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Preface 

This is the result, after almost two decades of research, of bringing up-
to-date and recapitulating (first for one dimension) my little book Spline 
Algorithms for Curves and Surfaces, of which almost five thousand copies 
in four editions have been sold, and which has also been translated into 
English. 

Our intention, as it was previously, is to provide an elementary and 
directly applicable introduction to the computation of those (as simple 
as possible) spline functions, which are determined by the requirement of 
smooth and shape-preserving interpolation and (in two cases) the smooth
ing of measured or collected data. 

By elementary, we mean in particular that we have chosen to give explicit 
and easily evaluated forms of the spline interpolants (instead of in terms 
of recursive B-splines) and that in general existence and uniqueness can be 
decided, since we can demonstrate strict diagonal dominance of tridiagonal 
and (in two cases) five-diagonal coefficient matrices of linear systems of 
equations in appropriate unknowns. 

This book should also be useful for applications, since not only do we de
rive the formulas and algorithms as such, but we also give efficient Fortran-
77 subroutines. These are used to calculate numerous examples that in 
turn allow the reader to assess how the various spline interpolants perform 
depending on the configuration of the data. 

Since the earlier book, much is new, especially reasearch that has ap
peared in the literature in the last two decades. In this regard, local 
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X Preface 

Hermite quadratic and cubic C1—splines should especially be mentioned. 
For the required purposes, these seem to be superior to other polynomial 
spline interpolants. Also, the numerous variants of simplest possible ratio
nal spline interpolants are especially emphasized. 

Just as for my last book, Mathematical Software for Linear Regression 
(1987), the implementation of most, and the testing of all, the subroutines 
was carried out by Mr. Jõrg Meier (Dipl. Math.), scientific assistant at 
the Department of Mathematics; without him this book would not have 
been possible. Students J. Haschen, R. Obst, and A. Stark contributed 
to the literature searches as well as to various preliminary studies. The 
non-trivial task of text preparation was carried out with care and patience 
by Mrs. Büsselmann, also of the department. 

Oldenburg, May 1989 H. Spath 

Preface to the English Edition 

A number of typographical errors and small discrepancies have been cor
rected from the German edition. Most of these were discovered by Prof. 
Len Bos during the translation, which could not have been carried out 
in a more congenial manner. Many thanks! The handling of publication 
matters, in this case by Alice Peters, was very supportive and extremely 
reliable. 

H. Spath 



Polynomial Interpolation 

1.1. The Lagrange Form of the 
Interpolating Polynomial 

Suppose that we are given n points (#&, yk), k = 1, • • •, n with pairwise dis
tinct xfc. Equivalently, by renumbering if necessary, we may assume that 
x\ < • • • < xn. Then there is a unique polynomial, p n _ i , of degree n — 1, 
which interpolates this data. Indeed, the Lagrange form of pn-i may be 
explicitly given by means of the fundamental polynomials or cardinal func
tions, Li, defined by 

(l . i) 

Some plotted examples of such L¿ are given, for example, in [121], p. 83. 
Then, since Li(xk) = ¿ifc, we have 

(1.2) 

This representation requires 0(n2) arithmetic operations for each evalua
tion of Pn-i- A more economical and also numerically more stable form can 
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2 1. Polynomial Interpolation 

be obtained as follows. Set 

(1.3) 

Notice tha t these factors are independent of the point of evaluation, v, 
and thus need only be computed once. Also, the special case of (1.2) with 
Di = 1, i = 1, • • •, n, yields the relation, 

Together, these may be used to rewrite (1.2) in the so-called barycentric 
representation, 

(1.4) 

of the Lagrange interpolating polynomial. This formula is well-defined for 
x T¿ XÍ and may be extended continuously by setting pn-\{

xi) :— Vi, i — 
1, • • •, n. Using (1.4) requires only a further 0(n) operations per evaluation. 
For numerical reasons ([171]) it is good policy to renumber the interpolation 
nodes X{ so tha t 

(1.5) 

holds, where x~ = ^ J27=i Xi' Since the values (1.3) are independent of the 
yi, the barycentric representation is especially recommended when several 
polynomials with different y i but the same nodes x{ are to be evaluated. 

1.2. The Newton Form of the 
Interpolating Polynomial 

If this is not the case, or if the intention is to add to the number of given 
points one by one, then the Newton form of the interpolating polynomial 
is preferred. We write 

(1.6) 

where the coefficients a^ are denoted by 

Q>k = f[xi,x2,-',xk\- (1-7) 



1.2. The Newton Form of the Interpolating Polynomial 

SUBROUTINE NEWDIA(N,X,Y,A,IFLAG) 
DIMENSION X(N),Y(N),A(N) 
IFLAG=0 
IF (N.LT.l) THEN 

IFLAG=1 
RETURN 

END IF 
DO 10 1=1,N 

A(I)=Y(I) 
10 CONTINUE 

DO 30 K=N,2,-1 
DO 20 I=K,N 

A(I) = (A(I)-A(I-1))/(X(I)-X(K-D) 
20 CONTINUE 
30 CONTINUE 

RETURN 
END 

Calling sequence: 

CALL NEWDIA(N,X,Y,A,IFLAG) 

Purpose: 
The determination of the coefficients of the Newton interpolating poly
nomial of degree N—1. 

