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Prologue
Just over a quarter of a century ago, for seven consecutive days I sat down and 

typed from 8:30 am until midnight, with just an hour for lunch, and ever since have 
described this book as “having been written in a week.”

Not entirely honest, because there were loose ends still to be tied up, and Chap
ter 16 was written just before the book appeared, while Chapter 13 was largely 
copied from a paper, “Hackenbush, Welter and Prune”, that had been written a 
year earlier. But also not entirely dishonest.

Why the rush? Because ONAG, as the book is familiarly known, was getting 
in the way of writing Winning Ways (WW). Now that both books are happily being 
republished by A K Peters, Onagers (a word that also means ‘Wild Asses”!) can 
be told just how it came about before they surrender themselves to pure pleasure 
(as “Onag” means in Hebrew!).

A few years previously, Elwyn Berlekamp, Richard Guy and I had agreed to 
write a book on mathematical games, by which at that time we meant the Nim-like 
theory developed independently by Roland Sprague and Peter Michael Grundy 
for sums of impartial games—those for which the two players have exactly the 
same legal moves.

I had long intended to see what would become of the theory when this re
striction was dropped, but only got around to doing so when the then British Go 
Champion became a member of the Cambridge University Pure Mathematics 
Department. Astonishingly, it was the resulting attempt to understand “Go” that 
led to the discovery of the Surreal Numbers! This happened because the typical 
“Go” endgame was visibly a sum of games in the sense of this book, making 
it clear that this notion was worthy of deep study in its own right. The Surreal 
Numbers then emerged as the simplest domain to which it applies!

However, their theory rapidly burgeoned in ways that made it inappropriate for 
the book that later became Winning Ways. A busy term was approaching, and it 
seemed that this “transfinite” material just had to be got out of the way before that 
term started if Winning Ways was ever to be published. So I sat down for that week 
and wrote this book, and then confessed the fact to my co-authors.
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vi PROLOGUE

The most surprising immediate result was a threat of legal action from Elwyn 
Berlekamp! But somehow we must have patched this up, because both ONAG 
and WW appeared in the next few years, and we remain good friends.

In fact, the Surreal Numbers “surfaced” before ONAG appeared, partly through 
my 1970 lectures at Cambridge and Cal. Tech., but mostly through the wide 
circulation of Donald Knuth’s little book, Surreal Numbers. I am very grateful 
to Knuth for inventing this name—the original version of ONAG said “Because 
of the generality of this Class, we shall simply describe its members as numbers, 
without adding any restricting adjective.” “Surreal Numbers” is much better!

I am very happy and grateful that A.K. Peters have agreed to publish millennial 
editions of both this book and Winning Ways.

Ariel Jaffee and Kathryn Maier were responsible for handling the changes to 
this edition. This is also the place to acknowledge Richard Guy’s considerable 
contributions to the original edition. In particular, he designed and drew a number 
of the original figures and computed, or recomputed several of the tables.

I have called this a Prologue rather than a Preface because it is usually under
stood that the Preface to a later edition of a book should contain a description 
of the changes in the book and its subject since its first edition. Some of these 
functions are addressed in the Epilogue.

John H. Conway



Preface
This book was written to bring to light a relation between two of its author’s 

favourite subjects — the theories of the transfinite numbers and mathematical 
games. A few connections between these have been known for some time, but 
appears to be a new observation that we obtain a theory at once simpler and more 
extensive than Dedekind’s theory of the real numbers just by defining numbers as 
the strengths of positions in certain games. When we do this the usual properties 
of order and arithmetic operations follow almost immediately from definitions 
that are naturally suggested, so that it was quite and amusing exercise to write the 
zeroth part of the book as if these definitions had arisen instead from an attempt 
to generalise Dedekind’s construction!

