Ceometric Concepts for Geometic Design

Geometric Concepts for Geometric Design

Advisory Board

Christopher Brown, University of Rochester Eugene Fiume, University of Toronto Brad Myers, Carnegie Mellon University Daniel Siewiorek, Carnegie Mellon University

Geometric Concepts for Geometric Design

Wolfgang Boehm
Technische Universitüt Braunschweig
Braunschweig, Germany

Hartmut Prautzsch
Universität Karlsruhe
Karlsruhe, Germany

Taylor \& Francis Group
Boca Raton London New York

[^0]First published 1994 by A K Peters, Ltd.
Published 2018 by CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 1994 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
ISBN-13: 978-1-56881-004-1 (hbl)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica tion and explanation without intent to infringe.

Visit the Taylor \& Francis Web site at
 http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Library of Congress Cataloging-in-Publication Data

Boehm, Wolfgang, 1928-
Geometric Concepts for Geometric Design / Wolfgang Boehm, Hartmut Prautzsch.
p. cm.

Includes bibliographic references and index.
ISBN 1-56881-004-0

1. Geometry. 2. Geometry-Data processing. I. Prautzsch, Hartmut. II. Title.
QA445.B63 1993b
516-dc20 93-20666

About the cover: The Cover picture shows a computer generated shaded image of a chalice based on a drawing by Paolo Ucello (1397-1475). Ucello's hand drawing was the first extant complex geometrical form rendered according to the laws of perspective. (Perspective Study of a Chalice, Drawing, Gabinetto dei Disegni, Florence, ca 1430-1440.)

