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Foreword
	

Computer graphics involves simulating the distribution of light in a 3D 
environment. There are only a few fundamentally different algorithms that 
have survived the test of time. They can be loosely classified into projective 
algorithms and image-space algorithms. The former class projects each geo
metric primitive onto the image plane, with local shading taking care of the 
appearance of objects. This class of algorithm is still widely used because it is 
amen able to pipeline processing and therefore to hardware implementation as 
evidenced by all modern graphics cards. 

Image-space algorithms compute the color of each pixel by fi guring out 
where the light came from for that pixel. Here, the basic operation is to deter
mine the nearest object along a line of sight. Following light back along a line 
has given this basic operation and the associated image-synthesis algorithm 
their name: ray tracing. 

In 1980, ray tracing was at the forefront of science. The quality of the 
images that can be computed with ray tracing was an eye opener, as it natu
rally includes light paths such as specular reflection and transmission, which 
are difficult to compute with projective algorithms. Some shapes are easier to 
intersect rays with than others, and in those early days, spheres featured heav
ily in ray-traced images. Hence, old images often contained shiny spheres to 
demonstrate the power of ray tracing. 

A vast amount of research was then expended to make ray tracing both 
more tractable and to include more features. Variants were introduced, for 
instance, that compute diff use inter-reflection, caustics, and/or participating 
media. To speed up image generation, many data structures were developed 
that spatially sort the 3D geometry. Spatial subdivision algorithms allow 
a very substantial reduction of the candidate set of objects that need to be 
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x Foreword 

intersected to find the nearest object for each ray. Ray tracing is also amen
able to parallel processing and has therefore attracted a substantial amount of 
research in that area. 

All of this work moved ray tracing from being barely tractable, to just 
about doable for those who had state-of-the-art computers and plenty of time 
to kill. High-quality rendering tends to take a whole night to complete, mostly 
because this allows artists to start a new rendering before going home, to find 
the finished image ready when they arrive at work the next day. This, by the 
way, still holds true. For many practical applications, hardware and algorith
mic improvements are used for rendering larger environments, or to include 
more advanced shading, rather than to reduce the computation time. 

On the other hand, more than 25 years after its introduction, ray tracing 
has found a new lease on life in the form of interactive and real-time imple
mentations. Such rendering speeds are obtained by using a combination of 
super-fast modern hardware, parallel processing, state-of-the-art algorithms, 
and a healthy dose of old-fashioned low-level engineering. Recent advances 
have enabled ray tracing to be a useful alternative for real-time rendering of 
animated scenes, as well as huge scenes that do not fi t into main memory. In 
addition, there is a trend towards the development of dedicated hardware for 
ray tracing. 

All of this research has helped to push ray tracing from an interesting eso
teric technique for image synthesis to a seriously viable algorithm for practical 
applications. If necessary, ray tracing can operate in real time. If desired, ray 
tracing can be physically based and can therefore be used in predictive light
ing simulations. As a result, ray tracing is now used in earnest in the movie 
industry, but also, for instance, in the automotive industry and in scientific 
visualization. In addition, it forms the basis for several other graphics algo
rithms, including radiosity and photon mapping. 

The practical importance of ray tracing as a lighting-simulation technique 
means that ray tracing needs to be taught to students, as well as to practitioners 
in industry. In addition, ray tracing is sufficiently multifaceted that teaching 
students all aspects of the algorithm will give them all manner of additional 
benefits: 3D modeling skills, mathematics skills, software engineering skills 
(writing a ray tracer is for many students the first time that they will have to 
manage a sizeable chunk of code), hands-on experience in object-oriented pro
gramming, and deeper insights into the physics of light, as well as knowledge 
of the behavior of materials. 

It would be ideal to present a ray-tracing course to students at the under
graduate level for all of the above reasons, but also because a deep understand
ing of ray tracing will make it easier to grasp other image-synthesis algorithms. 



  

 

xi Foreword 

For this, a book is required that explains all facets of ray tracing at the right 
pace, assuming only a very moderate amount of background knowledge. 

I’m positively delighted that such a book now exists. Ray Tracing from the 
Ground Up not only covers all aspects of ray tracing, but does so at a level that 
allows both undergraduate and graduate students to appreciate the beauty 
and algorithmic elegance of ray tracing. At the same time, this book goes into 
more than sufficient detail to deserve a place on the bookshelves of many pro
fessionals as a reference work. 

Kevin was gracious enough to let me read early drafts of several chapters 
when I was teaching a graduate-level ray-tracing course at the University of 
Central Florida. This has certainly taught me many of the lesser-known intri
cacies of ray tracing. Kevin himself has taught ray tracing to undergraduate 
students for many years, and it shows. This book, which grew out of his course 
notes, is remarkably easy to follow, especially given the complexity of the sub
ject matt er. 

As such, I can heartily recommend this book to both professionals as 
well as students and teachers. Whether you are only interested in rendering a 
collection of shiny spheres or want to create stunning images of highly com
plicated and realistic environments, this book will show you how. Whether 
its intended use is as a ray-tracing reference or as the basis of a course on ray 
tracing, this book is essential reading. 

Erik Reinhard 
University of Bristol 

University of Central Florida 
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Preface
	

Where Did This Book Come From?
	

Since the early 1990s, I have had the privilege of teaching an introductory ray-
tracing course at the University of Technology, Sydney, Australia. This book 
is the outcome of all of those years in the classroom. The ray tracer presented 
here has been developed and taught over the years, during which time my 
students have provided invaluable feedback, bug reports, ideas, and wonder
ful images. The book’s manuscript has evolved from the teaching notes for 
the course and has been written (and re-written) chapter by chapter as the ray 
tracer, and my teaching of it, have developed. Writing in a teaching context 
with the feedback provided by students has helped me produce a book that 
is, I hope, much more understandable than it would have been had I writt en it 
in isolation. I like to call the iterative processes of programming, writing, and 
teaching ray tracing the ray-tracing circle. 

What Is Ray Tracing? 
Ray tracing is a computer-graphics technique that creates images by shoot
ing rays. It’s illustrated in Figure 1, which shows a camera, a window with 
pixels, two rays, and two objects. The rays go through pixels and are tested for 
intersection with the objects. When a ray hits an object, the ray tracer works 
out how much light is reflected back along the ray to determine the color of 
the pixel. By using enough pixels, the ray tracer can produce an image of the 
objects. If the objects are reflective, the rays can bounce off of them and hit 
other objects. 
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xiv Preface 

Figure 1. The ray-tracing process. 

This process is conceptually simple, elegant, and powerful. For exam
ple, it allows ray tracing to accurately render reflections, transparent objects, 
shadows, and global illumination. Ray tracing can also render large triangle 
meshes more efficiently than other rendering techniques. 

Why Is Ray Tracing Important? 
The production of ever more realistic images is a trend of long standing in 3D 
computer graphics. This is a task at which ray tracing excels. A major applica
tion of ray tracing is the film industry, not just for visual effects, but for render
ing whole movies. For example, the animated films Ice Age, Ice Age 2, and Robots 
were fully ray traced, as were the short films Bunny and The Cathedral (a.k.a. 
Katedra). Ice Age was nominated for the Academy Award for Best Animated 
Feature in 2002, Bunny won the Academy Award for Animated Short Film in 
1998, and The Cathedral was nominated for the Academy Award for Animated 
Short Film in 2002. Ray tracing was also used in Happy Feet to render the pen
guins with ambient occlusion, and for reflection and refraction with the ocean 
surface (see Chapters 17, 27, and 28). Happy Feet won the Academy Award for 
Best Animated Feature in 2006. 

The major software packages used in the visual-effects industry have 
built-in ray tracers, and there are numerous state-of-the art ray tracers avail
able as plug-ins or stand-alone applications. These include Brazil (htt p://www. 
splutterfi sh.com/), Mental Ray (htt p://www.mentalimages.com/), finalRender 
(htt p://www.finalrender.com/), and Maxwell Render (htt p://www.maxwell
render.com/). Cinema 4D (htt p://www.maxon.net/) also has a state-of-the art 
ray tracer. 

http://www.spluer$$$�sh.com
http://www.spluer$$$�sh.com
http://www.mentalimages.com
http://www.$$$�nalrender.com
http://www.maxwell-render.com
http://www.maxwell-render.com
http://www.maxon.net


 
 

 

 

 

 

 

Preface xv 

Real-time 3D computer games also have an increasing demand for real
ism. Although current PCs are not fast enough for real-time ray-traced games, 
this is likely to change in the next few years. The introduction of chips with 
specialized graphics processors on multiple cores that can be programmed 
using existing programming tools will make this possible. Because each ray 
can be traced independently, ray tracing can trivially use as many processors 
as are available. In fact, ray tracing has been described as being “embarrass
ingly parallelizable.”1 These hardware advances should also result in ray trac
ing being used more frequently in the visual-eff ects industry. 

All this means that ray tracing has a great future, and within a few years 
you should be able to use the techniques you will learn in this book to write 
real-time ray-tracing applications such as games. 

Graphics education also benefits greatly. My experience has been that 
getting students to write a ray tracer is the best way for them to understand 
how rendering algorithms work. Ray tracing’s flexibility and ease of program
ming is the primary reason for this. 

In a more general context, ray tracing helps us understand the appear
ance of the world around us. Because it simulates geometric optics, ray tracing 
can be used to render many familiar optical phenomena. The appearance of 
the fish and bubbles on the front cover is an example.

 Book Features 
This book provides a detailed explanation of how ray tracing works, a task 
that’s accomplished with a combination of text, code samples, about 600 ray-
traced images, and over 300 illustrations. Full color is used throughout. Almost 
all of the ray-traced images were produced with the software discussed here. 
The book also showcases the work of about 25 students. You can develop the 
ray tracer chapter by chapter. 

Most chapters have questions and exercises at the end. The questions 
often ask you to think about ray-traced images; the exercises cover the imple
mentation of the ray tracer and suggest ways to extend it. There are almost 400 
questions and exercises. 

Shading is described rigorously as solutions to the rendering equation 
and is specified in radiometric terms such as radiance (see Chapter 13). 

1. Alan Norton, circa 1984, personal communication. 



 
 

 

 

 

  

xvi Preface 

The book’s website (http://www.raytracegroundup.com) contains several 
animations that demonstrate effects and processes that are diffi  cult or impos
sible to see with static images.

 Pathways through This Book 
You don’t have to read the chapters in order, or read all of the material in every 
chapter, or read all of the chapters. For example, Chapters 2 and 20 cover some 
of the mathematics you need for ray tracing, and you may already be familiar 
with this; you can read Chapter 19 on ray-object intersections, or parts of it, 
when you need to. 

Chapters 1–4, 9, and 13–16 cover ray-tracing fundamentals, perspective 
viewing with a pinhole camera, theoretical foundations, and basic shading. 
Chapter 13 is heavy going mathematically but provides the essential theoreti
cal foundations for the following chapters on shading. The good news is that 
you don’t have to master all of the material in Chapter 13. Most of the com
plicated integrals in this and the following chapters can be expressed in a few 
simple lines of code, which are in the book. 

Chapter 24 covers mirror reflection, Chapters 27 and 28 cover transpar
ency, and Chapters 29–31 cover texturing. Although You will fi nd many inter
esting things to explore here, and you can read the texturing chapters fi rst, if 
you want to. 

If you read the sampling chapters, Chapters 5–7, you will have the back
ground to understand the different camera models in Chapters 10–12, ambi
ent occlusion in Chapter 17, area lights in Chapter 18, glossy refl ection in 
Chapter 25, and global illumination in Chapter 26. 

Chapter 21 explains how to ray trace transformed objects, and Chapter 22 
covers grid acceleration, which is the tool for ray tracing triangle meshes in 
Chapter 23. 

What Knowledge and Skills Do You Need? 
Because the ray tracer is writt en in C++, you should be reasonably proficient 
at C++ programming. A first course in C++ should be suffi  cient preparation, 
but there is a heavy emphasis on inheritance, dynamic binding, and polymor
phism right from the start. That’s a critical design element, as I’ll explain in 
Chapter 1. 

You should also be familiar with coordinate geometry, elementary trigo
nometry, and elementary vector and matrix algebra. Although there is some 

http://www.raytracegroundup.com


 

 

 

Preface xvii 

calculus in the book, I usually just quote the results and give you the relevant 
code. 

You don’t need previous studies in computer graphics because the book is 
self-contained in this regard. Chapters 3, 8, and 13 cover the necessary graph
ics background material. As far as graphics output is concerned, ray tracing is 
a simple as possible—you just draw pixels into a window on your computer 
screen.

 Intended Audience 
The book is intended for computer-graphics students who have had at least an 
introductory course in C++. The book is suitable for both undergraduate and 
graduate courses. 

It’s also intended for anyone with the required background who wants to 
write a ray tracer or who wants find out how ray tracing works. This includes 
people working in the computer-graphics industry.

 Online Resources 
The book’s website is at http://www.raytracegroundup.com, where you will 
find: 

• the skeleton ray tracer described in Chapter 1; 
• sample code; 
• triangle mesh fi les in PLY format; 
• image fi les in PPM format; 
• the ray-traced images in JPEG format; 
• additional images; 
• C++ code for constructing scenes; 
• animations; 
• a place where you can post errata; 
• useful links. 

