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Foreword

Do not let the title of this book fool you. What the title tells you is
that if you have an interest in learning about high-performance and robust
terrain rendering for games, this book is for you. If you are impressed by
the features and performance of mapping programs such as NASA World
Wind or Google Earth and you want to know how to write software of this
type, this book is for you.

Some authors write computer books that promise to tell you everything
you need to know about a topic, yet all that is delivered is a smattering
of high-level descriptions but no low-level details that are essential to help
you bridge the gap between theoretical understanding and practical source
code. This is not one of those books. You are given a quality tutorial about
globe and terrain rendering; the details about real-time 3D rendering of
high-precision data, including actual source code to work with; and the
mathematical foundations needed to be an expert in this field. Moreover,
you will read about state-of-the-art topics such as geometry clipmapping
and other level-of-detail algorithms that deal efficiently with massive terrain
datasets. The book’s bibliography is extensive, allowing you to investigate
the large body of research on which globe rendering is built.

What the title of the book does not tell you is that there are many
more chapters and sections about computing with modern hardware in or-
der to exploit parallelism. Included are discussions about multithreaded
engine design, out-of-core rendering, task-level parallelism, and the basics
necessary to deal with concurrency, synchronization, and shared resources.
Although necessary and useful for globe rendering, this material is invalu-
able for any application that involves scientific computing or visualization
and processing of a large amount of data. Effectively, the authors are pro-
viding you with two books for the price of one. I prefer to keep only a
small number of technical books at my office, opting for books with large
information-per-page density. This book is now one of those.

—Dave Eberly
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Preface

Planet rendering has a long history in computer graphics. Some of the
earliest work was done by Jim Blinn at NASA’s Jet Propulsion Laboratory
(JPL) in the late 1970s and 80s to create animations of space missions.
Perhaps the most famous animations are the flybys of Jupiter, Saturn,
Uranus, and Neptune from the Voyager mission.

Today, planet rendering is not just in the hands of NASA. It is at the
center of a number of games, such as Spore and EVE Online. Even non-
planet-centric games use globes in creative ways; for example, Mario Kart
Wii uses a globe to show player locations in online play.

The popularity of virtual globes such as Google Earth, NASA World
Wind, Microsoft Bing Maps 3D, and Esri ArcGIS Explorer has also brought
significant attention to globe rendering. These applications enable viewing
massive real-world datasets for terrain, imagery, vector data, and more.

Given the widespread use of globe rendering, it is surprising that no
single book covers the topic. We hope this book fills the gap by providing
an in-depth treatment of rendering algorithms utilized by virtual globes.
Our focus is on accurately rendering real-world datasets by presenting the
core rendering algorithms for globes, terrain, imagery, and vector data.

Our knowledge in this area comes from our experience developing Ana-
lytical Graphics, Inc.’s (AGI) Satellite Tool Kit (STK) and Insight3D. STK
is a modeling and analysis application for space, defense, and intelligence
systems that has incorporated a virtual globe since 1993 (admittedly, we
were not working on it back then). Insight3D is a 3D visualization compo-
nent for aerospace and geographic information systems (GIS) applications.
We hope our real-world experience has resulted in a pragmatic discussion
of virtual globe rendering.

Intended Audience
This book is written for graphics developers interested in rendering al-
gorithms and engine design for virtual globes, GIS, planets, terrain, and

xiii



xiv Preface

massive worlds. The content is diverse enough that it will appeal to a wide
audience: practitioners, researchers, students, and hobbyists. We hope
that our survey-style explanations satisfy those looking for an overview
or a more theoretical treatment, and our tutorial-style code examples suit
those seeking hands-on “in the trenches” coverage.

No background in virtual globes or terrain is required. Our treatment
includes both fundamental topics, like rendering ellipsoids and terrain rep-
resentations, and more advanced topics, such as depth buffer precision and
multithreading.

You should have a basic knowledge of computer graphics, including
vectors and matrices; experience with a graphics API, such as OpenGL or
Direct3D; and some exposure to a shading language. If you understand
how to implement a basic shader for per-fragment lighting, you are well
equipped. If you are new to graphics—welcome! Our website contains links
to resources to get you up to speed: http://www.virtualglobebook.com/.

This is also the place to go for the example code and latest book-related
news.

Finally, you should have working knowledge of an object-oriented pro-
gramming language like C++, C#, or Java.

Acknowledgments
The time and energy of many people went into the making of this book.
Without the help of others, the manuscript would not have the same con-
tent and quality.

We knew writing a book of this scope would not be an easy task. We owe
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ployer, Analytical Graphics, Inc. We thank Paul Graziani, Frank Linsalata,
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limitless amount of GIS data, including terrain, imagery, and vector data.
Thankfully, many of these datasets are freely available. We graciously
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Natural Earth

Natural Earth (http://www.naturalearthdata.com/) provides public domain
raster and vector datasets at 1 : 10, 1 : 50, and 1 : 110 million scales. We
use the image in Figure 1 and Natural Earth’s vector data throughout this
book.

Figure 1. Satellite-derived land imagery with shaded relief and water from Nat-
ural Earth.

NASA Visible Earth

NASA Visible Earth (http://visibleearth.nasa.gov/) provides a wide array
of satellite images. We use the images shown in Figure 2 throughout this
book. The images in Figure 2(a) and 2(b) are part of NASA’s Blue Marble
collection and are credited to Reto Stockli, NASA Earth Observatory. The
city lights image in Figure 2(c) is by Craig Mayhew and Robert Simmon,
NASA GSFC. The data for this image are courtesy of Marc Imhoff, NASA
GSFC, and Christopher Elvidge, NOAA NGDC.

NASA World Wind

We use NASA World Wind’s mergedElevations terrain dataset (http://
worldwindcentral.com/wiki/World Wind Data Sources) in our terrain im-
plementation. This dataset has 10 m resolution terrain for most of the
United States, and 90 m resolution data for other parts of the world.
It is derived from three sources: the Shuttle Radar Topography Mission
(SRTM) from NASA’s Jet Propulsion Laboratory;1 the National Elevation

1http://www2.jpl.nasa.gov/srtm/
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(a)

(b)

(c)

Figure 2. Images from NASA Visible Earth.
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Dataset (NED) from the United States Geological Survey (USGS);2 and
SRTM30 PLUS: SRTM30, coastal and ridge multibeam, estimated topog-
raphy, from the Institute of Geophysics and Planetary Physics, Scripps
Institution of Oceanography, University of California San Diego.3

National Atlas of the United States of America

The National Atlas of the United States of America (http://www.national
atlas.gov/atlasftp.html) provides a plethora of map data at no cost. In
our discussion of vector data rendering, we use their airport and Amtrak
terminal datasets. We acknowledge the Administration’s Research and
Innovative Technology Administration/Bureau of Transportation Statistics
(RITA/BTS) National Transportation Atlas Databases (NTAD) 2005 for
the latter dataset.