Description of the parameters: 

N Number of given points. N must be at least 1. 
X ARRAY(N): Upon calling must contain the abscissas 

xk, fc = 1, • • •, ra, with Xi T¿ XJ for i T¿ j . 
Y ARRAY(N): Upon calling must contain the 

ordinates yk, k = 1, • • •, n. 
A ARRAY(N): Upon successful execution (IFLAG=0) 

contains the required polynomial coefficients. 
IFLAG =0: Normal execution. 

= 1: N< 1 not permitted. 

Remark: The difference scheme is worked out in a diagonal fashion. 

Figure 1.1. Subroutine NEWDIA and its description. 

3 



4 1. Polynomial Interpolation 

SUBROUTINE NEWSOL(N,X,A,T,F,IFLAG) 
DIMENSION X(N),A(N) 
IFLAG=0 
IF (N.LT.l) THEN 

IFLAG=1 
RETURN 

END IF 
F=A(N) 
DO 10 K=N-1,1,-1 

F=F*(T-X(K))+A(K) 
10 CONTINUE 

RETURN 
END 

Calling sequence: 

CALL NEWSOL(N,X,A,T,F,IFLAG) 

Purpose: 
The calculation of the function value of the Newton interpolating poly
nomial at the point T. 

Descript] 
N 
X 

A 

T 
F 
IFLAG 

on of the parameters: 
Number of given points. N > 1 is required. 
ARRAY(N): Upon calling must contain the abscissas 

Xki k = 1, • • •, n, with X{ T¿ Xj for i ^ j . 
ARRAY(N): Upon calling must contain the polynomial 

coefficients ai,a2, •••, an* 
Point at which the polynomial is to be evaluated. 
Value of the polynomial at the point T. 
=0: Normal execution. 
= 1: N< 1 not permitted. 

Figure 1.2. Subroutine NEWSOL and its description. 

The divided differences f[xi,X2,- — ,xn] may be calculated recursively 

from 

(1.8) 

where f[xi] := yi, i = 1, • • •, n. (A nice, expository derivation may be found, 
for example, in [8].) According to [164], it is recommended for numerical 
reasons tha t the x{ be renumbered so tha t 

\v - xx\ < \v - x2\ < • • • < \v - xn\, (1.9) 



1.2. The Newton Form of the Interpolating Polynomial 

Figure 1.3. a-c. 
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1. Polynomial Interpolation 

Figure 1.4. a-c. 

6 



1.2. The Newton Form of the Interpolating Polynomial 7 

where v is the point of evaluation. The Newton form of the interpolating 
polynomial may be efficiently evaluated by means of Horner's rule; i.e., 

Pn-l(z) = al + (z - xi)(a,2 + (x - x2)(a3 H (x - xn_!)an) • • •) 

= (• • • ((an(x - xn_i) + an_i)(x - £n_2) + an_2) • • •) 

x(x -xi) + a i . (1.10) 

By this method, the Newton form without the renumbering is about half 
as expensive ([171]) as the Lagrange form without the renumbering (1.5). 

Although the rearrangement of the given points for reasons of numerical 
stability, (1.5), is independent of the point of evaluation, while that for the 
Newton form, (1.9), is not, it is still in general preferable to use the repre
sentation (1.10) with the calculation of the coefficients by means of (1.8) 
(without renumbering). Therefore, we only give the subroutines NEWDIA 
(Fig. 1.1) for the calculation of divided differences and NEWSOL (Fig. 1.2) 
for the evaluation by a polynomial by Horner's rule, (1.10). NEWDIA uses 
(1.8) and the diagonal scheme of [121]. 

These routines do not involve the renumbering of (1.9). In general, this 
is not worthwhile, as interpolating polynomials of higher degree (n > 4), 
where it might be relevant, are not recommended for other reasons. This 
will be clear from the examples computed with NEWDIA and NEWSOL 
given in this section. In each of the first three, five points were given. 
These, together with the corresponding polynomial interpolants of fourth 
degree, are shown in Figs. 1.3a, b and c. This sequence of plots shows that 
polynomial interpolation preserves neither positivity nor monotonicity nor 
convexity of the data. In contrast, a simple polygonal path does possess 
these shape-preserving properties. The examples of Figs. 1.4a (n = 9) and 
b (n = 10) are taken from [154, pp. 31 and 105]. We will often encounter 
them later. Finally, the example of Fig. 1.4c ([121, p. 109]), involving 
24 points, shows an interpolating polynomial of degree 23, which is com
pletely ill-behaved. Although in special cases higher-degree polynomial 
interpolants can be useful, in general the results are such that this type of 
interpolation is not, in practice, applicable. 
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2 

