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Foreword

Geometric modelling with splines has been an important and exciting field 
for many years covering numerous applications. The subject draws on var­
ious topics from mathematical approximation theory, numerical analysis, 
classical and discrete geometry, engineering, and computer science.

The field grew out of pioneering work in the 1960s on modelling of 
complex objects like ship hulls and car bodies. At that time, the topic of 
spline functions developed into an active area of research in approximation 
theory due to the fundamental work of Schoenberg. His work on B-splines 
opened new perspectives, and it gradually became clear that these functions 
were well suited for geometric modelling of physical objects. The seminal 
work of one of the authors played a crucial role in this development.

Geometric modelling with splines has been a significant area of research 
for almost 40 years with applications ranging from animated films to sim­
ulated surgery. Although many of the fundamental mathematical results 
have been established, the field is still burgeoning due to a continuous need 
for new techniques. This book is a welcome text and is written by well- 
known experts in the field. The authors, and their many accomplished 
students, have significantly influenced the advancement of this subject. 
Combining mathematical rigor and the science of modelling in a fruitful 
way, the book is well-suited as a textbook for a course on this topic, per 
se, or one that draws on aspects of this material.

The text contains a comprehensive treatment of curves and surfaces 
with emphasis on B-spline techniques. In addition the book contains a 
wealth of material ranging from classical techniques to a broad coverage 
of more specialized topics including new techniques like subdivision of sur-
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faces, all of which add to its value as a reference for professionals and 
researchers working in the field.

The authors are to be congratulated for writing such a comprehensive 
text.

Tom Lyche 
University of Oslo



Preface

This book has evolved out of lecture notes created to introduce students to 
various aspects of geometric modeling with splines. The shape-mimicking 
properties of the NURBS control polygon allows the user to create a smooth 
curve by manipulating a simple polyline.

While B-spline and NURBS mathematics can seem unnecessarily ab­
stract to students, the mathematical formalisms effectively camouflage some 
rather formidable machinery that allows geometric shapes to be expressed 
and manipulated through what appears as a rather straightforward and 
intuitive geometric design scheme. The constructive nature of many com­
putational B-spline algorithms can enhance a student’s intuitive sense for 
the shape properties of the curve under design. Many algorithms for rep­
resentation, computation, and querying of B-spline models can be imple­
mented as intuitive, efficient algorithms executing at interactive rates. In 
light of these characteristics, we have stressed the mathematical soundness 
of spline methods. We present algorithms, and in some cases, pseudo-code. 
Since many of the surface methods, i.e., representations and algorithms, 
rely on curve algorithms and properties, the earlier chapters of the book 
stress rigorously establishing the properties that will be used throughout. 
Generally, later chapters address material based on schemes described in 
the earlier chapters.

The goal of the book is to act both as a text and a reference book. We 
believe the breadth and depth of the included material are sufficient to give 
the reader a background suitable for implementing splines and for designing 
with splines. In addition, the reader who attains a solid understanding of 
the underlying mathematical approaches, concepts, and logic, as well as 
a practical understanding, will have a sufficient background to conduct 
geometric modeling research using splines.
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The book is structured as follows:

• A background review of mathematics used in this book is presented 
in Chapter 1. Chapter 2 presents an overview of the most common 
types of representations and their characteristics.

• It is in Chapter 3 that we begin the discussion of curve forms for geo­
metric modeling with the oldest representation: conic sections. We 
show the equivalences of various traditional definitions, the ones most 
likely to have been seen by readers through the middle of the under­
graduate college years. Then, a constructive geometric approach is 
presented. As the sections progress, we develop this approach into the 
typical blending formulation, and then derive a parametric blending 
representation, which enables writing a curve as a convex combina­
tion of geometric points. The last formulation allows us to develop 
curve properties which will recur in the Bezier formulation (Chapter 
5) and the B-spline representation (Chapter 6). Subdivision algo­
rithms are first presented with respect to conic sections in Chapter 
3.

• Elements of differential geometry for curves, a branch of mathemat­
ics concerned with characterizing the behavior (and shape) of a para­
metric curve by its differential properties, are presented in Chapter 4. 
Concepts that recur throughout geometric modeling, including regu­
larity, curvature, torsion, and Frenet equations are covered. In bottom 
up design, it is sometimes necessary to piece together pre-designed 
curves. We discuss methods for determining when a compound curve 
exhibits various types of parametric smoothness.

• The constructive approach first introduced with conics is general­
ized to the constructive approximation curves in Chapter 5. Then 
it is shown that these curves are Bezier curves, and we treat many 
characteristics for Bezier curve. We also introduce the idea of sub­
division of Bezier curves by developing a special case algorithm for 
subdivision at a curve’s midpoint. The Bernstein blending functions 
are the blending functions used in the Bezier method. Having devel­
oped formulations for the blending functions, we discuss using them 
for approximation and interpolation, and relate approximating a pre­
existing parametric function by a Bezier curve to the Bernstein ap­
proximation method from classical approximation theory. Finally we 
apply results from Chapter 4 to discuss smoothly piecing together 
Bezier curves.
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• In Chapter 6 the constructive approximation curves, or Bezier curves, 
are further generalized to piecewise smooth constructive approxima­
tion curves, which are then shown to be equivalent to B-spline curves. 
Basic properties of B-spline curves are shown. Chapters 7 and 8 re­
veal more characteristics and properties of spline spaces. Proving the 
representational power of splines and showing the linear independence 
of B-splines, Chapter 7 develops the more abstract properties. This is 
accomplished using inductive proofs like those used in Chapter 3. The 
idea of refinement is introduced in its simplest form, that of knot in­
sertion of a single knot. This result is further developed for quadratic 
and cubic subdivision curves, which in Chapter 20 are shown to be 
the basis for Doo-Sabin and Catmull-Clark surfaces, respectively. In 
Chapter 8, frequently occurring knot vector configurations for spline 
curves are presented and their effects on curve shape are discussed. 
Rational spline curves are finally taken on, as are methods for their 
computation.

• Various forms of interpolation and approximation with splines are 
presented in Chapter 9. Two widely used interpolation methods, 
nodal and complete spline interpolation, are covered. In addition 
to basic discrete and continuous least squares approximation, the 
Schoenberg variation diminishing spline, the abstract quasi-interpolation 
method, and a more widely employed multiresolution constrained de­
composition method are treated.

• Chapter 10 is devoted to various types of interpolation using classical 
polynomial bases.

• In Chapter 11 we present other derivations of B-splines to give a 
flavor of the origins of B-spline methods. One derivation manifests 
splines as shadows of higher-dimensional simplices, while another uses 
generalizations of divided differences to higher dimensions. These can 
be shown to be equivalent. A third view develops B-splines in terms 
of signal processing and filtering. The last approach, the original one 
presented by Schoenberg many decades ago, is once again becoming 
topical.

• The section on surfaces starts in Chapter 12 with differential geome­
try for surfaces. Using the results of Chapter 4 for curves, this chapter 
develops formulations for first and second fundamental forms, normal 
and geodesic curvation, principal curvatures, and principal directions. 
Surface shape analysis for design depends on such variables.
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• Chapter 13 defines a tensor product surface and presents methods for 
evaluating position and derivatives using properties of curve forms. 
Emphasis is placed on B-spline and Bezier tensor product surfaces. 
Matrix methods for transforming between various bases are described. 
Based on their tensor product structure, surface forms are generalized 
from quadratic and cubic subdivision curves schemes.

• In Chapter 14, the ideas presented in Chapter 9 for fitting curves to 
data are generalized to surfaces. The classis Coons surface is detailed. 
Finally, an operator approach for transforming methods for fitting 
curves into methods for fitting surfaces is described.

• In Chapter 15, practical aspects of actually creating representations 
for specific surfaces are confronted. Methods to create representations 
for ruled surfaces and various surfaces of revolution are given.

• Starting with Chapter 16, more advanced techniques are taken on. 
These approaches and methods are necessary to create, manipulate, 
render, query, and fabricate B-spline representations for the complex 
shapes needed in applications ranging from animation to solid mod­
eling.

• In Chapter 16 general algorithms for subdivision and refinement for 
B-splines are developed as well as specialized algorithms for subdi­
vision of Bezier curves and surfaces. Pseudo-code clarifies the algo­
rithms. Chapter 17 presents algorithms and pseudo-code of methods, 
based on the refinement approach, for rendering, computing intersec­
tions, and adding degrees of freedom to support hierarchical top-down 
design.