Georgia Institute of Technology

Like many developers working on terrain algorithms, we’ve used the ter-
rain dataset for Puget Sound in Washington state, shown in Figure 3.
These data are part of the Large Geometric Models Archive at the Georgia
Institute of Technology (http://www.cc.gatech.edu/projects/large models/
ps.html). The original dataset4 was obtained from the USGS and made
available by the University of Washington. This subset was extracted by
Peter Lindstrom and Valerio Pascucci.

(a) (b)

Figure 3. (a) A height map and (b) color map (texture) of Puget Sound from the
Large Geometric Models Archive at the Georgia Institute of Technology.

2http://ned.usgs.gov/
3http://topex.ucsd.edu/WWW html/srtm30 plus.html
4http://rocky.ess.washington.edu/data/raster/tenmeter/onebytwo10/
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The icons used in our discussion of vector data rendering were created
by Yusuke Kamiyamane, who provides a large icon collection under the
Creative Commons Attribution 3.0 license (http://p.yusukekamiyamane.
com/).
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1
Introduction

Virtual globes are known for their ability to render massive real-world ter-
rain, imagery, and vector datasets. The servers providing data to virtual
globes such as Google Earth and NASA World Wind host datasets mea-
suring in the terabytes. In fact, in 2006, approximately 70 terabytes of
compressed imagery were stored in Bigtable to serve Google Earth and
Google Maps [24]. No doubt, that number is significantly higher today.

Obviously, implementing a 3D engine for virtual globes requires careful
management of these datasets. Storing the entire world in memory and
brute force rendering are certainly out of the question. Virtual globes,
though, face additional rendering challenges beyond massive data manage-
ment. This chapter presents these unique challenges and paves the way
forward.

1.1 Rendering Challenges in Virtual Globes

In a virtual globe, one moment the viewer may be viewing Earth from a
distance (see Figure 1.1(a)); the next moment, the viewer may zoom in to a
hilly valley (see Figure 1.1(b)) or to street level in a city (see Figure 1.1(c)).
All the while, real-world data appropriate for the given view are paged in
and precisely rendered.

The freedom of exploration and the ability to visualize incredible
amounts of data give virtual globes their appeal. These factors also lead
to a number of interesting and unique rendering challenges:

• Precision. Given the sheer size of Earth and the ability for users to
view the globe as a whole or zoom in to street level, virtual globes
require a large view distance and large world coordinates. Trying to
render a massive scene by näıvely using a very close near plane; very

1



2 1. Introduction

(a) (b)

(c)

Figure 1.1. Virtual globes allow viewing at varying scales: from (a) the entire
globe to (b) and (c) street level. (a) © 2010 Tele Atlas; (b) © 2010 Europa
Technologies, US Dept of State Geographer; (c) © 2010 Google, US Census
Bureau, Image USDA Farm Service Agency. (Images taken using Google Earth.)

distant far plane; and large, single-precision, floating-point coordi-
nates leads to z-fighting artifacts and jittering, as shown in Figures 1.2
and 1.3. Both artifacts are even more noticeable as the viewer moves.
Strategies for eliminating these artifacts are presented in Part II.

• Accuracy. In addition to eliminating rendering artifacts caused by
precision errors, virtual globes should also model Earth accurately.
Assuming Earth is a perfect sphere allows for many simplifications,
but Earth is actually about 21 km longer at the equator than at
the poles. Failing to take this into account introduces errors when
positioning air and space assets. Chapter 2 describes the related
mathematics.
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(a) (b)

Figure 1.2. (a) Jitter artifacts caused by precision errors in large worlds. Insuffi-
cient precision in 32-bit floating-point numbers creates incorrect vertex positions.
(b) Without jittering. (Images courtesy of Brano Kemen, Outerra.)

• Curvature. The curvature of Earth, whether modeled with a sphere or
a more accurate representation, presents additional challenges com-
pared to many graphics applications where the world is extruded
from a plane (see Figure 1.4): lines in a planar world are curves on
Earth, oversampling can occur as latitude approaches 90◦ and −90◦,
a singularity exists at the poles, and special care is often needed to
handle the International Date Line. These concerns are addressed
throughout this book, including in our discussion of globe rendering
in Chapter 4, polygons in Chapter 8, and mapping geometry clipmap-
ping to a globe in Chapter 13.

(a) (b)

Figure 1.3. (a) Z-fighting and jittering artifacts caused by precision errors in large
worlds. In z-fighting, fragments from different objects map to the same depth
value, causing tearing artifacts. (b) Without z-fighting and jittering. (Images
courtesy of Aleksandar Dimitrijević, University of Nǐs.)
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(a) (b)

(c) (d)

(e) (f)

Figure 1.4. (a) Lines connecting surface points cut underneath a globe; instead,
(b) points should be connected with a curve. Likewise, (c) polygons composed of
triangles cut under a globe unless (d) curvature is taken into account. Mapping
flat-world algorithms, (e) like geometry clipmapping terrain, to a globe can lead
to (f) oversampling near the poles. (a) and (c) are shown without depth testing.
(b) and (d) use the depth-testing technique presented in Chapter 7 to avoid
z-fighting with the globe.
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• Massive datasets. Real-world data have significant storage require-
ments. Typical datasets will not fit into GPU memory, system mem-
ory, or a local hard disk. Instead, virtual globes rely on server-side
data that are paged in based on view parameters using a technique
called out-of-core rendering, which is discussed in the context of ter-
rain in Chapter 12 and throughout Part IV.

• Multithreading. In many applications, multithreading is considered
to be only a performance enhancement. In virtual globes, it is an
essential part of the 3D engine. As the viewer moves, virtual globes
are constantly paging in data and processing it for rendering. Doing
so in the rendering thread causes severe stalls, making the application
unusable. Instead, virtual globe resources are loaded and processed
in one or more separate threads, as discussed in Chapter 10.

• Few simplifying assumptions. Given their unrestrictive nature, vir-
tual globes cannot take advantage of many of the simplifying assump-
tions that other graphics applications can.

A viewer may zoom from a global view to a local view or vice versa
in an instant. This challenges techniques that rely on controlling
the viewer’s speed or viewable area. For example, flight simulators
know the plane’s top speed and first-person shooters know the player’s
maximum running speed. This knowledge can be used to prefetch
data from secondary storage. With the freedom of virtual globes,
these techniques become more difficult.

Using real-world data also makes procedural techniques less applica-
ble. The realism in virtual globes comes from higher-resolution data,
which generally cannot be synthesized at runtime. For example, pro-
cedurally generating terrains or clouds can still be done, but virtual
globe users are most often interested in real terrains and clouds.

This book address these rendering challenges and more.

1.2 Contents Overview

The remaining chapters are divided into four parts: fundamentals, preci-
sion, vector data, and terrain.

1.2.1 Fundamentals

The fundamentals part contains chapters on low-level virtual globe com-
ponents and basic globe rendering algorithms.
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• Chapter 2: Math Foundations. This chapter introduces useful math
for virtual globes, including ellipsoids, common virtual globe coordi-
nate systems, and conversions between coordinate systems.

