

Languages for Developing
User Interfaces

Trademarks

Postscript is a registered trademark of Adobe Systems Incorporated. Tempo
ll and Tempo ll Plus are trademarks of Affinity Microsystems Ltd. Page-
Maker and SuperPaint are registered trademarks of Aldus Corporation.
Apple, MacApp, and MacTerminal are registered trademarks of Apple
Computer, Inc. HyperCard, HyperTalk, and Macintosh are trademarks
of Apple Computer, Inc. DBase and FullWrite Professional are trade-
marks of Ashton Tate Corporation. RENDEZVOUS is a trademark of Bell
Communications Research, Inc. Claris, Filemaker, MacDraw, MacPaint,
MacProject, and MacWrite are registered trademarks of Claris Corpora-
tion. Canvas is a trademark of Deneba Systems, Inc. Open Dialogue
is a trademark of Hewlett-Packard. Lego is a registered trademark of
INTERLEGO, AG. ffiM is a registered trademark of International Busi-
ness Machines Corporation. Microsoft, MS-DOS, and PowerPoint are
registered trademarks of Microsoft Corporation. MS-Windows is a trade-
mark of Microsoft Corporation. The X Window System is a trademark of
MIT. Lab View is a registered trademark of National Instruments Corpo-
ration. Interface Builder, NeXT, and NeXTstep are trademarks of NeXT
Computer, Inc. Motif, OSF, and OSF/Motif are trademarks of the Open
Software Foundation, Inc. Serius Programmer is a trademark of Serius
Corporation. SPARC is a registered trademark of SPARC International
Inc. NeWS is a registered trademark of Sun Microsystems Inc. More and
THINK Pascal are trademarks of Symantec Corporation. Open Look and
UNIX are registered trademarks of UNIX System Laboratories. Xerox is
a registered trademark of Xerox Corporation.

Languages for Developing
User Interfaces
Edited by

Brad A. Myers
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania

with the assistance of

Mark Guzdial, University of Michigan
Ralph D. Hill, Bellcore
Bruce Hom, Carnegie Mellon University
Scott Hudson, University of Arizona'
David S. Kosbie, Carnegie Mellon University
Gurminder Singh, National University of Singapore
Brad Vander Zanden, University of Tennessee

0 CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

AN A K PETERS BOOK

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 1992 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

This book contains informat ion obtained from authent ic and highly regarded sources. Reason-
able efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written perm ission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza-
tion that provides licenses and registration for a variety of users. For organizat ions that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http:/ /www.tayiorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com/
http:/ /www.tayiorandfrancis.com
http://www.crcpress.com

Contents

Preface ix

Acknowledgements xi

Workshop Participants xiii

Contributors xv

I. Introduction
Brad A. Myers

Part 1: Programming Languages for End Users

2. The User Interface Is The Language 21
Michael Dertouzos

3. A Component Architecture for Personal Computer Software . . . 31
David Canfield Smith and Joshua Susser

4. Design Support Environments for End Users 57
Mark Guzdial, Peri Weingrad, Robert Boyle, and Elliot Soloway

5. The Use-Mention Perspective on Programming
for the Interface . 79
Randall B. Smith, David Ungar, and Bay-Wei Chang

6. Why the User Interface Is Not the Programming Language-and
How It Can Be 91
James R. Cordy

v

vi Contenu

Part 2: Programming Languages for Prognunmers

General Goals

7. How Programming Languages Might Better Support User
Interface Tools . 105
Scott Hudson

8. Requirements for User Interface Programming Languages 115
Gurminder Singh

9. Languages for the Construction of Multi-User Multi-Media
Synchronous (MUMMS) Applications 125
Ralph D. Hill

Models for Objects and Interaction

10. Ideas from Garnet for Future User Interface Programming
Languages .. 147
Brad A. Myers

Constraints

11. Constraint Imperative Programming Languages for Building
Interactive Systems 161
Bjorn N. Freeman-Benson and Alan Boming

12. An Active-Value-Spreadsheet Model for Interactive
Languages . 183
Brad VanderZanden

13. Properties of User Interface Systems and the Siri
Programming Language 211
Bruce Hom

Concurrency and nme
14. A Foundation for User Interface Construction

Emden R. Gansner and John H. Reppy
239

15. User Interface Programming with Cooperative Processes 261
Toshiyuki Masui

Contents vii

16. Constructing User Interfaces with Functions and Temporal
Constraints . 279
T.C. Nicholas Graham

Representations for User Actions

17. Different Languages for Different Development Activities:
Behavioral Representation Techniques for User Interface
Design 303
H. Rex Hartson, Jeffrey L Brandenburg, and Deborah Hix

Syntax

18. Hints on the Design of User Interface Language Features-
Lessons from the Design of Thring . 329
James R. Cordy

Part 3: Workshop Reports

19. Report of the "End-User Programming" Working Group 343
Brad A. Myers, David Canfield Smith, and Bruce Horn

20. Report of the "User/Programmer Distinction" Working Group 367
Mark Guzdial, John Reppy, and Randall Smith

21. Report of the "Linguistic Support" Working Group 385
James R. Cordy. Ralph D. Hill, Gurminder Singh, and
Brad VanderZanden

22. Future Research Issues in Languages for Developing User
Interfaces . 40 I
T.C. Nicholas Graham

Bibliography . 419

Index ... 447

http://taylorandfrancis.com

Preface

Computing is evolving from batch-based applications to interactive, graph-
ical applications. However, most user interface software is still written us-
ing languages designed for writing text-based or even batch applications,
such as Fortran, Pascal, C, or Ada. Researchers are investigating new
approaches that may allow the next generation of computer programming
languages to better support the creation of user interface software.

In addition, user interface designers are increasingly realizing that it
is important to provide a high degree of end-user customization. In many
cases, it would be ideal to allow end users to create their own applications.
In a sense, this is what spreadsheets allow, since they can be "programmed"
by their users. The success of spreadsheets shows that end users can learn
to program, and that environments that support end-user programming can
be successful.

At the SIGCHI conference in New Orleans in May, 1991, twenty leaders
of the field got together in a workshop to discuss the future of languages
for programming user interface software, and for end-user programming.
These twenty were chosen from over 60 people who applied. The goal
of the workshop was to discuss what types of computer languages would
be appropriate in the future, and begin collaborations on creating these
languages. This book contains the results of those discussions.