Contents

Preface xv
Notation xvii
I Some Linear Algebra 1
1 Linear Systems
1.1 Matrix Notation 3
1.2 Matrix Multiplication 5
1.3 Gaussian Elimination 6
1.4 Gauss-Jordan Algorithm 7
1.5 LU-Factorization 9
1.6 Cramer's Rule 10
1.7 Notes and Problems 11
2 Linear Spaces
2.1 Basis and Dimension 13
2.2 Change of Bases 14
2.3 Linear Maps 16
2.4 Kernel and Fibers 17
2.5 Point Spaces 18
2.6 Notes and Problems 20
3 Least Squares
3.1 Overdetermined Systems 21
3.2 Homogeneous Systems 23
3.3 Constrained Least Squares 24
3.4 Linearization 25
3.5 Underdetermined Systems 26
3.6 Notes and Problems 27
II Images and Projections 29
4 Parallel Projections
4.1 Pohlke's Theorem 31
4.2 Orthogonal Projections 35
4.3 Computing a Parallel Projection 37
4.4 Projecting Rays 39
4.5 Notes and Problems 39
5 Moving the Object
5.1 Euclidean Motions 41
5.2 Composite Motions 43
5.3 Euler Angles 45
5.4 Coordinate Extension 46
5.5 Notes and Problems 47
6 Perspective Drawings
6.1 Homogeneous Coordinates 48
6.2 Central Projection 49
6.3 Moving the Object 51
6.4 Vanishing Points 52
6.5 Completing a Perspective Drawing 54
6.6 Moving the Camera 55
6.7 Spatial Perspective Maps 56
6.8 Notes and Problems 57
7 The Mapping Matrix
7.1 Main Theorem 59
7.2 Camera Data 61
7.3 The Spatial Perspective 62
7.4 Vanishing Points of the System 62
7.5 Stereo Pairs 67
7.6 Notes and Problems 68
8 Reconstruction
8.1 Knowing the Object 71
8.2 Straight Lines in the Image Plane 72
8.3 Several Images 73
8.4 Camera Calibration 75
8.5 Notes and Problems 76
III Affine Geometry 77
9 Affine Space
9.1 Affine Coordinates 79
9.2 Affine Subspaces 80
9.3 Hyperplanes 82
9.4 Intersection 83
9.5 Parallel Bundles 84
9.6 Notes and Problems 85
10 The Barycentric Calculus
10.1 Barycentric Coordinates 86
10.2 Subspaces 88
10.3 Affine Independence 89
10.4 Hyperplanes 91
10.5 Join 92
10.6 Volumes 93
10.7 A Generalization of Barycentric Coordinates 95
10.8 Notes and Problems 96
11 Affine Maps
11.1 Barycentric Representation 99
11.2 Affine Representation 101
11.3 Parallelism and Ratio 102
11.4 Fibers 102
11.5 Affinities 104
11.6 Correspondence of Hyperplanes 104
11.7 Notes and Problems 105
12 Affine Figures
12.1 Triangles 107
12.2 Quadrangles 109
12.3 Polygons and Curves 110
12.4 Conic Sections 112
12.5 Axial Affinities 114
12.6 Dilatation 117
12.7 Notes and Problems 118
13 Quadrics in Affine Spaces
13.1 The Equation of a Quadric 120
13.2 Midpoints 122
13.3 Singular Points 124
13.4 Tangents 125
13.5 Tangent Planes 126
13.6 Polar Planes 127
13.7 Notes and Problems 129
14 More on Affine Quadrics
14.1 Diametric Planes 131
14.2 Conjugate Directions 133
14.3 Special Affine Coordinates 134
14.4 Affine Normal Forms 136
14.5 The Types of Quadrics in the Plane 138
14.6 The Types of Quadrics in Space 139
14.7 Notes and Problems 141
15 Homothetic Pencils
15.1 The Equation 143
15.2 Asymptotic Cones 144
15.3 Homothetic Paraboloids 145
15.4 Intersection with a Subspace 146
15.5 Parallel Intersections 148
15.6 Notes and Problems 150
IV Euclidean Geometry 153
16 The Euclidean Space
16.1 The Distance of Points 155
16.2 The Dot Product 156
16.3 Gram-Schmidt Orthogonalization 158
16.4 Cartesian Coordinates 159
16.5 The Alternating Product 160
16.6 Euclidean Motions 161
16.7 Shortest Distances 162
16.8 The Steiner Surface in Euclidean Space 163
16.9 Notes and Problems 166
17 Some Euclidean Figures
17.1 The Orthocenter 168
17.2 The Incircle 169
17.3 The Circumcircle 170
17.4 Power of a Point 172
17.5 Radical Center 173
17.6 Orthogonal Spheres 174
17.7 Centers of Similitude 175
17.8 Notes and Problems 177
18 Quadrics in Euclidean Space
18.1 Normals 179
18.2 Principal Axes 180
18.3 Real and Symmetric Matrices 181
18.4 Principal Axis Transformation 182
18.5 Normal Forms of Euclidean Quadrics 183
18.6 Notes and Problems 186
19 Focal Properties
19.1 The Ellipse 188
19.2 The Hyperbola 190
19.3 The Parabola 192
19.4 Confocal Conic Sections 193
19.5 Focal Conics 195
19.6 Focal Distances 198
19.7 Dupin's Cyclide 199
19.8 Notes and Problems 202
V Some Projective Geometry 205
20 The Projective Space
20.1 Homogeneous Coordinates 207
20.2 Projective Coordinates 209
20.3 The Equations of Planes and Subspaces 211
20.4 The Equation of a Point 212
20.5 Pencils and Bundles 214
20.6 Duality 216
20.7 Notes and Problems 219
21 Projective Maps
21.1 Matrix Notation 221
21.2 Exceptional Spaces 223
21.3 The Dual Map 224
21.4 Collineations and Correlations 225
21.5 The Crossratio 227
21.6 Harmonic Position 229
21.7 Notes and Problems 230
22 Some Projective Figures
22.1 Complete Quadruples in the Plane 231
22.2 Desargues' Configuration 234
22.3 Pappus' Configuration 235
22.4 Conic Sections 237
22.5 Pascal's Theorem 238
22.6 Brianchon's Theorem 240
22.7 Rational Bézier Curves 242
22.8 Rational Bézier surfaces 244
22.9 Notes and Problems 245
23 Projective Quadrics
23.1 Projective Quadrics 247
23.2 Tangent Planes 248
23.3 The Role of the Ideal Plane 250
23.4 Harmonic Points and Polarity 252
23.5 Pencils of Quadrics 253
23.6 Ranges of Quadrics 255
23.7 The Imaginary in Projective Geometry 257
23.8 The Steiner Surface 260
23.9 Notes and Problems 262
VI Some Descriptive Geometry 265
24 Associated Projections
24.1 Plan and Elevation 267
24.2 Side Elevation 269
24.3 Special Side Elevations 271
24.4 Cross Elevation 273
24.5 Curves on Surfaces 276
24.6 Canal Surface 278
24.7 The Four-Dimensional Space 280
24.8 Notes and Problems 282
25 Penetrations
25.1 Intersections 284
25.2 Distinguished Points 286
25.3 Double Points 287
25.4 The Order 289
25.5 Bezout's Theorem 291
25.6 Decompositions 292
25.7 Projections 294
25.8 Notes and Problems 295
VII Basic Algebraic Geometry 297
26 Implicit Curves and Surfaces
26.1 Plane Algebraic Curves 299
26.2 Multiple Points 300
26.3 Euler's Identity 302
26.4 Polar Forms of Curves 303
26.5 Algebraic Surfaces 305
26.6 Polar Forms of Surfaces 307
26.7 Notes and Problems 309
27 Parametric Curves and Surfaces
27.1 Rational Curves 310
27.2 Changing the Parameter 312
27.3 Osculants of a Curve 314
27.4 Bézier Curves 317
27.5 Splines 319
27.6 Osculants of a Surface 321
27.7 Notes and Problems 324
28 Some Elimination Methods
28.1 Sylvester's Method 327
28.2 Cayley's Method 329
28.3 Computing Cayley's Matrix 330
28.4 Dixon's Method 331
28.5 Computing Dixon's Matrix 332
28.6 Triangular Matrices 333
28.7 Notes and Problems 335
29 Implicitization, Inversion and Intersection
29.1 Parametric Curves in the Plane 337
29.2 Parametric Space Curves 340
29.3 Normal Curves 341
29.4 Parametric Tensor Product Surfaces 343
29.5 Parametric Triangular Surfaces 345
29.6 Intersections 346
29.7 Notes and Problems 348
VIII Differential Geometry 351
30 Curves
30.1 Parametric Curves and Arc Length 353
30.2 The Frenet Frame 354
30.3 Moving the Frame 356
30.4 The Spherical Image 357
30.5 Osculating Plane and Sphere 358
30.6 Osculating Curves 361
30.7 Notes and Problems 362
31 Curves on Surfaces
31.1 Parametric Surfaces and Arc Element 366
31.2 The Local Frame 369
31.3 The Curvature of a Curve 370
31.4 Meusnier's Theorem 371
31.5 The Darboux Frame 373
31.6 Notes and Problems 374
32 Surfaces
32.1 Dupin's Indicatrix and Euler's Theorem 376
32.2 Gaussian Curvature and Mean Curvature 379
32.3 Conjugate Directions and Asymptotic Lines 381
32.4 Ruled Surfaces and Developables 382
32.5 Contact of Order r 385
32.6 Notes and Problems 386
Bibliography 389
Index 395