• Chapter 3: Renderer Design. Many 3D engines, including virtual
globes, do not call rendering APIs such as OpenGL directly, and
instead use an abstraction layer. This chapter details the design
rationale behind the renderer in our example code.

• Chapter 4: Globe Rendering. This chapter presents several funda-
mental algorithms for tessellating and shading an ellipsoidal globe.

1.2.2 Precision

Given the massive scale of Earth, virtual globes are susceptible to rendering
artifacts caused by precision errors that many other 3D applications are
not. This part details the causes and solutions to these precision problems.

• Chapter 5: Vertex Transform Precision. The 32-bit precision on most
of today’s GPUs can cause objects in massive worlds to jitter, that
is, literally bounce around in a jerky manner as the viewer moves.
This chapter surveys several solutions to this problem.

• Chapter 6: Depth Buffer Precision. Since virtual globes call for a
close near plane and a distant far plane, extra care needs to be taken
to avoid z-fighting due to the nonlinear nature of the depth buffer.
This chapter presents a wide range of techniques for eliminating this
artifact.

1.2.3 Vector Data

Vector data, such as political boundaries and city locations, give virtual
globes much of their richness. This part presents algorithms for rendering
vector data and multithreading techniques to relieve the rendering thread
of preparing vector data, or resources in general.

• Chapter 7: Vector Data and Polylines. This chapter includes a brief
introduction to vector data and geometry-shader-based algorithms
for rendering polylines.

• Chapter 8: Polygons. This chapter presents algorithms for rendering
filled polygons on an ellipsoid using a traditional tessellation and
subdivision approach and rendering filled polygons on terrain using
shadow volumes.
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• Chapter 9: Billboards. Billboards are used in virtual globes to display
text and highlight places of interest. This chapter covers geometry-
shader-based billboards and texture atlas creation and usage.

• Chapter 10: Exploiting Parallelism in Resource Preparation. Given
the large datasets used by virtual globes, multithreading is a must.
This chapter reviews parallelism in computer architecture, presents
software architectures for multithreading in virtual globes, and de-
mystifies multithreading in OpenGL.

1.2.4 Terrain

At the heart of a virtual globe is a terrain engine capable of rendering mas-
sive terrains. This final part starts with terrain fundamentals, then moves
on to rendering real-world terrain datasets using level of detail (LOD) and
out-of-core techniques.

• Chapter 11: Terrain Basics. This chapter introduces height-map-
based terrain with a discussion of rendering algorithms, normal com-
putations, and shading, both texture-based and procedural.

• Chapter 12: Massive-Terrain Rendering. Rendering real-world ter-
rain accurately mapped to an ellipsoid requires the techniques dis-
cussed in this chapter, including LOD, culling, and out-of-core ren-
dering. The next two chapters build on this material with specific
LOD algorithms.

• Chapter 13: Geometry Clipmapping. Geometry clipmapping is an
LOD technique based on nested, regular grids. This chapter details
its implementation, as well as out-of-core and ellipsoid extensions.

• Chapter 14: Chunked LOD. Chunked LOD is a popular terrain LOD
technique that uses hierarchical levels of detail. This chapter dis-
cusses its implementation and extensions.

There is also an appendix on implementing a message queue for com-
municating between threads.

We’ve ordered the parts and chapters such that the book flows from
start to finish. You don’t have to read the chapters in order though; we
certainly didn’t write them in order. Just ensure you are familiar with
the terms and high level-concepts in Chapters 2 and 3, then jump to the
chapter that interests you most. The text contains cross-references so you
know where to go for more information.

There are Patrick Says and Kevin Says boxes throughout the text.
These are the voices of the individual authors and are used to tell a story,
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usually an implementation war story, or to inject an opinion without cloud-
ing the main text. We hope these lighten up the text and provide deeper
insight into our experiences.

The text also includes Question and Try This boxes that provide ques-
tions to think about and modifications or enhancements to make to the
example code.

1.3 OpenGlobe Architecture

A large amount of example code accompanies this book. These examples
were written from scratch, specifically for this book. In fact, just as much
effort went into the example code as went into the book you hold in your
hands. As such, treat the examples as an essential part of your learning—
take the time to run them and experiment. Tweaking code and observing
the result is time well spent.

Together, the examples form a solid foundation for a 3D engine designed
for virtual globes. As such, we’ve named the example code OpenGlobe and
provide it under the liberal MIT License. Use it as is in your commercial
products or select bits and pieces for your personal projects. Download it
from our website: http://www.virtualglobebook.com/.

The code is written in C# using OpenGL1 and GLSL. C#’s clean syn-
tax and semantics allow us to focus on the graphics algorithms without
getting bogged down in language minutiae. We’ve avoided lesser-known
C# language features, so if your background is in another object-oriented
language, you will have no problem following the examples. Likewise, we’ve
favored clean, concise, readable code over micro-optimizations.

Given that the OpenGL 3.3 core profile is used, we are taking a modern,
fully shader-based approach. In Chapter 3, we build an abstract renderer
implemented with OpenGL. Later chapters use this renderer, nicely tucking
away the OpenGL API details so we can focus on virtual globe and terrain
specifics.

OpenGlobe includes implementations for many of the presented algo-
rithms, making the codebase reasonably large. Using the conservative met-
ric of counting only the number of semicolons, it contains over 16,000 lines
of C# code in over 400 files, and over 1,800 lines of GLSL code in over 80
files. We strongly encourage you to build, run, and experiment with the
code. As such, we provide a brief overview of the engine’s organization to
help guide you.

OpenGlobe is organized into three assemblies:2 OpenGlobe.Core.dll,
OpenGlobe.Renderer.dll, and OpenGlobe.Scene.dll. As shown in Figure 1.5,

1OpenGL is accessed from C# using OpenTK: http://www.opentk.com/.
2Assembly is the .NET term for a compiled code library (i.e., an .exe or .dll file).
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Figure 1.5. The stack of OpenGlobe assemblies.

these assemblies are layered such that Renderer depends on Core, and Scene
depends on Renderer and Core. All three assemblies depend on the .NET
system libraries, similar to how an application written in C depends on the
C standard library.

Each OpenGlobe assembly has types that build on its dependent as-
semblies:

• Core. The Core assembly exposes fundamental types such as vec-
tors, matrices, geographic positions, and the Ellipsoid class discussed
in Chapter 2. This assembly also contains geometric algorithms, in-
cluding the tessellation algorithms presented in Chapters 4 and 8,
and engine infrastructure, such as the message queue discussed in
Appendix A.

• Renderer. The Renderer assembly contains types that present an
abstraction for managing GPU resources and issuing draw calls. Its
design is discussed in depth in Chapter 3. Instead of calling OpenGL
directly, an application built using OpenGlobe uses types in this as-
sembly.

• Scene. The Scene assembly contains types that implement rendering
algorithms using the Renderer assembly. This includes algorithms for
globes (see Chapter 4), vector data (see Chapters 7–9), terrain shad-
ing (see Chapter 11), and geometry clipmapping (see Chapter 13).