First, Chapter 1 presents an overview of the topic, and a summary
of previous work. The first day of the workshop was spent with talks
from the attendees. Chapters 2 through 18 contain the written papers that
accompanied their talks. During the second day of the workshop, we broke
into three groups to discuss various issues in depth. Chapters 19 through 21
report on the group results. Naturally, we discovered more issues than we
resolved, and Chapter 22 contains a summary of the issues that were raised.
We hope this will be seen as a challenge to future language designers.

lX

X Preface

In the user interface community, this book should be of interest to
creators of toolkits, UIMSs and other user interface tools, as well as people
creating end-user applications that want to provide end-user customization.
In the programming language community, language designers would find
this book useful, since future programmers will need to write modem user
interfaces with their languages.

Acknowledgements

First, we would like to thank the SIGCHI'91 conference for sponsoring this
workshop, and Wayne Gray, the SIGCHI'91 Workshop Chair, for helping
to organize it.

All the attendees wish to thank their organizations for supporting their
attendance at the workshop.

Thanks very much to Bernita Myers and David Kosbie, who worked
very hard to format this document, and convert from many different for-
matters into ~pc.

xi

http://taylorandfrancis.com

Workshop Participants

In alphabetical order:

Organizer:

Alan Boming, University of Washington
Jeffrey L. Brandenburg, Virginia Tech
James R. Cordy, Queens University at Kingston
Michael Dertouzos, Massachusetts Institute of Technology
T.C. Nicholas Graham, GMD Karlsruhe
Mark Green, University of Alberta
Mark Guzdial, University of Michigan
H. Rex Hartson, Vrrginia Tech
Ralph D. Hill, Bellcore
Bruce Hom, Carnegie Mellon University
Scott Hudson, Georgia Tech
Erica Liebman, Georgia Tech
Toshiyuki Masui, SHARP Corporation
Brad A. Myers, Carnegie Mellon University
John H. Reppy, Cornell University
Bob Scheifler, Massachusetts Institute of Technology
Gurrninder Singh, National University of Singapore
David Canfield Smith, Apple Computer, Inc.
Randall B. Smith, Sun Microsystems Laboratories, Inc.
Brad Vander Zanden, University of Tennessee

Brad A. Myers

Program Committee:
Brad A. Myers
Scott Hudson
Bruce Hom

xiii

http://taylorandfrancis.com

Contributors

AlanBoming
(Chapter 11)
Department of Computer Science

and Engineering, FR-35
University of Washington
Seattle, WA 98195

Robert Boyle
(Chapter 4)
University of Michigan
School of Education
610 E. University
Ann Arbor, MI 48109

Jeffrey L Brandenburg
(Chapter 17)
Department of Computer Science
Vrrginia Tech
Blacksburg, VA 24061

Bay-Wei Chang
(Chapter 5)
Sun Microsystems Laboratories, Inc.
MS MTV29-116
2550 Garcia Avenue
Mountain View, CA 94043-1100

James R. Cordy
(Chapters 6, 18, 21)
Department of Computing and

Information Science
Goodwin Hall
Queen University
Kingston, Ont. K7L 3N6 Canada

Michael Dertouzos
(Chapter 2)
Director, MIT Lab for

Computer Science
545 Technology Square, Room 105
Cambridge, MA 02139

Bjorn N. Freeman-Benson
(Chapter 11)
University of Victoria
Department of Computer Science
Box 3055
Victoria, B.C. V8W 3P6 Canada

Emden R. Gansner
(Chapter 14)
AT&T Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974

XV

xvi

T.C. Nicholas Graham
(Chapters 16, 22)
GMD
Vincenz-Priessnitz-Str. 1
D-7500 Karlsruhe 1
Gennany

Mark Guzdial
(Chapters 4, 20)
University of Michigan
Dept. of EE and CS
1101 Beat Ave.
Ann Arbor, MI 48109

H. Rex Hartson
(Chapter 17)
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061

Ralph D. Hill
(Chapters 9, 21)
Bell core
445 South Street, Rm. 20 295
Morristown, NJ 07962-1910

DeborahHix
(Chapter 17)
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061

Bruce Hom
(Chapters 13, 19)

Contributors

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Scott Hudson
(Chapter 7)
College of Computing
801 Atlantic Dr.
Georgia Institute of Technology
Atlanta, GA 30332-0280

Toshiyuki Masui
(Chapter 15)
lnfonnation System R&D Center
SHARP Corporation
2613-1 Ichinomoto-cho
Tenri, Nara 632, Japan

Brad A. Myers
(Chapters 1, 10, 19)
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

John H. Reppy
(Chapters 14, 20)
AT&T Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974

Contributors

Gurminder Singh
(Chapters 8, 21)
Institute of Systems Science
National University of Singapore
Kent Ridge, Singapore, 0511

David Canfield Smith
(Chapters 3, 19)
Advanced Technology Group
Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, CA 95014

Randall B. Smith
(Chapters 5, 20)
Sun MicrosystemsLaboratories, Inc.
MS MTV29-116
2550 Garcia Ave.
Mountain View, CA 94043-1100

Elliot Soloway
(Chapter 4)
University of Michigan
Dept. of EE and CS
1101 Beal Ave.
Ann Arbor, MI 48109

Joshua Susser
(Chapter 3)
Advanced Technology Group
Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, CA 95014

David Ungar
(Chapter 5)

xvii

Sun Microsystems Laboratories, Inc.
MS MTV29-116
2550 Garcia Ave.
Mountain View, CA 94043-1100

Brad VanderZanden
(Chapters 12, 21)
107 Ayres Hall
Computer Science Department
University of Tennessee
Knoxville, TN 37996-1301

Peri Weingrad
(Chapter 4)
University of Michigan
Dept. of EE and CS
1101 Beal Ave.
Ann Arbor, MI 48109

http://taylorandfrancis.com

Chapter 1

Introduction

Brad A. Myers

In his keynote address to the SIGCHI'90 conference, Michael Der-
touzos said:

When computers first appeared, input/output commands were
a minor afterthought to cohesive, often well crafted and oc-
casionally pretentious programming languages. Today, these
commands occupy over 70 percent of a programming system's
instructions. Yet they, along with the user interface structures
that they define, are far from cohesive, and, at least up until
now, immune to standardization. We must therefore turn our
thinking around and create a new breed of programming lan-
guages that are first and foremost input/output oriented and
that integrate traditional processing commands into new user-
oriented structures. And just as we know today that traditional
commands fall into a handful of fixed categories-decision,
repetition, naming, procedure definition and use-we need to
search for and identify the corresponding natural classes of
commands for user interfaces. [Dertouzos 90]

Researchers in the areas of user interface software have been investigat-
ing the use of special-purpose languages for programming user interfaces
for many years. For example, TIGER, in 1982, was the first system that
was called a "user interface management system," and it used a special

1

2 Brad A. Myers

language called TICCL to define the user interface [Kasik 82]. Many other
systems in the 1980s used BNF grammars or state transition diagrams to
define the user interface (see Section 1.3). Today, researchers are concen-
trating on new forms of object-oriented languages and features to add to
them. However, no one believes that the problem is even close to being
"solved."