However, we suspect that there will be many readers who are more interested in 
playing games than philosophising about numbers. For these readers we offer the 
following words of advice, Start reading Chapter 7, on playing several games at 
once, and find an interested friend with whom to play a few games of the domino

game described there. In this it’s easy to see why I I andEL give Left one and
two moves advantage respectively—when you feel you vaguely understand why

gives him just half of a move’s advantage, you might like to read Chapter 0, 
which explains how the simplest numbers arise. You should then find no difficulty 
in reading the rest of the book without knowing any more about numbers than 
that “ordinals” are a certain kind of (usually infinite) whole number, and that the 
Author has strange idiosyncracies which make him use capital letters for certain 
very large infinite collections.

Many friends have helped me write this book, often without being aware of the 
fact. I owe an especial debt to Elwyn Berlekamp and Richard Guy, with whom I am 
currently preparing a more extended book on mathematical games which should

Yll



v ill PREFACE

overlap this one in several places. The book would never had appeared without the 
repeated gentle proddings that came from Anthony Watkinson of Academic Press; 
it would have contained many errors were it not for the careful reading of Paul 
Cohn as editor, and the quality of the printing and layout could never have been so 
high without the detailed attentions of Ron Hitchings and the staff of the printers at 
Page Bros of Norwich. Others whose comments have affected more than one page 
are Mike Christie, Aviezri Fraenkel, Mike Guy, Peter Johnston, Donald Knuth and 
Simon Norton. The varied nature of the advice they gave is neatly encapsulated 
in the following lines from Bunyan’s Apology for his Book (Pilgrim’s Progress):

Some said ‘John, print it’; others said, ‘Not so.’
Some said ‘It might do good’; others said, ‘No.’

October 1975 J.H.C.
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ZEROTH PART 

ON NUMBERS . .

A Hair, they say, divides the False and True;
Yes; and a single A lif were the clue,

Could you but find it—to the Treasure-house,
Andperadventure to The Master too!

Edward Fitzgerald's
“Rubaiyat of Omar Khayyam”
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CHAPTER 0

All Numbers Great and Small
Whatever is not forbidden, is permitted.

J. C. F. von Schiller, Wallensteins Lager

This book is in two =  (zero, one | } parts. In this zeroth part, our topic 
is the notion of number. As examples we have the finite numbers 0 ,1 ,2 ,..., 
- 1, 1, y/2, n ,.. .;  infinite numbers such as w (the first infinite ordinal); and 
also infinitesimal numbers such as l/ai. If we were to adopt the axiom of 
choice, then the infinite cardinal numbers like N0 could be identified with the 
least corresponding ordinal numbers, so that we can regard these too as 
part of our system (although the arithmetic is different).

In the system of “Surreal Numbers” we shall describe, every number has its own 
unique name and properties and many remarkable numbers, such as

V ( « + 1) - -0)

appear. But the “number” i = y /— 1 will not arise in the same way (though 
we add it in Chapter 4), since there is no property enjoyed by i which is not 
shared by — i. In fact we reply to questions about “the square root of — 1” 
by simply asking exactly which square root of — 1 is meant?

Let us see how those who were good at constructing numbers have 
approached this problem in the past.

Dedekind (and before him the author—thought to be Eudoxus—of the 
fifth book of Euclid) constructed the real numbers from the rationals. His 
method was to divide the rationals into two sets L and R in such a way that 
no number of L was greater than any number of R, and use this “section” to 
define a new number {L | R} in the case that neither L nor R had an extremal 
point.

His method produces a logically sound collection of real numbers (if we 
ignore some objections on the grounds of ineffectivity, etc.), but has been 
criticised on several counts. Perhaps the most important is that the rationals 
are supposed to have been already constructed in some other way, and yet

3



4 ALL NUMBERS GREAT AND SMALL

are “reconstructed” as certain real numbers. The distinction between the 
“old” and “new” rationals seems artificial but essential.