Each assembly exposes types in a namespace corresponding to the as-
sembly’s filename. Therefore, there are three public namespaces: Open

Globe.Core, OpenGlobe.Renderer, and OpenGlobe.Scene.
An application may depend on one, two, or all three assemblies. For

example, a command line tool for geometric processing may depend just
on Core, an application that implements its own rendering algorithms may
depend on Core and Renderer, and an application that uses high-level
objects like globes and terrain would depend on all three assemblies.
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The example applications generally fall into the last category and usu-
ally consist of one main .cs file with a simple OnRenderFrame implementation
that clears the framebuffer and issues Render for a few objects created from
the Scene assembly.

OpenGlobe requires a video card supporting OpenGL 3.3, or equiva-
lently, Shader Model 4. These cards came out in 2006 and are now very
reasonably priced. This includes the NVIDIA GeForce 8 series or later and
ATI Radeon 2000 series or later GPUs. Make sure to upgrade to the most
recent drivers.

All examples compile and run on Windows and Linux. On Windows,
we recommend building with any version of Visual C# 2010, including
the free Express Edition.3 On Linux, we recommend MonoDevelop.4 We
have tested on Windows XP, Vista, and 7, as well as Ubuntu 10.04 and
10.10 with Mono 2.4.4 and 2.6.7, respectively. At the time of this writ-
ing, OpenGL 3.3 drivers were not available on OS X. Please check our
website for the most up-to-date list of supported platforms and integrated
development environments (IDEs).

To build and run, simply open Source\OpenGlobe.sln in your .NET de-
velopment environment, build the entire solution, then select an example
to run.

We are committed to filling these pages with descriptive text, figures,
and tables, not verbose code listing upon listing. Therefore, we’ve tried to
provide relevant, concise code listings that supplement the core content. To
keep listings concise, some error checking may be omitted, and #version

330 is always omitted in GLSL code. The code on our website includes full
error checking and #version directives.

1.4 Conventions
This book uses a few conventions. Scalars and points are lowercase and
italicized (e.g., s and p), vectors are bold (e.g., v), normalized vectors
also have a hat over them (e.g., n̂), and matrices are uppercase and bold
(e.g., M).

Unless otherwise noted, units in Cartesian coordinates are in meters (m).
In text, angles, such as longitude and latitude, are in degrees (◦). In code
examples, angles are in radians because C# and GLSL functions expect
radians.

3http://www.microsoft.com/express/Windows/
4http://monodevelop.com/
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2
Math Foundations

At the heart of an accurately rendered virtual globe is an ellipsoidal repre-
sentation of Earth. This chapter introduces the motivation and mathemat-
ics for such a representation, with a focus on building a reusable Ellipsoid

class containing functions for computing surface normals, converting be-
tween coordinate systems, computing curves on an ellipsoid surface, and
more.

This chapter is unique among the others in that it contains a signifi-
cant amount of math and derivations, whereas the rest of the book covers
more pragmatic engine design and rendering algorithms. You don’t need
to memorize the derivations in this chapter to implement a virtual globe;
rather, aim to come away with a high-level understanding and appreciation
of the math and knowledge of how to use the presented Ellipsoid methods.

Let’s begin by looking at the most common coordinate systems used in
virtual globes.

2.1 Virtual Globe Coordinate Systems

All graphics engines work with one or more coordinate systems, and virtual
globes are no exception. Virtual globes focus on two coordinate systems:
geographic coordinates for specifying positions on or relative to a globe and
Cartesian coordinates for rendering.

2.1.1 Geographic Coordinates

A geographic coordinate system defines each position on the globe by a
(longitude, latitude, height)-tuple, much like a spherical coordinate sys-
tem defines each position by an (azimuth, inclination, radius)-tuple. In-
tuitively, longitude is an angular measure west to east, latitude is an angular

13
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measure south to north, and height is a linear distance above or below the
surface. In Section 2.2.3, we more precisely define latitude and height.

Geographic coordinates are widely used; most vector data are defined
in geographic coordinates (see Part III). Even outside virtual globes, ge-
ographic coordinates are used for things such as the global positioning
systems (GPS).

We adopt the commonly used convention of defining longitude in the
range [−180◦, 180◦]. As shown in Figure 2.1(a), longitude is zero at the
prime meridian, where the western hemisphere meets the eastern. Increas-
ing longitude moves to the east, and decreasing longitude moves to the
west; longitude is positive in the eastern hemisphere and negative in the
western. Longitude increases or decreases until the antimeridian, ±180◦

longitude, which forms the basis for the International Date Line (IDL) in
the Pacific Ocean. Although the IDL turns in places to avoid land, for
our purposes, it is approximated as ±180◦. Many algorithms need special
consideration for the IDL.

Longitude is sometimes defined in the range [0◦, 360◦], where it is zero
at the prime meridian and increases to the east through the IDL. To convert
longitude from [0◦, 360◦] to [−180◦, 180◦], simply subtract 360◦ if longitude
is greater than 180◦.

Latitude, the angular measure south to north, is in the range [−90◦, 90◦].
As shown in Figure 2.1(b), latitude is zero at the equator and increases from
south to north. It is positive in the northern hemisphere and negative in
the southern.

Longitude and latitude should not be treated as 2D x and y Cartesian
coordinates. As latitude approaches the poles, lines of constant longitude
converge. For example, the extent with southwest corner (0◦, 0◦) and north-
west corner (10◦, 10◦) has much more surface area than the extent from

(a) (b)

Figure 2.1. Longitude and latitude in geographic coordinates. (a) Longitude
spanning west to east. (b) Latitude spanning south to north.



2.1. Virtual Globe Coordinate Systems 15

Figure 2.2. Extents with the same square number of degrees do not necessarily
have the same surface area. (Image taken using STK. The Blue Marble imagery
is from NASA Visible Earth.)

(0◦, 80◦) to (10◦, 90◦), even though they are both one square degree (see
Figure 2.2). Therefore, algorithms based on a uniform longitude/latitude
grid oversample near the poles, such as in the geographic grid tessellation
in Section 4.1.4.

As mentioned in the Introduction, we use degrees for longitude and lat-
itude, except in code examples, where they are in radians because C# and
GLSL functions expect radians. Conversion between the two is straightfor-
ward: there are 2π rad or 360◦ in a circle, so one radian is π

180
◦, and one

degree is 180
π rad. Although not used in this book, longitude and latitude

are sometimes measured in arc minutes and arc seconds. There are 60 arc
minutes in a degree and 60 arc seconds in an arc minute.

In OpenGlobe, geographic coordinates are represented using Geodetic

2D and Geodetic3D, the difference being the former does not include height,
implying the position is on the surface. A static class, Trig, provides
ToRadians and ToDegrees conversion functions. Simple examples for these
types are shown in Listing 2.1.