In addition, this research has not had much effect on the computer lan-
guages being designed by researchers who call "programming languages"
their primary area of interest. I recently attended a presentation about a
new programming language being designed. In the section labeled "in-
put/output" were the conventional scanf/printf (readlnlwriteln in Pascal)
statements. When asked if he thought these were sufficient for a modem
language, the presenter replied "no," but he did not know enough about the
area to do better. Some people claim that programming languages should
not contain any 110 primitives, but rather leave it to separate packages.
However, this book will show that user interface programming requires a
number of important features not found in most of today's languages which
cannot be relegated to external packages.

Another problem is that for applications to reach their full potential, end
users will have to be able to customize and even program them themselves.
Today, end-user applications are getting more and more complicated, as
each release adds new features. For example, version 4.0 of the Microsoft
Word text editor for the Macintosh has over 280 commands. However,
users often find that what they really want is a few features from one
program coupled with a few from another. If an end-user programming
facility was provided that allowed the users to combine these features to
create their own systems, this might solve the problem. The success of
spreadsheets, which allow users to create their own programs by writing
formulas and macros, shows that end users can program when given the
appropriate tools, and that a product based on end-user programming can
succeed.

At the SIGCHI conference in 1991 in New Orleans, a workshop was
held to try to bring together user interface software specialists and pro-
gramming language designers, to discuss how computer languages of the
future can better support the construction of applications with modem,
highly-interactive user interfaces. Twenty people met for two days to dis-

Introduction 3

cuss this topic, and this book is a result of that discussion. The rest of the
introduction motivates the problem and surveys some previous approaches.

1.1 Creating User Interface Software

It is well known that programming user interfaces is difficult. Studies
consistently show that the user interface portion comprises about 50%
of the code and development time [Myers 92b]. There are a number of
reasons that software for modem user interfaces is inherently more difficult
to write than other kinds of software:

Iterative design. Because user interfaces are difficult to design, the initial
attempts are usually not good enough, and the interface must be
re-implemented [Gould 85]. This iterative design requires that the
user interface software be repeatedly and frequently modified. As
reported by Sheil [Sheil 83], "complex interactive interfaces usually
require extensive empirical testing to determine whether they are
really effective and considerable redesign to make them so." The
code must therefore be written so that the user interface portion can
be easily changed, preferably without affecting the other parts of
the software. However, most programmers find that making this
separation is difficult.

Difficult to get the screen to look attractive. It is usually difficult to use
the supplied graphics packages and libraries. As a result, achieving
the desired graphical appearance can be a challenge. Techniques
are required to support interactive specifications of the static and
dynamic appearance and behavior of the interface.

Asynchronous inputs. Direct manipulation interfaces have the character-
istic that the user is in control of the interface, and can perform input
at almost any time. The program must therefore be able to accept
input at any time. Also, the software must usually be organized
with a central event dispatcher loop, which accepts the input events
from the user, and uses the type of the event to decide which com-
mand to execute. This is quite a different software structure than for
conventional programs.

4 Brad A. Myers

Multiple processing. Since the program must be able to accept input
events at any time, but some application procedures may take a
noticeable amount of time, the software is typically organized as
multiple processes, so longer actions can be executed in the back-
ground. Also, the window manager will often be in a different
process than the user interface software, and may send requests to
the application to redraw the windows (if they become uncovered).
Dealing with multiple processes means that the programmer must
deal with synchronization, race conditions, and many other prob-
lems.

Efficiency. All code that interfaces to the user must operate without a
noticeable delay. For example, if an object is being dragged with
the mouse, it should be redrawn at least 30 times a second. This
means that the programmer must often deal with all the problems of
real-time programming.

Error handling. When an error happens in a user interface, it is not ac-
ceptable for the program to "crash." An appropriate message must
be shown to the user, and the system must be able to recover and
continue processing. This puts tremendous emphasis on robustness
in the programs.

Aborts, Undo, and Help. Most interfaces should allow the user to abort
an operation at any time, or ask for help. This means that the software
must be organized so that the appropriate information is available so
the state can be restored to before the current or previous command
was started, or to tell the user what is happening.

1.2 The Problem

This book covers two different kinds of programming: allowing end-users
who do not have any formal training in programming to extensively cus-
tomize their interfaces, and conventional implementation of user interfaces.

Introduction 5

1.2.1 End User Programming

Users of spreadsheets and database packages write programs in the special-
ized languages of those systems. A large number of people have mastered
the skills needed to write these programs, and it has been argued that the
programmability of these tools is the primary key to their success: the user
can get them to do what he or she wants. However, most other applications
on computers are not programmable, and there is certainly no uniform lan-
guage that can be used across different applications. Therefore, a challenge
for the future is to develop a mechanism that allows end users to customize
all applications.

We classify this as a style of programming because users will need
program-like capabilities, such as conditionals, loops, and variables. For
example, the user in a "visual shell" or desktop, like the Macintosh Finder,
might want to say "delete all backup copies of files older than January
1988 if the associated original files are on the disk." This clearly requires a
loop over all files, variables to hold the backup file and the associated
original file, and a conditional to test the age. Since reliable natural
language understanding is a long way off, we need some other way for
the end user to express this request. However, there is plenty of evidence
that end users find conventional programming difficult if not impossible
[Shneiderman 80]. How can end users specify complex requests? We
feel that programmability will be an important component of future user
interfaces.

1.2.2 Conventional Programming Languages

We have identified two important classes of programmers who need to
create user interfaces for programs: novice programmers and professional
programmers. Neither has adequate tools today.

Novice Programmers

Students who are learning to program today have used video games and
computers such as the Macintosh, which have sophisticated graphics and
user interfaces. When they learn to program, they expect to be able to create
similar systems. However, the programming languages in use today, such

6 Brad A. Myers

as C and Pascal, have the same old 110 primitives as Fortran: read and
write a string. As a result, large and complex external libraries of routines
are needed to perform graphical interaction.

Current programming languages generally support simple textual input
and output, and the canonical first program prints "hello world" on the
screen. In most programming languages, this will be a one to three line
program. For the future, however, new programmers will want to create
graphical, highly-interactive programs. Therefore, our goal for a future
computer language would be to make creating a blue rectangle that would
follow the mouse be as easy as writing "hello world" today.