Cantor constructed the infinite ordinal numbers. Supposing the integers 
1, 2,3 , . . .  given, he observed that their order-type co was a new (and infinite) 
number greater than all of them. Then the order-type of (1 ,2 ,3 ,..., to) is a 
still greater number co +  1, and so on, and on, and on. The similar objections 
to Cantor’s procedure have already been met by von Neumann, who observes 
that it is unnecessary to suppose 1, 2,3 , . . .  given, and that it is natural to 
start at 0 rather than 1. He also takes each ordinal as the set (rather than 
the order-type) of all previous ones. Thus for von Neumann, 0 is the empty 
set, 1 the set {0}, 2 the set {0, 1 co the set {0, 1, 2, and so on.

In this chapter we shall show that these two methods are part of a simpler and 
more general one by which we can construct the very large Class No of “Sur
real Numbers,” which includes both the real numbers and the ordinal num
bers, as well as others like those mentioned above. Inside this book we shall 
usually omit the adjective “surreal,” coined by Donald Knuth, and simply call 
these things “numbers.” It turns out that No is a Field (i.e., a field whose 
domain is a proper Class)—in general we shall capitalise the initial letter of 
any “big” concept, on the grounds that proper Classes, like proper names, 
deserve capital letters. So, for instance, the word Group will mean any group 
whose domain is a proper class.

CONSTRUCTION

If L, R are any two sets of numbers, and no member of L is ^  any member 
of R, then there is a number (L | R}. All numbers are constructed in this way.

CONVENTION

If x =  {L | R} we write x*1 for the typical member of L, and x* for the 
typical member of R. For x  itself we then write {x^lx*}.

x  = {a ,b ,c ,. . . \d ,e ,f . . .}  means that x =  {L|R}, where a ,b ,c ,... are 
the typical members of L, and d, e,f, . . .  the typical members of R.

DEFINITIONS

Definition of x >  y, x  <  y.
We say x >  y  iff (no x* <  y  and x <  noy1), and x <  y  iff y >  x.
We write x ^  y to mean that x <  y  does not hold.

Definition of x =  y, x  > y, x < y. 
x  = y  iff (x 2* y  and y ^  x). x >  y  iff (x >  y  and y £  x). 
x <  y  iff y > x.
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Definition of x +  y. 
x +  ^ = {xi  +  y, x +  )^ |x *  +  y, x +  y*}.

Definition of — x.
- x  =  { -x *  | - x L}.

Definition of xy. 
xy  = {x*-y +  xy1 — x fy1, x*y +  xy* — x*y* j

\xLy  +  xy* -  x^y*, x*y +  xy1 -  x*^}.

It is remarkable that these few lines already define a real-closed Field 
with a very rich structure.

We now comment on the definitions. A most important comment whose 
logical effects will be discussed later is that the notion of equality is a defined 
relation. Thus apparently different definitions will produce the same number, 
and we must distinguish between the form {L|jR} of a number and the 
number itself.

All the definitions are inductive, so that to decide, for instance, whether 
x >  y we must consider a number of similar questions about the pairs x*, y 
and x, y1. but these problems are all simpler than the given one. It is perhaps 
not quite so obvious that the inductions require no basis, since ultimately 
we are reduced to problems about members of the empty set.

In general when we wish to establish a proposition P(x) for all numbers x, 
we will prove it inductively by deducing P(x) from the truth of all the propo
sitions Pfx*) and P(xR). We regard the phrase “all numbers are constructed 
in this way” as justifying the legitimacy of this procedure. When proving 
propositions P(x, y) involving two variables we may use double induction, 
deducing P(x,y) from the truth of all propositions of the form P(xL,yX 
P(xR,y l  Pix, / ) ,  Pix, y*) (and, if necessary, Pixf, / ) ,  P(xL,y*), P(x*,/X  
PixR, y*)). Such multiple inductions can be justified in the usual way in terms 
of repeated single inductions.