• It is rare that a single surface can be used to model a complicated 
object. In earlier chapters we presented methods for piecing together 
curves and surfaces. Chapter 18 includes issues that arise when at­
tempting to combine arbitrary pieces of tensor product surfaces to 
define complex models. The important topic of finding curve and 
surface intersections is introduced. We give methods for finding such 
intersections, as well as criteria for determining convergence. The 
idea of a well-formed 3-D model is developed. Detailed algorithms 
for constructing a model by applying Boolean operations on existing 
models are described for planar polygonal models. We then show 
how algorithms for polyhedral models are hierarchical and rely on 
the results from the planar cases.
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• Out of the discussion of creating actual models comes an important 
realization that we need data structures to traverse models. In Chap­
ter 19 we present the winged-edge data structure, a well-known and 
widely used topological representation, and then discuss a data struc­
ture suitable for models bounded by trimmed surfaces, the kind that 
result from Boolean operations on models bounded by sculptured 
surfaces.

• In Chapters 20 and 21 we describe generalizations of B-splines that 
are just starting to be more widely taught and adopted. Chapter
20 is focused on subdivision surfaces. We show that the template 
algorithms for generating the refined meshes are generalizations of 
spline refinement algorithms for Catmull-Clark subdivision surfaces 
(a generalization of bi-cubic uniform floating spline surfaces), Doo- 
Sabin subdivision surfaces (a generalization of bi-quadratic uniform 
floating spline surfaces ), and Loop subdivision surfaces (a general­
ization of box spline surfaces and refinement algorithms). Chapter
21 is focused on algorithms and uses for trivariate volumetric splines.

Versions of this manuscript have been used in teaching quarter, semester, 
and year long course sequences. Advanced undergraduate and beginning 
graduate students with good backgrounds in mathematics, i.e., advanced 
calculus and matrix algebra, and programming experience have been typi­
cal participants in these classes. The material can be taught with emphasis 
on the behaviors, algorithms, and implementations of splines in geometric 
modeling schemes, or with an emphasis on the proofs and proper mathe­
matical development of the subject matter, depending on the goals of the 
course at hand.

If Chapters 1 and 2 are considered as background material, Chapters 
3, 4, 5, 6, 7 (without Section 7.4), 8, 12, and 13 (without Sections 13.5 
and 13.6) could form the basis for a one semester introductory class. A 
two semester class would include Chapters 9, 14, 15, 16, 17, as well as 
a selected subset of Chapters 10, 18, 19, 20, and 21, depending on the 
interests of the class.

We have tried to make this book broad enough to be appealing for 
many readers and many class situations. While some topics rely on earlier 
material, other chapters can be read directly. Many variations are possible 
in choosing a rewarding path though this book. Although considerable 
effort has been devoted to “debug” the text, errors will inevitably turn 
up. We will try to provide corrections on a web site as we become aware 
of any inaccuracies, so check our personal web pages for the most current 
information, (www. c s .Utah. edu/~cohen or www. c s .Utah. edu/~rfr)

http:www.cs.Utah.edu/~cohen
http:www.cs.Utah.edu/~rfr
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This field has brought us into contact with many challenging and im­
portant problems, and provided a rich area of research. We are hopeful 
that the perspective and understanding that we have gained over many 
years contributes to making this a good book for others to learn the funda­
mentals more quickly, or to refer to for specific information while engaged 
in the subject.
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Review of Basic Concepts

In the sections that follow we provide a short presentation of some of the 
basic material which will be needed in various other chapters of the book. 
If the reader is familiar with the contents of some sections, he may prefer 
to skip those sections.

1.1 Vector Analysis

We shall provide a brief review of some necessary concepts and manipu­
lation techniques. Many of these concepts are general and not dependent 
on any particular vector space. The concept of cross product, however is 
defined only in R s.

D efinition 1.1. A vector space V  is defined over a set of elements, the 
vectors, that have two operations, addition 4- : V  x V  —> V, and scalar 
multiplication · : R 1 x V  —> V  which satisfy the following rules:

If u, v, w € V  and ifr, s E JR1, then

3

1 .

2.

3.

I

There is an element such that for ah

1
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Definition 1.2. A finite subset of vectors C  in V  is called independent 
if for every choice of n less than or equal to the number of elements of C, 
and for all arbitrary choices of r\, . . . ,  rn £ JR1 and v \ v n £ C  then

implies that

This states that no element of the set I  can be written as a finite linear 
combination of other elements of the set, i.e., it cannot depend on a finite 
number of the other elements.

Definition 1.3. Let S be a subset of vectors ofV. The span of S, written 
span S, is the set of all finite linear combinations of elements of S. That 
is, for an arbitrary integer n > 0, select n arbitrary vectors V\, . . . ,  vn £ S 
and n arbitrary values r\, . . . ,  rn £ JR1 then r\V\ H------- b rnvn £ span S.

Example 1.4. For vector space K 2, and I i  =  {(1 ,0 ), (1 ,1 )}, I i  is inde­
pendent, but I 2 =  {(1 ,0 ), (3 ,0 )} is not since (3,0) =  3(1,0). The span 
I i  =  K 2, but span J2 =  {  r ( l ,0) : r £ R 1 } . □

Definition 1.5. A basis B  for a vector space V  is a set of vectors that is 
independent and such that span B  =  V.

It can be shown that all bases of the same vector space have the same 
number of elements. For infinite dimensional vector spaces, one must use 
techniques which show equivalence of the size of the infinity. It is left as 
an exercise for the reader to show that this is true for finite dimensional 
vector spaces.

Definition 1.6. If B  is a basis for V  and has a finite number of elements, 
we say that V  is a finite dimensional vector space with dimension equal to 
the number of elements of B.

Example 1.7. Examples of Vector Spaces:

1. R1, R2, K 3.

2. Function space: polynomials of degree 1, 2, . . . ,  n.
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3. C ^[a, b] the set of continuous functions on the interval [a, 6]. Addi­
tion is standard function addition, scalar multiplication is standard 
multiplication of the function value at the value of x. It can easily 
be shown that the rest of the properties follow.

The idea of length or magnitude of a vector can be introduced into an 
inner product space and a norm can be defined.

D efinition 1.9. The length or magnitude of a vector v G V  is defined as 
The distance between two vectors u, v is defined as the 

magnitude of the difference vector, that is, ||tt — v||.

Definition 1.10. Some further definitions which are based on the inner 
product and have a geometric interpretation when applied to R 2 and K 3

1. Vectors u and v are said to be orthogonal if for

2. A vector u is a unit vector if

3. A collection of unit vectors V is orthonormal if (v,w) = 0  for all 
v, w e  V.

Exam ple 1.11. Let the vector space under consideration be C^[a, b], the 
space of continuous functions on the interval [a,b]. Define

4. 2 x 2 matrices. □

D efinition 1.8. A (real) inner product space is a vector space with a sec­
ond vector operation, < ,  >  : V  x V  K 1, defined such that the following 
holds true for u, v G V  and r,s G R 1:

are:

net area under curve fg.
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To check that this is an inner product requires verifying that C is a vector 
space and exhibits the other properties of inner product. However,

1. For f  Ψ 0, ( / ,  / )  >  0;

2. Additivity, scalar multiplication properties, commutativity, and the 
distributive property all follow from properties of the integral;

3. The uniqueness of the zero element follows from properties of the
integral. □

Lemma 1.12. I fW  is a finite collection of orthonormal vectors in a space 
V, then the vectors in W  are linearly independent.

Proof: Suppose W  =  { e i , . . . ,  en}  and

Since (e<,ej·) =  0 =  rj. Letting j  — 1, . . . ,  n, gives the result that if
0 is a linear combination of the elements of W, then all coefficients must 
be zero. ■

Lemma 1.13. I fW  =  {e i , . . . ,  en} is a collection of orthonormal vectors 
with

and

then

Proof: The proof uses straightforward properties of inner product and is 
left as Exercise 7 for the reader. ■

Corollary 1.14. I f W  and w are defined as above in Lemma 1.13 then

then
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1.1.1 JR2 and R 3 as Vector Spaces

In the special cases where the vector space is K 2 or J?3, we note an es­
pecially simple representation. In physics and mathematics one says that 
vectors are uniquely defined by direction and magnitude. Two vectors with 
the same direction and magnitude are the same— no matter where they are 
located. If a vector is located with its tail at the origin and its head (ar­
row) at the position (x, τ/,ζ), then the head position uniquely defines the 
direction and the magnitude of that vector. Thus, by convention, every 
point in the plane or in 3-space has a one-to-one and onto correspondence 
with the vector space R 2 or R 3, respectively. This correspondence matches 
the point (x, 7/, z) with the vector whose tail is at the origin and head at 
the point (x ,y,z). Sometimes the two notations are used interchangeably 
which can lead to great confusion on the part of the novice. We shall use 
the term free vectors to mean those whose position is not bound, and fixed 
vectors to mean those with a bound position.