Therefore, work must be concentrated on creating the appropriate ab-
stractions for hiding the complexities of today's window managers and
graphics packages, just as languages of the present hide the complexities
of how to make strings appear on the screen. What new paradigms and
techniques can be used in future languages so that novice programmers
can learn how to create graphical, interactive applications in the first few
weeks? For example, the moving blue rectangle program should be only 5
to 10 lines.

Programming for Professional Programmers

A wide variety of tools have been created to help with implementing user
interface software, including toolkits and User Interface Management Sys-
tems (UIMSs). Many of these have created their own new programming
language. For example, the popular Xt toolkit for X, in which both Motif
and Open Look are implemented, created its own object-oriented language
embedded inC (see Section 1.3.2). The Garnet system defines its own em-
bedded language using Common Lisp (Chapter 1 0). Current research in
user interface tools focuses on object-oriented techniques, constraints, and
parallelism, which should be built-in features of programming languages.
Therefore, a discussion of future user interface tools must include a discus-
sion of the design for the language the programmer will use. What are the
goals, features, and characteristics for future languages for programming
user interface software?

Introduction 7

General Problems with Programming Languages

In summary, the problems we have identified with programming user in-
terfaces in conventional languages include:

1. Lack of appropriate 110 mechanisms. Conventional languages still
provide only limited character input and output, which supports a
textual question-and-answer interaction model that is 40 years old.
It is well recognized that this creates user interfaces that are modal
and hard to use.

2. Lack of inexpensive multi-processing and real-time programming.
Handling asynchronous input events from the user while supplying
real-time feedback often requires multi-processing.

3. Ineffective object-oriented paradigms. It is the conventional wisdom
that all user interface software should be programmed using object-
oriented techniques. All modem user interface toolkits use this
technology, but some modem languages are still not object-oriented.

4. No rapid prototyping. Many languages are designed to support the
conventional software engineering model, where software is first
specified, then designed, and finally implemented. However, user
interface software generally requires many iterations of prototypes
and re-implementation [Gould 85].

5. Inappropriate representation for programs. The textual representa-
tion of programs makes it difficult to specify graphical entities, but
graphical representations to date have failed to achieve the compact-
ness and flexibility of text.

6. Lack of various new features being investigated by user interface
researchers, such as constraints, event-handlers, and incremental
recomputation (these are explained in the following sections).

8 Brad A. Myers

1.3 Survey

1.3.1 Programming Languages

Programming languages have long had embedded commands for perform-
ing input and output. However:

Input and output are perhaps the most systematically neglected
features of programming languages. They are usually ad hoc,
and they are usually poorly integrated with the other facilities
of their hosts-the languages in which they are embedded
The situation was bad enough before the introduction of ab-
stract data types and interactive graphic displays, but these
additional complications have overburdened the classical ad
hoc input and output mechanisms beyond their design limita-
tions. [Shaw 86]

Fortran, developed in the mid-1950s, provided sophisticated text for-
matting and reading facilities, so that the programmer could control the
exact format of the output and input. The roots of the model are based on
batch processing of lines of text or streams of characters. Later languages
have advanced little in this area, and still use similar mechanisms. For
example, the facilities provided by C (1972), Pascal (1975), Common Lisp
(1984), and even modem languages such as Ada (1983), Thring (1983-see
Chapter 18), and the functional language Standard ML (1985) [Milner 90],
only support text writing and reading, with varying levels of control over
the formatting. These text 110 primitives are often built-in mechanisms
because, unlike other functions in the language, they usually take a vari-
able number of parameters. Some other modem languages, such as Mesa
[Mitchell79], do not have any built-in 110 mechanisms.

The built-in primitives only support the question-and-answer style of
user interface, which is no longer very popular. The system prints a prompt
(using something like writeln or printf) and the user is supposed to type
in the answer (using readln or scanf). Notice that the program is fully in
control, and the user has no option to perform a different action, ask for
help, or revise earlier answers. To create graphical or direct manipulation
style interfaces in any of these languages, the programmer must ignore the

Introduction 9

built-in primitives and use a separate library of routines, which is not part
of the language standard.

Some argue that it is considered a good design principal to leave 110
out of the language definition and instead define it as part of the standard
libraries. The lesson of PUI shows that trying to incorporate all of the
useful and reasonable semantics of 110 in a language leads to a bad design.
However, as discussed above in Section 1.2.2, even without specific 110
mechanisms, there are many other features that are considered appropriate
to be part of the design that have a significant impact on user interface
software.

1.3.2 Languages for Programming User Interface Systems

The field of software for user interfaces has been actively researched for
many years, and there are a number of good surveys (e.g., [Hartson 89b,
Myers 89a, Myers 92a]) and books (e.g., [Bass 91]) about the topic. There
is also an annual conference devoted to user interface software, called the
ACM SIGGRAPH Symposium on User Interface Software and Technology
(UIST). Since the area is so broad, this section does not try to cover all the
existing systems, but rather provides an overview of the various language
approaches that have been used.

From the beginning, tools for creating user interface software have used
special-purpose languages. When a system includes a special language for
defining the user interface, it is often called a User Interface Management
System (UIMS). Often, the assumption is that the user interface will be pro-
grammed in this special language, but the application (all of the code that
is not the user interface) will be programmed in a conventional language.
The following sections discuss some of the forms the special languages
have used.

State Transition Diagrams

Since many parts of user interfaces involve handling a sequence of input
events, it is natural to think of using a state transition diagram (essentially
a finite state machine) to define the interface. A transition network consists
of a set of states, with arcs out of each state labeled with the input tokens
that will cause a transition to the state at the other end of the arc (see Figure

a1c

10 Brad A. Myers

Figure 1.1: State diagram description of a simple desk calculator
[Jacob 85b].

1.1). When the user performs the action on the arc, the system goes to the
next state. In order to have some action happen when the transition takes
place, many systems allow the programmer to also specify on arcs or states
the output that will be shown to the user, and application functions to be
called.

Newman used a state transition diagram in what was apparently the
first UIMS [Newman 68]. Jacob added the ability to have procedural
abstraction, so that the label on an arc could actually be a call to a sub-
diagram [Jacob 85b]. Figure 1.1 is a view of this system.

State diagram UIMSs are most useful for creating user interfaces where
a large amount of syntactic parsing is necessary or when the user interface
has a large number of modes (each state is really a mode). However, most
highly-interactive systems attempt to be mostly "mode-free," which means
that at each point, the user has a wide variety of choices of what to do. This
requires a large number of arcs out of each state, so state diagram UIMSs
have not been successful for these interfaces. If the user can give parameters
to a function in any order, a state transition diagram must have a different
set of transitions for each order. In addition, state diagrams cannot handle
interfaces where the user can operate on multiple objects at the same time

Introduction 11

(possibly using multiple input devices concurrently). Another problem is
that they tend to get very confusing for large interfaces, since they get to be
a "maze of wires" and off-page (or off-screen) arcs can be hard to follow.