We shall allow ourselves to use certain expressions [L IR) that are not numbers, 
since they do not satisfy the condition that no member of L shall be > any member 
of R. In general we may write down any expression {L I R] and even discuss 
inequalities between such expressions before establishing that they are numbers, 
but if we wish such an expression to represent a number we must establish the 
condition on L and R. In the more general theory developed in the next part of the 
book, we show that when the condition on L and R is omitted we obtain the more 
general notion of a game.

Our next comments concern the motives for these particular definitions. 
Now it is our intention that each new number x shall lie between the numbers 
x f  (to the left) and x* (to the right), and that + , —, ., etc., shall have their 
usual properties. So that if (say) y >  some x* we would not have x >  y, for
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then x ^  x*. Similarly, we could not allow x >  y if x  <  some yL. So we 
define x  >  y in all other cases. (This conforms with our motto, and helps 
to ensure that numbers are totally ordered.)

The spirit of the definitions is to ask what we know already (i.e. by the 
answers to simpler questions) about the object being defined, and to make 
the answers part of our definition. Thus if addition is to have nice properties 
and if x is between x L and x*, and y between and y*, then we know 
“already” that x  +  y must lie between both x1 + y  and x +  / •  (on the left) 
and x* +  y  and x +  y* (on the right), which yields the definition of x +  y. 
Similarly — x will lie between — x* (on the left) and — x1, (on the right), which 
suffice to define -  x.

It is not nearly so easy to find exactly what we “already” know about xy. 
It might seem, for instance, that we know that xy lies between xLy  and xy^ 
(on the left) and x Ry and xy* (on the right), which would yield the definition

xy =  {xLy, xy1 1 x*y, xy*}.
But this fails in two ways. Firstly, what we “knew” here is sometimes false 
(consider negative numbersX and secondly, even when it is true it need not 
be the strongest information we “already” know. In fact, of course, this 
defines the same function as x +  y.

It takes a great deal of thought to find the correct definition, which comes 
from the observation that (for instance) from x — xL > 0 and y — y1 >  0 
we can deduce (x — xL)(y — y1) >  0, so that we must have xy > xLy  + 
xyL -  xLyL. Since all the products here are simpler ones, and since we regard 
addition and subtraction as already defined, we can regard this inequality 
as already known when we come to define xy, and the other inequalities in 
the definition are similar. [Note that for positive numbers x and y the in
equality xy >  xLy  +  xyL -  x*'/' is stronger than both inequalities xy > x^y, 
xy > xyL.']

We can summarise our comments by saying that the definitions of the 
various operations and relations are just the simplest possible definitions 
that are consistent with their intended properties. In the next chapter, we 
shall verify that these intended properties really hold of all numbers, but 
in the rest of this chapter we shall simply explore the system in a more 
informal way. To simplify the notation, when L is the set [a, b, c, ...} and R 
the set x, y, z}, we shall simply write {a, b, c , ... I x ,  y, z} for [ L I R).

EXAMPLES OF NUMBERS, AND SOME OF THEIR PROPERTIES 

The number 0

According to the construction, eveiy number has the form (L | J?}, where
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L and R are two sets of earlier constructed numbers. So how can the system 
possibly get “off the ground”, since initially there will be no earlier constructed 
numbers?

The answer, of course, is that even before we have any numbers, we have a 
certain set of numbers, namely the empty set 0 ! So the earliest constructed 
number can only be (L | /?} with both L =  R =  0 ,  or in the simplified nota
tion, the number { | }. This number we call 0.

Is 0 a number? Yes, since we cannot have any inequality of the form 
0^ 0*. for there is neither a Of' nor a 0*!

IsO 5  0? Yes, for we can have no inequality of the form 0* <  0 or 0 <  O'". 
So by the definition, and happily, we have 0 =  0. We also see from the 
definitions that —0 =  0 +  0 =  0, since there is no number of any of the 
forms — 0*. — Of, + 0,0 +  01, 0* + 0,0 +  0*. A slightly more complicated 
observation of the same type is that xO = 0, since in every one of the terms 
defining xy there is a mention of y1, or y* so that when y = 0 no term is 
needed and the expression for xy reduces to { | } =  0. So the number 0 has 
at least some of the properties we know and love.