Let ei =  (1,0,0), e2 =  (0,1,0), and e3 =  (0,0,1). Then the set 
E =  {β ι,β2 ,β3 } G R 3 is orthonormal. For all real numbers x , 7/, and 
z, x e1 Η- ye2 +  ze3 represents a unique vector in the span of E  which is 
contained in R 3, since the set E  is linearly independent. Further, to every 
point in R 3 =  R 1 x R 1 x R 1 there corresponds a vector in span E. Hence, 
E  is a basis for R 3. Thus, every set of three orthonormal vectors forms a 
basis for R 3.

C orollary 1.15. In general, E  is a set of three orthonormal vectors in 
JR3, so for every pair of vectors v, w G R 3 with

and

and

Whenever the particular choice of E  is understood, one can write 
(7*1, 7*2, Γ3) to mean r\e1 Η- r2e2 +  7-363. Frequently the e± direction is 
denoted as the “x” direction, the e2 direction is denoted the “y” direction, 
and e3 direction is called the “z” direction. The triple (x , y , z) is then used 
to mean the vector xe\ +  ye2 +  ze3.

Define scalar multiplication as cv = (cx , cy, cz). In Exercise 3 the reader 
must show that this definition makes the vector c times longer, but does 
not change the direction.

we have
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Figure 1.1. The geometric meaning of adding v and w in (a), and vector addition 
in (b).

Geometrically, vector addition can be interpreted as positioning v ar­
bitrarily in space and then placing to so its tail is at the same position as 
the head of v. Then the vector with its tail in the same position as the tail 
of v and its head in the same position as the head of to is the sum of the 
vectors v and to, see Figure 1.1 (a).

To derive a quantitative formula, consider fixed formulations of the 
vectors v =  (χν^ ν ,ζ ν) and to = (xw,yw,zw). We wish to determine a 
method of finding the coordinate representation for s =  v +  to, that is
CXs,Vs ,Zs )■

We know that s — v =  to. Given the positions, we know that the change 
of position in the x-direction must be xw. Similarly for y and 2. But the 
tail of to in this position is at (xv, yv, zv). Thus its head must be xw units 
over, or have an x coordinate of xv + x w. Similarly, the y and 2 coordinates 
of the head must be at yv +  yw and zv + zw, respectively. But the head of 
to in this position is at the same place as the head of s when s starts at 
the origin. Thus, in general v +  to =  (xv + x w,Vv+ yw, zv +  zw), as shown 
in Figure 1.1 (b).

A similar result may be derived for an oblique basis in R 2 or R 3. We 
look at the H2 case. Let v and to be two vectors in the plane that do not 
have the same direction, that is, v ^  cto for all c € JR1. Then v and to are 
linearly independent. Consider S =  span{v, to} =  {  av +  6to : a, b € R 1 } . 
First represent them as fixed vectors, v =  (xv,yv) and to =  (xw,yw). 
Suppose u is any vector, then it has a fixed representation u =  (xu,yu). 
What vectors u  in the plane are also in 5?



1.1. Vector Analysis 9

If we suppose { e l5 e2}  is an orthonormal basis of R 2 with v =  χνβχ +  
yve2 and w = xwe± +  ywe2 then [v w] =  [βχ e2]A where

Suppose an arbitrary element u £ R 2 can be written u =  xue-\ + yue2· 
We want to know when there exists au, bu £ R 1 such that u = auv +  buw. 
That is, when there is a solution to

But since [v w] =  [βχ e 2]A, this question is equivalent to asking when

can be solved for unknowns au, bu.
By Theorem 1.28, if det A ^  0, Α~λ exists and the system can be solved.
Setting [au bu]T =  A~x[xu yu]T solves the system. Thus, for any τζ, 

there exists au,bu £ R 1 such that u =  auv +  buw. The pair (au,bu) are 
the coordinate values in the oblique v-w coordinate system for the vector u.

Consider vectors V\ and v2. Suppose they are placed so that their tails 
meet at the point O. Let Θ denote the angle between the vectors.

We use the law of cosines to find the particular realization for the inner 
product in JR3.

Expanding the left side one gets: 

Thus one has

and
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By Corollary 1.15, (v i, v2) =  Xi%2 +  2/12/2 4- Is there a geometric 
interpretation to this view of the inner product? Using the result gives the 
following theorem:

T heorem  1.16. The directed length of the projection of v1 onto the 
direction of v2 is (v 1,^2)/||̂ 2 II*

P roof: Place the vectors so that their tails meet at point O. Drop a per­
pendicular from the head of v1 onto the direction of v2. From trigonometry 
it is known that, if Θ is the angle between the vectors, then the directed 
length of in the direction of v2 is given by the projection of

Note that if the angle between the vectors is greater than 90 degrees, then 
the directed length of the projection is considered negative. ■

We can use the simple geometric knowledge that three points determine 
a plane, or two vectors determine a plane to give us more complicated 
information.

Several operations have been defined on elements in arbitrary vector 
spaces. Reviewing them, we see,

• Addition: V  x V  ^  V ;
• Scalar multiplication: JR1 x V  -*  V\
• Inner product: V  x V  —► R 1.

Another operation, the cross product can be defined for the special case 
when the vector space is Λ 3. The cross product of v and w, v x w, 
can intuitively be defined as a vector that is perpendicular to both v and 
w , with orientation prescribed by the nght hand rule and a magnitude 
prescribed by a rule which depends on the magnitude of v, the magnitude 
of w and the angle between them. That is, point the right hand in the 
direction of v. Then move it to the direction of w in a continuous rotational 
movement. The direction that the right thumb points is the direction of 
the cross product vector. That leaves one degree of freedom. That freedom 
can be restricted by requiring that e\ x e2 =  e$.

The formula for the coefficients can be derived from the knowledge that 
if u =  v x w then (ii, v) =  0 and (u, w) =  0, since u is perpendicular to 
both v and w.
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If we let e i be the unit vector in the x direction, e2 be the unit vector 
in the y direction, and be the unit vector in the 2 direction, then if 
u =  {xu,yu,zu), v = {xv,yv,zv), and w  =  {xw,yw,zw), then i =  a^ei +
y<e2 +  Zie3, i € { u , v, w }.

The inner product equations now can be written

Since the system consists of two linear equations in three unknowns, it still 
has an undefined degree of freedom. Rewrite the equations in terms of xu 
as known and both yu and zu as unknown:

Then solve for yu and zu to get 

so

Now, the last degree of freedom is set by the magnitude and “right hand 
rule” orientation requirement. Since c must be the same constant for all 
v, w G R 3, one can choose simple cases to determine c. Let v = e± and 
w =  e2. Since u — e^ — c(0,0,1), c must equal 1.

D efinition 1.17. For v, w  G f t3, the cross product operator defines a 
new vector, v x w, as v x w  =  (yvzw -  zvyw, zvxw -  xvzw, ywxv — yvXw)· 
The cross product is not a commutative operation.

Lem m a 1.18.

P roof: It is left as an exercise. ■

Theorem  1.19.

P roof: Since ||(v,tt;)||2 =  ||v||2 ||ti;||2 cos2 0, Lemma 1.18 gives,
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Since 0 < sin# for 0 < θ < π, ||v x w\\ =  ||v|| \\w\\ sin#. ■

Thus, the cross product of two vectors υχ and v2 is the vector with 
magnitude equal to the area of the parallelogram described when the tails 
of the vectors meet at a point O, with direction perpendicular to the plane 
defined by νχ and v2. The orientation of this perpendicular is determined 
by the right hand rule. The following properties are a direct consequence 
of the definition:

We define the triple scalar product of three vectors u , v, w as

Note that (u, v x w) =  (v x w, u) =  — (v, u x w).
Finally, the triple vector product can be decomposed in terms of inner 

products as

1.2 Linear Transformations

D efinition 1.20. Suppose X  and Y  are vector spaces andT is a function, 
T : X  -^ Y  such that

then T is called a linear transformation from X  to Y, or a linear operator.