Topics Not Covered 
Due to time and space constraints, here are some of the many topics that I 
have not discussed: high dynamic range (HDR) imaging with local tone-map

http://www.raytracegroundup.com


  

  

xviii Preface 

ping operators; comparisons between grid acceleration and other acceleration 
schemes such as bounding volume hierarchies; an effi  cient global illumination 
algorithm; an efficient technique for rendering caustics; sub-surface scattering; 
bump mapping; the volumetric rendering of participating media. Although 
HDR imaging would require some serious retrofitting, the other topics could 
be implemented as add-ons. Any of these could be student assignments or 
projects. 
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1 Ray Tracer Design 

and Programming
	

1.1 General Approaches 
1.2 Inheritance 
1.3 Language 
1.4 Building Scenes 
1.5 The User Interface 
1.6 Skeleton Ray Tracer 
1.7 Developing the Ray Tracer 
1.8 Floats or Doubles 
1.9 Efficiency Issues 
1.10 Coding Style 
1.11 Debugging 

Image courtesy of Jimmy Nguyen 
Skeleton model from Clemson University 

A ray tracer with any reasonable set of features is a large and complex soft ware 
system that must be designed carefully and developed in a systematic manner. 
This chapter gives you guidelines for the design and programming of a ray tracer. 
You can also find information on these topics in Glassner (1989), Wilt (1994), 
Shirley (2002), Shirley and Morley (2003), and Pharr and Humphreys (2004).

 1.1 General Approaches 
It’s best to develop your ray tracer using object-oriented (OO) techniques for 
several reasons. The first is size and complexity. Object-oriented techniques 
are best for handling the design and implementation of large and complex 
systems, and ray tracers can certainly be large and complex. One of the larg-
est was the Kilauea ray tracer, which consisted of about 700,000 lines of C++ 
code (Kato et al., 2001, Kato, 2002). Although the ray tracer I discuss here is 

1 



  

 

 

 

 

 2 1. Ray Tracer Design and Programming 

not nearly this large, it is large and complex enough for OO techniques to be 
essential for its development. 

The second reason is extensibility, which is not really separate from the 
first, because large and complex software systems are developed by extending 
simpler systems. Ray tracers can be extended in many ways, for example, by 
adding new types of geometric objects. You should design your ray tracer so 
that adding new types of objects is as simple as possible. OO techniques allow 
you to do this without altering the existing code that renders the objects. Your 
ray tracer will also have to deal with different types of cameras, samplers, 
lights, BRDFs, materials, mappings, textures, noises, and bump maps. Adding 
a new type of any of these things should also be as simple as possible. 

Let’s look at how OO techniques facilitate these processes. The code 
that performs the ray-object intersections should not have to know the type 
of objects it deals with. Why? Because it would then have to explicitly iden-
tify the type of each object, and intersect it in a case or switch statement. This 
makes it more work to program because you must provide an identifi er for 
each type, and add a new clause to the switch statement. To make matters 
worse, the switch statement may have to appear in more than one place in the 
ray tracer. It’s far better for objects to be anonymous in the intersection part of 
the ray tracer. To do this you define a uniform public interface for the intersec-
tion (hit) functions, so that they are called the same way for all objects. The ray 
tracer, which can still identify the type of each object at run time, will then call 
the correct hit function. 

You should also apply the same process to lights, materials, textures, etc. 
Except for build functions and #include statements, your ray tracer should 
not have to explicitly identify the type of anything that it deals with. From a 
design and development perspective, this is the most important aspect of your 
ray tracer code. 

Kirk and Arvo (1988) discussed the above issues for the first time in a ray 
tracing context, including the use of a common user interface for all objects. 
This was the first paper on object oriented ray tracing; it contains many good 
ideas.

 1.2 Inheritance 
The best way to implement the above processes is to use inheritance. Figure 1.1 
shows a sample geometric object inheritance chart. Provided you implement 
the objects correctly, dynamic binding guarantees that the correct hit functions 
are called. This is called polymorphism. 
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GeometricObject 

material_ptr 

hit(...) = 0 

Sphere 

hit(...) 

center 
radius 

Plane 

hit(...) 

point 
normal 

Triangle 

v0, v1, v2 (vertices) 

hit(...) 

normal 

Figure 1.1 A sample object inheritance chart. 

Code re-use is another benefit of inheritance. The fact that derived classes 
can use all the code in their base classes means that you only have to write the 
new parts when you add derived classes. For example, the code to handle the 
material only has to be written once in the GeometricObject class. 

1.3 Language 
The sample code in this book is C++ because it’s the mainstream ray tracing 
language. The reasons are: its OO facilities, the ability to mix C and C++ code 
in the same program, and its computational efficiency. State of the art commer-
cial ray tracers such as Brazil, Mental Ray, finalRender, and Maxwell Render 
are written in C++. Also, many major commercial rendering and animation 
packages, which were originally written in C, were re-written from the ground 
up in C++ during the 1990s. RenderMan plug-ins can also be written in C++. 

Computational efficiency is important for ray tracers because of their 
extensive use of floating point calculations. C++ programs can be writt en effi-
ciently because of the C heritage of C++, and the fact that they are fully com-
piled. If you are not careful, however, you can write ineffi  cient C++ programs. 
The books by Meyers (1996, 2001, 2005), Lippman et al. (2005), and Bulka and 
Mayhew (2000) discuss computational efficiency in C++. Writing effi  cient code 
is, however, not as important as writing code that’s easy to read, easy to main-
tain, and easy to extend. In other words, efficiency is not as important as good 
design. Fortunately, the two can go hand in hand in C++. Also, effi  ciency is 
not as important as using language features that make your job as a program-
mer easier. For example, there can be a cost penalty with inheritance in C++ 
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because of the extra indirection of virtual function calls, and because dynamic 
binding prevents the inlining of virtual functions, but this is far outweighed 
by the benefits. 

C++ can also use the Standard C library functions, and has excellent 
library facilities of its own, particularly the Standard Template Library (STL). 
See Lippman et al. (2005), Meyers (2001), and Ford and Topp (2001). C++ also 
has operator overloading that allows the code for many vector and matrix 
operations to be written in mathematical-like notation. 

Public domain C code, such as code for solving cubic and quartic poly-
nomial equations (Schwarze, 1990), can be simply incorporated into C++ pro-
grams, as can the efficient C macros for generating lattice noises by Peachey 
(2003). C++ also has an ANSI ISO standard that is platform independent. 

Finally, there are good integrated development environments (IDEs) for 
C++ on all common computer platforms, but you should make sure that the 
code is compiled. 

1.4 Building Scenes 
Ray tracers render scenes. Before a scene can be rendered, the ray tracer needs 
everything to be specified: all the parameters for the camera, geometric objects, 
lights, materials, textures, etc. The most common way to do this is with a scene 
description file, but another way uses a build function. Each approach has its 
advantages and disadvantages. 

Scene description files require a scene description language in which the 
files are written and a parser for the language. This can require a lot of pro-
gramming. There are also limits to the type of scenes for which you can easily 
hand-craft  a parser. Parsers that can handle control structures such as loops, 
branches, and recursive function calls are best written with lex and yacc, or 
Bison and Flex (Levine et al., 1992). 

Build functions written in C++ don’t require scene description fi les or 
parsing, and can exploit the full power of C++. They are functions that are 
included in your ray tracer code, and although they make it simpler and 
quicker to add new features, they require your ray tracer to always run in a 
development environment, at least in the simple approach that I’ve adopted.1 

1. The executable produced by the development environment will, of course, run as a stand-alone 
application, but it can only render a single scene. 
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This is because the build function also has to be re-compiled each time you 
change the scene. This isn’t a serious problem, for two reasons. First, C++ com-
pilation is fast, and second, you will have to run your ray tracer this way while 
you are developing it. Your ray tracer would only need to run as a stand-alone 
program if you wanted to sell it, or distribute it. You could also run it as a 
stand-alone application if you fi nished it, but has anyone ever finished a ray 
tracer? 

My experience from teaching both approaches is that build functions 
allow students more time to concentrate on the ray tracing itself. I therefore 
use build functions exclusively in this book, starting in Chapter 3. Wilt (1994) 
was the first ray-tracing book to use this approach. 

Your ray tracer will still need to read some information from files. 
Examples include triangle mesh data and texture images, but I provide code 
for this.

 1.5 The User Interface 
This book is about writing the engine part of a ray tracer, because graphical 
user interface elements such as windows, dialogues, and menus, are operat-
ing system dependent. Technically, the only “user interface” your ray tracer 
needs is a command line—it can write the image out to a file, and you can use 
third-party software to look at it. You can use a command-line interface with 
Linux, Unix, and Mac OS X, but there’s a potential problem. Although most 
of the scenes I discuss should only take seconds or minutes to render, scenes 
can take hours or more; in fact, there’s no upper limit to ray tracer rendering 
times.2 You don’t want to wait hours, only to find out that you incorrectly 
typed one of the viewing parameters in the build function. You should there-
fore use image-viewing software that allows you to view partially rendered 
scenes. 

From my perspective however, there’s a more serious problem with this 
approach. If your ray tracer doesn’t open a window and display the image as 
it’s being rendered, you will miss out on one of life’s great pleasures—watch-
ing scenes being ray traced. If you haven’t done any ray tracing, you will just 
have to take my word on this for now. 

2. Steven Parker has an image on his website (http://www.cs.utah.edu/~sparker) that took two CPU 
years to ray trace on an eight-processor Silicon Graphics machine. This figure is reproduced in 
Chapter 26. 

http://www.cs.utah.edu
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 1.6 Skeleton Ray Tracer
	
To help you get started, there’s a skeleton ray tracer on the book’s website. This 
runs under Windows and has the following useful features: 

• It renders the scene into a window, which can be of arbitrary size. 
• It displays the rendering time. 
• It can save images in a variety of fi le formats. 
• As it’s multi-threaded, it doesn’t tie up the computer while it’s rendering.

 1.7 Developing the Ray Tracer 
The following chapters will take you step by step through the process of devel-
oping a ray tracer in C++. Chapter 3, Bare Bones Ray Tracing, starts with the 
simplest possible ray tracer: one that only ray traces a single sphere and then 
adds multiple objects. In later chapters you can add facilities such as antialias-
ing, samplers, cameras, lights, materials, shadows, refl ections, transparency, 
other types of objects, affine transformations, an acceleration scheme, triangle 
meshes, and textures. Each chapter is designed to allow you to add new capa-
bilities to the existing ray tracer. 

In the early chapters, certain classes are presented in simplifi ed versions, 
because a lot of the data members and functions are not required until later 
chapters. An example is the ShadeRec class, which I’ll be adding data mem-
bers to throughout the book. To present the complete classes from the begin-
ning would make them too complex. I’ve therefore employed code that, with 
few exceptions, uses only the facilities that you need at the time. Because of 
the fine-grained design of the ray tracer, and the layers of abstraction pres-
ent, changes will involve additions to existing classes and adding new classes. 
In particular, the user interfaces of all member functions are frozen from the 
start, even though some parameters may not be required until later chapters. 
Examples are the Plane:hit and Sphere:hit functions discussed in Chapter 3. 
About the only change you will have to make to an existing function is one line 
in the main function. 

The code samples I’ll present and discuss in each chapter will be restricted 
to simplified class declarations and key functions, but numerous complete 
classes are on the book’s website. The exercises ask you to add the features 
discussed in each chapter and implement additional features. 

The most important thing here is that I’ll provide you with a ray-tracer 
design that has the three principal objectives of extensibility, effi  ciency, and 
readability. Design is generally more diffi  cult than programming. 



 

 
 

 
  

  
 

 
  

 

 71.9 Efficiency Issues 

1.8 Floats or Doubles
	

Doubles provide more numerical precision than floats, but they have twice 
the memory footprint. As suggested by Peter Shirley, I use doubles for all ray-
object intersection calculations, where numerical accuracy is critical, and floats 
for shading calculations. This involves storing geometric object data members, 
and the components of all the utility classes as doubles. If you define a global 
type typedef float FLOAT; you can easily change between floats and doubles 
by changing a single word.

 1.9 Efficiency Issues 
Efficiency is critical to a ray tracer, as there’s no upper limit to rendering times, 
even for simple scenes when we use sophisticated shading techniques. For 
example, the opening image in Chapter 26 took 2 CPU years to render! Below 
are a few relevant issues, mainly at the coding level. I’ll discuss broader issues, 
such as acceleration schemes, in Chapters 22 and 23. 

1.9.1 Small is Beautiful 
I use a “small is beautiful” design philosophy applied to object sizes and exe-
cuted code size. This involves a multitude of specialized inheritance hierar-
chies, objects, materials, lights, functions, etc.; each one designed for a specific 
task, and individually kept as small, simple, and efficient as possible. Here’s 
an example. I use two hit functions for each object.3 The first is the ordinary 
ray-object hit function discussed above, which returns the ray parameter at the 
nearest hit point, as well as other information required for shading. The sec-
ond is for shadow rays, which doesn’t return the shading information because 
we don’t need it for shadow testing. This approach increases the size of the 
ray-tracer executable, but that rarely affects the speed of execution. We gain 
efficiencies by minimizing the code that’s actually executed and the size of 
stored objects. This approach also creates more compilation units, but that’s 
not a problem as most of your builds will be incremental. 

The ideal is to be able to add new features with zero impact on the speed 
of the existing code, but that’s often not possible. Instead, I try to add new fea-
tures in such a way that they have minimum impact. 

3. This example is common practice in ray tracing. 
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1.9.2 Data Storage 
The geometric objects, lights, and sample points need to be stored in linear 
data structures. The STL vector class is the most suitable for this purpose 
because of its speed, see Bulka and Mayhew (2000), and because the collections 
of objects are usually static. When we know how many objects we are going to 
store in a vector, we can reserve the memory, which speeds up the construc-
tion since the underlying C array doesn’t have to be resized. This applies to the 
sample points. 

There’s also the notational convenience of being able to access a vector 
element with array notation [ ], which allows a vector to be traversed with 
code like the following: 

int num_objects = objects.size(); 
for (int j = 0; j < num_objects; j++) { 

if (objects[j]->hit(ray, t, sr) && (t < tmin)) 
... 

