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Preface

. . . it is hard to be finite upon an infinite subject, and all subjects are infinite.
—Herman Melville (1850), p. 1170

Mathematics and science as we know them are very much the result of
trying to grasp infinity with our finite minds. The German mathemati-
cian Richard Dedekind said as much in 1854 (see Ewald (1996), pp. 755–
756):

...as the work of man, science is subject to his arbitrariness and to
all the imperfections of his mental powers. There would essentially
be no more science for a man gifted with an unbounded understand-
ing—a man for whom the final conclusions, which we attain through
a long chain of inferences, would be immediately evident truths.

Dedekind’s words reflect the growing awareness of infinity in 19th-
century mathematics, as reasoning about infinite processes (calculus) be-
came an indispensable tool of science and engineering. He wrote at the
dawn of an era in which infinity and logic were viewed as mathemati-
cal concepts for the first time. This led to advances (some of them due
to Dedekind himself) that made all previous knowledge of these topics
seem almost childishly simple.

Many popular books have been written on the advances in our un-
derstanding of infinity sparked by the set theory of Georg Cantor in the
1870s, and incompleteness theorems of Kurt Gödel in the 1930s. How-
ever, such books generally dwell on a single aspect of either set theory
or logic. I believe it has not been made clear that the results of Cantor
and Gödel form a seamless whole. The aim of this book is to explain the
whole, in which set theory interacts with logic, and both begin to affect
mainstream mathematics (the latter quite a recent development, not yet
given much space in popular accounts).

In particular, I have taken some pains to tell the story of two neglected
figures in the history of logic, Emil Post and Gerhard Gentzen. Post
discovered incompleteness before Gödel, though he did not publish his
proof until later. However, his proof makes clear (more so than Gödel’s

ix
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did) the origin of incompleteness in Cantor’s set theory and its connec-
tions with the theory of computation. Gentzen, in the light of Gödel’s the-
orem that the consistency of number theory depends on an assumption
from outside number theory, found the minimum such assumption—one
that grows out of Cantor’s theory of ordinal numbers—paving the way
for new insights into unprovability in number theory and combinatorics.

This book can be viewed as a sequel to my Yearning for the Impossible,
the main message of which was that many parts of mathematics demand
that we accept some form of infinity. The present book explores the con-
sequences of accepting infinity, which are rich and surprising. There are
many levels of infinity, ascending to heights that almost defy belief, yet
even the highest levels have “observable” effects at the level of finite ob-
jects, such as the natural numbers 1, 2, 3, . . . . Thus, infinity may be more
down-to-earth than certain parts of theoretical physics! In keeping with
this claim, I have assumed very little beyond high school mathematics,
except a willingness to grapple with alien ideas. If the notation of sym-
bolic logic proves too alien, it is possible to skip the notation-heavy parts
and still get the gist of the story.

I have tried to ease the reader into the technicalities of set theory and
logic by tracing a single thread in each chapter, beginning with a natu-
ral mathematical question and following a sequence of historic responses
to it. Each response typically leads to new questions, and from them
new concepts and theorems emerge. At the end of the chapter there is a
longish section called “Historical Background,” which attempts to situate
the thread in a bigger picture of mathematics and its history. My inten-
tion is to present key ideas in closeup first, then to revisit and reinforce
them by showing a wider view. But this is not the only way to read the
book. Some readers may be impatient to get to the core theorems, and
will skip the historical background sections, at least at first reading. Oth-
ers, in search of a big picture from the beginning, may begin by reading
the historical background and then come back to fill in details.

The book has been developing in my unconscious since the 1960s,
when I was an undergraduate at the University of Melbourne and a
graduate student at MIT. Set theory and logic were then my passions in
mathematics, but it took a long time for me to see them in perspective—I
apologize to my teachers for the late return on their investment! I particu-
larly want to thank Bruce Craven of Melbourne for indulging my interest
in a field outside his specialty, and my MIT teachers Hartley Rogers Jr.
and Gerald Sacks for widening my horizons in logic and set theory.