Geodetic3D p = Trig . ToRadians (new Geodetic3D (180 . 0 , 0 . 0 , 5 . 0 ) ) ;

Console . WriteLine ( p . Longitude ) ; // 3 . 1 4 1 5 9 . . .
Console . WriteLine ( p . Latitude ) ; // 0 .0
Console . WriteLine ( p . Height ) ; // 5 .0

Geodetic2D g = Trig . ToRadians (new Geodetic2D (180 . 0 , 0 . 0 ) ) ;
Geodetic3D p2 = new Geodetic3D ( g , 5 . 0 ) ;

Console . WriteLine ( p == p2 ) ; // True

Listing 2.1. Geodetic2D and Geodetic3D examples.
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2.1.2 WGS84 Coordinate System

Geographic coordinates are useful because they are intuitive—intuitive to
humans at least. OpenGL doesn’t know what to make of them; OpenGL
uses Cartesian coordinates for 3D rendering. We handle this by converting
geographic coordinates to Cartesian coordinates for rendering.

The Cartesian system used in this book is called the World Geodetic
System 1984 (WGS84) coordinate system [118]. This coordinate system
is fixed to Earth; as Earth rotates, the system also rotates, and objects
defined in WGS84 remain fixed relative to Earth. As shown in Figure 2.3,
the origin is at Earth’s center of mass; the x-axis points towards geographic
(0◦, 0◦), the y-axis points towards (90◦, 0◦), and the z-axis points towards
the north pole. The equator lies in the xy-plane. This is a right-handed
coordinate system, hence x × y = z, where x, y, and z are unit vectors
along their respective axis.

In OpenGlobe, Cartesian coordinates are most commonly represented
using Vector3D, whose interface surely looks similar to other vector types
you’ve seen. Example code for common operations like normalize, dot
product, and cross product is shown in Listing 2.2.

The only thing that may be unfamiliar is that a Vector3D’s X, Y, and Z

components are doubles, indicated by the D suffix, instead of floats, which
are standard in most graphics applications. The large values used in vir-
tual globes, especially those of WGS84 coordinates, are best represented by

(a) (b)

Figure 2.3. WGS84 coordinate system. (a) WGS84 coordinate system shown with
a textured globe. (b) A wireframe globe shows the WGS84 coordinate system
origin.
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Vector3D x = new Vector3D (1 . 0 , 0 . 0 , 0 . 0 ) ;
// (Same as Vector3D . UnitX )
Vector3D y = new Vector3D (0 . 0 , 1 . 0 , 0 . 0 ) ;
// (Same as Vector3D . UnitY )

double s = x . X + x . Y + x . Z ; // 1 .0
Vector3D n = ( y − x ) . Normalize ( ) ; // ( 1 . 0 / Sqrt ( 2 . 0 ) ,

// −1.0 / Sqrt ( 2 . 0 ) , 0 . 0 )
double p = n . Dot ( y ) ; // 1 .0 / Sqrt ( 2 . 0 )
Vector3D z = x . Cross ( y ) ; // ( 0 . 0 , 0 . 0 , 1 . 0 )

Listing 2.2. Fundamental Vector3D operations.

double precision as explained in Chapter 5. OpenGlobe also contains vector
types for 2D and 4D vectors and float , Half (16-bit floating point), int, and
bool data types.1

We use meters for units in Cartesian coordinates and for height in geode-
tic coordinates, which is common in virtual globes.

Let’s turn our attention to ellipsoids, which will allow us to more pre-
cisely define geographic coordinates, and ultimately discuss one of the most
common operations in virtual globes: conversion between geographic and
WGS84 coordinates.

2.2 Ellipsoid Basics
A sphere is defined in 3-space by a center, c, and a radius, r. The set of
points r units away from c define the sphere’s surface. For convenience, the
sphere is commonly centered at the origin, making its implicit equation:

x2s + y2s + z2s = r2. (2.1)

A point (xs, ys, zs) that satisfies Equation (2.1) is on the sphere’s sur-
face. We use the subscript s to denote that the point is on the surface, as
opposed to an arbitrary point (x, y, z), which may or may not be on the
surface.

In some cases, it is reasonable to model a globe as a sphere, but as
we shall see in the next section, an ellipsoid provides more precision and
flexibility. An ellipsoid centered at (0, 0, 0) is defined by three radii (a, b, c)
along the x-, y-, and z-axes, respectively. A point (xs, ys, zs) lies on the
surface of an ellipsoid if it satisfies Equation (2.2):

x2s
a2

+
y2s
b2

+
z2s
c2

= 1. (2.2)

1In C++, templates eliminate the need for different vector classes for each data type.
Unfortunately, C# generics do not allow math operations on generic types.
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(a) (b) (c)

Figure 2.4. Oblate spheroids with different semiminor axes. All of these oblate
spheroids have a semimajor axis = 1 and a semiminor axis along the z-direction
(blue). (a) Semiminor axis = 1. The oblate spheroid is a sphere. (b) Semiminor
axis = 0.7. (c) Semiminor axis = 0.4.

When a = b = c, Equation (2.2) simplifies to Equation (2.1), hence
the ellipsoid is a sphere. An oblate spheroid is a type of ellipsoid that is
particularly useful for modeling Earth. An oblate spheroid has two radii of
equal length (e.g., a = b) and a smaller third radius (e.g., c < a, c < b). The
larger radii of equal length are called the semimajor axes and the smaller
radius is called the semiminor axis. Figure 2.4 shows oblate spheroids with
varying semiminor axes. The smaller the semiminor axis compared to the
semimajor axis, the more oblate the spheroid.

2.2.1 WGS84 Ellipsoid

For many applications, particularly games, it is acceptable to represent
Earth or a planet using a sphere. In fact some celestial bodies, such as the
Moon, with a semimajor axis of 1,738.1 km at its equator and a semiminor
axis of 1,736 km at its poles, are almost spherical [180]. Other celestial
bodies are not even close to spherical, such as Phobos, one of Mars’s moons,
with radii of 27× 22× 18 km [117].

Although not as oddly shaped as Phobos, Earth is not a perfect sphere.
It is best represented as an oblate spheroid with an equatorial radius of
6,378,137 m, defining its semimajor axis, and a polar radius of
6,356,752.3142 m, defining its semiminor axis, making Earth about 21,384 m
longer at the equator than at the poles.

This ellipsoid representation of Earth is called the WGS84 ellipsoid [118].
It is the National Geospatial-Intelligence Agency’s (NGA) latest model of
Earth as of this writing (it originated in 1984 and was last updated in 2004).
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pub l i c c l a s s E l l i p s o i d
{

pub l i c s t a t i c readonly E l l i p s o i d Wgs84 =
new E l l i p s o i d (6378137 .0 , 6378137 .0 , 6356752.314245) ;

pub l i c s t a t i c readonly E l l i p s o i d UnitSphere =
new E l l i p s o i d ( 1 . 0 , 1 . 0 , 1 . 0 ) ;

pub l i c E llipsoid ( double x , double y , double z ) { /* . . . */ }
pub l i c E llipsoid ( Vector3D radii ) { /* . . . */ }

pub l i c Vector3D Radii
{

get { re turn _radii ; }
}

pr i va t e readonly Vector3D _radii ;
}

Listing 2.3. Partial Ellipsoid implementation.