The numbers 1 and — 1

We can now use the sets {} and {0} for L and R, obtaining hopefully the 
numbers { | }, {01}, { 10}, {0 j 0}. But since we have already proved that 
0 5  0, {0 10} is not a number, and we have only two new cases, which we 
call 1 = {01} and — 1 =  {10}. Note that — 1 is indeed a case of the definition 
—x.

Is 0 5s 1? This will be true unless there is 0* with 0* <  1 (there isn’t) or 
1L with 0 <  \L (there is, namely 1L = 0). So we do not have 0 5  1.

Is 1 5  0? This is true unless there is 1* with or Of with (what
ever is, there plainly can’t be). So we have 1 5  0, and so 1 >  0.

By symmetry, we have — 1 <  0, and so if inequalities “behave”, then we 
should have — 1 <  1. We check this:

Is —1 5  1? This will happen unless there is (— 1)* ^  1 or . . .  (there is, 
namely (— I)* =  0). So we do not have — 1 5  1.

Is 1 5  — 1? This will happen unless there is 1* with . . .  or (— Yf" with . . .  
(there isn’t). So 1 5  — 1, so 1 >  — 1, as we hoped.

We can generalise a part of this last argument. If there is no x* and no y1, 
then x 5  y holds vacuously.

We forgot to check that 1 5  1. Why not do this yourself?

The numbers 2, and their negatives

We now have three numbers - 1  < 0 <  1, and so a whole battery of
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particular sets

{ }. { - !} . {0}, {1}, { -1 ,0} , { -1 ,1} , {0,1}, { -1 ,0 ,1}

to use for L  and R. But the condition that no member of L  should be >  any 
member of R restricts us to the possibilities

{ |*} , { L |}, { —110}, { —110, 1}, { —111}, {0 11}, { 1, 0 11}.

If our hopes are fulfilled, we should have {11} >  1 and 0 <  {011} <  1. So 
we anticipate their probable values, and define {11} =  2, {0| 1} =  We 
then have, of course, { | - 1} = - 2, and { — 110} =  — ^, from the definition 
of negation.

Before we justify these names, let us ask about some of the other possibi
lities. For example, what about the number x = {0,11}? This x  is presumably 
restricted by the conditions 0 <  x, 1 <  x  But since 0 <  1, if inequalities 
behave (and we shall suppose from now on that they do), the condition 
1 <  x already implies 0 <  x, so in some sense the entry 0 isn’t telling us 
anything. We can therefore hope that x = {0,11} =  {11} =  2. We test 
this, supposing 2 >  1 >  0.

Is x >  2? This is so unless there is x* <  2 (no) or x <  some 21 (no, because 
the only 2L is 1, and we believe x >  1). So we think that x >  2.

Is 2 >  x? Yes, unless some 2 * ... (no) or 2 <  some xf- (no, since the only 
x1 are 1 and 0). So indeed x =  2, if all our expectations are fulfilled.

In a similar way, we should expect all the equalities in the table:

— 2 = {| —1} = {| —1, 0} = {| —1, 1} =  {| —1, 0, 1}

—1 =  { |0} = { |0, 1}

—i  =  {—1 1°} = {—i I o, i}

0 = {|} = { - 1|} = {|1} = { - 1|1}
2 =  {0 | 1} =  { — 1. 0 1 1}
1 = { 0 |}  = { - 1, 0 |}

2 — {1 1} =  {0, 11} = { —1, 11} =  { —1, 0, 11}.

Clearly we need some way of automating our expectations. Let us ask when 
the number X  =  {y, x1 1 x*} obtained by adding a new entry y  to the left of 
x is still equal to x.

Is X  >  x? Yes, unless some X*  <  x (no, since every X* is an x*) or X  <  
some x1, (no, since every x1, is an X L).