The example (<βχ χβχ) χ β2 =  undefined, but e i x ( e x x e 2) = βχ x e 3 =  — e 2.
To compute the cross product for v* =  (Xi,y%, zf), i — 1 , 2 ,  determinants 

are commonly used:
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Exam ple 1.21. The following are examples of linear transformations:

1. P : R 3 —> R 3 by P ((x , y, z)) =  (x , y , 0). Then P  is called the orthog­
onal projection from R 3 to the x-y plane. Orthogonal projections to 
the x-z plane and y-z plane are defined analogously.
This is a linear transformation since

The proof of the properties about P  relies on the vector space prop­
erties of R 2 and R 3. Such proofs are typical of showing an operator 
is a linear transformation.

2. D[f] =  / ' ,  the derivative operator.

3· i[f} =  i a f m .

4. TjtX. : (7(n)[a, b] -»· R 1 by TjyX. [/] =  for j  =  0, . . . ,  n: point
evaluation of the j th derivative at a particular point x*.

5. T : C {n+1') [a, b] —► Pn, the polynomials of degree less than or equal
to n, by T[f] =  f ( x 0) +  f ( x  0)(x -  x0) +  /<2>2̂ °·) (x -  x0)2 + ----- h
£ ^ ! ( x  -  » ,)* .

Note that T takes a function to a function and we can write (T [/]) (x) 
or T[f](x) to evaluate that function at a point x. □

D efinition 1.22. A linear transformation whose range is R 1is called a 
linear functional.

D efinition 1.23. Suppose S and T are two linear transformations from 
V  to W  and r £ R 1. Define addition by (S +  T)(v) =  S(v) +  T(v) 
and define scalar multiplication as (rS)(v) =  r (5 (v )). Problem 11 shows 
that (5  +  T) and rS are both linear transformations, and that the set of 
linear transformations from V  to W, L(V , W ), is a vector space with these 
operations defined.
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1.3 Review of Matrix Properties

Definition 1.24. Consider a rectangular array of numbers arranged as 
follows:

where aj =  [ a\j a2j  . . .  amj  ]T, a vector in R m. The array is called 
a n m x n  matrix, and Mm,n denotes the set of all matrices with n vectors 
from R m. Ifm  =  nw e say that the matrices in A4’n>n =  M n are square.

D efinition 1.25. The transpose of A is (a ,̂*) and is denoted by AT.

Denote by ej the column vector (0 , . . . ,  0, 0 , . . . ,  0)T consisting of
all zeros except a 1 in the j th position.

If A and B are two matrices in Mm,n we can define the following 
operations:

1. Addition: +  : M m>n x M m>n —► M m>n. Denote by A +  B the 
matrix equal to (aij +  feij), the matrix whose elements are the sum 
elementwise of elements of A and B.

2. Scalar Multiplication: jR1 x M m>n —► M m>n. If r € R 1 then (rA) =  
(raij), the matrix whose elements are multiplied elementwise by the 
scalar r.

3. Zero element: Let Z =  (0) be the matrix such that Zij =  0, for all
i, j. Then A +  Z =  A for all matrices A , and Z is the identity under 
addition. It can be shown easily that the rest of the properties hold 
for to be called a vector space.

4. Define another operation: · : M m>ri x —> M m For A €
Mm,n and B € M n,fc C € M m,k is defined by C = AB =  (atj) 
where Cij =  aiiPbpj . The matrix C is called the product of A
and B. Note that the dimensions must match to be able to multiply 
A and B.

Suppose m =  n =  p and let I  =  ( e i , . . . ,  en), then AI = A = I  A, and 
I  is called a multiplicative identity. Suppose /2 is another multiplicative 
identity. I  =  II2 =  / 2; the left side occurring since /2 is an identity, 
and the right side occurring since I  is an identity. This proves that the 
multiplicative identity is unique.
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Definition 1.26. If A £ M n, and there exists a matrix B such that 
AB =  BA =  I , then B is called the inverse to A (conversely, A is the 
inverse to B).

?
If A and B are in Μ η, does AB = ΒΑΊ Namely is matrix multiplication 

a commutative operation? The answer is negative, in general. Let

then

Definition 1.27. Let A =  [ α ι , . . . , α η] £ Mn. The determinant is a 
functional | | : M n —> R 1 written |A| =  D(a\,. . .  ,a n) which is completely 
defined by the following conditions:

Define the i-jttl cofactor as A*j =  (—\)l+j\Aij\ where A ij is the 
(η — 1) x (η — 1) matrix that omits the ith row and the j th column of A. 

Properties of the determinant:

Since property (1) holds, the properties (2) through (5) hold also when the 
term row is substituted for column and column for row.

and

and

1.

2.

3.

1.

2 .

3.

4.

5.

6.

Define B as A with any two rows interchanged. Then,

Fix j , then
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There is a geometric interpretation of the determinant as well. Consider 
either the rows or the columns of a matrix as vectors in R n. Then the de­
terminant is the area of the n-dimensional hyper-parallelopiped generated 
by those vector edges.

For linear equations ]T™=1 ahjxj =  6» for i =  1, . . . ,  n, where the aij, 
and bi are known, and the Xj, j  =  1, . . . ,  n are unknown, it is necessary, 
sometimes, to determine if the system has no solutions, a unique solution, 
or many solutions. And, if there is a unique solution, how it can be found. 
The above system of equations can readily be posed as a matrix problem:

where A =  (dij), is the η x n matrix of coefficients, X  is the n x l  matrix 
of unknowns, and B is the n x l  matrix of equation values.

The solution to this problem is given by A~xAX = I X  =  X  =  A~lB, 
when such an inverse exists. Does the inverse exist? These questions are 
answered by

Theorem 1.28. Cramer’s Rule. If \A\ φ 0 then the solution to the 
above system has a unique solution given by

or, the homogeneous system withbj =  0, j  =  1, . . . , n  possesses a nontrivial 
solution if and only if \A\ =  0.

Proof: We shall treat existence only, here. If the a,j are considered as n 
column vectors over I?n, then the system of equations can be written

The homogeneous case is defined as the case when b =  0. A solution to the 
nonhomogeneous system is equivalent to b being in the span of aj, j  =  1, 
. . . ,  n. A nontrivial solution to the homogeneous case is equivalent to the 
vectors a,j, j  =  1, . . . ,  n, being dependent.
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If a,j =  0 for any j  then clearly every vector in the span can be written 
in an infinite number of ways, so the vectors are dependent. Hence, Oj Φ 0, 
j  =  1, . . . ,  n. Now, consider the homogeneous problem and suppose it has 
a nontrivial solution x  =  (#χ,. . . ,  xn). Suppose, without loss of generality, 
that x\ φ 0. Then, it is true that

for new scalars cj, i =  2, . . . ,  n, not all zero. But

Thus, if the columns are dependent vectors, then the determinant is zero. 
So if the homogeneous system has a nontrivial solution, the determinant 
is zero.

Now, what vectors b can be written as unique linear combinations of the 
vectors αχ, . . . ,  a n? We shall show the result using a proof by induction 
on the size of the system of equations. First, if n =  1, namely, αχ?χΧχ =  6χ, 
for b\ φ 0, has a solution if and only if \A\ =  αχ,χ Φ 0. If b\ =  0 then a 
nontrivial solution results if and only if \A\ =  0. Now suppose it is true 
that if there are k equations in k unknowns, for all k < n, the theorem is 
true, and consider the η x n case.

If the set of n column vectors is independent over an n dimensional 
space and hence forms a basis,

for some new collection of coefficients γ*. Then, without loss of generality, 
suppose Γχ φ 0:

A\ x is a n  — l x n  — 1 determinant. \A\ =  0 only if A\ λ =  0. Let 
denote the j th column vector of A with the first element omitted. Then
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 then by the induction hypothesis, there 
exist scalars #2? · · · , %n not all zero, making an η — 1 vector x *, such that

which means that e±, « 2, . . . ,  an is a dependent set. But since — η α ι  =
—βχ 4- 7*2̂ 2 Η------- b r n a n , that implies that αχ, . . . ,  an is a dependent set.
Thus, if a 1? . . . ,  an are independent, then \A\ Φ 0. We already showed 
that if they are dependent then \A\ =  0.

That contradicts the hypothesis. Hence A\ λ φ 0 and \A\ Φ 0. This 
shows that linear independence of the columns is equivalent to a nonzero 
determinant and implies a basis of R n which means that the column vector 
on the right can be written as a linear combination of the columns on 
the left.

The constructive part of the proof appears in many advanced calculus 
books. ■

1.4 Barycentric Coordinates

One mechanism for escaping coordinate system dependence is to develop 
a method for specifying arbitrary points in the plane, or in R 3 as com­
binations of points (vectors) which have some meaning to the problem at 
hand. Section 3.7 develops an application of this for representing conic sec­
tions. We here develop the simplest forms and properties for barycentric 
coordinates.