The WGS84 ellipsoid is widely used; we use it in STK and Insight3D,
as do many virtual globes. Even some games use it, such as Microsoft’s
Flight Simulator [163].

The most flexible approach for handling globe shapes in code is to use
a generic ellipsoid class constructed with user-defined radii. This allows
code that supports the WGS84 ellipsoid and also supports other ellipsoids,
such as those for the Moon, Mars, etc. In OpenGlobe, Ellipsoid is such a
class (see Listing 2.3).

2.2.2 Ellipsoid Surface Normals

Computing the outward-pointing surface normal for a point on the surface
of an ellipsoid has many uses, including shading calculations and precisely
defining height in geographic coordinates. For a point on a sphere, the
surface normal is found by simply treating the point as a vector and nor-
malizing it. Doing the same for a point on an ellipsoid yields a geocentric
surface normal. It is called geocentric because it is the normalized vector
from the center of the ellipsoid through the point. If the ellipsoid is not a
perfect sphere, this vector is not actually normal to the surface for most
points.

On the other hand, a geodetic surface normal is the actual surface
normal to a point on an ellipsoid. Imagine a plane tangent to the ellipsoid
at the point. The geodetic surface normal is normal to this plane, as shown
in Figure 2.5. For a sphere, the geocentric and geodetic surface normals are
equivalent. For more oblate ellipsoids, like the ones shown in Figures 2.5(b)
and 2.5(c), the geocentric normal significantly diverges from the geodetic
normal for most surface points.
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(a) (b) (c)

Figure 2.5. Geodetic versus geocentric surface normals. The geocentric normal
diverges from the geodetic normal as the ellipsoid becomes more oblate. All
figures have a semimajor axis = 1. (a) Semiminor axis = 1. (b) Semiminor axis
= 0.7. (c) Semiminor axis = 0.4.

The geodetic surface normal is only slightly more expensive to compute
than its geocentric counterpart

m =
(xs
a2
,
ys
b2
,
zs
c2

)
,

n̂s =
m

‖m‖
,

where (a, b, c) are the ellipsoid’s radii, (xs, ys, zs) is the surface point, and
n̂s is the resulting surface normal.

In practice,
(

1
a2 ,

1
b2 ,

1
c2

)
is precomputed and stored with the ellipsoid.

Computing the geodetic surface normal simply becomes a component-wise
multiplication of this precomputed value and the surface point, followed by
normalization, as shown in Ellipsoid .GeodeticSurfaceNormal in Listing 2.4.

Listing 2.5 shows a very similar GLSL function. The value passed to
oneOverEllipsoidRadiiSquared is provided to the shader by a uniform, so
it is precomputed on the CPU once and used for many computations on
the GPU. In general, we look for ways to precompute values to improve
performance, especially when there is little memory overhead like here.

pub l i c Ellipsoid ( Vector3D radii )
{

// . . .
_oneOverRadiiSquared = new Vector3D (

1 .0 / ( radii . X * radii . X ) ,
1 . 0 / ( radii . Y * radii . Y ) ,
1 . 0 / ( radii . Z * radii . Z ) ) ;

}
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pub l i c Vector3D GeodeticSurfaceNormal ( Vector3D p )
{

Vector3D normal = p . MultiplyComponents ( _oneOverRadiiSquared ) ;
r e turn normal . Normalize ( ) ;

}

// . . .
p r i va t e readonly Vector3D _oneOverRadiiSquared ;

Listing 2.4. Computing an ellipsoid’s geodetic surface normal.

vec3 GeodeticSurfaceNormal ( vec3 p ,
vec3 oneOverEllipsoidRadiiSquared )

{
re turn normal ize ( p * oneOverEllipsoidRadiiSquared ) ;

}

Listing 2.5. Computing an ellipsoid’s geodetic surface normal in GLSL.

�

�

�

�
Run Chapter02EllipsoidSurfaceNormals and increase and decrease the
oblateness of the ellipsoid. The more oblate the ellipsoid, the larger the
difference between the geodetic and geocentric normals.

Try This

2.2.3 Geodetic Latitude and Height

Given our understanding of geodetic surface normals, latitude and height
in geographic coordinates can be precisely defined. Geodetic latitude is the

Φc Φd

Figure 2.6. Comparison of geodetic latitude, φd, and geocentric latitude, φc.
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angle between the equatorial plane (e.g., the xy-plane in WGS84 coordi-
nates) and a point’s geodetic surface normal. On the other hand, geocentric
latitude is the angle between the equatorial plane and a vector from the
origin to the point. At most points on Earth, geodetic latitude is different
from geocentric latitude, as shown in Figure 2.6. Unless stated otherwise
in this book, latitude always refers to geodetic latitude.

Height should be measured along a point’s geodetic surface normal.
Measuring along the geocentric normal introduces error, especially at higher
heights, like those of space assets [62]. The larger the angular difference
between geocentric and geodetic normals, the higher the error. The angular
difference is dependent on latitude; on the WGS84 ellipsoid, the maximum
angular difference between geodetic and geocentric normals is at ≈ 45◦ lat-
itude.

2.3 Coordinate Transformations

Given that so much virtual globe data are stored in geographic coordinates
but are rendered in WGS84 coordinates, the ability to convert from geo-
graphic to WGS84 coordinates is essential. Likewise, the ability to convert
in the opposite direction, from WGS84 to geographic coordinates, is also
useful.

Although we are most interested in the Earth’s oblate spheroid, the
conversions presented here work for all ellipsoid types, including a triaxial
ellipsoid , that is, an ellipsoid where each radius is a different length (a 6=
b 6= c).

In the following discussion, longitude is denoted by λ, geodetic latitude
by φ, and height by h, so a (longitude, latitude, height)-tuple is denoted by
(λ, φ, h). As before, an arbitrary point in Cartesian coordinates is denoted
by (x, y, z), and a point on the ellipsoid surface is denoted by (xs, ys, zs).
All surface normals are assumed to be geodetic surface normals.

2.3.1 Geographic to WGS84

Fortunately, converting from geographic to WGS84 coordinates is a straight-
forward and closed form. The conversion is the same regardless of whether
the point is above, below, or on the surface, but a small optimization can
be made for surface points by omitting the final step.

Given a geographic point (λ, φ, h) and an ellipsoid (a, b, c) centered at
the origin, determine the point’s WGS84 coordinate, r = (x, y, z).

The conversion takes advantage of a convenient property of the surface
normal, n̂s, to compute the location of the point on the surface, rs; then,
the height vector, h, is computed directly and added to the surface point
to produce the final position, r, as shown in Figure 2.7.
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Figure 2.7. The geographic point (λ, φ, h) is converted to WGS84 coordinates by
using the surface normal, n̂s, to compute the surface point, rs, which is offset by
the height vector, h, to produce the final point, r.