Is x >  X I  Yes, unless some x* <  X  (no, since every x* is an AT*) or 
x <  some X L (and so x <  y, since every other X L is an We conclude 
that provided y ^  x, we can add y to the left of x in this way without affecting
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x. This justifies all the equalities in the table. (We allow also, of course, y to 
be inserted on the right if y  ^  x.)

[In the case {— 1 1 1} we need to use the process twice. Thus since 
- 1  0 = { | }, we have 0 =  { - 1 1}. Then since 1 ^  0 =  { — 1 | }, we have
0 =  { — 11 !}•]

It is not hard to check the inequalities

— 2 <  — 1 <  < 0 < ^ < 1 < 2,

which shows that at least these numbers have the right order properties. 
What else do we require to justify their names?

According to the definition

1 +  1 =  {0+  1,1 + 0 |} ,

since 0 is the only 1L, and there is no 1*. So provided 0 +  1 and 1 +  0 behave 
as expected, we have 1 +  1 = 2, as we might hope. But provided x^ +  0 =  x1 
and x* +  0 = x* we have

x +  0 =  {x* + 0 1 x* +  0} =  {x* | x*} = x,

and similarly 0 +  x =  x. Since we already know 0 + 0 =  0, this shows that 
l +  0 =  0 +  l =  l, as we wanted for the proof of 1 +  1 =  2, but in fact it 
gives us an inductive proof that x +  0 =  0 +  x =  x for all x.

It is much harder to show that ^ ^ =  1, justifying the name of From
the definition (supposing that x +  y = y +  x for all x, y, which is quite 
easy to prove inductively) we see that

where we are using 1* as a temporary name for 1 +
Is ^ +  £ >  1? Yes, unless 1* ^  1 or § +  ^ <  0. Oh my, we have to do these 

first. Let’s get on with it.
Is 1 5s 1 ?̂ Yes, unless (empty) or 1 <  some l$L. But one of the (1 +  is 

1 +  0 == 1, so 1 £  I f  
Is 0 5  jf +  ̂ ? Yes, unless (empty) or 0 <  some ( | +  j)L. But since 

0 <  ^ +  0, we have 0 ^  \  So (at last) j  + j  ^  1.
Now is the time to leave the question

“is 1 5  \  +  j r

to the reader. He should conclude that indeed ^ ^ =  1.
In most of our examples xL and x* have been fairly close to each other, so 

that there was an obvious candidate for {xL | x*}. When they are far apart, 
there will be many simple numbers in between—which one of these will 
{**■ | x*} be? We consider x =  { - 1 12}.



10 ALL NUMBERS GREAT AND SMALL

Is x >  OP Yes, unless 2 ^ 0  (false) or x <  some (false). So in this case 
we have x ^  0.

Is 0 3s x? Yes, unless some 0* < x (false) or 0 <  — 1 (false). So in fact 
x =  0.

More generally, the argument proves that if every < 0 and every 
x* > 0, then x =  0, so for instance {— 1, — ̂  f 2,3} = 0.

But when we have defined 2\ and 17 we shall have to decide about {2  ̂117}. 
A first guess might be their mean, 9f, but since we have just seen that the 
mean rule does not always hold, this seems unlikely. A clue is given in the 
form of the preceding argument—since we must ask the questions “is x = yT  
for the various possible y  in order of simplicity, the answer should be the 
simplest y that is not prohibited. This rule will be established in Chapter 2, 
and it implies, for instance, that {2* | 17} = 3, and {* 11} = j.