} 

where objects is a vector of GeometricObject pointers. There’s a small speed 
penalty for using this notation compared with using iterators. 

We also need 2D and 3D data structures in ray tracing: images and sample 
points (Chapters 5–7) use 2D data structures, regular grids (Chapter 22) and 
lattice noises (Chapter 31) use 3D data structures. I store these in 1D arrays and 
use indexing to simulate the 2D and 3D structures. This is also common prac-
tice. An exception is the Matrix class which uses a 2D C array: float m[4][4], 
to store the elements. 

1.9.3 Pass by Reference 
You should pass all compound objects into functions with references or con-
stant references to avoid the construction and destruction of temporary objects. 
The following triangle constructor declaration is an example: 

Triangle::Triangle(const Point3D & v1, const Point3D & v2, 
const Point3D & v3); 

1.9.4 Don’t Return by Reference 
Don’t use a reference to a complex class as the return type of function to try 
and save a temporary. As an example, the following is a Matrix member func-
tion for multiplying two matrices. 
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Matrix& 
Matrix::operator* (const Matrix& mat) const { 

Matrix product; 
// compute the product ... 
return (product); 

} 

At best, this will cause memory leak, and at worst, the function won’t work. 
Instead, use 

Matrix
 
Matrix::operator* (const Matrix& mat) const
 

and let your compiler return the matrix in the most efficient way it can. See 
Meyers (2005), Item 23. Exceptions include the assignment operators = and *=, 
and /= that we require for a variety of structured data types. 

1.9.5 Avoid Floating-Point Divides 
Because a floating-point division requires many more machine cycles on 
Intel chips than a floating multiplication, it’s best to avoid them when 
you can. One way is to define constants such as const double invPI = 

0.31830988618379067154;, which avoids having to divide by π. 

1.9.6 Use Inlining Judiciously 
The judicious use of inlining can help your ray tracer run faster, but it can 
also have the opposite effect, and actually make it run slower, as well as make 
debugging difficult. Only inline small functions, don’t inline constructors, 
destructors, or virtual functions, and remember that inlining is only a sugges-
tion to your compiler. You usually have to place inline functions in a header 
file; see Meyers (2005), Item 33. 

1.9.7 Utility Classes 
Your ray tracer will need a number of utility classes such as Vector3D, Point3D, 
Normal, Matrix, RGBColor, and ShadeRec. Because of their ubiquitous use in 
the ray tracer, it’s important that these classes are written as effi  ciently as pos-
sible. The code for these classes is on the book’s website. 
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 1.10 Coding Style
	

I’ve kept the C++ code as elementary as possible, consistent with gett ing the 
job done. Most of the C++ you require should therefore be covered in a first 
course, but you will have to know how to construct an inheritance hierarchy 
where the classes allocate memory dynamically. I’ve only used single inheri-
tance. All code samples are ANSI Standard C++, and some ANSI Standard C. 

1.10.1 Identifiers 
Class names, data member names, and member function names use the fol-
lowing style, but with some exceptions. 

• 	 Class names start with upper case, all words in multi-word names start 
with upper case.


 Examples: Sphere,  PointLight, GeometricObject.
 

• 	 Member function and data member names are lower case with the second 
and subsequent words in multi-word names separated by underscores. 
Examples: Sphere::center,  World::add_object(...),  ShadeRec:: 

local_hit_point. 

• 	 Pointer names end with _ptr as in Sphere* sphere_ptr = new Sphere;, 
unless the identifi er would be too long. Thus, glossy_specular_brdf_ 
ptr is glossy_specular_brdf. 

• 	 The names of functions that set or compute data members usually contain the 
data-member name aft er an underscore, or indicate what is being set or 
computed.

 Examples: Matte:set_cd(), where cd is the name of the data member, 
Camera::compute_uvw(void), where uvw stands for three data members 
called u, v, and w. 

1.10.2 Concrete Data Types 
One of the rules for writing correct C++ code is that classes that allocate mem-
ory dynamically must have their own copy constructor, assignment opera-
tor, and destructor; see, for example, Meyers (2005). To save space, the class 
declarations in the text usually don’t list these functions, but they are in the 
electronic versions on the book’s website. To provide a uniform class style, 
I’ve writt en most classes as concrete data types even when they don’t allocate 
memory dynamically; see, for example, the Ray class declaration in Listing 3.1. 
Of course, you don’t have to use this style. 
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1.10.3 Encapsulation 
Class data members are generally private or protected, but there are excep-
tions based on their frequency of access. All data members of the following 
classes are public: BBox, Matrix, Normal, Point3D, Ray, RGBColor, ShadeRec, 
Vector3D, ViewPlane, and World. 

1.10.4 Function Signatures 
The way you write function signatures can aff ect the amount of typing you 
have to do in build functions and the effi  ciency of scene construction. As an 
example, consider the function that sets the diff use color of a Matte material 
and has the following signature: 

void 

Matte::set_cd(const RGBColor& c);
 

This is nice and object-oriented, but every time you call it in a build function, 
you will have to write something like the following: 

mattePtr->set_cd(RGBColor(r, g, b)); 

On the other hand, if you use the less object-oriented signature 

void 

MattePtr::set_cd(const float r, const float g, const float b);
 

you can write 

mattePtr->set_cd(r, g, b); 

This will not only save you a lot of typing over a lifetime of writing build func-
tions, it’s more effi  cient because it saves an RGBColor temporary. If all compo-
nents of the color are the same, you can use a third version that takes a single 
fl oat argument. This is particularly useful for sett ing colors to black, white, and 
grays. For most set functions of this type, it’s best to write all three versions. 

1.10.5 Changing a Function Signature 
Yes, it may happen that you have to change the signature of a function that’s 
called on a lot of objects with dynamic binding. It’s happened to me several 
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times, the worst one being the ray-object hit function. Here’s how you can do 
it with minimum disruption. Define the new function as a virtual (not pure 
virtual) function in the base class, and add it to the class you want to test it 
with. Then, add it to the other objects as you need to. When you’ve added it to 
all of the objects, you can make it pure virtual in the base class and get rid of 
the original version. This technique allows you to test the new function with 
one object type at a time. 

1.10.6 Pure Virtual and Virtual Functions 
If a member function has to be defined for every derived class in an inheritance 
hierarchy, you should declare it as pure virtual in the base class. The example 
is the function GeometricObject::hit(...). If a function doesn’t have to be 
defined for every derived class, you can declare it as virtual in the base class, 
and also define it there, to either do nothing, or return a default value. That 
will keep the C++ compiler happy, even if you don’t define it in any derived 
class. An example is the function GeometricObject::pdf(...), which I have 
only defined for two geometric objects out of about 30 in my ray tracer. The 
version in the base just returns 1.0, which is the default value. 

1.10.7 File Structure 
You should put each class declaration in a header file, such as Sphere.h, and 
prevent it from being #included more than once in each compilation unit (see 
Listing 1.1). 

You should put the class definition in a separate file, such as Sphere.
cpp. 

#ifndef __SPHERE__
 
#define __SPHERE__
 

#include “GeometricObject.h” 
class Sphere: public GeometricObject { 

// data member and member function declarations ... 
}; 

// inlined functions ...
 
#endif
 

Listing 1.1. Code fragment from the file Sphere.h. 
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1.10.8 Project Structure 
I put classes of each type such as geometric objects, materials, and lights, into 
separate groups, and I include all .h files in my IDE project for ease of access. 
This doubles the number of files in the project, but it’s worth it.

 1.11 Debugging 
As debugging your ray tracer is something you will definitely have to do at 
some stage, here are a few tips. 

1.11.1 Get to Know Your Debugger 
First, make sure you are familiar with the debugger in your development envi-
ronment. This should allow you to set break points, examine variables and the 
call stack, step through the program, and step into and out of functions. 

1.11.2 Ray Trace Single-Pixel Images 
Ray tracing has the following nice feature that oft en simplifi es the debugging 
process: you can ray trace single pixel images. Here’s an example. One of my 
students was implementing an axis-aligned box whose outline was correct, 
but whose shading was only ambient. This indicated that the hit function was 
correct but the normal was wrong. He debugged this by using a default box 
centered on the world origin, placing the camera on the zw-axis, looking at the
origin, and ray tracing a one pixel image with a breakpoint in the material’s 
shade function. The box normal at the hit point should have been (0, 0, 1), 
but was (0, 0, −1) because he had made a mistake when he typed in the Box:: 
get_normal function in Chapter 19. 

1.11.3 Keep Track of Pixel Coordinates 
Maintain two global variables, say ph and pv, that store the coordinates of the 
current pixel being rendered. If you fi nd a problem with your image, for exam-
ple a black dot, you can fi nd the pixel coordinates using an image viewer, and 
then insert a statement if (row == ph && column == pv) ... at a relevant 
point in the code. Inside the if statement, you can place a dummy executable 
statement that you can put a debugger break point on or print out variables. 
This technique was also suggested by Erik Reinhard. 
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1.11.4 Use cout 
It’s often easiest to debug code in loops with cout statements. For example, 
you might be debugging a new sampling technique with 25 rays per pixel and 
need to look at the sample points for a single pixel. It’s a lot quicker and more 
useful to see them all displayed in a window than having to manually step 
through the debugger 25 times. 

1.11.5 Watch Out for Unallocated Memory 
The most common error I get is an unallocated memory error caused by trying to 
access a pointer-based object that has not been constructed or allocated. This is 
known as sucking vacuum. A way to avoid this is to always check that a pointer 
is not null before accessing it, but this would slow down your ray tracer too 
much. I therefore don’t do this, and instead live dangerously, but always run 
with the debugger on when I’m implementing anything new, which is almost 
all the time. 

1.11.6 Simplify 
When debugging, it’s oft en best to simplify things as much as possible. Suppose 
you have just added a new type of object to an existing scene, and it’s not 
working. It’s easy to temporarily remove all the other objects by commenting 
out their add_object statements in the build function. You don’t have to com-
ment out any of their other code. 

1.11.7 Transparency 
Transparency code is oft en diffi  cult to debug because you need recursion depths 
of at least three to correctly ray trace transparent objects, and the refl ected and 
transmitt ed rays result in a binary tree of stack frames. It’s particularly difficult 
if there are random errors, where only some pixels are incorrect. The only gen-
eral guideline I can give you is to use single-pixel images, but fortunately, I’ve 
been through all this. As a result, I’m confi dent that the transparency code and 
images in Section 7 of the book are correct. 

1.11.8 Use the Images Here 
How do you know when an image is correct? Although there are no general 
answers, the hundreds of ray traced images in this book and on the book’s 
website are here to help you. 
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 Further Reading
	

There are many excellent books that cover C++ design and programming 
issues. The C++ Primer, Fourth Edition (2005) by Lippman, Lajoie, and Moo is 
comprehensive. Object-Oriented Programming in C++, Second Edition (2000) by 
Johnsonbaugh and Kalin is an excellent introductory book on C++ that empha-
sizes an object-oriented approach from the start. 

If you already know some C++, you owe it to yourself to read Scott   
Meyers’ three books on C++: Eff ective C++, Third Edition (2005), More Effective 
C++ (1996), and Effective STL (2001). There’s nothing quite like these books for 
their collective insights and wisdom. These books can also help you avoid 
some of the common mistakes that can make your ray tracers inefficient. 

Effi  cient C++ by Bulka and Mayhew (2000) discuses the relative perfor-
mance of the vector and list container classes and is an excellent book on 
writing effi  cient C++ programs. 

Extreme Programming Explained (2004) by Kent Beck was writt en by the  
inventor of the methodology. Although extreme programming is a holistic  
and integrated set of practices for soft ware development by small teams, it  
has a number of practices that are applicable to soft ware development by  
individuals. For example, no matt er how large your fi nal application is going  
to be, you start with the smallest application that does something sensible  
and build incrementally from there. That’s the approach I adopt here for  
ray-tracer development. In Chapter 3, you will start with the simplest ray  
tracer that actually does something and then add features to it. Beck’s book  
is well worth a read. Extreme programming is now one of the agile computing  
methodologies. 

Brian Kernighan has writt en two classic books on programming: The 
C Programming Language (1988) with Dennis Ritchie, the developer of C, 
and The Unix Programming Environment (1984) with Rob Pike. The Practice of 
Programming (1999) by Kernighan and Pike discusses many important aspects 
of programming, and is well worth reading. 

An Introduction to Ray Tracing (1989), edited by Andrew Glassner, was  
the fi rst book on ray tracing. Chapter 7 by Paul Heckbert is called Writing a  
Ray Tracer and discusses features, design issues, advocates an OO approach,  
and has sample code in C. Object-Oriented Ray Tracing in C++ (1994) by  
Nicholas Wilt presents a ray tracer in C++. There are a lot of good ideas and  
code in this book. Realistic Ray Tracing, Second Edition (2003) by Shirley and  
Morley discusses how to write a modern ray tracer and includes C++ code.  
Although this book is small, it covers a lot of ground, including Monte Carlo  
ray tracing, to which Shirley has made signifi cant contributions. Fundamentals  
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of Computer Graphics, Second Edition (Shirley et al., 2005), has a number of 
chapters on ray tracing and covers a lot of other material that’s relevant to 
ray tracing. 

Pharr and Humphreys (2004) discuss a ray tracer using Knuth’s liter-
ate programming style. This is an excellent book, but the ray tracer is more 
advanced than the one presented here and is not designed to be implemented 
step by step by the readers. 
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2.13 Geometric Series 
2.14 The Dirac Delta Function

 Objectives 

Image courtesy of Lisa Lönroth 

By the end of this chapter you should: 

• be familiar with some of the mathematics you need for ray tracing; 
• understand the diff erence between vectors, points, and normals; 
• understand how to construct an orthonormal frame. 