Given the surface position (λ, φ), the surface normal, n̂s, is defined as

n̂s = cosφ cos λ̂i + cosφ sin λ̂j + sinφk̂. (2.3)

Given the surface point rs = (xs, ys, zs), the unnormalized surface nor-
mal, ns, is

ns =
xs
a2

î +
ys
b2

ĵ +
zs
c2

k̂. (2.4)

We are not given rs but can determine it by relating n̂s and ns, which
have the same direction but likely different magnitudes:

n̂s = γns. (2.5)

By substituting Equation (2.4) into ns in Equation (2.5), we can rewrite
n̂s as

n̂s = γ
(xs
a2

î +
ys
b2

ĵ +
zs
c2

k̂
)
. (2.6)

We know n̂s, a
2, b2, and c2 but do not know γ, xs, ys, and zs. Let’s

rewrite Equation (2.6) as three scalar equations:

n̂x =
γxs
a2

,

n̂y =
γys
b2

,

n̂z =
γzs
c2
.

(2.7)

Ultimately, we are interested in determining (xs, ys, zs), so let’s rearrange
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Equation (2.7) to solve for xs, ys, and zs:

xs =
a2n̂x
γ

,

ys =
b2n̂y
γ

,

zs =
c2n̂z
γ

.

(2.8)

The only unknown on the right-hand side is γ; if we compute γ, we can
solve for xs, ys, and zs. Recall from the implicit equation of an ellipsoid in
Equation (2.2) in Section 2.2 that a point is on the surface if it satisfies

x2s
a2

+
y2s
b2

+
z2s
c2

= 1.

We can use this to solve for γ by substituting Equation (2.8) into this
equation, then isolating γ:

(a
2n̂x

γ )2

a2
+

(
b2n̂y

γ )2

b2
+

( c
2n̂z

γ )2

c2
= 1

a2n̂2x + b2n̂2y + c2n̂2z = γ2

γ =
√
a2n̂2x + b2n̂2y + c2n̂2z.

(2.9)

Since γ is now written in terms of values we know, we can solve for xs,
ys, and zs using Equation (2.8). If the original geographic point is on the
surface (i.e., h = 0) then the conversion is complete. For the more general
case when the point may be above or below the surface, we compute a height
vector, h, with the direction of the surface normal and the magnitude of
the point’s height:

h = hn̂s.

pub l i c c l a s s E l l i p s o i d
{

pub l i c E llipsoid ( Vector3D radii )
{

// . . .
_radiiSquared = new Vector3D (

radii . X * radii . X ,
radii . Y * radii . Y ,
radii . Z * radii . Z ) ;

}

pub l i c Vector3D GeodeticSurfaceNormal ( Geodetic3D geodetic )
{

double cosLatitude = Math . Cos ( geodetic . Latitude ) ;
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re turn new Vector3D (
cosLatitude * Math . Cos ( geodetic . Longitude ) ,
cosLatitude * Math . Sin ( geodetic . Longitude ) ,
Math . Sin ( geodetic . Latitude ) ) ;

}

pub l i c Vector3D ToVector3D ( Geodetic3D geodetic )
{

Vector3D n = GeodeticSurfaceNormal ( geodetic ) ;
Vector3D k = _radiiSquared . MultiplyComponents ( n ) ;
double gamma = Math . Sqrt (

k . X * n . X +
k . Y * n . Y +
k . Z * n . Z ) ;

Vector3D rSurface = k / gamma ;
r e turn rSurface + ( geodetic . Height * n ) ;

}

// . . .
p r i va t e readonly Vector3D _radiiSquared ;

}

Listing 2.6. Converting from geographic to WGS84 coordinates.

The final WGS84 point is computed by offsetting the surface point,
rs = (xs, ys, zs), by h:

r = rs + h. (2.10)

The geographic to WGS84 conversion is implemented in Ellip

soid .ToVector3D, shown in Listing 2.6. First, the surface normal is com-
puted using Equation (2.3), then γ is computed using Equation (2.9).
The converted WGS84 point is finally computed using Equations (2.8)
and (2.10).

2.3.2 WGS84 to Geographic

Converting from WGS84 to geographic coordinates in the general case is
more involved than conversion in the opposite direction, so we break it into
multiple steps, each of which is also a useful function on its own.

First, we present the simple, closed form conversion for points on the
ellipsoid surface. Then, we consider scaling an arbitrary WGS84 point to
the surface using both a geocentric and geodetic surface normal. Finally,
we combine the conversion for surface points with scaling along the geodetic
surface normal to create a conversion for arbitrary WGS84 points.

The algorithm presented here uses only two inverse trigonometric func-
tions and converges quickly, especially for Earth’s oblate spheroid.

WGS84 surface points to geographic. Given a WGS84 point (xs, ys, zs) on
the surface of an ellipsoid (a, b, c) centered at the origin, the geographic
point (λ, φ) is straightforward to compute.
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pub l i c c l a s s E l l i p s o i d
{

pub l i c Vector3D GeodeticSurfaceNormal ( Vector3D p )
{

Vector3D normal = p . MultiplyComponents ( _oneOverRadiiSquared ) ;
r e turn normal . Normalize ( ) ;

}

pub l i c Geodetic2D ToGeodetic2D ( Vector3D p )
{

Vector3D n = GeodeticSurfaceNormal ( p ) ;
r e turn new Geodetic2D (

Math . Atan2 ( n . Y , n . X ) ,
Math . Asin ( n . Z / n . Magnitude ) ) ;

}

// . . .
}

Listing 2.7. Converting surface points from WGS84 to geographic coordinates.

Recall from Equation (2.4) that we can determine the unnormalized
surface normal, ns, given the surface point:

ns =
xs
a2

î +
ys
b2

ĵ +
zs
c2

k̂

The normalized surface normal, n̂s, is simply computed by normaliz-
ing ns:

n̂s =
ns
‖ns‖

.

Given n̂s, longitude and latitude are computed using inverse trigono-
metric functions:

λ = arctan
n̂y
n̂x
,

φ = arcsin
n̂z
‖ns‖

.

This is implemented in Ellipsoid .ToGeodetic2D, shown in Listing 2.7.

Scaling WGS84 points to the geocentric surface. Given an arbitrary WGS84
point, r = (x, y, z), and an ellipsoid, (a, b, c), centered at the origin, we
wish to determine the surface point, rs = (xs, ys, zs), along the point’s
geocentric surface normal, as shown in Figure 2.8(a).

This is useful for computing curves on an ellipsoid (see Section 2.4)
and is a building block for determining the surface point using the geodetic
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(a) (b)

Figure 2.8. Scaling two points, r0 and r1, to the surface. (a) When scaling along
the geocentric normal, a vector from the center of the ellipsoid is intersected with
the ellipsoid to determine the surface point. (b) When scaling along the geodetic
normal, an iterative process is used.

normal, as shown in Figure 2.8(b). Ultimately, we want to convert arbitrary
WGS84 points to geographic coordinates by first scaling the arbitrary point
to the geodetic surface and then converting the surface point to geographic
coordinates and adjusting the height.