We know that n +  1 points Pi, i =  0, . . . ,  n, in R n can be used to form 
the vectors n  =  Pi — Po, i =  1, . . . ,  n. If the vectors {r*} form a basis of 
R n, then the points {Pi} are said to be in general position.

Suppose there are two points Po and Pi and a point T  on the line 
through P0 and Ρχ. If P0 φ  Ρχ, then these points determine a line which 
can be thought of as a transformation of JR1. Clearly =  Ρχ — Po forms 
a basis for this one-dimensional subspace, and hence all points on the line 
can be written as a combination of Po and Ρχ.

Considering K 1, suppose Po, Ρχ, and T  are just real numbers, with 
Po < T and Po < Ρχ. Then considered as vectors,

Let Then
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Figure 1.2. Finding barycentric coordinates.

which, setting

(1.1)
When T < Pq, Equation 1.1 holds true if
Here, the magnitudes of the vectors are just their absolute values. However, 
equation 1.1 holds true for finding the barycentric coordinates of a point in 
a one-dimensional subspace of l i nwith respect to two other points. Hence 
T is a convex combination of P0 and Pi. Then (1 — λ) and λ are called the 
barycentric coordinates of T with respect to Pq and P\. If Pq <  Pi <  T, 
then the ratio Λ above is greater than 1. It is still true that T =  (1 — \)Pq +  
λΡι, however, the coefficient of Po is now a negative number. Analogously, 
if T <  Po, λ is negative. If Po and Pi are two points in K n, the exact same 
results hold since there exists a translation followed by a rotation which 
will take the line through Po and Pi into the x-axis.

Now, in jR2, suppose the three points P0, Pi, and P2 are in general 
position. Further, suppose that the point T is in the interior of the triangle 
formed by the three points. Draw a line from one of the points, say Po, 
through the point T until it intersects the edge P1P2. Call that point R. 
(See Figure 1.2.)

We suppose that Pi =  T = (xtiVt), and R = {Xr^Vr)· Since
R is on the line connecting Pi and P2, there exists a real number a such 
that R =  (1 — a)Pi +  aP2. Now, since T is on the line segment connecting 
R and Po, there exists a real number β , such that T =  (1 — 0)R + βΡ{b. 
Putting the two equations together,
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Thus, the sum of the coefficients is 1. These coefficients, A*, i =  0, 1, 2, 
are called the barycentnc coordinates with respect to P0, Pi, and P2 and 
depend linearly on T. If T is inside or on the boundaries of the triangle 
formed by Po, Pi, and P2, then 0 < a < 1 and 0 < /3 < 1, so 0 < A* < 1, 
for i =  0 , . . . ,  2.

We now want to give a geometric interpretation of barycentric coordi­
nates as ratios of areas.

Since R is also on the line through Po and T, R =  δΤ +  (1 — δ)Ρο as 
well as P  =  (1 — α)Ρι +  aP2. We first set the two equations equal,

and then break the x and y components of this new vector equation apart.

with the natural extended notion of the cross products over vectors in K 3, 
considering vector V =  (vx,vy) asV  =  (vx,vy,0), and

Using Cramer’s Rule to solve this system yields
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We finish by solving for these three coefficients in terms of the coordinates 
of the points. We will use the property, shown in the exercises relating 
cross products to areas of related parallelograms and triangles.

The coefficient of P2 is

Applying the same equations, but reverting to the determinant values 
gives the coefficient of Pq as

We have used the identity P2—Px = (P2 — T) +  (T — Pi) to get to the final

Figure 1.3. Barycentric coordinates as ratios of areas.

then
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Figure 1.4. The function is increasing on (ci,di) and is decreasing on (02,0/2). 

identity. Analogously, the coefficient of Pi is

Thus, it is shown that the barycentric coordinates for a point within a 
triangle are the ratios of the area of the subtriangle opposite the vertex to 
the area of the whole triangle.

The analogous result is true for a point within a tetrahedron (in I?3), 
that is, the four barycentric coordinates are the ratios of the volume of the 
opposite subtetrahedron to the volume of the whole tetrahedron.

1.5 Functions

Definition 1.29. A function f(x) is called increasing (non-decreasing) 
on an interval (c,d) if for all u,v £ (c,d), u < v implies f(u) < f(v) 
(/(«) < /(«)).

Definition 1.30. A function f(x) is called decreasing (non-increasing) 
on an interval (c, d) if for all u,v £ (c, d), u < v implies f(u) > f(v) 
(/(«) > /(«))·

Theorem 1.31. Suppose f(x) e C^\c,d). If f'(x) >  0 for x € (c, d), 
then f(x) is increasing on (c,d). If f f(x) < 0 for x £ (c, d), then f(x) is 
decreasing on (c,d).

Definition 1.32. A (local) maximum for a function f  £ C o c c u r s  at a 
point xq if there exists e > 0 so that f(xo) > f(x) for all x Φ xq such that 
\x — X q \ < e. A (local) minimum to f  is defined analogously.

Definition 1.33. The extremal points of a function are the ordered 
abscissa-ordinate pairs at which maxima or minima occur.
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Figure 1.5. The convex hulls of (a) a continuous curve; (b) a discrete set of points.

Lem m a 1.34. Suppose a function f  is piecewise The extremal points 
of a function f  might occur for only the following values of x:

• x =  a and x =  b, that is the interval endpoints,

• values of x for which f ' ( x ) =  0,

• values of x for which f r(x) does not exist

D efinition 1.35. A subset o fR 3, X  is called convex if for all x\, X2 G X, 
(1 — t)x i +  tx2 G X , for t G [0,1]. That is the line segment connecting x\ 
and X2 lies entirely within the set X .

Definition 1.36. The convex hull of a set X  is the smallest convex set 
containing X .

If the set X  is a finite set of points, the convex hull can be found by 
finding the line segment connecting each pair of points in the set (an n2 
operation count for the naive algorithm), and then finding out which ones 
form the boundary. There are more efficient algorithms, O(nlogn),  for 
finding convex hulls[68, 27].

Definition 1.37. A function f (x)  is called convex on [c,d\ if for all
U , v e [ c , d ] ,  ί ( ψ )  < /W ? /W ·

Definition 1.38. A function f (x)  is called concave on (c,d) if for all 
u , v e  (c,d), Η Ψ )  >
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Theorem 1.39. Suppose f (x )  G C ^ . If f" (x)  > 0 for x G (c, d), then 
f (x )  is convex on (c,d). If f" (x )  < 0 for x G (c, d), then f(x)  is concave 
on (c,d).

The implications of these results are that the signs and the values of the 
first and second derivatives yield important information about the shape 
of the curve.

1.5.1 Equations of Lines

In the plane, the implicit equation for a line is ax +  by +  c =  0. Using 
inner product notation yields ((a,f>, c), (#,?/, 1)) =  0. Given a slope m 
which is not infinite, and a point (xi,yi)  on the line, one has (y — yi) =  
m(x — Xi). It can be written more generally as, a(x — x\) +  b(y — y\) =  
((a,b), (x — x\,y — yi)) =  0. To use parametric equations, a line can be 
represented using a direction vector m and one point (vector from origin) 
p  that the line passes through. Thus L(t) =  tm  +  p . Or one may use 
two points, p i and P2, to yield L(t) =  t(p2 — P i) +  Pi =  (1 — t)pi +  tp2· 
This last form is called the blending function formulation. The derivations 
for these parametric lines occur in the introductory section on parametric 
functions.

What is the equation of a vector perpendicular to a line in I?2? A unit 
vector that is perpendicular to a line, curve, or surface is called a normal. 
Whenever b ^  0, the slope of the line ax +  by +  c =  0 is —a/b. It is clear 
that a perpendicular will have slope b/a (whenever a φ  0). The vector 
(a, b) has that direction and, hence a vector with direction (a, 6), having 
any length and any position, is perpendicular to the original line. We can 
look at this problem in a slightly different way.

Any point on the line ax-\-by-\-c =  0 must satisfy ((a, 6, c), (x, y , 1)) =  0. 
Now consider the situation where the line goes through the origin, that is, 
when c =  0. Then we can write ((a, 6), (x,y)) =  0, so the vector (a, 6), is 
perpendicular to all points on the line. The case for c ^  0 results simply 
in translates of the line but effects nether the slope nor the normal.