Recognizing these problems, but still trying to retain the perspicuity
of state transition diagrams, Jacob [Jacob 86] created a new formalism,
which is a combination of state diagrams with a form of event languages
(see below). There can be multiple diagrams active at the same time,
and flow of control transfers from one to another in a co-routine fashion.
The system can create various forms of direct manipulation interfaces.
However, very few state transition systems are in use today.

Because state transition diagrams are naturally graphical, most systems
have allowed the user to enter them using a graphical editor. They are
therefore Visual Programming Languages [Myers 90d]. However, some
early systems required the programmer to enter the diagrams using a textual
language.

Grammars

For user interfaces that use command languages or other text-based input, it
seems natural to use a context-free grammar to parse the input. Therefore,
some early UIMSs allowed the programmer to define the syntax of the
expected input using a BNF grammar. Tools such as YACC and LEX
under Unix can then be used to generate a parser automatically. The
Syngraph (SYNtax directed GRAPHics) UIMS [Olsen 83] is a system that
tried to extend this idea to graphical programs, by having the syntax of
the interface defined in an extended BNF. However, all of the problems
mentioned above for state transition diagrams also apply to grammars. In
addition, programmers usually find it very difficult to visualize the resulting
sentences from a grammar. Consequently, grammars are usually only used
for describing highly-constrained, textual input.

Event Languages and Production Systems

When the user hits a keyboard key or a mouse button, window systems
create an "event" structure containing various pieces of information about
the input event. This structure is put in a queue, and the user interface
software must take the events out of the queue and process them. Therefore,

12 Brad A. Myers

it seems natural to create a system that is organized around event handlers.
Each handler is a small piece of code that is called by the system when

the appropriate event occurs. Usually the event can be qualified by other
conditions, for example, "left mouse button down while inside the 'Reset'
button." The handler might perform some output, call an application
procedure, or generate a synthetic event to cause other handlers to operate.
It has been shown that event systems are more flexible than either state
transition diagrams or grammars [Green 86].

The ALGAE system [Flecchia 87] uses an event language which is
an extension of Pascal. The user interface is programmed as a set of
small event handlers, which ALGAE compiles into conventional code.
Sassafras, which implements an Event Response System (ERS) [Hill 86],
uses a similar idea, but with an entirely different syntax. This system also
adds local variables called "flags" to help specify the flow of control.

The HyperTalk language used to program in Apple's HyperCard is a
recent example of an event language. The user writes code that is invoked
when a button is hit or other event occurs. HyperTalk is further discussed
in Section 1.3.3.

Event systems are much like production systems used by some AI
(artificial intelligence) systems. In production systems, there are many
"rules" of the form if test then action. The system repeatedly tries to
find a rule whose test passes, and then executes its action. The PPS system
[Olsen 90b] uses a production system approach, which is more general
than an event system.

One nice thing about event languages is that they can easily handle
multiple processes, which can be important in user interfaces. One of the
problems with event languages is that it is often very difficult to create
correct code, since the flow of control is not localized and small changes
in one part can affect many different pieces of the program. It is also often
difficult for the designer to understand the code once it reaches a non-trivial
size. Hill [Hill86] claims that these problems can be solved if the event
language provides appropriate modularization mechanisms.

Declarative Languages

Another approach is to try to define a language that is declarative (stat-
ing what should happen) rather than procedural (how to make it hap-

Introduction 13

pen). Cousin [Hayes 85] and the commercial product Open Dialogue
from Apollo Computer, Inc. (now part of Hewlett-Packard) both allow the
designer to specify user interfaces in this manner. The user interfaces sup-
ported are basically forms, where fields can be text which is typed by the
user, or options selected using menus or buttons. There are also graphic
output areas that the application can use in whatever manner desired. The
application program is connected to the user interface through "variables,"
which both can set and access.

The advantage of using declarative languages is that the user interface
designer does not have to worry about the time sequence of events, and
can concentrate on the information that needs to be passed back and forth.
The disadvantage is that only certain types of interfaces can be provided
this way, and the rest must be programmed by hand in the "graphic areas"
provided to application programs. The kinds of interactions available are
preprogrammed and fixed. In particular, these systems provide no support
for such things as dragging graphical objects, rubber-band lines, or drawing
new graphical objects.

Constraint Languages

"Constraints" are relationships that are declared once and maintained auto-
matically by the system. They are often considered declarative languages,
since the programmer does not specify how to solve the constraints, only
what the relationships should be. However, we have not included constraint
languages in the previous section because they have a quite different form
and use than the systems described above. Unlike Cousin and Open Dia-
logue, constraint languages are most often used for the dynamic parts of an
application. For example, the programmer might declare that a line should
stay attached to a box. Then, when the user moves the box, the system will
automatically move the line also.

Constraint languages have been widely used to design user interfaces in
research systems [Borning 86], and Chapters 11 through 13 discuss some
modern constraint systems in more detail. Early constraint systems include
Sketchpad [Sutherland 63a, Sutherland 63b] which pioneered the use of
graphical constraints in a drawing editor in the early 1960s, and ThingLab
[Borning 79, Borning 81] which used constraints for graphical simulation.
More recently ThingLab has been refined to aid in the generation of user

14 Brad A. Myers

interfaces [Freeman-Benson 90c]. GROW [Barth 86] was perhaps the first
user interface development system that employed constraints.

The advantage of constraint languages is that it is convenient for the
programmer not to have to keep track of all the relationships and how
to maintain them when changes happen. A disadvantage is that today's
constraint solvers are usually inefficient in space and time. In addition, a
complex network of constraints can be difficult to debug, since changing a
value can have non-local effects if constraints depend on it.

High-Level Specification Languages

Some research systems are investigating allowing the programmer to define
a high-level specification of the application functionality, and automatically
generating a user interface from that. For example, in IDL [Foley 88], the
programmer gives the application procedures along with pre- and post-
conditions for each. From these, the system can create a preliminary inter-
active user interface, which the programmer can then modify to be more
attractive and easier to use. Mickey [Olsen 89] uses a Pascal definition of
the application procedures to be called and variables to be set along with
special comments, to generate a Macintosh menu and dialog-box interface.