Let the position vector, r, equal r−0. The geocentric surface point, rs,
will be along this vector; that is

rs = βr,

where rs represents the intersection of the vector r and the ellipsoid. The
variable β determines the position along the vector and is computed as

β =
1√

x2

a2 + y2

b2 + z2

c2

. (2.11)

pub l i c c l a s s E l l i p s o i d
{

pub l i c Vector3D ScaleToGeocentricSurface ( Vector3D p )
{

double beta = 1.0 / Math . Sqrt (
( p . X * p . X ) * _oneOverRadiiSquared . X +
( p . Y * p . Y ) * _oneOverRadiiSquared . Y +
( p . Z * p . Z ) * _oneOverRadiiSquared . Z ) ;

r e turn beta * position ;
}

// . . .
}

Listing 2.8. Scaling a point to the surface along the geocentric surface normal.
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Therefore, rs is determined with

xs = βx,

ys = βy,

zs = βz.

(2.12)

Equations (2.11) and (2.12) are used to implement Ellipsoid .Sc

aleToGeocentricSurface shown in Listing 2.8.

Scaling to the geodetic surface. Using the geocentric normal to determine a
surface point doesn’t have the accuracy required for WGS84 to geographic
conversion. Instead, we seek the surface point whose geodetic normal points
towards the arbitrary point, or in the opposite direction for points below
the surface.

More precisely, given an arbitrary WGS84 point, r = (x, y, z), and an
ellipsoid, (a, b, c), centered at the origin, we wish to determine the surface
point, rs = (xs, ys, zs), whose geodetic surface normal points towards r, or
in the opposite direction.

We form rs in terms of a single unknown and use the Newton-Raphson
method to iteratively approach the solution. This method converges quickly
for Earth’s oblate spheroid and doesn’t require any trigonometric functions,
making it efficient. It will not work for points very close to the center of
the ellipsoid, where multiple solutions are possible, but these cases are rare
in practice.

Let’s begin by considering the three vectors in Figure 2.9: the arbitrary
point vector, r = r−0; the surface point vector, rs = rs−0; and the height
vector, h. From the figure,

r = rs + h. (2.13)

Recall that we can compute the unnormalized normal, ns, for a surface
point

ns =
xs
a2

î +
ys
b2

ĵ +
zs
c2

k̂. (2.14)

r h

rs

r

rs

Figure 2.9. Computing rs given r using the geodetic normal.
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Observe that h has the same direction as ns, but likely a different
magnitude. Let’s relate them:

h = αns.

We can substitute αns for h in Equation (2.13):

r = rs + αns.

Let’s rewrite this as three scalar equations and substitute Equation (2.14)
in for ns:

x = xs + α
xs
a2
,

y = ys + α
ys
b2
,

z = zs + α
zs
c2
.

Next, factor out xs, ys, and zs:

x = xs(1 +
α

a2
),

y = ys(1 +
α

b2
),

z = zs(1 +
α

c2
).

Finally, rearrange to solve for xs, ys, and zs:

xs =
x

1 + α
a2
,

ys =
y

1 + α
b2
,

zs =
z

1 + α
c2
.

(2.15)

We now have rs = (xs, ys, zs) written in terms of the known point,
r = (x, y, z); the ellipsoid radii, (a, b, c); and a single unknown, α. In order
to determine α, recall the implicit equation of an ellipsoid, which we can
write in the form F (x) = 0:

S =
x2s
a2

+
y2s
b2

+
z2s
c2
− 1 = 0. (2.16)

Substitute the expressions for xs, ys, and zs in Equation (2.15) into
Equation (2.16):

S =
x2

a2
(
1 + α

a2

)2 +
y2

b2
(
1 + α

b2

)2 +
z2

c2
(
1 + α

c2

)2 − 1 = 0. (2.17)
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Figure 2.10. The Newton-Raphson method is used to find α from the initial
guess, α0.

Since this equation is no longer written in terms of the unknowns xs,
ys, and zs, we only have one unknown, α. Solving for α will allow us to
use Equation (2.15) to find rs.

We solve for α using the Newton-Raphson method for root finding; we
are trying to find the root for S because when S = 0, the point lies on the
ellipsoid surface. Initially, we guess a value, α0, for α, then iterate until we
are sufficiently close to the solution.

We initially guess rs is the geocentric rs computed in the previous
section. Recall β from Equation (2.11):

β =
1√

x2

a2 + y2

b2 + z2

c2

.

For a geocentric rs, rs = βr, so our initial guess is

xs = βx,

ys = βy,

zs = βz.

The surface normal for this point is

m =
(xs
a2
,
ys
b2
,
zs
c2

)
,

n̂s =
m

‖m‖
.

Given our guess for rs and n̂s, we can now determine α0. The unknown
α scales n̂s to produce the height vector, h. Our initial guess, α0, simply
scales n̂s to represent the distance between the ellipsoid surface and r as
measured along the arbitrary point vector, r, as shown in Figure 2.10.
Therefore,

α0 = (1− β)
‖r‖
‖ns‖

.
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We can now set α = α0 and begin to iterate using the Newton-Raphson
method. To do so, we need the function S from Equation (2.17) and its
derivative with respect to α:

S =
x2

a2
(
1 + α

a2

)2 +
y2

b2
(
1 + α

b2

)2 +
z2

c2
(
1 + α

c2

)2 − 1 = 0,

∂S

∂α
= −2

[
x2

a4(1 + α
a2 )3

+
y2

b4(1 + α
b2 )3

+
z2

c4(1 + α
c2 )3

]
.

We iterate to find α by evaluating S and ∂S
∂α . If S is sufficiently close to

zero (i.e., within a given epsilon) iteration stops and α is found. Otherwise,
a new α is computed:

α = α− S
∂S
∂α

.

Iteration continues until S is sufficiently close to zero. Given α, rs is
computed using Equation (2.15).

The whole process for scaling an arbitrary point to the geodetic sur-
face is implemented using Ellipsoid .ScaleToGeodeticSurface, shown in List-
ing 2.9.

pub l i c c l a s s E l l i p s o i d
{

pub l i c E llipsoid ( Vector3D radii )
{

// . . .
_radiiToTheFourth = new Vector3D (

_radiiSquared . X * _radiiSquared . X ,
_radiiSquared . Y * _radiiSquared . Y ,
_radiiSquared . Z * _radiiSquared . Z ) ;

}

pub l i c Vector3D ScaleToGeodeticSurface ( Vector3D p )
{

double beta = 1.0 / Math . Sqrt (
( p . X * p . X ) * _oneOverRadiiSquared . X +
( p . Y * p . Y ) * _oneOverRadiiSquared . Y +
( p . Z * p . Z ) * _oneOverRadiiSquared . Z ) ;

double n = new Vector3D (
beta * p . X * _oneOverRadiiSquared . X ,
beta * p . Y * _oneOverRadiiSquared . Y ,
beta * p . Z * _oneOverRadiiSquared . Z ) . Magnitude ;

double alpha = (1 . 0 − beta ) * ( p . Magnitude / n ) ;

double x2 = p . X * p . X ;
double y2 = p . Y * p . Y ;
double z2 = p . Z * p . Z ;

double da = 0 . 0 ;
double db = 0 . 0 ;
double dc = 0 . 0 ;