Polygonal Paths as Linear 
Spline Interpolants 

2.1. General Spline Interpolants 

For the given abscissas, we will now almost always suppose that 

xi < X2 < - - < xn. (2.1) 

In general, by a spline interpolant s G Cm[xi, xn] with knots xjt, we mean a 
set of n — 1 functions, s^, defined on [xk, #fc+i], respectively, k = 1, • • •, n — 
1, tha t are stitched together so as to be m-times (m > 0) continuously 
different iate at the knots and tha t satisfy the interpolation conditions, 

sk{xk)=Vk, sk(xk+i) = Vk+u A; = l , - - - , n - 1 . (2.2) 

For a polygonal pa th through the points {xk,Vk), k — l , . . . , n , we have 
m = 0 and the s^ are all line segments with endpoints (#¿, ?/¿), ¿ = k, k + 1. 
For m = 1, we will be connecting parabolic segments, and for m = 2, cubic 
polynomials as well as other functions. As we shall see with polynomials 
of degree five and m = 4, m > 2 is in general unsuitable, since, as we saw 
in Chapter 1, the unacceptable properties of polynomials of higher degrees 
again take effect. One could, in principle, choose a different function type 
on each interval for s^, but we avoid this for practical considerations. 

9 



10 2. Polygonal Paths as Linear Spline Interpolants 

Sk(x) 

Sk(x) 

Sk(x) 

Sk(x) 

= Ak + Bkx, 

= Ak + Bk(x-

= Ak + Bkt, 

= Aku + Bkt 

- xk) 

2.2. Various Representations of a 
Polygonal Path 

The line segments sk can be represented in a number of ways. For example, 

(2.3) 

(2.4) 

(2-5) 

(2.6) 

are all posssible. Here, 

(2.7) 

For each form, we may obtain the values of the corresponding 2(n — 1) 
parameters Ak and Bk, fc = 1, • • •, n — 1 from the interpolation conditions 
(2.2). The computational expense differs in each case. For the forms (2.4), 
(2.5), and (2.6), it follows immediately from Sk(xk) = Vk that Ak = Vk- For 
(2.4), it follows from sk{xk+\) = 2/fc+i that the slope, Bk, of sk is given by 
Bk = Ayk/Axk. 

The form (2.6) appears to be the most elegant, as then Bk = 2/fc+i and 
thus, 

sk = Vku + 2/fc+i*. (2.8) 

Hence, other than the given data (xk,yk), k = l , - - - ,n , no new param
eters are introduced and consequently no additional storage locations are 
required. (Note, however, that for (2.4), the y^ could be also be overwritten 
by the Bk-) The form (2.3) is unsuitable, as x does not vary intrinsically 
with respect to the interval [xk,xk+i\- In (2.4), x — xk varies from 0 to Axk, 
and in (2.5), t varies from 0 to 1 (standardized interval length). 

Up till now, we have discussed the piecewise representation of the poly
gonal path, s. It is reasonable to ask if there is also a closed-form represen
tation that holds on all of [xi,xn]? We introduce the notation, 

(2.9) 

n-1 

s(x) = a+ px(x - xi) + ] T Pi(x - Xi) + , (2.10) 

If we set 



2.2. Various Representations of a Polygonal Path 11 

then clearly, s restricts to a linear polynomial on each of the intervals 

[xk,xk+i], k = 1 , . . . , n - 1, namely, 

The parameters a, /?i, • • •, /?n-i can be successively calculated from the in
terpolation conditions (2.2). The representation (2.10) has the advantage 
over the previous forms that it is not necessary to always first determine 
in which interval the point of evaluation, v, lies. The disadvantage is that 
the computation of the #2, • • •, Pn-i and the evaluation itself are both ex
pensive. 

A representation analogous to the Lagrange form of the interpolating 
polynomial is obtained from the introduction of the so-called B-splines. (B 
stands for basis). Those of first order are given by 

The points XQ < x\ and xn+i > xn are otherwise arbitrary. Then clearly, 

(2.12) 

is also a representation of the interpolating polygonal path, since s restricts 
to a linear on [xfc,xfc+i] and it also satisfies the interpolation conditions. 
Further, from the definition (2.11), only Nk and Nk+i differ from zero on 
[xkiXk+i]. Hence, 

and we recover the form (2.6). B-splines ([19,20]), for m > 2, are an im
portant and indispensable tool for data smoothing ([67]) in one and two 
variables as well as for free-form curves and surfaces ([37]). For spline 
interpolation with m < 2, they are, however, in the case of polynomial seg
ments, too complicated, and for non-polynomial segments, only explicitly 
available in exceptional cases. Hence, we will not pursue them further. 