The numbers 1}, 3, and so on

Once we have settled all the trivialities like x > x for all x (which we have 
begun to take for granted), we can proceed a little faster. For instance, if 
L and R are sets of numbers chosen from those we already have, then since 
we suspect these numbers are totally ordered, in any expression x =  {x1, | x*}
we need only consider the greatest yf“ (if any) and the least x* (ditto). This
gives us for the next “day” only the numbers

0 < { 0 | * } < i < { } | l } < l  < { 1 | 2 } < 2 < { 2 | }
and their negatives. What are the proper names for these numbers? We 
suspect that {21 } = 3, and indeed we can verify that

1 + 1 + 1 = (0 + 1 + 1,1 + 0 + 1,1 + 1 + 0 |} = {2 1}.
The equation {112} = 1  ̂ is almost as easy to guess and verily. So we shall 
make l j  a permanent name for this number.

The two likely guesses for (0 1 ^} are £ and J. If anything, the first might 
seem the better guess, since otherwise it’s hard to see what £ will be. But in 
fact it turns out that {01 i} is \ —at least we can verify that twice this number 
is In a similar wav. {* I 1} turns out to be J rather than f.

It is now easy to guess the pattern for the numbers which take only finitely 
much work to define. Let us imagine the numbers created on successive 
“days”, in such a way that on day number n we create all numbers x = {L \ R) 
for which every member of each of the two sets L, R has already been con
structed. We number the day on which 0 was created with the number 0 
itself, so that our creation story begins (or began?) on the zeroth day.

Then the numbers seem to form a tree, as shown in Fig. 0. Each node of the 
tree has two “children”, namely the first later numbers bom just to the left
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and right of i t  We guess that on the nth day the extreme numbers to be bom 
are n and — n, and that each other number is the arithmetic mean of the 
numbers to the left and right of i t  Happily, of course, this turns out to be 
the case. Supposing all this, we know all numbers bom on finite days.

The numbers bom on day co

Of course the process doesn’t stop with these numbers. The next day we 
call day co. Let’s consider some of the numbers bom then. The largest number 
is the number co itself, defined as {0 ,1 ,2 ,3 ,... | }. Of.course, to has many other 
forms, for instance co = {1,2,4,8,16,... | }, or even co =  {all numbers (m/2") | }. 
But since the collection of numbers to the left of co has no largest member in 
these expressions, we cannot simply eliminate all but one of the numbers 
appearing on the left.

Of course the most negative number bom on day co will be
—co =  { 10, — 1, —2, —3,...}.

The smallest positive number bom on this day is the number {0 j 1, ...},
which turns out to be 1/co, surprisingly and fortunately.

But besides these strange new numbers, some quite ordinary numbers are 
bom at the same time. For instance, we have

1. 1 _i_ JL x  1 j .  -i_ .1. JL <  ^
4  4 '  16 4  ^  16 64 3 • ^*2  8 ^ 2 ’

so we might expect the number

U>i + + ^  • • • I i  i  -«> • • •} = *• say
to be and behold, it can in fact be proved that x +  x +  x =  l ! I n a  similar 
way, all of the real numbers defined by Dedekind, including in particular all 
the remaining rational numbers can be defined as “Dedekind sections” 
of the dyadic rational numbers (by which we mean the numbers of the form 
m/2", m and n integers), rather than as sections of all rationale So y/2, e, and jt 
are all bom on day co.

It is rather nice that our definition of equality ensures automatically that 
the number (for example)

(dyadic rationals <  § | dyadic rationals >  f }

turns out to be the same as the number § =  {J | ^}, so that the dyadic rationals 
“recreated” on day co are “the same” as those created before.

It is also rather nice that Cantor’s ordinal numbers (as modified by von 
Neumann) fit smoothly into our system. Thus we have

0 =  { | }, 1 =  {0 1}, 2 =  {0, 11} ,. . . ,  co — {0, 1, 2,3 , . . .  | },
« =  {/?< a | },
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where von Neumann has

0 = 0 , 1 = {0}, 2 = {0, 1} , . . . ,  co = {0, 1, 2,...} , a =  { £ < « } , . . . .
In other words, the ordinal numbers are those we obtain by requiring always that 

the set R be empty. We may say that Cantor was only interested in moving ever 
rightwards, whereas Dedekind stopped to fill in the gaps, so that R was always 
empty for Cantor, never empty for Dedekind. It is remarkable that by dropping 
these restrictions we obtain a theory that is both more general and more easy to 
work with. (Compare the theory developed in the next chapter with the classical 
foundation for the real numbers in which we must first construct or postulate the 
“natural numbers”, then rationals as equivalence classes of ordered pairs, then 
reals as sections of rationals, with negative numbers being introduced at some 
stage in the process.)