Ray tracing uses a lot of mathematics, from elementary coordinate geom
etry to multi-dimensional calculus. Fortunately, there are excellent books on 
all of these topics (see the Further Reading section). I’ll present here the math
ematical notation used in this book and a number of mathematical topics from 
a ray-tracing perspective. For example, I’ll discuss three-dimensional coordi
nate systems defined the way we use them in ray tracing, and the difference 
between vectors, points, and normals. These topics are used throughout the 
book. Other topics such as barycentric coordinates, which are only used for 
ray tracing triangles, will be discussed in Chapter 19, where they are used. 
Except for the presentation of some integrals in Section 2.10, I won’t discuss 
calculus, which is used in Chapter 13 and the subsequent shading chapters. 
I also won’t discuss matrices, which are used in Chapters 20 and 21. Monte 
Carlo integration will be covered briefly in Chapter 13. 
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To keep this book to a reasonable size, I’ve had to draw the line on mathemat
ics somewhere. Most of the topics in this chapter are therefore only covered briefly.

 2.1 Sets 

2.1.1 Definition and Notation 
Definition 2.1. A set is an unordered collection of objects of the same type, with 
a rule for determining if a given object is in the set. 

The objects in a set are known as its elements. Although the objects can 
be of any type, in ray tracing, we usually deal with sets of real (floating-point) 
numbers. Here are some common sets, all of which have an infi nite number 
of elements: 

• R : the set of all real numbers. This is also known as the real number line
and contains all real numbers from −∞ to +∞.

• R+ : the set of non-negative real numbers, which includes zero.
• R2 : the set of all points on the (x, y) plane.
• R3 : the set of all points (x, y, z) in 3D space.

If s is an element of a set S, we use the notation s ∈  S, where ∈ means
belongs to. We also use a notation called predicate form to define sets, which is 
best explained with an example. The defi nition of R+ can be writt en as

This can be read as follows: R+ is the set of all numbers x such that x is real and
greater than or equal to zero. Here, the symbol “:” is read as such that. I’ll use 
this notation to defi ne intervals in the following section, because it’s the most 
compact way for doing this. 

2.1.2 Subsets 
We oft en need to use sets whose elements belong to some larger set, which 
leads to the concept of subsets. 

Defi nition 2.2. A  set A is a subset of a set B if every element of A also belongs to 
B. Symbolically, we write this as A  ⊆  B.

From the above examples, R+ ⊆ R . As another example, consider the
square S centered on the origin, where S  = { (x, y) : −1 ≤  x  ≤ 1, −1 ≤  y  ≤ 1   }. 
S ⊆ R2.  Also, the set of integers Z  = {0, ±1, ±2, ...} ⊆ R.

R R+ = ∈{ }x x: a nd 0x ≥ .



 

  
   

  

  

  
   

 

  

 
 

 

 
     
   
    
 
  
 
  
 

 

19 2.2 Intervals 

2.1.3 Ordered Pairs and the Cartesian Product of Sets 
An ordered pair (x, y) of elements is a sequence of two elements in a definite 
order. A common example is a point on the (x, y) plane, where we always write 
the x-coordinate first, followed by the y-coordinate. 

Definition 2.3. For two sets A and B, the set of all ordered pairs of elements 
(x, y) where x ∈ A and y ∈ B is known as the Cartesian product of the sets A and 
B, and is denoted by A × B. 

For example, the (x, y) plane is the Cartesian product of the real line with 
itself, that is, R2  = R × R.  Another example is R3  = R  × R  × R.

 2.2 Intervals
	

Definition 2.4. An interval is a subset of the real line that contains at least two 
numbers, and contains all of the real numbers lying between any two of its 
elements. 

Intervals are represented geometrically by segments of the real line, and 
can be fi nite, semi-infinite, or infinite. Finite intervals have two endpoints that 
are finite numbers, while infinite intervals have at most one finite endpoint and 
stretch to infinity in one or both directions. In addition, intervals are said to be 
open if neither endpoint is included, half-open (or half-closed) if one of the end
points is included, and closed if both endpoints are included. We use square 
brackets [ ] if the endpoints are included in the interval, and parentheses ( ) if 
they’re not included. Infinite intervals can’t be closed because no real number 
is equal to infinity. A standard notation is used for all the types of intervals, as 
shown in Table 2.1. This is re-written from Thomas and Finney (1996), p. 3. 

Type of Interval Notation Set Definition Endpoints 
Finite open 

closed 
half-open 
half-open 

(a, b) 
[a, b] 
[a, b) 
(a, b] 

{ x : a < x < b } 
{ x : a ≤ x ≤ b } 
{ x : a ≤ x < b } 
{ x : a < x ≤ b } 

a and b are not in the interval 
a and b are both in the interval 
a is in the interval, b is not 
a is not in the interval, b is 

Infinite open 
half-open 
open 
half-open 
open 

(a, ∞) 
[a, ∞) 
(−∞, b) 
(−∞, b] 
(−∞, ∞) 

{ x : x > a } 
{ x : x ≥ a } 
{ x : x < b } 
{ x : x ≤ b } 
{ x : −∞ < x  < ∞ } 

a is not in the interval 
a is in the interval 
b is not in the interval 
b is in the interval 
there are no endpoints 

Table 2.1. Interval types, notation, and definitions. 



 

    

  

  
  

 
  
 

   

 

 

20 2. Some Essential Mathematics 

I’ll use interval notation extensively in the following chapters to specify 
the range of numbers that variables can take, for example, x ∈ [−1, 1], r ∈ 
[0, ∞). 

The empty interval. The empty interval has no numbers that belong to it, and 
is denoted by ∅. 

Intersection of intervals. The intersection of two intervals A and B is the set of 
numbers that belong to both intervals, and is denoted by A ∩ B. Geometrically, 
the intersection is the part of the real line where the intervals overlap. For 
example, if A = [0, 10], B = [8, 15], A ∩ B = [8, 10], but if A = [0, 10], B = [11, 15], 
A ∩ B = ∅. 

Cartesian products of intervals. Since intervals are sets, their Cartesian prod
uct is defined the same way that it is for sets. The Cartesian product can be 
used to define finite and infinite planar areas. Here are some examples: the real 
plane is R × R = (−∞, ∞) × (−∞, ∞); a rectangle is [0, 1] × [0, 2]. When both 
intervals are the same, I’ll often use the notation A × A = A2. For example, the 
generic unit square is [−1, 1] × [−1, 1] = [−1, 1]2.

 2.3 Angles 

y2.3.1 Measurement 
In 2D (x, y) coordinates, positive angles are 
measured from the positive x-axis, in a coun-
terclockwise direction, and negative angles 
are measured clockwise from the positive x-
axis (see Figure 2.1). 

Figure 2.1 also shows the values of the 
angle θ in degrees and radians along the 
positive and negative x- and y-axes. There 
are 360 degrees in a circle, and so along the positive x-axis, θ = 0 degrees, but 
also θ = 360 degrees. However, angles are not restricted to the range 0 ≤  θ   ≤ 2π, 
because the line op can be rotated any number of times about the origin in the 
positive or negative direction. 

θ = 90o 

p

θ
x θ = 0o 

o
180o 

= 360o 

θ = 270o 

Figure 2.1. Angle definition. 

2.3.2 Degrees and Radians 
Angles can be specified in degrees or radians. 



  

 

 

 

 

 
 

 

 

 

21 2.4 Trigonometry 

Definition 2.5. A radian is the angle subtended at the center of circle by an arc 
around the circumference whose length is equal to the radius. 

Since there are 2π radians and 360 degrees in a circle, 

1 radian = 180° / π = 57.29577...°. 

When specifying angles, most people find it easier to use degrees because 
these are the common everyday measurement of angles. For example, saying 
that we want to cut a piece of wood at 45° to its sides is more meaningful than 
saying that we want to cut it at 0.79 radians. It’s important to realize, however, 
that the angle θ in the definitions of the trigonometric functions is always in 
radians. Consequently, you must convert into radians any angles specifi ed in 
degrees, with the formula 

radians = (180 / π) degrees 

before using the angles in trigonometric functions. Angles often have to be 
specified for ray-tracing purposes. For example, the viewing angles for fish
eye and panoramic cameras in Chapter 11, the stereo separation angles in 
Chapter 12, and in Chapter 19, several part objects will be defined in terms of 
angles. The user interface in each case will use degrees, while the code inside 
will convert the degrees to radians.

 2.4 Trigonometry 
Because trigonometry is used so extensively in ray tracing, I’ll present here 
some of its definitions and relevant formulae. 

2.4.1 Definitions 
Consider the right-angled triangle in Figure 2.2. The 
trigonometric functions sine, cosine, and tangent of 
the angle θ are defi ned as 

b 
sin θ = a / c, Figure 2.2.  A right

angled triangle. cos θ = b / c, 
tan θ = a / b = sin θ  / cos θ. 

Pythagoras’ theorem for the right-angled triangle is 

c2 = a2 + b2. 

θ 

a 
c 



 

 

sin2θ + cos2θ = 1,
sin(θ  ± φ) = sin θ cos φ ± cos θ sin φ, (2.1)
cos(θ  ± φ) = cos θ cos φ ± sin θ sin φ.
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2.4.2 Relations 

 

When φ = π/2, Equations (2.1) become
 

sin(θ  ± π/2) = ±cos θ,
 
cos(θ  ± π/2) = ±cos θ. 


2.5 Coordinate Systems 
Ray tracing uses the following 2D and 3D coordinate systems: 

• world coordinates (3D); 
• viewing coordinates (3D);
 
• object coordinates (2D and 3D);
 
• local shading coordinates (3D); 
• view-plane coordinates (2D); 
• texture coordinates (2D and 3D). 

In later chapters, I’ll discuss each of these coordinate systems and how 
to use them. Below, I’ll just discuss the mathematical definitions of some com
mon 3D coordinate systems in the way that we use them in ray tracing. 

2.5.1 3D Cartesian Coordinates 
Figure 2.3(a) illustrates 3D Cartesian coordinates, where we use an ordered 
triple1 of real numbers (x, y, z) to specify the location of a point in 3D space. 
These coordinates are the perpendicular distances of the point along the three 
coordinate axes, measured from the origin. Cartesian coordinates are used to 
specify the location of points in infinite 3D space. Each pair of coordinate axes 
defi nes a coordinate plane, of which there are three: the (x, y) plane defi ned by 
the x- and y-axes, and the (x, z) and (y, z) planes. 

1. An ordered triple is a sequence of three numbers in a defi nite order. 
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yz 
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(x, yyy , z), z)) (x, yyy 

x xy
 

x
 

y 

z 

(a)                                            (b) 

Figure 2.3. 3D Cartesian coordinates (a) as drawn in fields other than computer graphics; 
(b) as drawn in computer graphics. 

If your background is in a field other than computing, for example, sci
ence or engineering, you are probably used to drawing the x-, y-, and z-axes 
as shown in Figure 2.3(a), with the z-axis pointing up. This is the convention 
in most fields, where the (x, y)-plane is horizontal. In 3D computer graph
ics, a different convention has been adopted for world coordinates, as shown in 
Figure 2.3(b), where the y-axis points up and the (x, z)-plane is horizontal.2 It’s 
important to realize that this is just a drawing convention; the coordinates in 
Figure 2.3(b) are still the same as in part (a). 

yComputer graphics also uses right-handed and 
left-handed coordinate systems, but I’ll only use 
right-handed systems, as illustrated in Figure 2.3. 

y 
, y)φ 

r 

o 

φ 

a (x, 0, z) 

r 

The right-handedness of a coordinate system or set 
of basis vectors will come up later on, starting with 
orthonormal bases and frames in Section 2.12. 

2.5.2 Cylindrical Coordinates 
Cylindrical coordinates are based on Cartesian 

p (r, 

zcoordinates, but instead of using the x-, y-, and z-
coordinates directly, we use a straight-line distance 
r, an angle φ, and the y-coordinate (see Figure 2.4). 
Because I’ll use cylindrical coordinates to defi ne cir- Figure 2.4.  Defi nition of cylindrical coordi

nates. cular cylinders in Chapter 19 with a vertical central 

2. This is also the convention adopted by the 3D rendering APIs OpenGL and RenderMan and the 
major 3D rendering and animation packages such as Maya, Houdini, and SoftImage. 
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24 2. Some Essential Mathematics 

axis in world coordinates, the Cartesian coordinates in Figure 2.4 also have the 
y-axis up. 

The fi rst coordinate r is the perpendicular distance between the point 
p (r, θ, φ) and the y-axis. Its value lies in the interval r ∈ [0, ∞). To defi ne the 
second coordinate φ, we fi rst project p onto the (x, z) plane to get the point 
a = (x, 0, z). This also defines the orange vertical plane in Figure 2.4. The angle φ 
is defined to be the angle between the positive z-axis and the line oa, measured 
counterclockwise in the (x, z) plane. Its value lies in the interval φ ∈ [0, 2π ). This 
is known as the azimuth angle. The third coordinate is simply the y-coordinate. 

With these definitions, it follows that the Cartesian coordinates of p can 
be expressed in terms of r, φ, and y as follows: 

x = r sin φ, 
y = y, (2.2) 
z = r cos φ. 