Taylor \& Francis

Taylor \& Francis Group
http://taylorandfrancis.com

Preface

This book addresses students, teachers and researchers in mathematics, computer science and engineering who are confronted with geometric problems, attracted by their beauty, and/or wish to get a deeper geometric background.

Its purpose is to give a solid foundation of geometric methods and their underlying principles. It may serve as an introduction to geometry as well as a practical guide to geometric design and modeling and to other applications of geometry.

The main idea of this book is to provide an imagination for what happens geometrically and to present tools for describing problems. A problem is often solved simply by finding the right description. The topics presented have been chosen from the many geometric problems the authors have confronted during their work in applied geometry and geometric design.

In writing this book we intended to disconnect geometric ideas and methods from special applications, in order to make these ideas clear and to allow the reader to apply the presented material to other problems of a geometric nature. Also, in many situations, a figure can say more than a thousand words. This old Chinese proverb ought to be a guideline in writing a text on geometry. Therefore, figures are crucial throughout this book, while diagrams are an integral part of Chapters 1 and 28.

This book owes its inception to lectures given by Boehm at Rensselaer Polytechnic Institute and the Technical University of Braunschweig several times between 1986 and 1990. This book has been partly written at Rensselaer, and we are greatly indebted to Harry McLaughlin who has been promoting Applied Geometry at Rensselaer and who together with Joe Ecker initiated their cooperation with the TU Braunschweig. Andreas Johannsen read the first and later drafts of the book very carefully, and we benefitted much from his helpful suggestions. We thank Dr. Michael Kaps and Wolfgang Völker for typing the manuscript; Daniel Bister for proof reading the mathematics and Jeannette Machnis for proofreading the English text; and Mrs. Diane McNulty for her judicial and committed assistance in the cooperation with Rensselaer.

Troy, in December 1992

Wolfgang Boehm
Hartmut Prautzsch

Notation

The following notation is used throughout this book:

Scalars

Vectors, points, coordinate columns
Extended columns (by an additional coordinate)
Differences between two points
Matrices
Augmented matrices
Vector spaces
Point spaces
Orthogonal angles
Parallelism
$\alpha, \beta, \ldots, a, b, \ldots$
$\mathbf{a}, \mathbf{b}, \ldots, \mathbf{p}, \mathbf{q}, \ldots$
x, y, \ldots
$\Delta \mathbf{x}, \Delta \mathbf{y}, \ldots, \Delta \mathrm{x}, \Delta \mathbf{y} \ldots$
A, B, \ldots
$\mathbb{A}, \mathbb{B}, \ldots$
$\mathbf{V}, \mathbf{A}, \ldots$
$\mathcal{A}, \mathcal{P}, \ldots$
//

Bold type is used whenever a new term is introduced.

Remark: Each chapter starts with an abstract and a short bibliography for further information on the particular subject. The complete references are listed at the end of the book.