(2.12) 



12 2. Polygonal Paths as Linear Spline Interpolants 

SUBROUTINE INTONE(X,N,V,I,IFLAG) 
DIMENSION X(N) 
IFLAG=0 
IF (I.GE.N) 1=1 
IF (V.LT.X(l).OR.V.GT.X(N)) THEN 

IFLAG=3 
RETURN 

END IF 
IF (V.LT.X(I)) GOTO 10 
IF (V.LE.X(I+1)) RETURN 
L=N 
GOTO 30 

10 L=I 
1=1 

20 K=(I+L)/2 
IF (V.LT.X(K)) THEN 

L=K 
ELSE 

I=K 
END IF 

30 IF (L.GT.I+1) GOTO 20 
RETURN 
END 

Calling sequence: 

CALL INTONE(X,N,V,I,IFLAG) 

Purpose: 
Determination of an index I with X(I)<V<X(I+1). X(1)<X(2)< 
• • • <X(N) is required. 

Description of the parameters: 

X ARRAY(N): Abscissas of the given points. 
N Number of given X-values. 
V Abscissa of the point at which the spline 

function is to be evaluated. 
I Input: Upon calling I must contain a value 

between 1 and n — 1. 
Output: I with X(I)<V<X(I+1). 

IFLAG =0: Normal execution. 
=3: V<X(1) and V>X(N) not allowed. 

Figure 2 .1 . Subroutine INTONE and its description. 



2.2. Various Representations of a Polygonal Path 

FUNCTION POLVAL(N,X,Y,V,IFLAG) 
DIMENSION X(N),Y(N) 
DATA 1/1/ 
IFLAG=0 
IF (N.LT.2) THEN 

IFLAG=1 
RETURN 

END IF 
CALL INTONE(X,N,V,I,IFLAG) 
IF (IFLAG.NE.0) RETURN 
XI=X(I) 
T=(V-XI)/(X(I+1)-XI) 
P0LVAL=Y(I+1)*T+Y(I)*(1.-T) 
RETURN 
END 

FUNCTION POLVAL(N,X,Y,V,IFLAG) 

Purpose: 
POLVAL is a FUNCTION subprogram for the calculation of a function 
value of a polygonal path at a point V G [ X ( 1 ) , X ( N ) ] . 

Description of the parameters: 

N Number of given points. 
X ARRAY(N): Abscissas. 
Y ARRAY(N): Ordinates. 
V Point at which the function is to be evaluated. 
IFLAG =0: Normal execution. 

= 1: N>2 is required. 
=3: Error in the interval determination (INTONE). 

Required subroutines: INTONE. 

Remark: The statement 'DATA I / l / ' has the effect that I 
is set to 1 at the first call to POLVAL. 

Figure 2.2. Function POLVAL and its description. 

13 



14 2. Polygonal Paths as Linear Spline Interpolants 

2.3. Evaluation by Searching 
an Ordered List 

As for all spline interpolants, before (2.4) or (2.6) can be used to evaluate 
a polygonal pa th s(v) at an abscissa v € [^ i ,x n ] , there first arises the 
problem of finding tha t index i for which Xi < v < Xi+\. For this there are 
several solutions of varying efficiency ([63,109]). Here, we proceed from the 
reasonable assumption that function values at a monotonically increasing 
sequence of absicissas v\ < V2 < • • • < vñ are to be calculated. If ñ 
is substantially larger than n, then it will frequently be the case tha t in 
passing from VJ to t>¿+i, the new abscissa will lie in the same interval, with 
index z, as did VJ. Thus, we initialize i = 1 and store the (possibly changed) 
index i of the interval in which the last VJ lay. If VJ+\ is not in [ x ^ x ^ i ] , 
then the new i is found by a binary search on [xi,a;¿] if VJ+I < X{ and 
on [xi,xn] if Vj+i > Xi (the regular case). This procedure is implemented 
by the subroutine I N T O N E of Fig. 2.1; the program description is also 
found in Fig. 2.1. The function POLVAL (Fig. 2.2) evaluates a polygonal 
path by making use of INTONE. An example showing the polygonal path 
interpolant to the da ta of Fig. 1.4c is given in Fig. 2.3. Although the 
"curve" appears to be very smooth, this is deceiving as there are jumps 
in the first derivative at the nodes. If the abscissas can be chosen to be 
sufficiently close together, however, then these jumps become arbitrarily 
small. This fact is at the heart of any plotter software. 