2.5.3 Spherical Coordinates 
Spherical coordinates are also based on Cartesian coordinates, but here, 
we specify locations with a distance r and two angles θ and φ, as shown in 
Figure 2.5. The coordinate r is now the straight-line distance from the origin o  
of the Cartesian coordinates to the point p (r, θ, φ). Again, its value lies in the 
interval r  ∈ [0, ∞). The second coordinate θ is the angle between the positive y-
axis and the line op. It’s measured from the y-axis in the vertical plane defined 

by (o, p, a), where a is again the projection of p onto the 
(x, z) plane, and its value lies in the interval θ ∈ [0, π ]. This 
is known as the polar angle. The third coordinate φ is the 
same azimuth angle as in cylindrical coordinates. 

y 

With these defi nitions, it follows that the Cartesian 
coordinates of p can be expressed in terms of r, θ, and φ  
as follows:

 x = r sin θ sin φ,
 
y = r cos θ, (2.3)

z = r sin θ cos φ. 

 
x 

z Spherical coordinates have a number of uses in ray 
tracing. Examples include the distribution of sample 
points on a hemisphere (Chapter 7), which has numer
ous shading applications, integration over a solid angle 

Figure 2.5.  Defi nition of spherical  
coordinates. 
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u1 

2.6 Vectors 

(Section 2.10), and an intimate involvement with the theoretical foundations 
of ray tracing (Chapter 13).

 2.6 Vectors
	

2.6.1 Definition and Representation 
I’ll present here some basic information about vectors, because we need this 
before I discuss points and normals in the following two sections. Vectors are 
used to represent many things in ray tracing, including ray directions, direc
tions from hit points to light sources, reflection models, and orthonormal 
bases. 

A vector is a directed line segment, as Figure 2.6 illustrates in 2D. A vector 
is defined by its length and direction, but not by its location in space. All vec
tors in Figure 2.6(a) are the same, while those in Figure 2.6(b) are all different, 
although they have the same lengths. We can represent a 3D vector by three 
floating-point numbers that are its projections onto the Cartesian (x, y, z) coor
dinate axes. See Figure 2.6(c) for a 2D representation, where the vector starts 
at the origin. These are the components of the vector, which are independent of 
the vector’s location. 

We denote a vector by a bold italic letter, for example, u, and use the same 
letter for its components: ux , uy , and uz . The magnitude of a vector is the length 
of its line segment, and is denoted by u . 

Vectors are represented by the class Vector3D, which stores the compo
nents as three doubles: x, y, and z. 

y y y 

(a) (b) (c) 

x x 

uu2 

Figure 2.6. (a) Identical vectors defined by the same directed line segment; (b) dif
ferent vectors defined by different line segments; (c) a vector’s components are its 
projections (red) onto the coordinate axes. 
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2.6.2 Operations 
Let 

u = (ux , uy , uz), 
v = (vx , vy , vz), 

be two vectors. We need the following operations: 

Operation Definition Return Type 
u + v 
u  −  v (ux −  vx , uy −  vy , uz − vz) vector 
au (aux , auy , auz) vector 
ua (aux , auy , auz) vector 
u / a (ux  /a, uy  /a, uz  /a) vector 
u = v (vx , vy , vz) vector reference 
u (u 2

x  + u 2
y  + u 2

z )1/2 double 
u 2 

u 2
x  + u 2

y  + u 2 
z double 

(ux + vx , uy + vy , uz + vz) vector 

where a is a double. We also need the dot and cross products of two vectors, 
defi ned by 

u • v 
u  ×  v (uyvz  −  uzvy , uzvx −  uxvz , uxvy  −  uyvx) vector 

uxvx + uyvy + uzvz double (2.4) 

Other useful operations are 

−u (−ux , −uy , −uz) vector 
u += v (ux + vx , uy + vy , u z + vz) vector reference 

The dot product in Equation (2.4) can also be writt en as 

u • v = u v  cos θ, 

where θ is the angle between u and v. Although we won’t use this to compute 
the value of u • v, it’s valuable for mathematical calculations. For example, if 
u and u • v are perpendicular, θ = π/2, and u • v  = 0, since cos π/2 = 0. I’ll use 
this fact to write down Equation (2.6) for a plane in Section 2.9.1 

We can use C++ operator overloading for many of the above operations, 
including *, which can be multiply overloaded for u • v, au, and ua. I use the 
operator ^ for the cross product, because the outer product of two n-dimen
sional vectors is denoted by u ^ v, and this reduces to the cross product in 
3D. 
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We also need to be able to normalize the vector. This converts it into a unit 
vector, which has length one. This is an important operation, as nearly all of 
the vectors used in ray tracing must be normalized at some stage. There are 
a couple of ways this can be written. One way doesn’t return a value and has 
to be called in its own statement, such as u.normalize();, while the other 
returns a vector and can be called in expressions such as u * v.hat(). The 
second function is called hat because the common mathematical notation for 
unit vectors is to write them as û. 

We must also be able to multiply a vector by a 4 × 4 matrix m on the 
left , to produce a new vector: u′ = mu. Matrices are used to implement affine 
transformations on vectors, points, and normals, each of which transforms in a 
different way. For example, translation doesn’t affect vectors. The details are in 
Chapters 20 and 21.

 2.7 Points
	

Points represent locations in space, as indicated in Figure 2.7 for the point a. 
Although each 3D point has a location vector with components (x, y, z) associ
ated with it, and can be represented in the same way as vectors, points and 
vectors are not the same. For example, the dot and cross products don’t make 
sense for points, neither does the magnitude of a point, and we can’t add points. 
We can, however, add a vector to a point, which gives a new point displaced 
from the original by the components of the vector (see Figure 2.7(a)). We can 
also subtract points, because the result is the vector that joins them, as Figure 
2.7(b) illustrates. The distance between two points makes sense, but it doesn’t 
make sense for vectors. 

y y 

bu a + u u = b − a 

aa (x, y, z) 

xx 
zz 

(a) (b) 

Figure 2.7. Each point has a location vector associated with it, as indicated by the red 
arrows. (a) Adding the vector u to the point a defines the new point b = a + u; (b) subtracting 
b from a defines the vector b − a that joins them. 



 

 
a = (ax , ay , az)
 
b = (bx , by , bz),
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Let
 

be two points, u = (u1, u2, u3) be a vector, and c be a double. We need the follow
ing operations: 

Operation Definition Return Type 
a + u ax + ux , ay + uy , az + uz) point 
a −  u (ax −  ux , ay −  uy , az −  uz) point 
a −  b (ax −  bx , ay −  by , az −  bz) vector 

a b  − 2 (a   bx)2
x −  + (ay  −  by)2 + (az  −  bz)2 double 

a b  − [(a   x)2
x − b  + (a 2

y  −  by)  + (az  −  bz)2]1/2 double 

a = b (bx , by , bz) point reference 
ca (cax , cay , caz) double 
ac (cax , cay , caz) double 

We also need a function that multiplies a point by a 4 × 4 matrix m on the left to 
return a new point, a′  = ma. Finally, we need functions that return the distance 
and the square of the distance between two points.

 2.8 Normals 
Normals are also directed line segments and are therefore like vectors, but 
they behave differently. Because normals are always perpendicular to object 
surfaces, they must remain perpendicular when the objects are transformed. 
See Figure 2.8, which shows a sphere that’s scaled to become an ellipsoid. This 

n 

v 

n' 

v' 

p'p 

Figure 2.8. A vector, a point, and a normal are transformed differently when an object is 
transformed. 
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constraint is the reason that normals transform differently from vectors and 
points under affi  ne transformations. 

Because smooth surfaces have only a single (outward-pointing) normal 
at each point, it doesn’t make sense to take the dot or cross products of normals 
with themselves, or subtract them. We also can’t add a normal and a point. We 
must, however, be able to add normals, take the dot product of a normal and 
a vector, in either order, multiply a normal on the left or right by a scalar, and 
add a vector and a normal to give a vector. We must also be able to normal
ize a normal, and, you guessed it, multiply a normal on the left by a matrix to 
produce a transformed normal. 

Consider two normals n = (nx , ny , nz), m = (mx , my , mz), and a vector u = 
(ux , uy , uz). We need the following operations: 

Operation Definition Return Type 
−n (−nx , −ny , −nz) normal 
n + m (nx + mx , ny + my , nz + mz) normal 

n • u nxux + nyuy + nzuz double 

u • n nxux + nyuy + nzuz double 
an (anx , any , anz) normal 
na (anx , any , anz) normal 
n + u (nx + ux , ny + uy , nz + uz) vector 
u + n (ux + nx , uy + ny , uz + nz) vector 
n = m (mx , my , mz) normal reference 
n += m (nx + mx , ny + my , n z + mz) normal reference 

At various places, we will have to make assignments between vectors, 
points, and normals. There are two ways that these can be programmed. The 
proper way is to use constructors, for example, v = Vector(n), where a vec
tor is constructed from a normal. For simplicity and effi  ciency, however, I’ve 
used straight assignment functions, where the above example is just v = n. 
Technically, this is bad programming practice, and the assignment operators 
can’t test for self assignment. 

The book’s website contains the complete code for the classes Vector3D, 
Point3D, Normal, and Matrix. As these are important utility classes, I would 
rather you spent your time creating nice images, than implementing these. 
You will, however, have to implement a class that represents 2D points, as 
these are used in Chapters 5−7 to store sample points. This is considerably 
simpler than the Point3D class because the code doesn’t involve vectors, nor
mals, or matrices. 
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 2.9 Mathematical Surfaces
	

We use mathematical definitions of surfaces to define the objects we ray trace. 
There are two basic ways of doing this: with implicit equations (which result in 
implicit surfaces) and with parametric equations (which result in parametric 
surfaces). 

The objects we ray trace directly are all defined by implicit surfaces, 
because simple implicit surfaces are easy to ray trace (see Chapters 3 and 19). 
In contrast, even simple parametric surfaces are difficult to ray trace, because 
there’s no easy way to calculate where a ray hits a parametric surface. Parametric 
surfaces are, however, an essential modeling tool in commercial rendering and 
animation packages (see the Further Reading section). For rendering purposes, 
the software packages convert the parametric surfaces to triangle meshes, a 
process known as polygonization or tessellation. Fortunately we can ray trace 
triangles and triangle meshes, as I’ll discuss in Chapters 19 and 23. 

All of the objects we ray trace can also be expressed as parametric sur
faces, which is fortunate, because these have a number of uses that include ray 
tracing part objects and texture mapping. 

2.9.1 Implicit Surfaces 
An implicit surface is defined by an equation of the form

 f (x, y, z) = 0, (2.5) 

where f is some arbitrary function of x, y, and z. We can express an implicit 
surface using set notation as {(x, y, z) : f (x, y, z) = 0}. 

Implicit surfaces divide 3D space into two regions, where f (x, y, z) < 0 
on one side of the surface, f (x, y, z) > 0 on the other side, and f (x, y, z) = 0 on 
the surface. Implicit surfaces are either open or closed, where an open surface 
extends to infinity, while a closed surface 
is finite in extent and has an inside and an 
outside. For example, planes and hyper
boloids are open, while spheres and tori 
are closed. Implicit surfaces can also con
sist of a number of disconnected pieces. 
Figure 2.9 shows a cross section of a closed 
surface with the inside shaded. The inside f (x, y, z) = 0 

can, however, be the region f (x, y, z) < 0 or Figure 2.9.  A closed implicit sur
face divides space into regions that 
are inside and outside the surface. 


f (x, y, z) > 0, depending on how the surface  
is defined. 

f (x, y, z) < 0 

f (x, y, z) > 0 
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I’ll illustrate implicit surfaces with a couple of simple examples that we’ll 
ray trace in the following chapter. 

nPlanes. A plane is an infinite flat sheet and is the simplest y 

open surface. We define a plane by specifying a point a that 
lies on the plane, and a normal n to the plane. This defi nes the 
plane uniquely, because there is only one plane that passes x 

through a given point and has the orientation specifi ed by 
the normal. Since a plane is flat, all points on the surface have 
the same normal. Figure 2.10 shows a plane defined this way, o 

where p is an arbitrary point on the plane, and I have only 
zdrawn the part of the plane that’s in the first octant of the 

world coordinates (infinite planes are diffi  cult to draw!). 
The vector from a to p is p − a, and since this lies in the 

plane, it’s perpendicular to the normal n. We can therefore 
express the equation of a plane in terms of the dot product 
of p − a and n as

 (p − a) • n = 0. (2.6) 

If we write the points and normal in Equation (2.6) in component form (p = 
(x, y, z), a = (ax , ay , az), and n = (nx , ny , nz)) and use the component expression 
(2.4) for the dot product, we can express this equation as

 Ax + By + Cz + D = 0. (2.7) 

This is the implicit equation of an arbitrary plane. Here, the coefficients 
A = nx , B = ny , and C = nz are the components of the normal, and D = −a • n = 
−axnx − ayny − aznz. An example is the (x, z) plane, whose implicit equation is as 
simple as we can get: y = 0. 

y
Spheres.  A sphere is the set of points that’s within a constant 
specifi ed distance r from a given point c. Formally, a sphere 
= {  p : |p  −  c| ≤  r  }, where c is the center of the sphere, and r is 
the radius (see Figure 2.11). The surface of the sphere, which 
is the part we’re interested in for ray tracing, is defi ned by 
{ p : |p  −  c| = r }; that is, it’s the set of points at distance r from 
c. Technically, this is a spherical shell, but I’ll refer to it as a 
sphere. 

o 

xz 
If c = (cx , cy , cz), and p = (x, y, z) is a point on the surface of  

the sphere, the implicit equation of the surface can be written  
by inspection, since the square of the distance between p and  

Figure 2.11.  Sphere definition. 
The point p is on the surface of the 
sphere. 

a 

p 

Figure 2.10. A plane is defined 
by a point a, which determines 
where it is, and a normal n, which 
determines its orientation. 
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 x2 + y2 + z2 − 1 = 0. 