The advantage of using high-level specification languages is that the
programmer does not need to worry much about the user interface, and can
concentrate on the application functionality. The disadvantages are that
the systems rarely create good user interfaces, so tinkering is necessary,
and the systems are limited in the forms of interfaces they can create.

Object-Oriented Languages

Many user interface development systems are based on existing object-
oriented languages. For example, InterViews [Linton 89] uses C++, and
GWUIMS [Sibert 88] uses the Flavors object system in Lisp. In fact, one
of the chief motivations for Smalltalk, the first successful object system,
was that it would be easier to create user interface software.

In addition, special object-oriented languages have been created specif-
ically to support user interface development. These include Object Pascal,
which was created by Apple as part of the MacApp program development
system [Wilson 90], and the Gamet Object System (see Chapter 10).

Introduction 15

Also, some toolkits, such as Xt [McCormack 88] and Andrew [Palay 88],
have invented their own object systems. In these two cases, the underly-
ing language is C, and the tool developers felt that other object-oriented
languages, such as C++, were inadequate, so they developed their own
object-oriented systems using extensions to C.

Object-based systems typically provide the higher-level "classes" that
handle the default behavior and the user interface designer provides spe-
cializations of these classes to deal with specific behavior desired in the user
interface. This uses the inheritance mechanism built into object-oriented
languages.

The advantages of using an object-oriented approach are well-known.
The entities on the screen are naturally modeled by objects receiving mes-
sages, since they need to respond to events. In addition, the inheritance
mechanism of object systems makes it easier to reuse code since standard
mechanisms can be defined, and the programmer can override only those
that are specific to the particular application. Virtually all modem user
interface software environments are object-oriented.

1.3.3 Languages for End-User Programming

In the old days, computers were mostly used by programmers or scien-
tists who knew how to program them using conventional programming
languages. Today, however, the vast majority of computer users do not
have any training in computer programming. However, these users find
that they still need many of the capabilities that programming provides:
the ability to direct the computer to perform a specific user-defined task,
and to customize existing applications. Many approaches have been tried
to provide this capability to users.

Clearly, the most successful end-user programming systems are spread-
sheets, such as Lotus 1-2-3. Spreadsheets are enormously popular for
personal-computer users, and some claim that spreadsheets are the pri-
mary reason most people buy personal computers. Spreadsheet users write
programs by entering formulas into cells, and by creating macros of spread-
sheet operations. Why spreadsheets have been easy to use and program
has been studied by many researchers [Kay 84, Hutchins 86, Lewis 87,
Nardi 90] (see also Chapter 19).

16 BrodA. Myers

Another popular product for personal computers is database programs.
These systems, such as DBASE, allow the end user to create database query
programs to find information stored in the database.

The HyperCard program from Apple for the Macintosh allows end
users to create applications. It is primarily good for making "forms"
(called cards) containing fill-in fields and buttons. The buttons can transfer
to other cards or perform other actions. If the user wants a complex action
to happen, this can be programmed using the HyperTalk scripting language.
However, most people who do not understand how to program have great
difficulty writing HyperTalk programs.

Creating programs using graphics has long been touted as a method for
making programming easy enough for end users. Many "Visual Program-
ming Languages" [Myers 90d] have been designed to provide program-
ming capabilities to non-programmers. For example, the Lab View product
for the Macintosh allows scientists to create dataflow diagrams to create a
control panel for external instruments [Labview 89]. The processing of the
data and control signals can be defined using icons connected by graphical
wires (see Figure 1.2). Another example is Authorware, which uses a
flowchart style graphical language to allow schoolteachers to design edu-
cational software [Authorware 91]. In Chapter 6, Cordy describes a new
visual1anguage, based on a functional model, rather than the imperative
model used by most visual languages.

The advantages of graphical approaches are that there is usually no
syntax to learn, so it is easier to create the programs, and often the two-
dimensional presentation can help users understand the flow of control.
In general, however, graphical programming has not been a panacea for
end users. The concepts of programming, such as conditionals, iterations,
and variables, are often hard for people to understand, and the graphical
languages do not hide these. Also, graphical programs can be hard to read
when they get larger than a few operations, since often the programs take
up much more space than a textual program, and some forms can become
a "maze of wires."

Spreadsheet systems, such as Lotus 1-2-3 and Microsoft Excel, have
long allowed users to create "macros," which are a recording of a sequence
of operations that can be replayed later. Research systems have investigated
sophisticated macro recorders for Visual Shells [Halbert 84]. Commercial

Introduction 17

(a) (b)

Figure 1.2: A LabVIEW window (a) in which a program to generate a
graph has been entered. The resulting user interface after the program has
been hidden is shown in (b).

macro recorders also exist for mouse-based operating systems like the
Macintosh. In many systems, the recording can be edited, and control
structures such as conditionals and iterations can be added, which converts
the macros into full-fledged programming systems. Sometimes the macro
is recorded as a text file, and then edited directly. Other times, for example
in Tempo II Plus [Tempo2 91], a series of dialog boxes is used to guide the
user's editing.

The advantage of macro scripting is that the user can just operate the
system nonnally and the commands will be remembered. The disadvan-
tages are that this technique cannot be used to create new applications (only
to more effectively give commands to existing ones), and it is difficult for
users to specify control structures and variables in most macro languages.

1.4 Summary

In general, the existing approaches to user interface programming, either
for end users or professional programmers, have proven to be quite difficult
to use. Further research is clearly needed to find better paradigms and ways
to present important features. The rest of this book discusses some current
and future research on this problem.

http://taylorandfrancis.com

Part 1

Programming Languages
for End Users

http://taylorandfrancis.com

Chapter 2

The User Interface is
The Language

Michael L. Dertouzos

The 1970 programming manual for Dartmouth Basic describes an ar-
senal of some 80 instructions, 10% of which are dedicated to Input/Output
(110). 1\venty years later, the 1990 Microsoft Basic manual for the Mac-
intosh describes some 400 instructions (including relevant toolbox calls),
70% of which deal with 110. Figure 2.1 illustrates this difference and shows
how the 110 instructions are distributed among their various categories.

Despite the obvious shift in demand, reflected by this evolutionary
change, and notwithstanding current rhetoric about new software environ-
ments, little has changed in the fundamental structure of programming
languages since Fortran. The step from machine language to Fortran has
yet to be dwarfed by a step from Fortran to anything else! Contemporary
languages still carry the same basic classes of commands for decision,
repetition, binding and unbinding, arithmetic and math, procedure def-
inition and use, as well as the separable and increasingly bulkier input
output (110) or user interface commands. It should not be too surprising
that this structural inertia is accompanied by a corresponding functional
feebleness-programming productivity has barely budged beyond about
1% per year, by even the most optimistic of counts, and programming
continues to be out of the reach of most people.