2.4. Properties of Polygonal Paths 

As opposed to spline interpolants of higher degrees, the polygonal pa th 
s has notable shape-preserving properties. Positivity in the da ta is pre
served: if yk > 0, k = 1, • • •, n, then s > 0 on [xi, xn]. Monotonicity is also 
preserved: if for instance y\ < y<i < • • • < yn, then since s'k = ^ ^ > 0, 
s' > 0 on the whole interval [ x i , x n ] . Denote by dk the slopes 

(2.13) 

If the given da ta is convex in the sense that d\ < d2 < - • - < dn-i> then 
since s" = 0, the polygonal pa th is also convex. Examples of these three 
properties are obtained from Figs. 1.3a-c by connecting the points by line 
segments. Now if yk = /(zjk)» k = l,-**>rc, for / G C1[xi,xn), then the 
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Figure 2.3. 

interpolating polygonal path s has the property that 

(2.14) 

i.e., among all interpolating functions, the polygonal path minimizes the 
aggregate slope squared. For the proof, we show that in 

the middle term on the right disappears. In fact, 

by integration by parts. The first term is zero, since /(xfc) = yk = s(xk), 
and the second, since s" = 0. 
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2.5. W h e n the Knots and Interpolation 
Nodes Are Different 

The interpolating line segments need not necessarily be joined continuously 
just at the nodes xk. We could also use parameters ak G (0,1) and define 
knots zk by 

zk = akxk + (1 - <xk)xk+i, k = 1, • • • , ? ! - 1. 

Let 

sfcO) = yk + Bk(x ~ xk), k = l , - - - , n , 

then be n line segments passing respectively through (xk,yk) and corre

sponding to the intervals [x i ,2 i ] , [zk,zk+i], k = 1, • • •, n - 2 , and [z n _i , rrn]. 

Since zk — xk — (1 — a/c)zlxfc and Zfc — xfc+i = — akAxk, the continuity 

conditions 

Sk(zk) = Sk+i(zk), k = 1, • • • , ? ! - 1, 

yield the linear system, 

(1 - ak)Bk + akBk+1 = dk, k = 1, • • •, n - 1, (2.15) 

of n — 1 equations in n unknowns B\, • • •, i ? n . If, for example, Z?i is specified 
ahead of time, then it is uniquely solvable and the corresponding polygonal 
pa th is thus uniquely determined. From experience, the appearance of this 
interpolant depends strongly on the choice of B\. 

This dependency can be eliminated in the case of an odd number of 
points n = 2m + 1 and symmetric data, i.e., 

yk = ?/n+i_fc, Axk = Axn-k, ak = 1 - an-k, k = 1, • • •, ra, 

by the reasonable requirement tha t B\ = —Bn. The system (2.15) becomes 

aiB2 -{I- ai)Bn = di 

(1 - am)Bm +amBm+i = dm . 

a i B n _ i + ( l - a i ) J 5 n = - d i 

By adding the first and last equations, we see that B<¿ — —Bn-\. Then, 
using this in the addition of the second and second from last equations, 
we obtain B3 = — 5 n _ 2 - Continuing in this way, we finally obtain tha t 
Bm = — £?m+2 and from the addition of the rath and (ra + l )s t equations, 
tha t Bm+i = 0. Thus, s tar t ing with the rath equation, we may successively 
compute 

Bk = -Bn+1-k = , k = ra, ra. - 1, • • •, 2. 
1 — &k 
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SUBROUTINE POLSYM(N,X,Y,W,B,IFLAG) 
DIMENSION X(N),Y(N),W(N),B(N) 
IFLAG=1 
IF (M0D(N,2).EQ.0.0R.N.LT.3) RETURN 
IFLAG=0 
M=(N-l)/2 
B(M+1)=0. 
DO 10 K=M,1,-1 

K1=K+1 
B(K)=((Y(K1)-Y(K))/(X(K1)-X(K))-W(K)*B(K1))/(1.-W(K)) 
B(N-K+1)=-B(K) 

10 CONTINUE 
RETURN 
END 

Calling sequence: 

CALL POLSYM(N,X,Y,W,B,IFLAG) 
Purpose: 

Calculation of a polygonal path with knots differing from interpolation 
nodes for da ta symmetric with respect to the y-axis. 

Description of the parameters: 
N Number of given points n. N must be odd. 
X ARRAY(N): Vector of abscissas. 
Y ARRAY(N): Vector of ordinates. 
W ARRAY(N): Upon calling must contain the parameters 

c*fc, k = 1, • • •, n — 1, with 0 < o-k < 1. 
B ARRAY(N): Upon completion with IFLAG=0 contains the 

slopes of the required polygonal path. 
IFLAG = 0 : Normal execution. 

= 1: N odd and N > 3 are required. 

Figure 2.4. Subroutine POLSYM and its description. 

This procedure is implemented in the subroutine POLSYM (Fig. 2.4). 
An example with a^ = 1/2, k = 1, • • •, 5, is given in Fig. 2.5. 

2.6. Parametric Polygonal Paths 

Suppose for the moment tha t the general assumption (2.1) does not hold 
and tha t the numbering of the points is to correspond to the order in which 
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Figure 2.5. 

the interpolant is to pass through them. Then, in general, the correspond
ing polygonal pa th in the plane can no longer be described by a function, 
and so, instead, we will make use of the parametric representation of a 
curve. Choose v\ < v^ < • • • < vn arbitrarily and set 

(2.16) 

in the interval [vk, vfc+i], k = 1, • • •, n - 1. Then, as desired, 

and 
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Moreover, sk does represent the straight line between these two points, 
since we may eliminate (v — vk)/Avk from the equations, 

to obtain the usual equation of a line, 

in case Axk ^ 0, or its reciprocal if Ayk ^ 0. If (#1,2/1) = (xniVn), then 
we obtain in this manner a closed polygonal path. 