         (x − cx)2 + (y − cy)2 + (z − cz)2 − r2 = 0, (2.8) 
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c is equal to the square of the radius. The implicit equation is therefore

using Pythagoras’ theorem in 3D. An example is a unit sphere (radius r = 1) 
centered on the origin, for which Equation (2.8) simplifi es to 

2.9.2 Parametric Surfaces 

A point on a parametric surface is expressed in the form

 p (u, v) = [f (u, v), g (u, v), h (u, v)], (2.9) 

where f (u, v), g (u, v), and h (u, v) are explicit functions of the two parameters 
u and v. Since these three functions are really the (x, y, z) coordinates of p, we 
usually write Equation (2.9) in the form 

p (u, v) = [x (u, v), y (u, v), z (u, v)]. 

For given values of u and v, the expressions for x, y, and z can be evaluated 
to give the location of p. In modeling for graphics applications, including 

computer-aided design, x, y, and z are usually polyno
mials in u and v, or the ratio of two polynomials. The  
parameters are also restricted to a certain range, typi
cally (u, v) ∈  [0, 1] ×  [0, 1]. This defi nes a parametric  
surface patch, which is fi nite in extent (see the Further  
Reading section). 

I’ll illustrate parametric surfaces with circular cylin
ders and spheres. Why not planes? As it turns out, these 
are more complex to write in parametric form than cyl
inders and spheres, and since we only need their para
metric representation to ray trace triangles, I’ll discuss 
that in Chapter 19. 

Circular cylinders.  A circular cylinder centered on the 
y-axis with radius r and fi nite extent in the y-direction is 
defi ned by { (x, y, z): x2 + z2 = r2 and y  ∈  [y0, y1] }, as Figure 
2.12 illustrates. 

The parametric representation of the cylinder is 
the same as Equations (2.1) for cylindrical coordinates, 

y 

y1 

, y)φ 

x 

y0 

Figure 2.12.  A circular cylinder cen
tered on the y-axis with radius r and 
fi nite extent in the y-direction. 
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z 

(x, z) 

φ
π 

π 

−π 

2π 

atan2(x, z) 

φ 
π 2π 

2π 

(a) (b) (c) 

Figure 2.13. (a) Point (x, z) that defi nes an angle φ; (b) plot of atan2(x, z), which is discon
tinuous at φ = π; (c) plot of adjusted function that returns an angle φ ∈  [0, 2π]. 

where r is the specified radius of the cylinder and y is confined to the interval 
[y0, y1]. The parameters are φ and y, as these vary over the surface. We need to 
calculate the (φ, y)-values from the (x, y, z)-coordinates of a point on the cylin
der. As there’s nothing to calculate for y, that only leaves φ to deal with. From 
Equation (2.1), we have 

φ = tan−1(x / z). (2.10) 

The Standard C Library function double atan2(double x, double z) is the 
most convenient way to compute φ, because it returns the angle whose tan
gent is x / z, in the full 2π angular range [−π, +π] radians. However, we need 
an angle in the range [0, 2π], not [−π, +π]. Imagine a point with coordinates 
(x, z) that moves around a circle centered on the origin, as in Figure 2.13(a). 
Figure 2.13(b) shows the value of atan2(x, z) as a function of the angle φ. 
When x ≥ 0, atan2 = φ, but when x < 0, atan2 = φ −  2π, to give the angular 
range [−π, +π]. Since we want an angle in the interval [0, 2π], we have to check 
if atan2(x, z) < 0, and when that’s true, add 2π to the value. This gives the 
graph in Figure 2.13(c). 

This can be coded as in Listing 2.1. 

double phi = atan2(x, z); 
if (phi < 0.0) 

phi += TWO_PI; 

Listing 2.1. Code to evaluate φ. 
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φp (r, , )θ 
θ 

r 

φ 

y	 Spheres. I’ll only consider the parametric representation 
of spheres that are centered on the world origin. Although 
it’s simple to generalize the parametric equations to 
spheres with arbitrary centers, I’ll use affi  ne transformations 
(Chapters 20 and 21) to construct parametric spheres that 
are not centered at the origin. 

The parametric equations of a sphere are the same as 
Equations (2.2) for spherical coordinates, where r is now 
the radius of the sphere, and the two spherical-coordinate 
angles θ and φ are the parameters. These are illustrated in 
Figure 2.14. Note that θ  is measured from the top of the 
sphere.

x	 

Figure 2.14.  A sphere of radius r  
centered at the world origin. 

Given a point p (x, y, z) on the surface of the sphere,
we need to calculate θ and φ. The calculation of φ is the 

same as it is for cylinders, and θ  is simple to calculate. It follows from Equation 
(2.3) that 

θ = −1( / ).cos	 y r  

We can use the Standard C library function double acos(double x) to com
pute θ, because this returns θ ∈ [0, π] for x = y / r ∈[−1, +1]. 

2.9.3 Tangent Planes 
n 

tangent plane at pAt every point p on a surface where we can 
defi ne the normal, we can also define a tangent 
plane. This is a plane that’s perpendicular to the 
normal and just touches the surface at the given 
point (see Figure 2.15.) Although we won’t have 
to compute the equation of the tangent plane, or 
use it in the ray-tracer code, I’ll oft en refer to it 
in the shading chapters.	

surface 
p 

Figure 2.15. Cross section of 
a tangent plane at a surface 
point p. 

2.10 Solid Angles
	

2.10.1 Definition 
Solid angles are the 2D generalization of 1D angles. To see how these are 
defined, let’s consider an object that’s visible from a point p, as shown in Figure 
2.16(a). First, place a sphere around the point and centered on it. Next, draw 
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object 

a 
p (b)(a) 

Figure 2.16. (a) Definition of solid angle; (b) silhouette of the object as seen from p. 

a line from p to some point on the outline of the object as seen from p. This 
outline is the edge of the object’s silhouette as seen from p (see Figure 2.16(b)). 
Finally, run the line completely around the outline and draw the curve (red) 
traced on the surface of the sphere where the line intersects it. This curve will 
enclose a certain area a (cyan) on the sphere’s surface. The ratio of this area 
to the total surface area of the sphere is the solid angle subtended at p by the 
object. Solid angles are measured in steradians and are usually denoted by ω. 

If the sphere has radius 1, its surface area is 4π, and the solid angle is 
ω = a / 4π steradians. This definition does not depend on the radius of the 
sphere. The maximum value of a solid angle is 4π steradians, which is the solid 
angle subtended at a point by an object that completely surrounds it. 

Figure 2.17 shows a differential surface element dA, oriented so that its 
normal makes an angle θ with the line that joins it and the center of a unit 
sphere. If dA is distance d from the center of the sphere, its differential solid 
angle dω is given by 

cos θ dA
dω = 2 . (2.11)

d 

r = 1 

dA 
n 

d 

dω 

θ 

Figure 2.17. A differential surface element dA and its differential solid angle dω. 
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2.10.2 Solid Angles in Spherical Coordinates 
The radiometric quantities and the 
defi nitions of refl ectance in Chapter 13 
require solid angles to be computed on 
the surface of a unit hemisphere. For this, 
we need to start with an expression for 
the diff erential solid angle dω  in spheri
cal coordinates. Figure 2.18 shows how 
to use the defi nition of spherical coordi
nates to compute dω. 

y 

z 

Calculating the second-order dif
ferential yields 

θθ 

x 

θsin

θd

ωd

φ 

θθsinsin φd

dω = sin θ dθ  dφ. Figure 2.18. Differential solid angle dω 
on the surface of a unit sphere.

A simple application is to compute the 
surface area of the unit sphere: 

2π π 

area = sin θ θd dφ = 4π,∫ ∫
0 0 

as expected. 

2.10.3 Integrals Over a Hemisphere 
In later chapters, we’ll need to use integrals of various functions f (θ, φ) over 
the top hemisphere of the unit sphere: (θ, φ) ∈ [0, π/2] [0, 2π]. Although most 
of the integrands will be too complex to evaluate analytically, we can evaluate 
some of them exactly. The general integral is 

I = ∫ f (θ, φ )cos  θ dω, 
ω 

where there are a few things to notice. First, it’s written as a single integral 
over a solid angle, which is a shorthand notation for the double integral over θ 
and φ. Second, the ω on the integral sign denotes the solid-angle domain over 
which the integral is evaluated: ω ∈ [0, 2π] steradians, where ω = 2π is the 
whole hemisphere. Third, cos θ is present in the integrand. This is a geometric 
factor that’s present in all hemisphere integrands, as I’ll explain in Chapter 13. 
The quantity cos θ dω is known as the projected solid angle, because it’s the pro
jection of the differential solid angle dω onto the (x, z) plane. 

We will frequently need integrals with f  (θ, φ) = cosn−1θ, where n is an 
integer. In this case, 
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2π π/2 

I = cos n d = cos n θsin d dθ ω  θ θ φ.∫ ∫ ∫ 
2π 0 0 

Fortunately, these integrals can be evaluated exactly. A major factor is that the 
integrand is separable, allowing I to be written as the product of two 1D inte
grals: 

2π π/2 π/2  

I = d cos n θ  θ θ =  2π cos n θ sin dφ sin d θ  θ.∫ ∫ ∫ 
0 0 0 

We can evaluate the θ integral with the change of variable u = cos θ , so that 
du = −sin θ dθ, u = 1 when θ = 0, and u = 0 when θ = π/2. This gives 

1 n+1 
n ⎡ u ⎤

1 
2πI = π2 u  du  = = . (2.12)∫ ⎢ ⎥ 

0 ⎣ n + 1⎦0 n +1  

2.11 Random Numbers
	

Ray tracing makes extensive use of random numbers because many ray-trac
ing effects are based on them. Most of the sampling techniques covered in 
Chapters 5–7 are based on random numbers, and these are used for antialias
ing, depth of field, ambient occlusion, area lights, global illumination, and 
glossy reflection. The noise-based textures in Chapter 33 are also based on 
random numbers. It’s therefore worthwhile to discuss informally what they 
are and how we can generate them. 

If we had a function that returned a true random number every time it 
was called, it would always return a different number, and there would be 
no way we could predict what the number was going to be. Because comput
ers are deterministic devices, the common random-number-generation algo
rithms don’t return true random numbers; instead, they return pseudorandom 
numbers, which we call PRNs. To see what this means, suppose we have a pro
gram that generates n PRNs. Each time we run the program, we’ll get the same 
numbers, but that’s actually what we want. Let’s say you are modeling a scene 
that contains a noise-based texture such as marble. If the numbers were truly 
random, you would get a slightly different marble texture each time you ran 
the program. This could make it difficult to debug your program and design 
the exact scene you want. It would be even worse for animation, where each 
frame would show a diff erent texture. 

We use PRNs that are in the range [0, 1] and are uniformly distributed in 
that range. To see what this means, we need to look at the numbers from a 
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0 10 1 

(a) (b) (c) (d) 

Figure 2.19. (a) Random numbers in 10 bins; (b) uniform distribution; (c) 256 random 
points; (d) 100,000 random points. 

statistical point of view. Therefore, let’s divide the interval [0, 1] into 10 sub
intervals [0.0, 0.1] ... [0.9, 1.0], called bins, and generate n =1000 PRNs. If these 
are uniformly distributed in [0, 1], there will be approximately 100 of them 
in each bin. Because the numbers won’t be exactly the same, we will get a fre-
quency histogram, something like that shown in Figure 2.19(a). Here, the height 
of each bar represents the number of PRNs in the bin. If we now increase n, 
the fractional difference between the numbers should decrease, and in the limit 
n → ∞, this difference should approach zero. In this limit we could also have 
an infinite number of infinitely small bins, and the frequency histogram will 
look like Figure 2.19(b), a horizontal line. An exact uniform distribution only 
exists in the limit n → ∞. Back in the real world, where we can only generate a 
finite number of PRNs, they will only be approximately uniformly distributed, 
as in Figure 2.19(a). This can create problems if we don’t use enough of them, 
but that’s best illustrated in two dimensions. 

We’ll often need to generate pairs of PRNs r1 and r2, where (r1, r2) ∈ 
[0, 1] ×  [0, 1]. Figure 2.19(c) shows the locations of 256 = 16 ×  16 random pairs 
in a unit square and illustrates a problem with using low numbers. Here, the 
distribution of points is not particularly uniform because we have only gener
ated 16 PRNs in each direction. As a result, there are clumps and gaps in the 
distribution. Because we’ll often use even lower numbers, for example, 4 ×  4 
or 5 ×  5, we need a way of making the pairs more uniformly distributed but 
still random. In Chapter 5, I’ll discuss a number of ways to achieve this. We 
could also solve the problem by using very large numbers, as in Figure 2.19(d), 
where there are 100,000 random pairs. This is a nice uniform distribution but, 
of course, completely impractical. 

We can generate pseudorandom numbers with the Standard C library 
function rand, which returns an integer uniformly distributed in the interval 
[0, RAND_MAX]. Here, RAND_MAX is system-dependent. Depending on your sys
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inline int 
rand_int(void) { 

return (rand()); 
} 

Listing 2.2. The function rand_int. 

inline float 
rand_float(void) { 

return ((float)rand() / (float)RAND_MAX); 
} 

Listing 2.3. The function rand_float. 

inline void 
set_rand_seed(const int seed) { 

srand(seed); 
} 

Listing 2.4. The function set_rand_seed. 

tem, there may be other random-number generators that you can use. To make 
it as simple as possible for you to use another random-number generator, I’ve 
wrapped rand inside the function rand_int as in Listing 2.2. 

It’s simple to convert the output of rand to floating-point numbers in the 
interval [0, 1] by dividing it by RAND_MAX. In fact, it’s also convenient to define 
the wrapper function rand_float, as Listing 2.3 indicates. 