21 e Mich.:l L. Dertoums

22

1970
I I 0
Other

Michael L. Dertouzo&

1990
Figure 2.1: Input/output instructions - BASIC programming language.

These observations led me, in the ACM's Conference on Human Fac-
tors in Computing Systems (SIGCill'90) [Dertouzos 90] keynote address,
to call for the creation of a new breed of programming languages that would
make programming much easier, much more accessible, and much more
fun than it is today, blurring the distinctions we now make between pro-
grammers and users, processors and peripherals, languages and operating
systems. In my view, this can happen only if the programming language
becomes rooted in and fully integrated with the user interface-a rever-
sal of our traditional thinking and indeed of the title of this book which
presupposes a distinction between language and user interface.

The remainder of this chapter discusses a few key characteristics that
such a language should have:

2.1 Out-In Programming Process

An essential ingredient of this new vision is that the programming process
would start with the construction of the user interface. After all, doing
something purposeful by and for the user is the entire purpose of the
program that is about to be born. This means that the new language should
have tools that can easily create buttons, menus, dialog boxes, windows,
pictures, and sounds for input and output as well as other artifacts close to

The User Interface is The Language 23

the user that are deemed natural and purposeful for the task at hand. This is
clearly a creative activity with a great deal of potential and not too great a
learning cost, since all the user does is select and arrange familiar gadgets
like windows, buttons, and menus.

So far, I have described what in today's vernacular would be called a
user interface prototyping language (e.g., Prototyper by Smethers Barnes
for the Macintosh). Unfortunately such prototyping software stops being
useful exactly at the most interesting point of the programming process:
Once the interface is designed, reams of code are generated, and the user
who wishes to go further must leave the familiar and personally interesting
world of the interface that she has just prototyped and plunge into the
antiquated, unproductive, and unbearably detailed world of conventional
programming languages like Pascal, and C-a world that caters much more
to what computers like rather than to what is easy and natural for people to
do.

What is needed instead is the ability to proceed smoothly from proto-
typing the user interface to the next natural stage-namely to what should
happen when each button is activated, each menu item is selected, and each
sound is made or spoken. In the language of my dreams this would be done
easily by "flipping" each button that has been prototyped and specifying
"behind" it what action should be taken when the button is activated by the
user-akin to the spreadsheet metaphor where behind each cell may lie a
formula or procedure that determines the cell's contents. This means that
the programming environment of this new language should be very rich
in pre-programmed entities that can be simply selected and that can do
a lot of useful things near the 1/0 level of human interest. In other words,
a style characterized simply by inputs, and actions caused by these inputs,
which we might call shallow programming is good and productive and
should be encouraged.

More generally, this process of out-in programming would continue
from the user interface design to progressively deeper inner structures for
more complex programs. At any time in this process, the programmer
would have the ability to run the program under development with the flip
of a lever, and without having to stand on his head in order to use separate
build, compile, and link procedures that characterize today's development
systems.

24 Michael L. Dertouzos

A considerably greater and more intelligent amount of compilation
and run-time decision making would underlie this process, proceeding
incrementally and invisibly to the user, as the program is built. This
process would yield a finished prototype application, without additional
fanfare, at any stage of the development process, and certainly upon its
termination.

2.2 Total Environment Integration

Since a successful new language should survive for a long time, it should
try to anticipate future developments. We are thus necessarily led to some
crystal ball gazing.

Computer technology is growing in three important directions: Lo-
cally, the silicon used in computer circuits will be increasingly organized
into multiprocessor architectures, roughly for the same reason that it is
easier to harness many horses rather than grow one huge horse with the
same total strength. Globally, these parallel computers will be increas-
ingly interconnected to one another, forming networks at many levels of
granularity, according to the aggregation of the population they serve-a
single building, a building complex, or organizations spanning cities, and
even continents. Finally, people will utilize tomorrow's computers only if
they can easily communicate their wishes to these machines using speech,
handwriting, pictures, and text and only if they can derive real benefits
from such interaction.

These three observations suggest that the designers of future languages
should keep in mind that the target of their endeavors is a system like
that of Figure 2.2. In words: we should strive to create programming
languages and software systems that make networked multiprocessors
easy to use through interaction by normal people toward the fulfillment
of tangible goals.

Accordingly, tomorrow's languages should include integrally, rather
than as afterthoughts: (1) input/output capabilities for multiple media,
(2) communication capabilities for dealing with users and servers over
networks, and (3) capabilities for controlling multiple resources. In short,
future languages should include integrated access to this broader environ-
ment, for the simple reason that these capabilities will be present and should

The User Interface is The Language 25

:: ••• hk:Yt. ~~
~··· •••

Figure 2.2: Target of new languages: networked multiprocessors that are
easy to use.

be controllable by everyone. I will not discuss in this write-up the extent
to which new languages should have implicit or explicit control of paral-
lelism. The knowledge around this important issue is still accumulating.
Until we know more, the new language I am after should try to achieve as
much as possible implicitly, in the interest of ease of use.

2.3 Simplification

The combination of so many different kinds of information and informa-
tion processing in new languages creates a big opportunity for designers
to economize: Consider, for example, the many different commands pro-
grammers and users invoke today to name programming entities. Some of
these are assignment statements within programming languages, file cre-
ation and renaming commands in operating systems, communication port
naming commands, startup shell naming commands, naming of buttons,
of sounds, of pictures; as well as the myriad of naming commands within
some 10,000 packaged software applications. The opportunity to integrate
all of these essentially identical activities under one generic naming com-

26 Michael L. Dertow:os

mand is suggestive of what this kind of simplification might accomplish in
reducing the complexity of the immediate user environment.

A straightforward inspection of the commands found in today's lan-
guages, operating systems, communication systems, and applications re-
veals the following broad classes, under which commands might be com-
bined and simplified:

Input-output
I. Communication with other users and programs
2. Menu selection input
3. Buttons input
4. Text input and output
5. Static picture input and output for displays, printers, and like devices
6. Window related commands
7. Sound input and output
8. Video input and output

Internal Information - to - Internal Information
9. Decision and control of computational flow

10. Navigation through pre-programmed entities
11. Math, functions, expressions
12. Move and Build (e.g., join, cons) commands, including procedures
13. Data and their organization (databases)
14. Error related, access control, and miscellaneous commands

There are obviously many other ways to categorize and simplify the
millions of different commands in use today by applications and languages
to control the computing environment. The important observation here is
that under the current scheme, people have to learn new ways for expressing
familiar commands for each application that they possess. Thus a central
research question is "Under what categorization scheme can we make
substantial gains in commonality, simplification and integration, hence in
ease of learning and simplicity of use?" Good answers to this question,
that minimize the number of different commands we need to remember,
should act as a powerful guide in the design of new languages.