The magnitude of Avk has, in the case of the polgonal path, no effect on 
the appearance of the curve. It is suggested that one choose the vk as the 
cumulative arclength along the curve, i.e, 

(2.17) 

Here, as well as in the general case, this is called the canonical parameter
ization of the curve. If the curve segments are not straight lines, as we will 
be using later, then in general the arclength cannot be computed explicitly 
but (2.17) is the basis of a first approximation. 

2.7. Smoothing with Polygonal Paths I 

We now again assume that (2.1) holds. Further, we suppose that there are 
measurement errors in the yk so that the desired 

sk(x) = Ak + Bk(x -xfc), k = l , - - - , n - 1, (2.18) 

is not to pass through the given points (xk,yk) themselves but through 
points (xk,Ak) with yet to be determined "exact" ordinates Ak, k = 
l , - - - ,n . In order to be as flexible as possible in the choice of these Ak, 
we introduce variable control parameters pk and ask that the differences 
in the ordinates be proportional to the jumps in the first derivative of the 
polygonal path, i.e., 

Pk(Ak - yk) = Bk- Bk-!, k = 1, - • -, n. (2.19) 

Here we have set i?o = Bn — 0. (A similar requirement is made for cubic 
splines in [153]; we will return to this later. More precise reasons for this 
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type of model can be motivated by the theory of nonlinear optimization 
([163]).) 

The interpolation conditions (2.2) yield 

Ak + BkAxk = Ak+i, k = l , - - - , n - 1. 

Solving these for Bk and substi tuting in (2.19) with B0 = Bn = 0 gives the 
linear system of equations, 

M • A = PY, (2.20) 

where 

The n x n coefficient matr ix M is symmetric and, for pk > 0, strictly 
diagonally dominant. Hence, the system of equations is always uniquely 
solvable for arbi trary control parameters pk > 0. In this case then, the 
corresponding smoothing polygonal path also exists and is unique. (We 
will often show the existence of spline interpolants by an argument of strict 
diagonal dominance. The reader not confident with this material should 
consult either the appendix or an appropriate textbook.) 

The subroutine P O L S M l (Figs. 2.6 and 2.7) sets up the linear system 
(2.20) for given pk > 0 and obtains the solution by calling the symmetric 
tridiagonal matr ix solver TRIDIS (see the appendix). (TRIDIS does not 
use pivoting, as this is not necessary for strictly diagonally dominant matri
ces ([8]).) Examples computed with P O L S M l are illustrated in Figs. 2.8a 
and b. In Fig. 2.8a the control parameters pk were chosen to be pk = 1, 
k = 1, • • •, 7, and in 2.8b, p\ — p 3 = 10, P2 = PA = 1, P5 = P6 = Pi ~ 5. 
In the limit as pk —+ oo, Ak = yk, and thus we recover the interpolating 
polygonal path . This can be seen by dividing the kth row of (2.20) by pk 

and then passing to the limit. 
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2.8. Smoothing with Polygonal Paths II 

In statistics, there arises the problem ([39, 69]) of fitting a polygonal path 
with prescribed knots x^, k = 1, • • • , n > 2, to a set of points (u¿,t?¿), 
i = 1, • • •, m > 3, in the sense of least squares. Typically, m is substantially 
larger than n. In this, the assumptions that (2.1) holds and that x\ < ui < 
xn, i = 1, • • •, m, are also made. Abscissas ui and Xk could be the same. 

Using the B-spline representation (2.12), we wish to determine yk corre
sponding to Xk, k — 1, • • •, n, which minimize 

(see also [67], p. 71). The conditions necessary for a minimum of (2.21) 

SUBROUTINE P0LSM1(N,X,Y,P,EPS,A,B,IFLAG,F,G) 
DIMENSION X(N),Y(N),P(N),A(N),B(N),F(N),G(N) 
IFLAG=0 
IF (N.LT.2) THEN 

IFLAG=1 
RETURN 

END IF 
H1=0. 
DO 10 K=1,N-1 

PK=P(K) 
IF (PK.LE.O.) THEN 

IFLAG=4 
RETURN 

END IF 
H2=1./(X(K+1)-X(K)) 
B(K)=H2 
F(K)=PK+H1+H2 
G(K)=-H2 
A(K)=PK*Y(K) 
H1=H2 

10 CONTINUE 
F(N)=P(N)+H1 
A(N)=P(N)*Y(N) 
CALL TRIDIS(N,F,G,A,EPS,IFLAG) 
IF (IFLAG.NE.0) RETURN 
DO 20 K=1,N-1 

B(K)=(A(K+1)-A(K))*B(K) 
20 CONTINUE 

RETURN 
END 

Figure 2.6. Program listing of POLSM1. 