In recent times I have to thank Jeremy Avigad for bringing me up to
date, and Cameron Freer for a very detailed criticism of an earlier draft
of this book. John Dawson also made very helpful comments. If errors
remain, they are entirely my fault. The University of San Francisco and



Preface xi

Monash University provided valuable support and facilities while I was
writing and researching.

I also want to thank my friend Abe Shenitzer for his perennial help
with proofreading, and my sons Michael and Robert for sharing this oner-
ous task. Finally, I thank my wife Elaine, as always.

John Stillwell
University of San Francisco and Monash University

March 2010





- Chapter 1 -

The Diagonal Argument

Preview

Infinity is the lifeblood of mathematics, because there is no end to even
the simplest mathematical objects—the positive integers 1, 2, 3, 4, 5, 6,
7, . . . . One of the oldest and best arguments about infinity is Euclid’s
proof that the prime numbers 2, 3, 5, 7, 11, 13, . . . form an infinite se-
quence. Euclid succeeds despite knowing virtually nothing about the
sequence, by showing instead that any finite sequence of primes is in-
complete. That is, he shows how to find a prime p different from any
given primes p1, p2, . . . , pn.

A set like the prime numbers is called countably infinite because we
can order its members in a list with a first member, second member,
third member, and so on. As Euclid showed, the list is infinite, but each
member appears at some finite position, and hence gets “counted.”

Countably infinite sets have always been with us, and indeed it is
hard to grasp infinity in any way other than by counting. But in 1874 the
German mathematician Georg Cantor showed that infinity is more com-
plicated than previously thought, by showing that the set of real numbers
is uncountable. He did this in a way reminiscent of Euclid’s proof, but one
level higher, by showing that any countably infinite list of real numbers
is incomplete.

Cantor’s method finds a real number x different from any on a given
countable list x1, x2, x3, . . . by what is now called the diagonal argument,
for reasons that will become clear below. The diagonal argument (which
comes in several variations) is logically the simplest way to prove the
existence of uncountable sets. It is the first “road to infinity” of our title,
so we devote this chapter to it. A second road—via the ordinals—was also
discovered by Cantor, and it will be discussed in Chapter 2.

1



2 1. The Diagonal Argument

1.1 Counting and Countability

If I should ask further how many squares there are, one might reply truly that
there are as many as the corresponding number of roots, since every square
has its own root and every root has its own square, while no square has more
than one root and no root more than one square.

—Galileo Galilei,
Dialogues Concerning the Two New Sciences, First day.

The process of counting 1, 2, 3, 4, . . . is the simplest and clearest example
of an infinite process. We know that counting never ends, because there
is no last number, and indeed one’s first thought is that “infinite” and
“neverending” mean the same thing. Yet, in a sense, the endless count-
ing process exhausts the set {1, 2, 3, 4, . . .} of positive integers, because
each positive integer is eventually reached. This distinguishes the set of
positive integers from other sets—such as the set of points on a line—
which seemingly cannot be “exhausted by counting.” Thus it may be
enlightening to dwell a little longer on the process of counting, and to
survey some of the infinite sets that can be exhausted by counting their
members.

First, what do we mean by “counting” a set of objects? “Counting”
objects is the same as arranging them in a (possibly infinite) list—first
object, second object, third object, and so on—so that each object in the
given set appears on the list, necessarily at some positive integer posi-
tion. For example, if we “count” the squares by listing them in increasing
order,

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, . . . ,

then the square 900 appears at position 30 on the list. Listing a set is
mathematically the same as assigning the positive integers in some way
to its members, but it is often easier to visualize the list than to work out
the exact integer assigned to each member.

One of the first interesting things to be noticed about infinite sets
is that counting a part may be “just as infinite” as counting the whole. For
example, the set of positive even numbers 2, 4, 6, 8, . . . is just a part of
the set of positive integers. But the positive even numbers (in increasing
order) form a list that matches the list of positive integers completely,
item by item. Here they are:

1 2 3 4 5 6 7 8 9 10 11 12 13 . . .
2 4 6 8 10 12 14 16 18 20 22 24 26 . . .