Figure 1.6. The function is convex on (ci,di) U (03,6/3) and concave on (02,6/2).
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Exam ple 1.40. Find the equation of a line through two points, Pi =  
{xi,yi) and P2 =  (£2, 2/2)·

The equation of a line is ax -F by -F c =  0 where we must determine a, 6, 
and c.

Pi on the line means ((a, b, c), ( x i ,2/i, 1)) =  0, and 
P2 on the line means ((a, b, c), (^25 2/2,1)) =  0.

This means that considered as “3-space vectors” the vectors (xi, 2/1,1) and 
(x2, 2/2? 1) must both be perpendicular to the vector (a, 6, c). Thus, we can 
set (a ,6,c) =  (x i ,2/ i , l )  x (x2, 2/2,1)· Furthermore, any multiple of (a ,6,c) 
also works! □

Exam ple 1.41. Find the intersection point between the two lines αχχ +  
biy +  ci =  0 and a2x +  b2y +  c2 =  0.
Denote the intersection point by I  — (xj, yi)·

a\xi +  biyi +  a  = 0 = ((ai,61, ci), (x / ,yi, 1)) since I  is on the first line, and 
a2xi 4- b2yi +  c2 =  0 =  ((a2,62, c2), (xi,yi, 1)> since /  is on the second line.

Using this “modified” three space notation, the “point” ( x / ,2//, 1) must 
be orthogonal to both (ai,&i,ci) and (a2,b2,c2). Hence, it lies along the 
“three space vector” Q =  (ai ,61, ci) x (a2, c2) which is perpendicular to
both. The third coordinate of Q is aib2 — U2&i, however, not 1.

To solve this let Q' =  Q/{aib2 — a2bi). Qf has its third coordinate equal 
to 1, (αχ, &i, ci) · Q' =  0, and (a2, 62, c2) · <2' =  0. Thus the x-coordinate of 
Q' is X/, and the ^/-coordinate of Q' is yi. □

Exam ple 1.42. Find the distance from a point Q to a parametric line
L(t) =  p + td.

Finding the distance is equivalent to finding the magnitude of the vector 
perpendicular to the line through the point.
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Let L(tc) denote the point on the line closest to Q. We wish to discover 
the value of £c. Consider L(tc) — Q- This is a vector perpendicular to the 
line L through the point Q. Since it is perpendicular to L,

1.5.2 Equations of Planes

The explicit equation for a plane not perpendicular to the x-y plane is ax +  
by + d =  z. The implicit equation, which can be used for any plane in R 3 is 
A x+By+Cz+D  =  0. While it seems as if there are four degrees of freedom, 
that is not true. The same plane is specified by (rA)x +  (rB)y +  (rC)z +  
(rD ) =  0 as is specified by Ax +  By +  Cz +  D =  0, for any r Φ 0. Since 
a plane has three degrees of freedom, any three independent constraints 
specify a unique plane. Some of the more commonly used specifications 
are: three points, one point and one “normal” vector, and two direction 
vectors and one point.

The inner product formulation developed for specifying a line can be 
generalized to specify planar characteristics. If (x , y, z) is on the plane, then 
((A, P , <7, D ), (x, y, z, 1)) =  0. If the plane goes through the origin, D =  0, 
and the vector (A, B , C) is perpendicular to all points in the plane. If the 
plane is simply translated, its orientation is unchanged, so the vectors per­
pendicular to it will remain unchanged. Thus, (A , P , (7) is perpendicular 
to the plane with equation ((A, P, (7, D ), (a:, y , z, 1)) =  0.

Suppose a perpendicular direction (A, P ,(7) to the plane is specified. 
Given a point Pi =  (aJi,2/ i ,zi),  let x' =  x — x\, y' =  y — yi, and zf =  z — z\. 
This can be seen as a translation of the coordinate axes which puts the 
point Pi at the origin of the new coordinate system. The equation for the 
plane in that new system is Arxr +  Bryr +  Crzr +  D' — 0. If that point 
is on the plane, D' =  0 by the discussion above. Further, a translation 
does not change directions, being parallel to the original axes, so A! =  A, 
B' =  B and C' =  (7. Thus, one has ((A, P, (7), (x — xi ,y  — yi,z — z\)) =  0

The point L(tc) is now known, Q is known, so the distance from the point 
to the line is just the distance between these two points. □

So,

and
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for the equation of the plane. This is modified to ((A, P ,C ), (x,$/, z)) — 
((A, B ,C ),(x i,y i,z i)) =  0, and D is known.

To find the plane equation when two direction vectors v, w for the 
plane, and a point in the plane are specified, one can find the normal 
(perpendicular) direction (A, P , C) =  v x w. This problem then reduces 
to the previous case.

If one wants to specify a plane in a parametric formulation, one needs 
two direction vectors and a point in the plane. Consider P (s , £) =  Po +  
su +  tv. The points specified as the “head” of these vectors are on the 
surface: Po, Po +  and Po +  v. If Po =  0, it is clear that this is simply a 
plane spanned by u and v. Hence, P(s, t) is a plane translated away from 
the origin.

If three points Po, Pi, and P2 are specified, one can set u — P\ — P0, 
and v =  P2 -  P0.

Example 1.43. Find the angle between two planes.
It will be shown in Exercise 5 that finding the angle, 0, between two 

planes is equivalent to finding the angle between the two plane normals, 
rii and ri2. Hence, the solution is

Example 1.44. What is the distance from a point R to a plane?

Let n  be a unit normal to the plane, and Po =  (xo, Vo ẑo) be any point 
in the plane. The plane equation, then is,

□
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Suppose d is the unknown distance from R to the plane. Then, R  — dn is 
a vector from the origin whose head is a point in the plane and

□

Exam ple 1.45. Find the common perpendicular to two 3-space skew lines 
L\ and L2·

Suppose Li has direction vector through point P\ and L2 has direc­
tion vector u2 through point P2.

Then

where

Thus

andsince
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Example 1.46. Find the common intersection r of the three planes with 
normals u, v, w.

By the equations of the three planes

This yields just three linear equations in three unknowns. □

This section concludes with some food for thought. Consider E  =  
{ e i , e 2, e 3} such that (e*,ej·) =  Sij for i , j  =  1, 2, 3, and ordered so that 
e i x e2 =  e3, e2 x e3 =  ex, and e3 x e i =  e2. This does not require that 
βχ be a unit vector in the direction of x, nor is an analogous constraint 
placed upon e2 or e3.

1. Is E  a basis for H3?

2. For an arbitrary v € K 3, consider w = (v ,e1)e1 +  (v,e2)e2 +  
(v,es)es.  Is w =  v?

3. If, instead, one has three unit vectors {ui ,V2»t>3}, which form a 
basis for K 3, but are not orthonormal, and v € K 3, is v equal to 
(ν,νχ)νχ +  (V,V2)V2 +  (v,V3)Vs?

4. Under what conditions on the basis is such a decomposition true for 
all elements of R s?

These problems are left as reinforcement exercises for the reader.

1.5.3 Polynomials

Definition 1.47. For arbitrary complex numbers ao, . . . ,  an, with an Φ 0, 
a polynomial, pn of degree n over the complex numbers is defined as a 
function of the form:

For the general complex polynomial, one has

Theorem 1.48. The Fundamental Theorem of Algebra. If n > 0
and pn is defined over the complex domain with complex coefficients and



30 1. Review of Basic Concepts

an 7̂  0, then pn has exactly n complex, not necessarily distinct, roots. 
Thus, one can write

where the values Z\, . . . ,  zn are the zeros of the polynomial pn.

If all the coefficients are real and the domain is restricted to the reals, 
then by Theorem 1.48 there are n roots possible, although the values may 
not be real.

Exam ple 1.49. Consider the function p(x) =  x2 — 1. It has roots { 1, —1}. 
The function q(x) =  x2 +  1, however has no real roots. Its complex roots 
are {i, — i}, where i is the square root of —1. □

The roots of a polynomial do not uniquely define that polynomial. For 
example, both f (x)  =  (x — 1) and g(x) =  3(x -  1) are straight lines that 
have roots at x =  1, but they have different slopes. In fact the coefficient 
of x is the slope of the line. Therefore, knowing the root and the slope 
uniquely defines the line. Interpolation with polynomials is based on the 
fundamental theorem of algebra.

An immediate corollary is

C orollary 1.50. If a polynomial pn of degree n vanishes (has roots) at 
more than n distinct points, then pn =  0, that is, pn is identically zero.