(2.21) 
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Calling sequence: 

CALLP0LSM1(N,X,Y,P,EPS,A,B,IFLAG,F,G) 

Purpose: 
Determination of the coefficients Ak and Bk of a smoothing linear spline 
function (knots same as nodes). 

Description of the parameters: 
N Number of given points. N>2 is required. 
X ARRAY(N): Upon calling must contain the abscissa values 

Xk, k = 1, • • •, n, with x\ < X2 < • • • < xn. 
Y ARRAY(N): Upon calling must contain the ordinate values 

Vk, A; = l , - - - ,n . 
P ARRAY(N): Upon calling must contain the values of the 

weights pk, k = 1, • • •, n. 
EPS see TRIDIS. 
A,B ARRAY(N): Upon completion with IFLAG=0 contain the 

desired spline coefficients, k = 1, • • •, n. 
IFLAG =0: Normal execution. 

= 1: N>2 is required. 
=2: Error in solving the system (TRIDIS). 
=3: pk > 0 is required. 

F,G ARRAY(N): Workspace. 

Required subroutine: TRIDIS. 

Figure 2.7. Description of Subroutine POLSM1. 

are 

which yield the linear system of equations, 

(2.22) 

Its coefficient matr ix C can be writ ten as 

C = ATA, 

(2.23) 
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Figure 2.8. a, b. 
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with 

Evidently, the elements of C are also nonnegative. For arbitrary distri
butions of the Ui and xk, this system of equations cannot, unfortunately, 
easily seen to be strictly diagonally dominant. 

The subroutine POLSM2 (Figs. 2.9 and 2.10) forms the linear system 
(2.23) by means of (2.24) and (2.25) and a t tempts to solve it with TRIDIS 
(thereby assuming tha t no pivoting is necessary). If TRIDIS is not able 
to run till completion (see its description), execution is terminated. This 
is never the case in examples of practical importance. The resulting Ak = 
yky k = 1, '•-,n, and Bk, k = l , - - - , n — 1, are the coefficients of the 
representation (2.4), and so B-splines need not be involved in evaluation of 
the polygonal path . 

Four examples with the same initial da ta are given in Figs. 2.11a-2.12b. 
The following choices of knots were made. For all of them, x\ = u\, 

and then for 2.11a, x2 = ug, for 2.11b, x2 = U4, x% = t¿g, for 2.12a, 
x2 = (UQ + ui)/2, £3 = ug, and finally for 2.12b, x2 = u4, x3 = (i¿6 + i¿7)/2, 
and x4 = UQ. Figure 2.11a shows the smoothing straight line. 

For the practical determination of the knots xk, the number of which 
should be kept as small as possible for practical reasons, one can proceed 

and so, in particular, it is symmetric. In order for C to be nonsingular, it is 
necessary that the rank of A be n, which necessarily presupposes m > n and 
an appropriate distribution of the abscissas ui and xk- (Sufficient conditions 
do not seem to be known.) Further, since Nk{ui)Nk+2{v>i) = 0 (see (2.11)), 
C is tridiagonal. The summands in the sums over i are determined by 
those elements of the diagonal and sub- and super-diagonals, which are in 
general nonzero. Specifically, these are 

(2.24) 

(2.25) 

and 
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SUBROUTINE P0LSM2(M,N,U,V,X,EPS,A,B,IFLAG,F,G) 
DIMENSION U(M),V(M),X(N),A(N),B(N),F(N),G(N) 
IFLAG=0 
IF (M.LT.3.0R.N.LT.2.0R.M.LT.N) THEN 

IFLAG=1 
RETURN 

END IF 
DO 10 K=1,N-1 

B(K)=X(K+1)-X(K) 
10 CONTINUE 

DO 30 K=1,N 
K1=K+1 
K2=K-1 
T=0. 
B2=0. 
RS=0. 
DO 20 1=1,M 

R1=0. 
R2=0. 
UH=U(I) 
IF (K.GT.l) THEN 

IF (UH.GE.X(K2).AND.UH.LE.X(K)) THEN 
R1=(UH-X(K2))/B(K2) 

END IF 
END IF 
IF (K.LT.N) THEN 

IF (UH.GE.X(K).AND.UH.LE.X(Kl)) THEN 
R1=(X(K1)-UH)/B(K) 
R2=(UH-X(K))/B(K) 

END IF 
END IF 
T=T+R1*R2 
B2=B2+R1*R2 
RS=RS+R1*V(I) 

20 CONTINUE 
F(K)=T 
A(K)=RS 
IF (K.LT.N) G(K)=B2 

30 CONTINUE 
CALL TRIDIS(N,F,G,A,EPS,IFLAG) 
IF (IFLAG.NE.0) RETURN 
DO 40 K=1,N-1 

B(K)=(A(K+1)-A(K))/B(K) 
40 CONTINUE 

RETURN 
END 

Figure 2.9. Program listing of POLSM2. 