Thus listing the positive even numbers is a process completely paral-
lel to the process of listing the positive integers. The reason lies in the
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item-by-item matching of the two lists, which we call a one-to-one cor-
respondence. The function f (n) = 2n encapsulates this correspondence,
because it matches each positive integer n with exactly one positive even
number 2n, and each positive even number 2n is matched with exactly
one positive integer n.

So, to echo the example of Galileo quoted at the beginning of this
section: if I should ask how many even numbers there are, one might
reply truly that there are as many as the corresponding positive integers.
In both Galileo’s example, and my more simple-minded one, one sees a
one-to-one correspondence between the set of positive integers and a part
of itself. This unsettling property is the first characteristic of the world of
infinite sets.

Countably Infinite Sets

A set whose members can be put in an infinite list—that is, in one-to-
one correspondence with the positive integers—is called countably infinite.
This common property of countably infinite sets was called their cardinal-
ity by Georg Cantor, who initiated the general study of sets in the 1870s.
In the case of finite sets, two sets have the same cardinality if and only if
they have the same number of elements. So the concept of cardinality is
essentially the same as the concept of number for finite sets.

For countably infinite sets, the common cardinality can also be re-
garded as the “number” of elements. This “number” was called a transfi-
nite number and denoted ℵ0 (“aleph zero” or “aleph nought”) by Cantor.
One can say, for instance, that there are ℵ0 positive integers. However,
one has to bear in mind that ℵ0 is more elastic than an ordinary number.
The sets {1, 2, 3, 4, . . .} and {2, 4, 6, 8, . . .} both have cardinality ℵ0, even
though the second set is a strict subset of the first. So one can also say
that there are ℵ0 even numbers.

Moreover, the cardinality ℵ0 stretches to cover sets that at first glance
seem much larger than the set {1, 2, 3, 4, . . .}. Consider the set of dots
shown in Figure 1.1. The grid has infinitely many infinite rows of dots,
but nevertheless we can pair each dot with a different positive integer as
shown in the figure. Simply view the dots along a series of finite diagonal
lines, and “count” along the successive diagonals, starting in the bottom
left corner.

There is a very similar proof that the set of (positive) fractions is count-
able, since each fraction m/n corresponds to the pair (m, n) of positive
integers. It follows that the set of positive rational numbers is countable,
since each positive rational number is given by a fraction. Admittedly,
there are many fractions for the same number—for example the number
1/2 is also given by the fractions 2/4, 3/6, 4/8, and so on—-but we can
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Figure 1.1. Counting the dots in an infinite grid.

list the positive rational numbers by going through the list of fractions
and omitting all fractions that represent previous numbers on the list.

1.2 Does One Infinite Size Fit All?

A nice way to illustrate the elasticity of the cardinality ℵ0 was introduced
by the physicist George Gamow (1947) in his book One, Two, Three, . . . ,
Infinity. Gamow imagines a hotel, called Hilbert’s hotel, in which there are
infinitely many rooms, numbered 1, 2, 3, 4, . . . . Listing the members of
an infinite set is the same as accommodating the members as “guests” in
Hilbert’s hotel, one to each room.

The positive integers can naturally be accommodated by putting each
number n in room n (Figure 1.2):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

Figure 1.2. Standard occupancy of Hilbert’s hotel.

The ℵ0 positive integers fill every room in Hilbert’s hotel, so we might
say that ℵ0 is the “size” of Hilbert’s hotel, and that occupancy by more
than ℵ0 persons is unlawful. Nevertheless there is room for one more
(say, the number 0). Each guest simply needs to move up one room,
leaving the first room free (Figure 1.3):
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 . . .

Figure 1.3. Making room for one more.

Thus ℵ0 can always stretch to include one more: in symbols, ℵ0 + 1 =
ℵ0. In fact, there is room for another countable infinity of “guests” (say,
the negative integers −1,−2,−3, . . . ). The guest in room n can move to
room 2n, leaving all the odd numbered rooms free (Figure 1.4):

1 2 3 4 5 6 7 8 9 10 . . .