An immediate result is that the behavior of an nth degree polynomial is 
determined by its function values at η +  1 points, since if two polynomials 
p(x) and q(x) of degree n agree at η Η- 1 points, then their difference is 
a polynomial of degree n with η +  1 zeros. The difference must, by the 
corollary, be identically zero, and p(x) =  q(x).

Figure 1.7. p(x) = x2 — 1 q(x) = x2 -f 1



1.5. Functions 31

Within the scope of this book, the coefficients ao, · · . ,  a>n and the do­
main (and hence the range) will be real numbers.

D efinition 1.51. The space of polynomials of degree n, Vn, is defined as

Definition 1.52. A bivariate polynomial of degree n is a bivariate function 
f(u , v) such that

A bivariate polynomial is called bilinear, biquadratic, or bicubic if the high­
est power in each of the variables is 1, 2, or 3, respectively.

It is clear from the definition that Vn is a vector space in which each 
polynomial is a vector. This type of space is called a function space. Further 
it is clear from the definition of a polynomial that the set {1, x, x2, . . . ,  xn} 
spans the space. We ask whether this set forms a basis. That is, are the 
functions 1, x, x2, . . . ,  xn linearly independent? We shall use straightfor­
ward reasoning. Suppose they are not. Then there are coefficients Cj, i =  0, 
. . . ,  n not all zero so that

That is, the polynomial on the right evaluates to zero at all values of x. 
Now suppose c*> is the coefficient with the lowest order subscript which is 
nonzero. Then differentiating both sides k times gives

Evaluating the polynomial on the right at x =  0 yields that k\ck =  0, or 
that Ck =  0. This contradicts the hypothesis, so 0 cannot be represented 
as a nontrivial polynomial and the powers of x are independent functions. 
Thus, {1, x , . . . ,  x71} forms a basis for the space of polynomials, and Vn has 
dimension n +  1, and we have shown,

Lem m a 1.53. The dimension ofVnythe space of polynomials of degree n, 
is n +  1.

A more concise form equation for the fundamental theorem can be de­
rived as follows. Suppose both p(a) =  0 and p'{a) =  0. Can we tell
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anything more about the form of the polynomial ρ(χ)Ί Since p(a) =  0, 
p(x) =  (x — a)pi(x). But since pf(a) =  0, p'(x) =  (x — a)p2 (x), by the 
fundamental theorem of algebra. But from the first form onjp(x),

We see, then that pi(x) =  (x — a)q(x), and p(x) =  (x — a)2q(x). Following 
this line of reasoning gives:

Theorem  1.54. Suppose p(x) is a polynomial of degree n with distinct real 
roots x\, . . . ,  Xk, and suppose p^\xi) =  0, j  =  0, . . . ,  s*, i =  1, . . . ,  fc. 
Then

where q(x) is of degree n — k — X^=1 s*.

P roof: The proof is by induction. We saw above that if a is a root of
both p(x) and p'(x), then p(x) =  (x — a)2qi(x). Suppose we have shown 
that if a is a root of p^\x), j  =  0, . . . ,  m, then p(x) =  (x — a)rn+lq(x). 
Suppose now that in addition, a is a root of We know that
p'(x) =  (x — a)m+1r{x)  ̂ since a is a root of \p']^{x), j  =  0, . . . ,  m, but we 
also know

Since the last two lines are equal, for x φ  a, we see that (x — a)r(x) =  
(m -f 1 )q{x) +  (x — a)q'{x), and so q(x) =  (x -  a)z(x), and the result is 
proved for a single root.

Now, if there is more than one root, we then apply the theorem to 
the polynomial z(x) that is the remainder at a different value and get a 
corresponding decomposition. After applying it to all k distinct roots, the 
result is proved. ■

1.5.4 Rational Functions

D efinition 1.55. A function f (x )  is called a rational function if f (x )  =  
p(x)/q(x), where bothp and q are polynomials.

Exam ple 1.56. A simple rational function can be constructed as the 
quotient of two linear polynomials, that is, f (x )  =  (ax +  b)/(cx 4* d). □
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The properties of the rational are not completely defined by the sepa­
rate properties of the numerator and denominator taken separately. While 
the roots of the numerator may be zeros of the rational function and the 
roots of the denominator may be poles (infinite asymptotes) of the rational 
function, this may also not occur. That is, these are necessary but not 
sufficient conditions. If a root is common to both numerator and denomi­
nator then the number of repetitions in each may decide the final root/pole 
configuration.

Example 1.57. The equation

has a root at x =  — 1 and a pole at x =  2, and is not defined at x =  1. 
However it is possible to define a function

which is continuous at x =  1.
The function g(x) =  has a root at x =  1 and a pole at x =  2.

□

The rationale also have the feature that if f (x )  = p{x)/q{x), then 
f (x) =  ap(x)/aq(x) as well for all real numbers a ^  0. This can lead to 
confusion over the number of points needed to uniquely specify a rational 
function.

Figure 1.8. A simple rational function (x2 + l ) / (x2 — 1).
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1.6 Parametric or Vector Functions

D efinition 1.58. A subset U o fR 2 is called open if for every point (a, b) G 
U there exists an e >  0 such that, if (x — a)2 + (y -  b)2 < e, then (x,y) G U. 
That is, there is a boundaryless (open) disk around each point contained 
entirely in the set U.

D efinition 1.59. Suppose a vector basis for R l is e?, j  =  1, . . . ,  i. Let 
U be an open subset of Rf, i =  1, 2 and let function f ( x )  : U —> R?, 
where j  =  1, 2, 3. This can always be written in vector notation as f ( x )  =  
Σ Ι =i fk(&)ek =  ( / i (® )? / 2(̂ )5 · · ·, fj (x))· The functions fk are called the 
coordinate functions of the vector function (f).

D efinition 1.60. A vector function f  is called continuous at 
x°  =  (χ ,̂χ®) if for every e > 0 there exists δ >  0 such that if 
x =  (x\,Χ2 ) then \\f(x) — f(x°)\\ < e whenever \\x — ®°|| < δ, where

It is clear that a vector function is continuous if and only if its coordinate 
functions are continuous.

Suppose that /  : U —> R s, and further, suppose that we can define 
functions x\ =  9\{t) and #2 =  #2(t) where 0ι, Θ2 : I -> U, where I is an 
interval in R 1. Then the function 7(t) =  f ( x  1,^2) =  f ( x =  
/ ( 0i (£),02(£)) is a space curve whose image lies in the image of the func­
tion / .

D efinition 1.61. Consider the set U<i,c — { (#i?c)  · (#i,c) G U }, and 
Ui,k =  {(fc?^2) : (k,x2) G [ / } .  Consider the space curve, 7c(#i) defined 
by 7c(#i) =  cl curve in the image f .  Each constant c defines a
distinct curve. Analogously, for a constant k, φ^χ2) =  f { k , x 2) defines a 
curve in the image f , where each constant k defines a distinct curve. Each 
7c curve is has domain parallel to the x\ axis in the x\ —X2 plane traces out 
a curve on the surface given by the image of f .  Analogously, each φk has 
a domain parallel to the Χ2 axis and traces out a curve on the surface. The 
set of curves formed by the j c and φk on the surface is called a curvilinear 
coordinate system.

Unlike curves for which derivatives can be defined only in one direction, 
a surface has an infinite number of curves through a point, and thus the 
meaning of derivative must be adapted.
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Definition 1.62. Suppose that f  is defined on an open set U in JR2, and 
let x° be some point in U, with u° a nonzero vector in U. The directional 
derivative of f  at x° in the direction of u° is the vector

whenever that limit exists.

This definition has the same effect as defining a univariate derivative 
of a space curve of a variable h where 7(h) =  f ( x °  +  hu°). This curve 
lies in the surface /  and has as domain an open interval around zero. In 
general, if for each point x  G U, Duo f ( x )  exists, then /  is said to have a 
directional derivative in the direction u° in U.

In particular when u° =  (1,0), the result is a derivative with respect 
to the first direction in the curvilinear coordinate system, and when u° =  
(0,1), the result is a derivative with respect to the second.

Written and respectively, these derivatives are called the partial 
derivatives of the function /  with respect to the first and second coordi­
nates, respectively.

The world of multivariate functions is much more complicated than 
that of univariate functions. Since the directional derivative depends only 
on the values of the function along an open line interval near a point, a 
function /  can have derivatives in every direction at a point aj°, but not 
be continuous at x°. Remember, the continuity depends on the actions of 
the function in a two-dimensional neighborhood of the point.

Theorem 1.63. A vector function f  =  ( / i , / 2, /s )  is said to be of class 
if each coordinate function is of class . A bivariate scalar function 

f  is of class C ^  if all partial derivatives of order less than or equal to k 
exist and are continuous independent of the order of differentiation .