25 
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Calling sequence: 

CALLP0LSM2(M,N,U,V,X,EPS,A,B,IFLAG,F,G) 

Purpose: Determination of a smoothing polygonal path with fewer knots 
than interpolation points. 

Description of the parameters: 
M 
N 
U 

V 

X 

EPS 
A,B 

IFLAG 

F,G 

Number of given points. 
Number of knots. 
ARRAY(M): Upon calling must contain the abscissa values 

?/fc, k — 1, • • •, TO, with u\ < U2 < • • • < um. 
ARRAY(M): Upon calling must contain the ordinate values 

Vk, k = 1, • • - ,m. 
ARRAY(N): Upon calling must contain the values 

^hi fc =z
 -"-Î " * * > W" 

see TRIDIS. 
ARRAY(N): Upon execution with IFLAG=0 contain the 

desired spline coefficients, k = ! , • • • ,n — 1. 
=0: 
= 1: 
=2 

Normal execution. 
M>3 and N>2 and M>N are required. 
Error in solving the linear system (TRIDIS). 

ARRAY(N): Workspace. 

Required subroutines: TRIDIS. 

Figure 2.10. Description of Subroutine POLSM2. 

in a manner analogous to that for cubic splines ([58]). Initially, choose 
n — 2, and x\ = u\ and X2 = um, then n = 3, with x\ — u\, x$ = Um, and 
#2 chosen so that about the same number of abscissas U{ lie on either side 
of it. The interval [2:1,2:2] o r [#2,^3] for which the sum of the squares of 
the errors is largest is then again so subdivided and so on until a prescribed 
maximum value of n < m is attained. 

It would be very difficult to fix n and determine the xk so as to also 
minimize (2.20) in these variables. We will not consider such so-called free 
knot problems; such do not arise in the interpolation problems constituting 
our main object of study. 
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Figure 2.11. a, b. 
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Figure 2.12. a, b. 



Quadratic Spline Interpolants 

3.1. Knots the Same as Nodes 

Suppose once more that (2.1) holds. We wish now to join together parabolic 
segments, 

sk(x) = Ak + Bk(x - xk) + Ck{x - xk)
2, k = l , - - - ,n - 1, (3.1) 

at the nodes xk so as to form a once continuously difFerentiable quadratic 
spline interpolant s. The interpolation conditions (2.2) become 

Ak = 2/jfe, 

Ak + hkBk + h\Ck = î/fc+i, 

from which we obtain the relation, 

Bk + hkCk = dk, fc = 1, • • •, n -

Since 
s'k(x) = Bk+2 Ck(x - xk), 

the C1 conditions yield the equations, 

Bk-i + 2 hk-iCk-i = Bk, k = 2, • • 

- 1. 

•, n — 1. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

29 
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Now solve (3.3) for Ck to obtain 

(3.6) 

Moreover, if we introduce the additional unknown Bn, then (3.5) holds also 
for k = n, and so substituting (3.6) into (3.5), we obtain ([87]) the linear 
system of equations, 

Bfc-i + Bk = 2 rfjfe-i, k = 2, - -., n, (3.7) 

for the determination of B\,- - ,Bn. Unfortunately, this system consists 
of n unknowns but only n — 1 equations, and thus we require one extra 
condition. If, for example, we fix a value for Bi, then (3.7) can easily be 
solved recursively. It can be shown by complete induction that 

(3.8) 

The coefficients of (3.1) are then uniquely determined by (3.8), (3.2), and 
(3.6). 

From (3.8), one readily sees a shape-preserving property of s ([87]). Sup
pose that yk > 2/fc-i, k = 2, • • •, n, and dk > dk-\, k = 2, • • •, n — 1, as well 
as that 0 < J9i < 2di . Then it follows that Bk > 0 for k = 1, • • • ,n. But 
then s'(x) is continuous piecewise linear and, by (3.4), nonnegative at the 
xjfc. Hence, s'(x) > 0 and we see that a certain kind of monotonicity is pre
served. By substituting (3.8) in (3.6) and using the fact that s'¿(x) = 2Ck, 
we can obtain similar conditions for convexity preservation ([87]). 

3.2. Optimal Initial Slope 

For the choice of the value B\ of the slope at xi, B\ = d\, for exam
ple, suggests itself. But we could also ask that B\ be, in a certain sense, 
optimal. For example, the minimality property (2.14) of polygonal paths 
suggests that we distinguish an s among all quadratic spline interplolants 
by choosing B\ to minimize 

We may calculate 

^ = £ / [*'*(*)]2«te 
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As the second term in the last line is independent of the Bk, it suffices to 
minimize 

(3.9) 

A second possibility that offers itself is ([75]) 

as the integral on the right side, as we shall see later, is minimized by 
certain cubic spline interpolants. It is easily seen that 

and thus by (3.6), 

(3.10) 

A third choice is to take a convex combination, 

(3.11) 