Figure 1.4. Making room for a countable infinity more.

In symbols: ℵ0 + ℵ0 = ℵ0.
There is even room for a countable infinity of countable infinities of

guests. Suppose, say, that the guests arrive on infinite buses numbered 1,
2, 3, 4, . . . , and that each bus has guests numbered 1, 2, 3, 4 , . . . . The
guests in bus 1 can be accommodated as follows:

put guest 1 in room 1; then skip 1 room; that is,
put guest 2 in room 3; then skip 2 rooms; that is,
put guest 3 in room 6; then skip 3 rooms; that is,
put guest 4 in room 10; then skip 4 rooms; . . . .

Thus the first bus fills the rooms shown in Figure 1.5:

1 2 3 4 5 . . .

Figure 1.5. Making room for a countable infinity of countable infinities.

After the first bus has been unloaded, the unoccupied rooms are in
blocks of 1, 2, 3, 4, . . . rooms, so we can unload the second bus by putting
its guests in the leftmost room of each block. After that, the unoccupied
rooms are again in blocks of 1, 2, 3, 4, . . . rooms, so we can repeat the
process with the third bus, and so on. (You may notice that each busload
occupies a sequence of rooms numbered the same as a row in Figure 1.1.)

The result is that the whole series of ℵ0 busloads, each with ℵ0 guests,
can be packed into Hilbert’s hotel—with exactly one guest per room. In
symbols: ℵ0 × ℵ0 = ℵ0.
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The equations of “cardinal arithmetic” just obtained,

ℵ0 + 1 = ℵ0,
ℵ0 + ℵ0 = ℵ0,
ℵ0 × ℵ0 = ℵ0,

show just how elastic the transfinite number ℵ0 is. So much so, one
begins to suspect that cardinal arithmetic has nothing to say except that
any infinite set has cardinality ℵ0. And if all transfinite numbers are the
same it is surely a waste of time to talk about them. But fortunately
they are not all the same. In particular, the set of points on the line has
cardinality strictly larger than ℵ0. Cantor discovered this difference in
1874, opening a crack in the world of the infinite from which unexpected
consequences have spilled ever since. There is, after all, a lot to say about
infinity, and the purpose of this book is to explain why.

1.3 Cantor’s Diagonal Argument

Before studying the set of points on the line, we look at a related set that
is slightly easier to handle: the set of all sets of positive integers. A set S
of positive integers can be described by an infinite sequence of 0s and 1s,
with 1 in the nth place just in case n is a member of S. Table 1.1 shows a
few examples:

subset 1 2 3 4 5 6 7 8 9 10 11 . . .
even numbers 0 1 0 1 0 1 0 1 0 1 0 . . .

squares 1 0 0 1 0 0 0 0 1 0 0 . . .
primes 0 1 1 0 1 0 1 0 0 0 1 . . .

Table 1.1. Descriptions of positive integer sets.

Now suppose that we have ℵ0 sets of positive integers. That means
we can form a list of the sets, S1, S2, S3, . . ., whose nth member Sn is the
set paired with integer n. We show that such a list can never include
all sets of positive integers by describing a set S different from each of
S1, S2, S3, . . . .

This is easy: for each number n, put n in S just in case n is not in
Sn. It follows that S differs from each Sn with respect to the number n: if n
is Sn, then n is not in S; if n is not Sn, then n is in S. Thus S is not on the
list S1, S2, S3, . . . , and hence no such list can include all sets of positive
integers.
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subset 1 2 3 4 5 6 7 8 9 10 11 . . .
S1 0 1 0 1 0 1 0 1 0 1 0 . . .
S2 1 0 0 1 0 0 0 0 1 0 0 . . .
S3 0 1 1 0 1 0 1 0 0 0 1 . . .
S4 1 0 1 0 1 0 1 0 1 0 1 . . .
S5 0 0 1 0 0 1 0 0 1 0 0 . . .
S6 1 1 0 1 1 0 1 1 0 1 1 . . .
S7 1 1 1 1 1 1 1 1 1 1 1 . . .
S8 0 0 0 0 0 0 0 0 0 0 0 . . .
S9 0 0 0 0 0 0 0 0 1 0 0 . . .
S10 1 0 0 1 0 0 1 0 0 1 0 . . .
S11 0 1 0 0 1 0 0 1 0 0 0 . . .

