendors

In the entertainment industry, there are three major DCC tools:

• 3ds Max;
• Maya;
• XSI.

All vendors understand the value of a common format, but for a different
reason. They are seeking not only an intermediate format but also an inter-
change format.

The goal of an interchange format is to enable the data to move freely from
one tool to another. The main idea is to enable several DCC tools to be used
by developers in the same production or to enable developers to switch easily
from one main DCC vendor to another DCC vendor. Of course, a DCC ven-
dor who has a much larger market share than the others may not be interested
in risking it and may not want a common interchange format to exist, or at
least not one that is not under his control.

Recently, Autodesk, who owned 3ds Max, acquired Maya. This consoli-
dation of the market creates a diffi cult situation for game developers since
Autodesk may use its strong position to reduce the interchangeability of data
with external tools. At the same time, the need for interoperability between
Maya and 3ds Max is growing, unless one of the tools is to be scavenged and

A Common Intermediate Format