Another convenient wrapper function is set_rand_seed, in Listing 2.4, 
which just calls srand. This has two essential uses, the first of which is for 
scene construction. For example, one of the scenes used in Chapter 11 has 
random boxes. If the build function didn’t call set_rand_seed before con
structing the boxes, their sizes, shapes, and colors would depend on how 
many samples were used for antialiasing. The reason is that the antialiasing 
samples also use rand. The second use is for setting up noise values for tex
ture synthesis in Chapter 31, to guarantee that the textures are the same for 
every time that we render them. 

As rand_int, rand_float, and set_rand_seed are the only functions that 
call randand srand, it’s easy to use another random-number generator. For exam
ple, if you want to use random in rand_float, it can return (float)random() / 
(float) 0x80000000U. 
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 2.12 Orthonormal Bases and Frames
	

2.12.1 Definition 
Definition 2.6. Three vectors u, v, and w form an orthonormal basis (ONB) if they 
are mutually perpendicular, they are all unit vectors, and they form a right-
handed system where w = u × v. 

The ortho in the name is short for orthogonal, and normal is there because 
the vectors are unit vectors. The word basis is there because when we have 
three non-parallel vectors that are not in the same plane, we can express any 
other 3D vector as a linear combination of them. Because it’s most convenient to 
work with mutually orthogonal unit vectors, most of the common coordinate 
systems such as Cartesian and spherical coordinates have mutually orthogo
nal axes, and mutually orthogonal unit basis vectors.3 In the case of Cartesian 
coordinates, the unit vectors (i, j, k) form an orthonormal basis. 

Orthonormal bases are an important construct in ray tracing because we 
use them whenever we need to set up a local coordinate system, a task we 
often have to do. Here’s a list of the situations where we need an ONB: 

• cameras (Chapters 9–12) 
• ambient occlusion (Chapter 17) 
• area-light shading (Chapter 18) 
• rotation about an arbitrary line (Chapter 20) 
• glossy refl ection (Chapter 25) 
• global illumination (Chapter 26) 

2.12.2 Construction 
We can construct an orthonormal basis from two arbitrary vectors, for exam
ple, the vectors a and b in Figure 2.20(a). These don’t have to be unit vectors 
or be orthogonal. If a and b are defined in world coordinates, u, v, and w will 
also be defined in world coordinates when we construct them. That’s what we 
always need. 

We can construct the orthonormal basis vectors in the order w, u, v by 
taking w to be parallel to a and then using cross products. First, make w a unit 
vector in the direction of a: 

w = a / a , 

3. Barycentric coordinates, which we use to ray trace triangles, are an exception: these are non-orthogonal. 
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(a) (b) (c) 

Figure 2.20. Construction of an orthonormal basis from two given vectors. 

as in Figure 2.20(b). Next, construct u as the cross product of b and w, normal
ized to a unit vector: 

u = (b × w) / ×b w , 

as in Figure 2.02(c). Finally, construct v as the cross product of w and u to form 
a right-handed system: 

v = w × u, 

as in Figure 2.20(d). This is a unit vector by construction. 
Where do a and b come from? In practice, we only have a single pre

defined direction, for example, the view direction for a camera or the surface 
normal at a point being shaded. The normal, of course, isn’t even a vector. 
Given a, I arbitrarily use b = (0, 1, 0), which is vertically up in world coordi
nates and results in u being horizontal. There is, however, a potential problem 
when a is also vertical and therefore parallel to b. This will be the situation if 
a is the normal to a horizontal surface. In this case, the construction above for 
u and v will fail. There are a couple of solutions, the simplest being to set b to 
a vector like 

b = (0.00424, 1, 0.00764), 

as this is slightly offset from vertically up. This situation also arises when the 
camera is looking vertically up or down in world coordinates, but there, I’ll 
use a different technique (see Chapter 9). 

2.12.3 Orthonormal Frames 
An orthonormal basis and a point o where the unit vectors meet is an ortho-
normal frame. This defines a coordinate system with o as the origin. A common 
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example consists of the (i, j, k) basis vectors and the origin in 3D Cartesian 
coordinates. In shading applications, the origin of the (u, v, w) frame is a ray-
object hit point, and the orthonormal frame defines a local coordinate system 
centered on the hit point. 

2.12.4 Using an Orthonormal Frame 
Typically, we need to calculate a ray direction in a local coordinate system 
and specify the direction in world coordinates. This is because rays are always 
defined in world coordinates. Suppose we have calculated a ray direction 
d = (du , dv , dw) with respect to an orthonormal frame. We can express d as

 d = duu + dvv + dww. (2.13) 

In case you are puzzled by this formula, it’s helpful to remember that Equa
tion (2.13) is no different from writing an arbitrary vector e in Cartesian
 coordinates as 

e = ex i + ey j + ez k. 

The critical thing to note about Equation (2.13) is that since (u, v, w) are defined 
in world coordinates, it also expresses d in world coordinates. 

Sett ing up an orthonormal frame only takes a few lines of code, and using 
it typically consists of calculating (du , dv , dw). I’ve included several examples of 
how to carry out this process, with sample code. The fi rst is in Chapter 9 for a 
pinhole camera.

 2.13 Geometric Series 
A geometric series is a sum of n terms of the form

 sn = a + ar + ar2 + ... + arn−1, (2.14) 

n−1 

= ∑arn , (2.15) 
j=0 

where, for our purposes, a and r are fl oating-point numbers. The number a is 
the scale factor, and r is the ratio, because the ratio of successive terms is always 
the same: arn/arn−1 = r. If r = 1, the sum (2.15) is

 sn = an. (2.16) 

If r ≠ 1, we can write the sum (2.15) as 
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a(1 − rn )s n = . (2.17)
1 − r

An infi nite geometric series is of the form (2.14), but where the number of terms 
is infi nite. Provided r  ∈  (−1, +1), that is, |r| < 1, rn  → 0 as n  →  ∞, and Equation 
(2.17) becomes 

a s = . (2.18)
1 − r

I’ll use the expressions (2.15)−(2.18) in Chapters 28 and 31.

 2.14 The Dirac Delta Function
	

The Dirac delta function δ  (x) is defi ned as the function with the following 
properties: 

δ (x) = 0 if x  ≠ 0, 
∞ 

∫ δ ( )x dx  = 1,
−∞b 

∫δ (x – c) f(x) dx = f(c), provided c  ∈  [a, b]. (2.19) 
a 

This is not an ordinary function; it’s zero everywhere except the origin, where 
it’s infi nite. Notice from Equation (2.19) that when an integrand contains a 
delta function, the integral collapses to f(c). This happens with multi-dimen
sional integrals as well as one-dimensional integrals, a property that will make 
it simple for us to evaluate certain radiometric integrals in the shading chap
ters. When the distribution of incoming radiance at a surface point is confined 
to a single direction, it can be represented by a delta function (see Chapters 14, 
24, and 27). I’ll defi ne radiometry and radiance in Chapter 13.

 Notes and Discussion 
Because vectors, normals, and points all store an ordered triple of floating
point numbers, you can represent all three in a single class as vectors, instead 
of using separate classes for each. Opinion in the ray-tracing community is 
divided as to which is the best approach. Certainly, using a single class is sim
pler and saves code, but it’s incorrect modeling. With separate classes, the 
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application code shows explicitly the types of all of the relevant variables and 
is therefore more readable. My experience in the classroom is that it’s also eas
ier to teach affi  ne transformations when there are separate classes. 

Where should you put the functions rand_int and rand_float intro
duced in Section 2.9? As you develop your ray tracer, you will write or use 
numerous mathematical utility functions. It’s most convenient to keep these 
in a separate compilation unit called, say, Maths.cpp or Utilities.cpp. 
You should put their prototypes in a corresponding header fi le that you can 
#include as required. These functions don’t have to be class members, and the 
shorter ones can be inlined.

 Further Reading 
There are many excellent books on the mathematics discussed in this chapter,  
and the mathematics not discussed, such as calculus and matrices. Here are some  
examples. Vince and Morris (1990) discusses sets. The calculus text Thomas and  
Finney (1996) covers intervals, coordinate systems, vectors, geometric series, and  
of course, calculus. Anton (2004) covers systems of linear equations, matrices,  
determinants, and vectors. Mortenson (1999) is on mathematics for computer  
graphics and discusses vectors and points. Rogers (2001) is an introduction to  
parametric curves and surfaces with code. Hill and Kelley (2006) also discusses  
curves and surfaces. Bloomenthal (1997) is an introduction to implicit surfaces.

 Questions 

2.1. 	 In Figure 2.16, why doesn’t the solid angle subtended at p by the object 
depend on the radius of the sphere? 

2.2. 	 When we construct an orthonormal basis with the procedure described 
in Section 2.12.2, why is v a unit vector by construction? 

2.3. 	 Why does the construction of u and v in an orthonormal basis fail when 
a and b are parallel?

 Exercises 

2.1. 	 Use Equations (2.4) and (2.6) to derive the plane equation (2.7). 
2.2. Prove that when b is vertical, the orthonormal basis vector u is horizontal. 



3 Bare-Bones Ray Tracing
	

3.1 How Ray Tracing Works 
3.2 The World 
3.3 Rays 
3.4 Ray-Object Intersections 
3.5 Representing Colors 
3.6 A Bare-Bones Ray Tracer 
3.7 Tracers 
3.8 Color Display 
3.9 Ray Tracing Multiple Objects 

Objectives 
By the end of this chapter, you should: 

• understand how ray casting works; 
• know how rays are defined; 
• know how to intersect a ray with a plane and a sphere; 
• understand the structure of a simple ray tracer; 
• 	 have implemented a ray tracer that can render orthographic views of an 

arbitrary number of planes and spheres. 

The purpose of this chapter is to explain how a number of ray-tracing 
processes work in a simplifi ed context. I'll discuss here how ray tracing gen-
erates images, how rays are defi ned, how ray-object intersections work, the 
classes required for a simple ray tracer, and how to ray trace an arbitrary num-
ber of spheres and planes. To make things as simple as possible, I've left  out a 
lot of important processes such as antialiasing, perspective viewing with a pin-
hole camera, and shading. By doing this, the resulting ray tracer is as simple as 
possible, although, as you'll see, it still has a degree of complexity. This is also 
a long chapter because it covers a lot of material. 

This chapter diff ers from the following chapters in that the skeleton ray 
tracer on the book’s website does everything in the chapter. Hopefully, this will 
have you quickly ray tracing multiple planes and spheres. 
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 3.1 How Ray Tracing Works
	

A simple ray tracer works by performing the following operations: 

define some objects 
specify a material for each object 
define some light sources 
define a window whose surface is covered with pixels 

for each pixel 
shoot a ray towards the objects from the center 

of the pixel 
compute the nearest hit point of the ray with the
 objects (if any) 

if the ray hits an object 
use the object’s material and the lights to 
compute the pixel color 

else 
set the pixel color to black 

This is known as ray casting. Figure 3.1 illustrates some of the above processes 
for a sphere, a triangle, and a box, illuminated by a single light. The gray rect-
angles on the left  are the pixels, and the white arrows are the rays, which start 
at the center of each pixel. Although there is one ray for each pixel, Figure 3.1 
only shows a few rays. The red dots show where the rays hit the objects. The 
rays used in ray tracing diff er from real light rays (or photons) in two ways. 
First, they travel in the opposite direction of real rays. This is best appreciated 
when we use a pinhole camera (Chapter 9), because there the rays start at the 
pinhole, which is infi nitely small. If the rays started at the lights, none of them 
would pass through the pinhole, and we wouldn’t have any images. Starting 
the rays from the camera (or pixels, in this chapter) is the only practical way 
to render images with ray tracing. The second diff erence is that we let the rays 
pass through the objects, even if they are opaque. We have to do this because 
the ray tracer needs to intersect each ray with each object to fi nd the hit point 
that’s closest to the start of the ray. 

In Figure 3.1, one ray doesn’t hit any objects, two rays hit one object, 
and one ray hits two objects. The hit points are always on the surfaces of the 
objects, which we treat as empty shells. As a result, rays hit the sphere and the 
box in two places and the triangle in one place. 

The pixels are on a plane called the view plane, which is perpendicular to 
the rays. I’ll sometimes refer to these as view-plane pixels. The rays are paral-
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Figure 3.1. Rays shot from pixels into a scene that consists of three objects and a single light 
source. 

lel to each other and produce an orthographic  projection of the objects. When a 
ray hits an object, the color of its pixel is computed from the way the object’s 
material refl ects light, a process that’s known as shading. Although the pixels 
on the view plane are just mathematical abstractions, like everything else in 
the ray tracer, each one is associated with a real pixel in a window on a com-
puter screen. This is how you view the ray-traced image. 

The process of working out where a ray hits an object is known as the ray-
object intersection calculation. This is a fundamental process in ray tracing and 
usually takes most of the time. The intersection calculation is diff erent for each 
type of object; some objects are easy to intersect, while others are diffi  cult. All 
intersection calculations require some mathematics. 

In Figure 3.1, there are 24 pixels arranged in four rows of six pixels,  
and in this case we say the image has a pixel resolution of 6 ×  4. What would  
these objects look like if we ray traced them at this resolution? The result  
is in Figure 3.2(a), which gives no indication of what we are looking at. So,  
how can we get a meaningful image of these objects? The answer is simple:  
just increase the number of pixels. The other parts of Figure 3.2 show the  
objects ray traced at increasing pixel resolutions. With 24 ×  16 pixels, we  
have some idea of what the objects are, and with 150 ×  100 pixels, the image  
is quite good.  

The above example was just to illustrate how ray tracing works with  
multiple objects, a light source, and shading. We’ll start with something  
much simpler in Section 3.6: a single sphere with no lights, no material, and  
no shading, but fi rst you need to learn how a basic ray tracer is organized  
and works. 
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(a) 6 ×  4 (b) 12 ×  8 (c) 24 ×  16 

(d) 60 ×  40 (e) 120 ×  80 (f) 150 ×  100 

Figure 3.2.  The objects in Figure 3.1 ray traced at diff erent pixel resolutions. 