Suppose that it is desired to perform a change of variables, a reparame- 
trization, as it is called.

Theorem 1.64. Chain Rule. For a parametric function f , defined 
as f ( x i , x 2) =  (fi(xi,X2),f2(xi,X2),f3(xi,X2)) € I f x  1 = £ i ( i )  and
X2 =  X2 (t) and x\(t), X2 (t) € then
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If x i =  Xi(ui, U2 ) and X2 =  ^2(^1? ^2) and x\(u\,U2 ), #2(^1, U2 ) £ 
then

Analogously,

is called the Jacobian matrix. Further,

The fundamentally important matrix

and the matrix

is called the Jacobian matrix of the reparametrization. Its determinant is 
called the Jacobian, f ( l i 'f f) > ο/ίΛβ transformation.
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1.6.1 Function Characteristics

In order to facilitate later proofs, we shall state without complete proofs 
some of the following theorems from calculus:

Theorem 1.65. Rolle’s Theorem. Suppose f  € C[a,6] and that f'(x)  
exists at each point of (a,b) and f(a) =  f(b). Then there exists a point ζ, 
a < ζ < b such that /'(C ) =  0.

Proof: If f (x)  =  / (a) ,  then /  is a constant function and / '  =  0. Now,
suppose there exists x such that f (x )  > / (a) .  The fact that /  is continuous 
on [a, b] implies that /  achieves a maximum value, say at ζ, in (a, 6). Since 
/ '  exists for all points in (a, b) that means that /'(C ) =  0. ■

Theorem 1.66. Mean Value Theorem. Let f  e  C[a, b] such that 
/ ' (# )  exists at each point of (a,b). Then there exists a point ζ, a < ζ < b 
such that (b -  a)/ ' (C) =  f(b) — / (a) .

Proof: Consider the function g(x) =  f (x )  +  (b — x) 1̂ . Then
g(a) =  f(a)  +  ( /(6) -  f(a))  =  f(b) and g(b) =  f(b). By Rolle’s theorem, 
there exists C such that g'(() =  0. But, g'(x) =  f'(x) — so C>

/ ' « )  =  ’  ■

Theorem 1.67. Generalized Rolle’s Theorem. For 2 < n, let
f  e  C[a, b] such that / ( n_1) exists for each point of (a, 6). If there exists 
a < x\ < X2 < · · · <  xn < b such that f ( x i) =  f ( x 2) =  · · · =  f(xn), then 
there exists ζ, xi < ζ < xn such that / ^ “ ^(C) =  0.

Proof: Apply Rolle’s theorem η — 1 times. ■

Theorem 1.68. Taylor’s Theorem. For f  € (7̂ η+1 [̂α,6] then for all 
xo, x 6 [a, 6],

The use of Taylor’s theorem requires explicit evaluation at only one 
point, and other knowledge of the (n +  l ) et derivative to bound the inte­
gral. The nth degree polynomial part of the expansion is called the Taylor
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polynomial approximation about xo to f  of degree n and the integral part 
is called the remainder.

Proof: From the fundamental theorem of calculus, f(x) — f(xo) =
fx0 / ; W dt. Rewriting yields

We integrate by parts with u =  f'(t), du =  f n{t)dt and dv =  dt,v =  (t — x) 
to get

Integrating by parts again we see

so

Using the induction hypothesis we have
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Notice that the integrals in the last two lines have different beginning and 
ending points, and so the plus function notation is used. ■

D efinition 1.69. The function (x — t)+ defined by

is called the nth degree plus function.

Note that by this definition, (0)+ =  0. For n =  0, it is clear that 
(x — £)_j_ =  l,if t < x. That is, the function is continuous and is a single 
polynomial, namely the constant 1 for t values less than x , and it is the 
constant 0 for values of t greater than or equal to x. Thus, for n =  0, the 
function is discontinuous at x =  £, i.e., in Considered as a function
of t for fixed x , it is right continuous. That is, limi_>x+ (x —£)+ =  0 =  
(x — . Considered as a function of x , the function is left continuous
since Η η ^ ^ - (a; — £)° =  0 =  (t — £)+ but 1 ^ ^ ^  (x — £)+ =  1.

Next consider f (t)  =  (x — t)+ , always as a function of t. For t < x, 
f(t)  =  (x—£), a polynomial, and is continuous and differentiable. Fort > x , 
f(t)  =  0, and this is also continuous and differentiable. Now at t =  x, the 
function is continuous since 0 =  f (x)  =  limt_>x+ (x — t). However, the 
function does not have a derivative at t =  x, since the derivative on the left 
is the zero function, and the derivative on the right is 1. Thus (x — t)+ is 
continous and continuously differentiable everywhere but at t =  x, where 
the derivative is right continuous.

Now, using induction, suppose that (x — is in C^n~2̂  at t =  x. 
Then, for t ±  x,

Since the right hand side is C^n~2\ then the derivative clearly exists at 
t =  x, and we find:

Lem m a 1.70. For positive integers n, (x — t)+ is contained in C^n~l\ 
and as a function o ft , its nth derivative is continuous everywhere except t 
= x where it is right continuous. As a function of x, its nth derivative is 
continuous everywhere except atx =  t, where it is left continuous.
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Exercises

1. Suppose V  is a finite-dimensional vector space and Βχ and B 2 are 
two bases for V. Show that Βχ and B 2 must have the same number 
of elements.

2. Is C(°)[a, b] a finite-dimensional vector space? If so prove it, if not 
explain why not.

3. Show that the definition of scalar multiplication of an R 3 vector v by 
a scalar c > 0 makes a new vector w  having the same direction as v 
with a magnitude c times as long. What happens when c is negative?

4. For vectors v, w e  R 3 show that ||v x w\\2 =  ||u||2 \\w\\2 — ||(v,to)||2.

5. If P i and P2 are two planes with normals ηχ and n 2, respectively, 
show that finding the angle between the two planes is equivalent to 
finding the angle between the two plane normals.

6. Consider E  =  { e 1,e2, e 3} such that (e^e^·) =  Sij for i, j  =  1, 2, 3, 
and ordered so that e ± x e 2 =  ecd3, e2 x e 3 =  e ly and e3 x e i  =  e2. 
This does not require that βχ be a unit vector in the direction of x, 
nor is an analogous constraint placed on e2 or e3.

(a) Is E  a basis for K 3?
(b) For an arbitrary v € R 3, consider w  =  (ν ,βι )βι  -1- {v ,e2)e2 +  

(v ,e3)e3. Is w =  v?
(c) If instead one has three unit vectors { v i ,U25u3}, which form 

a basis for R 3, but which is not orthonormal, and v € R 3, if 
w = (v , Ui)vi +  (v, v2)v2 +  (v, v3)v3, is v =  wl

(d) Under what conditions on the basis is such a decomposition true 
for all elements of R 3?

Give a proof for your response when it indicates something is true 
or not true all the time, and counterexamples when your response 
indicates that something contrary can occur.

7. Prove Lemma 1.13. That is, show that (v,w) =  ]Γ^=1 rv^rw^  for
rWii, v, and w defined as in the lemma.

8. Show that if v and w  are vectors then ||v x w\\ is equal to the area 
of the parallelogram formed with sides v and w:
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9. Show that if u , v, and w are vectors, then |(u, v x u?)| is the volume 
of the parallelopiped formed with edges u, v, and w.

10. (a) Is T((x,y)) =  (x +a,  y +  b) a linear transformation? Prove your
answer.

(b) Is T((x,  y,w)) =  (x/w,y/w) a linear transformation? Prove 
your answer.

11. Suppose S and T are two linear transformations from V  to W  and 
r € R. Define Q(v) =  S(v) +  T(v) and R(v) =  r(S(v)).  Show 
that Q and R are both linear transformations. They are also written 
Q =  S +  Tand R = r -S.

Further prove that L(V, W),  the set of linear transformations from 
V  to W , is a vector space with -f and · defined as above.

12. Prove that composition of two linear transformations, S · T(u) =  
5 (T (u )), is a linear transformation. Also, show by counterexample 
that composition of linear transformations is not a commutative op­
eration.

13. Let {ei ,  β2, ββ} be a basis for Ft3. Given two vectors v, w € JR3, show 
that v =  w if and only if

for

14. Let {ui ,  U2 , U3}  be a basis for B 3, and let w € R 3 be arbitrary. Find 
and justify necessary and sufficient conditions on the basis so that