Commands are not the only targets for simplification. Common inter-
faces for data representation such as text, pictures, tables, graphs, charts,
drawings, sounds, and video would go a long way toward simplifying the
coupling of programs to one another.

The User Interface is The Language 27

With these concepts in mind, we can now see how traditional pro-
gramming languages and operating systems would become blurred into a
new kind oflanguage that I call My Virtual Computer (MVC), shown in
Figure 2.3. The figure illustrates commands and data as standard interfaces
that are accessible to users/programmers. In the figure these are drawn as
rails to emphasize their role as solid interfaces. The rectangular solids on
top of MVC represent a new class of "applications" that would plug into
these rails and would run on this new platform. These applications would
use the common MVC rails--command interfaces like name and move
and common data interfaces like text and video. The boxes at the bottom
of the figure represent the different machines, individually or in networks,
on which MVC would run.

Figure 2.3: User's view of envisioned language in My Virtual Computer.

Qualitatively, the above suggestion sounds like something we already
do. Quantitatively, we do it so minimally that it is essentially nonexistent:
Today, each piece of application software carries along its own versions of
these potentially common commands and data. I estimate that this excess
baggage, whose idiosyncrasies have to be re-learned from application to
application, occupies, on the average, more than 70% of each applica-
tion's arsenal of command and data entities. This is a totally unacceptable

28 Michael L. Dertouzos

learning burden, requiring people to remember the contents of 35 manuals
describing essentially the same commands in slightly different ways-if
they want to use fifty applications effectively!

By contrast, MVC applications would not require as much learning,
since a far larger number of common commands and interfaces would be
provided by the MVC rails. Users would be the real beneficiaries of this
simplification, since they would be able to learn and use new application
modules far more easily than is the case today.

The introduction of commands like file, open, save, cut, and paste in
the Apple Macintosh is a good example of common command interfaces, as
are text and pict of data interfaces. This simplification has been responsible
for a good deal of the success and appeal of that machine: People appreciate
knowing that there is a familiar lever in a familiar place, which when pulled
does familiar things. What I am advocating here is that (1) we carry this
idea far beyond the Macintosh level to all possible common 110 and
information processing commands and (2) that we plug into these rails
specialized modules that are closer to user's interests as discussed next.

2.4 Extensions to Specialized Concepts-
Application Modules

Suppose that I ask you to

write a small program tlu:zt keeps track of my checkbook en-
tries, including the category of expenditure of each check, so
tlu:zt the program can give me at any time a report of checks
written and totals under each such category.

Assuming that you have understood the above request and that you are
willing to comply, I have in effect programmed you to develop a desired
program in less than 14 seconds. The outcome of your programming effort,
using spreadsheets or, more tediously, a programming language-is likely
to be acceptable to me even though I did not give you too many details.

The question of interest here is: "How is it that I can successfully
program you in 14 seconds and you need 100 to 1000 times more time to
program the computer?" A good part of the answer must be that you and

The User Interface is The Language 29

I share a few common concepts like checkbook, category of expenditure,
report and total, which you understand effortlessly but must painstakingly
program to a concept-free machine.

Can we evolve our programming language to get closer to this kind of
easier programming? Considerably short of solving the full Artificial In-
telligence problem, I believe that we can do so by letting the language grow
into specialized clusters, representing various categories of specialized user
interest.

Accordingly, the language I envision has natural and easy to use exten-
sions into what today we call applications. Rather than thinking of them
as applications, however, we should think of these as specialized concepts,
provided by additional software modules that are fully consistent with, and
plug into, the basic MVC rails. Once a set of new modules is plugged
in, it will manifest itself as a new set of user interface artifacts, new com-
mands beyond the familiar ones of the basic language/system, and other
new concepts that are familiar to the specialists using that module.

Thus, if one were interested in checkbook management, one would
probably get from tomorrow's application vendors a module that would
handle checkbook accounting and would therefore "understand" through
its built in objects totals, checkbook, category, and report as new data
interfaces; and reconcile as a new command. Likewise, if I were interested
in accounting I would get the module that knows about journals, posting,
ledgers, and trial balances as its primitive entities. Whatever I plug
into the MVC rails, however, I am guaranteed that it will work gracefully
and seamlessly with the basic MVC language/system and whatever else I
already have plugged in. Using today's vernacular, but not today's distinct
application worlds which are totally oblivious to each other's existence,
this means that I should be able to easily call an information service with
my communications module, and just as easily transfer the historical stock
quotes that I receive through this action into my spreadsheet modules for
analysis and then into my charting or report modules.

The issue here is not one of mere feasibility but rather of ease and
convenience, and hence of productivity gain: We are not merely asking
if there exists a spreadsheet program today that happens to do all of the
above actions by design (there is one). Rather, we are asking that users be
able to link easily any independently developed modules to do what the

30 Michael L. Dertow:os

users want to do, regardless of whether an application developer happened
to think of doing the same thing. It is this property of the envisioned
language to act in an integrative and cumulative way among numerous
independent application modules, along with the ease with which new
constructs would be developed on this base that would give the overall
system its hoped for ease of use and power.

2.5 Conclusions
We need to get away from the current practice of simply covering up with
the pretty colors of a user interface the debilitating complexity that has
plagued programming since its inception. We should instead aspire to a
more fundamental revolution in programming by inventing a new kind of
radically different language.

Aimed at tomorrow's networked, multiprocessor architectures, such a
language would integrate the entire computing environment of processor,
communications, and input~utput peripherals. It would simplify and
incorporate as standard interfaces the commands and data representations
that are common to most useful applications. It would easily extend its
power via application modules to specialized domains, like accounting,
design, planning, and music composition; and these extensions would be
seen by users as natural additions to the standard interfaces that in many
cases already represent the concepts of these higher-level activities. Finally,
the modules developed for this language would be easily usable from other
modules.

The programming process that would be used along with this language
would be mostly in an out-in direction starting from the user interface. It
would be accomplished largely through selection and easy modification of
built-in or off-the-shelf objects. And it would employ substantial rapid and
intelligent compilation and run-time decisions, leading to an easily tested
and finished prototype at any stage of the development process.

Such a language used in such a way would blur traditional distinctions
between programmers and users, among programming languages, operat-
ing systems and applications; and most important between user interface
and program.

In effect the user interface would cease to exist as a separate entity and
would become the language!