...
S 1 1 0 1 1 1 0 1 0 0 1 . . .

Table 1.2. The diagonal argument.

The argument we have just made is called a diagonal argument be-
cause it can be presented visually as follows. Imagine an infinite ta-
ble whose rows encode the sets S1, S2, S3, . . . as sequences of 0s and
1s, as in the examples above. We might have, say, the sets shown in
Table 1.2.

The digit (1 or 0) that signals whether or not n belongs to Sn is set in
bold type, giving a diagonal sequence of bold digits

00100010110 . . . .

The sequence for S is obtained by switching each digit in the diagonal
sequence. Hence the sequence for S is necessarily different from the
sequences for all of S1, S2, S3, . . ..

The cardinality of the set of all sequences of 0s and 1s is called 2ℵ0 .
We use this symbol because there are two possibilities for the first digit
in the sequence, two possibilities for the second digit, two possibilities
for the third, and so on, for all the ℵ0 digits in the sequence. Thus it
is reasonable to say that there are 2 × 2 × 2 × · · · (ℵ0 factors) possible
sequences of 0s and 1s, and hence there are 2ℵ0 sets of positive natural
numbers.

The diagonal argument shows that 2ℵ0 is strictly greater than ℵ0 because
there is a one-to-one correspondence between the positive integers and
certain sets of positive integers, but not with all such sets. As we have
just seen, if the numbers 1, 2, 3, 4, . . . are assigned to sets S1, S2, S3, S4, . . .
there will always be a set (such as S) that fails to be assigned a number.
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The Logic of the Diagonal Argument
Many mathematicians aggressively maintain that there can be no
doubt of the validity of this proof, whereas others do not admit it. I
personally cannot see an iota of appeal in this proof . . . my mind will
not do the things that it is obviously expected to do if this is indeed
a proof.

—P .W. Bridgman (1955), p. 101

P. W. Bridgman was an experimental physicist at Harvard, and winner of
the Nobel prize for physics in 1946. He was also, in all probability, one of
the smartest people not to understand the diagonal argument. If you had
any trouble with the argument above, you can rest assured that a Nobel
prize winner was equally troubled. On the other hand, I do not think
that any mathematically experienced reader should have trouble with the
diagonal argument. Here is why.

The logic of the diagonal argument is really very similar to that of
Euclid’s proof that there are infinitely many primes. Euclid faced the
difficulty that the totality of primes is hard to comprehend, since they
follow no apparent pattern. So, he avoided even considering the totality
of primes by arguing instead that any finite list of primes is incomplete.

Given a finite list of primes p1, p2, . . . , pn, one forms the number

N = p1 p2 · · · pn + 1,

which is obviously not divisible by any one of p1, p2, . . . , pn (they each
leave remainder 1). But N is divisible by some prime number, so the list
p1, p2, . . . , pn of primes is incomplete. Moreover, we can find a specific
prime p not on the list by finding the smallest number ≥ 2 that divides N.

An uncountable set is likewise very hard to comprehend, so we avoid
doing so and instead suppose that we are given a countable list S1, S2,
S3, . . . of members of the set. The word “given” may be interpreted as
strictly as you like. For example, if S1, S2, S3, . . . are sequences of 0s and
1s, you may demand a rule that gives the mth digit of Sn at stage m + n.
The diagonal argument still works, and it gives a completely specific S not
on the given list. (Indeed, it also leads to some interesting conclusions
about rules for computing sequences, as we will see in Chapter 3.)

The Set of Points on the Line
The goal of set theory is to answer the question of highest importance: whether
one can view the line in an atomistic manner, as a set of points.

—Nikolai Luzin (1930), p. 2.

By the “line” we mean the number line, whose “points” are known as the
real numbers. Each real number has a decimal expansion with an infinite