Some more numbers

After to, the number { 0 ,1 ,2 ,3 ,..., to | } =  co +  1 need come as no surprise, 
but perhaps the number {0 ,1 ,2 ,3 ,... | co} will. This number, call it x, 
should satisfy n <  x <  co for all finite integers n, in other words, x should 
be an infinite number less than the “least” infinite number co. Adding 1 to x, 
we find the number

{1,2,3 x| to +  1} =  y, say.

Here, since x < co, and co+ 1  ^  co, we see that y =  co, for the new entries x 
on the left and co +  1 on the right have made no difference. So x +  1 =  co,
x =  co — 1.

Check that we get the same result on subtracting 1 from co.
In a similar way, we find successively that

co -  2 = {0, 1, 2,3 , . . .  | co, co -  1} , . . . ,

co — n =  {0, 1, 2,3 , . . .  | to, co — 1, co — 2, . . . ,  co — (n — 1)}.

Plainly the next number to consider is

z = {0, 1, 2,3 , . . .  | co, co -  1, co — 2, ...}  =  {n | co -  n}, say.

It should not take the reader too long to verify that z =  co/2 When he has
done this, and defined co/4, co/8, . . .  as well, he should be in a position to 
define co/3 (for instance), and to verify our assertion that

(0 ,1 ,2  3, . . .  | co, co/2 co/4, co/8,...} 

is a square root of co.
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Other easy exercises are

o ' ' , ' ] . 4
co’2et>’4<o’ " T  a)2’

and so on.

If the reader prefers to try his hand at “constructing” new numbers rather 
than examining values of those given here, let him try to find definitions for 
\Jw, a)1;®, co +  it, (co +  I)-1, y/(co -  IX and to show, making any reasonable 
assumptions, that they have the properties we should expect.

In the next chapter, we shall prove that the Class of all numbers really is a 
Field, making no use of any of the supposed “facts” from this chapter. It 
will be some time before we see so many particular numbers mentioned 
again. In the third chapter, we shall produce a “canonical form” for numbers, 
and learn how to manipulate them a little more freely, and in the process 
will see exactly how general our class of numbers turns out to be.



CHAPTER 1

The Class No is a Field
Ah! why, ye Gods, should two and two make four?

Alexander Pope, “The Dunciad"

PRELIMINARY COMMENTS

There are two problems that arise in the precise treatment which need spe
cial comment. The first is that it is necessary to have an expression {LI/?} 
existing even before we have proved that it is a number. The second concerns 
the fact that equality is a defined relation, which must initially be distin
guished from identity.

Games. The construction for numbers generalises immediately to the 
following construction for what we call games.

Construction. If L and R are any two sets of games, then there is a game 
{L | R}. All games are constructed in this way.

Although games are properly the subject of the first part of this book (where 
the name will be justified), it is logically necessary to introduce them before 
numbers. Order-relations and arithmetic operations on games are defined 
by the same definitions as for numbers. The most important distinction 
between numbers and general games is that numbers are totally ordered, 
but games are not—there exist games x  and y for which we have neither of 
x $s y, y >  x.

To show that a game x  = {**■ | x*} is a number, we must show firstly that 
all of the games xL, xR are numbers, and secondly, that there is no inequality 
of the form x f  >  x R.

IDENTITY AND EQUALITY

We shall call games x and y identical (x = y) if their left and right sets are 
identical—that is, if every x f  is identical to some y1, every x* identical to
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