3.2 The World 
Ray tracers render scenes that contain the geometric objects, lights, a camera, a 
view plane, a tracer, and a background color. In the ray tracer described in this 
book, these objects are all stored in a world object. For now, the world will only 
store the objects and view plane. The locations and orientations of all scene 
elements are specifi ed in world coordinates, which is a 3D Cartesian coordinate 
system, as described in Chapter 2. I’ll denote world coordinates by (xw , yw , zw), 
or just (x, y, z) when the context is clear. 

World coordinates are known as absolute coordinates because their origin 
and orientation are not defi ned, but that’s not a problem. The only task of the 
ray tracer is to compute the color of each pixel, and the pixels are also defined 
in world coordinates. I’ll discuss the World class in Section 3.6.

 3.3 Rays 
A ray is an infi nite straight line that’s defi ned by a point o, called the origin, and 
a unit vector d, called the direction. A ray is parametrized with the ray param-
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Figure 3.3.  Ray defi nition in world coordinates. 

eter t, where t = 0 at the ray origin, so that an arbitrary point p on a ray can be 
expressed as 

p = o + t d. (3.1) 

Figure 3.3 is a schematic diagram of a ray. The direction d defi nes an intrin-
sic direction for the ray along the line, where the value of the parameter t  
increases in the direction d. Since d is a unit vector, t measures distance along 
the ray from the origin. Although we regard a ray as starting at its origin, we 
allow t to lie in the infi nite interval t ∈  (−∞, +∞) so that Equation (3.1) gener-
ates an infi nite straight line. As we’ll see later, it’s essential to consider values 
of t ∈  (−∞, +∞) in ray-object intersections. The origin and direction are always 
expressed in world coordinates before the ray is intersected with the objects. 

Ray tracing uses the following types of rays: 

• primary rays; 
• secondary rays; 
• shadow rays; 
• light rays. 

Primary rays start at the centers of the pixels for parallel viewing, and at the 
camera location for perspective viewing. Secondary rays are refl ected and 
transmitt ed rays that start on object surfaces. Shadow rays are used for shad-
ing and start at object surfaces. Light rays start at the lights and are used to 
simulate certain aspects of global illumination, such as caustics. I'll only dis-
cuss primary rays in this chapter. 

You should have a Ray class that stores the origin and direction, as in 
Listing 3.1. Because of their frequent use, all data members are public. In my 
shading architecture, there’s no need to store the ray parameter in the ray. The 
code in Listing 3.1 will go in the header file Ray.h. Note the pre-compiler 
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#ifndef __RAY__ 
#define __RAY__ 

#include “Point3D.h” 
#include “Vector3D.h” 

class Ray { 
public:
 

Point3D o;   // origin 

Vector3D d;   // direction 


 
Ray(void);    // default constructor  
 
Ray(const Point3D& origin, const Vector3D& dir); // constructor 

Ray(const Ray& ray);  // copy constructor 
 
Ray&     // assignment operator 
operator= (const Ray& rhs); 

~Ray(void);   // destructor 
}; 

#endif 

Listing 3.1.  The Ray.h  file. 

directives #ifndef __RAY__, etc., to prevent multiple inclusion. These should 
go in every header fi le, but to save space, I won’t quote them with other class 
declarations. You should also #inlcude header fi les for any classes that the 
current class requires: Point.h and Vector3D in this case. Again, to save space, 
I’ll leave these out except for the World class in Section 3.6.1. 

3.4 Ray-Object Intersections
	

3.4.1 General Points 

The basic operation we perform with a ray is to intersect it with all geometric 
objects in the scene. This fi nds the nearest hit point, if any, along the ray from 
o in the direction d. We look for the hit point with the smallest value of t in the 
interval t∈[ε, +∞) where ε  is a small positive number, say ε = 10−6. Why don’t 
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5) 
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Figure 3.4.  (a) Rays and their intersections with spheres; (b) ray-traced image of the spheres. 

we use ε = 0? We could get away with this here, but it would create problems 
when we use shadows (Chapter 16), refl ections (Chapters 24–26), and trans-
parency (Chapters 27 and 28). I'll discuss what the problem is in Chapter 16. 
By using ε > 0 in this chapter, we won't have to change the plane and sphere 
hit functions in later chapters. 

Because a ray origin can be anywhere in the scene, including inside 
objects and on their surfaces, ray-object hit points can occur for positive, nega-
tive, and zero values of t. This is why we need to treat rays as infinite straight 
lines instead of semi-infi nite lines that start at o. Figure 3.4(a) shows a number 
of spheres that are behind, straddling, and in front of the view plane, with 
three rays. 

The spheres in Figure 3.4(a) will be rendered (or not) in the following ways: 

• 	 Sphere (1) is behind the origin of all rays that intersect it (t < 0) and will 
not appear in the image. 

• 	 Sphere (2) will be rendered with ray 1 and with all rays that hit it. 
• 	 Sphere (3) will only be rendered with rays like ray 2 that don't hit any 

other spheres. 
• 	 Sphere (4) will only be rendered with rays like ray 3 that start inside it. 

Figure 3.4(b) shows how the spheres would look if we ray traced them  
with no shading and if their centers were all in the vertical plane that con-
tains the three rays. The nearest hit points of these rays are indicated in the  
 figure. 



 

 

 

 

 

Figure 3.5.  (a)  Ray intersections with 
a closed implicit surface. 

To intersect a ray with an implicit surface, we can 
re-write Equation (2.5), f (x, y, z) = 0, as

 f (p) = 0, (3.2) 

ray 1 

ray 2 

ray 3 

ray 4 

ray 5 
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3.4.2 Rays and Implicit Surfaces 
As I discussed in the previous chapter, the objects we ray trace are defined  
by implicit surfaces. A ray can hit an implicit surface any number of times,  
depending on how complex the surface is (see Figure 3.5). If the surface is  

closed, rays that start outside the surface will have an  
even number of hit points for t > ε (rays 1 and 2). In prin-
cipal, a ray that starts outside can have an odd number  
of hit points, including a single hit point, if it hits the  
surface tangentially (rays 3 and 5). In practice, this rarely  
happens (see Question 3.1). When the ray starts inside  
the surface, it will have an odd number of hit points for  
t > ε (ray 4). 

because the x, y, and z variables in f (x, y, z) defi ne a 3D point p = (x, y, z). 
To  fi nd the hit points, we have to fi nd the values of the ray parameter t  

that correspond to them. How do we do this? Here’s the key point: Hit points 
satisfy both the ray equation (3.1) and the implicit surface equation (3.2). We can 
therefore substitute (3.1) into (3.2) to get

 f (o + t d) = 0 (3.3) 

as the equation to solve for t. Since Equation (3.3) is symbolic, we can’t do any-
thing with it unless we specify f (x, y, z). For a given ray and a given implicit 
surface, the only unknown in Equation (3.3) is t. Aft er we have found the val-
ues of t, we substitute the smallest t > ε value into Equation (3.1) to fi nd the 
coordinates of the nearest hit point. If all this seems confusing, don't worry, 
because I'm going to illustrate it for planes and spheres. For these objects, we 
can solve Equation (3.3) exactly. 

3.4.3 Geometric Objects 
All geometric objects belong to an inheritance structure with class 
GeometricObject as the base class. This is by far the largest inheritance struc-
ture in the ray tracer, with approximately 40 objects, but in this chapter we’ll 
use a simplifi ed structure consisting of GeometricObject, Plane, and Sphere, 
as shown on the left  of Figure 1.1. 
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class GeometricObject {
 
public:
 

...
 

virtual bool
 
hit(const Ray& ray, double& tmin, ShadeRec& sr) 
const = 0;
 

protected: 

RGBColor color; // only used in this chapter
 

};
 




Listing 3.2.  Partial declaration of the GeometricObject class. 

Listing 3.2 shows part of the GeometricObject class declaration that stores  
an RBGColor for use in Section 3.6. I’ll replace this with a material pointer when I  
discuss shading in Chapter 14. This listing also doesn’t show other functions that  

class ShadeRec {
 
public:
 
 

bool  hit_an_object; // did the ray hit an object? 
Point3D local_hit_point; // world coordinates of hit point
Normal normal;  // normal at hit point 
RGBColor color;   // used in Chapter 3 only 
World& w;   // world reference for shading 
 
ShadeRec(World& wr);  // constructor 
ShadeRec(const ShadeRec& sr); // copy constructor 
~ShadeRec(void);   // destructor 
 
ShadeRec&     // assignment operator
 
operator= (const ShadeRec& rhs);
 

};
 
 
ShadeRec::ShadeRec(World& wr)  // constructor

 :	     hit_an_object(false),
 
local_hit_point(),
 
normal(),
 
color(black),
 
w(wr)
 

{} 

 

Listing 3.3. Declaration of the ShadeRec class. 
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this class must have in order to operate as the base class of the geometric objects  
hierarchy, but it does show the declaration of the pure virtual function hit. 

The ShadeRec object in the parameter list of the hit function is a utility class  
that stores all of the information that the ray tracer needs to shade a ray-object  
hit point. Briefl y, shading is the process of computing the color that’s reflected  
back along the ray, a process that most of this book is about. The ShadeRec object  
plays a critical role in the ray tracer’s shading procedures, as this chapter starts to  
illustrate in a simplifi ed context. Listing 3.3 shows a declaration of the ShadeRec  
class with the data members that we need here. Note that one data member is a  
world reference. Although this is only used for shading, I’ve included it here, as  
it prevents the ShadeRec class from having a default constructor; the reference  
must always be initialized when a ShadeRec object is constructed (Listings 3.14  
and 3.16) or copy constructed (Listing 3.17). Listing 3.3 includes the ShadeRec  
constructor code (see also the Notes and Discussion section). I haven’t included  
an assignment operator, as the ray tracer is writt en in such a way that it’s not  
required. For example, no class has a ShadeRec object as a data member. 

3.4.4 Planes 
Planes are the best geometric objects to discuss fi rst because they are the easi-
est to intersect. To do this, we fi rst substitute Equation (3.1) into the plane 
equation (2.6), 

(p  −  a) •  n = 0, 
to get 

(o + t d  −  a) • n = 0. 

This is a linear equation in the ray parameter t whose solution is

 t = (a  −  o) n / (d • n). (3.4) 

A linear equation has the form 

at + b = 0, 

where a and b are constants, and t is an unknown variable. The solution is 

t = −b / a. 

See Exercise 3.10. 
Because linear equations have a single solution, Equation (3.4) tells us 

that a ray can only hit a plane once. We could now substitute the expression 
(3.4) for t into Equation (3.1) to get a symbolic expression for the hit-point 
coordinates, but we don’t do this for two reasons. First, we don’t need the hit-
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Figure 3.6. Ray-plane intersections. 

point coordinates until we shade the point, and we only do that for the closest 
point to the ray origin. We won’t know what that point will be until we’ve 
intersected the ray with all of the objects. Second, it’s more effi  cient to calculate 
the numerical value of t from Equation (3.4) and substitute that into (3.1) to get 
numerical values for the coordinates. This applies to all geometric objects. The 
ray tracer must have numerical values for shading. 

Figure 3.6 shows an edge-on view of a plane with two rays. The ray on the  
left  hits the plane with t > ε, but the ray on the right hits it with t < 0. We must  
check that the value of t in Equation (3.4) satisfies t > ε before recording that an  
intersection has occurred. In this context, it doesn't matt er whether the normal to  
the plane points up or down in Figure 3.6, as this will only aff ect the shading. 

class Plane: public GeometricObject {
 
public:
 

Plane(void);
 

Plane(const Point3D p, const Normal& n);
 
...
 

virtual bool
 
hit(const Ray& ray, double& t, ShadeRec& s) const;
 

private: 
 

Point3D   point; // point through which
  //    plane passes 
Normal   normal; // normal to the plane 
static const double kEpsilon; // see Chapter 16 

}; 

Listing 3.4.  The Plane::hit function. 



56 3. Bare-Bones Ray Tracing 

bool 
Plane::hit(const Ray& ray, double& tmin, ShadeRec& sr) const { 

double t = (point - ray.o) * normal / (ray.d * normal); 

if (t > kEpsilon) { 
tmin = t; 
sr.normal    = normal; 
sr.local_hit_point = ray.o + t * ray.d; 

return (true); 
} 
else 

return (false); 
} 

Listing 3.5.  The Plane::hit function. 

What happens if the ray is parallel to the plane? In this case, d • n = 0, 
and the value of the expression (3.4) is infi nity. Is this a problem? Not if you 
are programming in C++, because fl oating-point calculations in this language 
satisfy the IEEE fl oating-point standard, where division by zero returns the 
legal number INF (infi nity). As a result, there’s no need to check for d • n = 0 as 
a special case; your ray tracer will not crash if it divides by zero. 

The class Plane stores the point and the normal. Its declaration appears 
in Listing 3.4 with two constructors; each class should have a default construc-
tor, and other constructors as required. 

Listing 3.5 shows the ray-plane hit function. Ray-object hit functions 
don’t come any simpler than this. 

All object hit functions compute and return information in three ways: 
their return type is a bool that indicates if the ray hits the object; they return 
the ray parameter for the nearest hit point (if any) through the parameter tmin; 
they return information required for shading with the ShadeRec parameter. 
We won’t need the normal until shading in Chapter 14, and we won’t need the 
hit point local_hit_point until texturing in Chapter 29. By including them 
now, we won’t have to change this hit function later on. 

3.4.5 Spheres 
Equation (2.8) for a sphere can be writt en in vector form as

 (p  −  c) • (p  −  c) − r2 = 0 (3.5) 