Taylor \& Francis

Taylor \& Francis Group
http://taylorandfrancis.com

$\mathbb{P A R T} \mathbb{O} \mathbb{E}$

Some Linear Algebra

Many problems encountered in applied mathematics are linear or can be approximated by linear systems which are, in general, computationally tractable. The corresponding mathematical subdiscipline is called linear algebra. At the heart of linear algebra are techniques, such as Gaussian elimination and the Gauss-Jordan algorithm, for computing solutions of linear systems. The main tool of linear algebra is matrices which help to arrange coefficients and describe operations.

Taylor \& Francis

Taylor \& Francis Group
http://taylorandfrancis.com

1 Linear Systems

Most finite linear systems can be described by matrices, a very useful shorthand notation which emphasizes the underlying linear structure and the interdependencies between the equations.

Literature: Atkinson, Boehm•Prautzsch, Conte•de Boor

1.1 Matrix Notation

A linear system is a set of equations of the form

$$
\begin{aligned}
& a_{1,1} x_{1}+\cdots+a_{1, n} x_{n}=a_{1} \\
& \vdots \quad \vdots \quad \vdots \\
& a_{m, 1} x_{1}+\cdots+a_{m, n} x_{n}=a_{m},
\end{aligned}
$$

where the a 's are given real numbers and the x 's are unknowns. The array A of the coefficients $a_{i, k}$,

$$
A=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n}
\end{array}\right]=\left[a_{i, k}\right]
$$

is called an $m \times n$ matrix. The matrix A contains the element $a_{i, k}$ in its i th row and k th column. Similarly, the a_{i} can be written as an $m \times 1$ matrix or m column,

$$
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right]
$$

Consequently one has

$$
A=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right]
$$

where a_{k} represents the k th column of A. Note that a scalar a can be viewed as a 1×1 matrix.

The $n \times m$ matrix $A^{\mathrm{t}}=\left[a_{i, k}^{\mathrm{t}}\right]$, defined by $a_{i, k}^{\mathrm{t}}=a_{k, i}$, is called the transpose of A, e.g., for A above

$$
A^{t}=\left[\begin{array}{ccc}
a_{1,1} & \ldots & a_{m, 1} \\
\vdots & \ddots & \vdots \\
a_{1, n} & \ldots & a_{m, n}
\end{array}\right]=\left[a_{k, i}\right]
$$

In particular, the transpose \mathbf{a}^{t} of an m column a forms an m row

$$
\mathbf{a}^{\mathbf{t}}=\left[a_{1} \ldots a_{m}\right]
$$

Often it is helpful to visualize an $m \times n$ matrix A or an m column a in block form, i.e., as a rectangle of height m and width n or 1 , respectively:

The matrix A is a square matrix if $m=n$, and it is symmetric if additionally $a_{i, k}=a_{k, i}$. A square matrix $\left[u_{i, k}\right]$ is called upper triangular if $u_{i, k}=0$ for $i>k$. Similarly a square matrix $\left[l_{i, k}\right]$ is called lower triangular if $l_{i, k}=0$ for $i<k$. The Kronecker symbol

$$
\delta_{i, k}= \begin{cases}1 & \text { if } i=k \\ 0 & \text { otherwise }\end{cases}
$$

is used to define the identity matrix as the $n \times n$ square matrix $I=\left[\delta_{i, k}\right]$.

1.2 Matrix Multiplication

Let $A=\left[a_{i, j}\right]$ be an $m \times l$ matrix and $B=\left[b_{j, k}\right]$ an $l \times n$ matrix. The $m \times n$ matrix $C=\left[c_{i, k}\right]$ with the entries

$$
c_{i, k}=\sum_{j=1}^{l} a_{i, j} b_{j, k}
$$

is called the product $A B$ of A and B, in this order. Note that the width l of A has to match the height l of B. It is helpful to visualize the product $A B=C$ in block form, as introduced above:

The element $c_{i, k}$ is the dot or scalar product of the i th row of A with the k th column of B. This may be memorized as "row times column".
Using this product the linear system in Section 1.1 can be written more compactly as

$$
A \mathbf{x}=\mathbf{a}
$$

and visualized by blocks as

where x denotes the n column of the unknown x_{i}. Likewise the scalar product α of two m columns a and b can be written as

$$
\alpha=\mathbf{a}^{\mathbf{t}} \mathbf{b}=\mathbf{b}^{\mathbf{t}} \mathbf{a}
$$

Note that the product $\mathbf{x} \alpha$ is defined as a matrix multiplication, but $A \alpha$ is not. It is convenient to define $A \alpha=\alpha A$ as the matrix of elements $a_{i, k} \alpha$, i.e., one has

$$
A \cdot \alpha=\left[\mathbf{a}_{1} \alpha \ldots \mathbf{a}_{n} \alpha\right]=\left[a_{i, k} \alpha\right]
$$

In particular, one gets for $\alpha=0$ the null column $o=x 0$ and the null matrix $O=0 A$.

A square matrix A is said to be non-singular if its inverse A^{-1} defined by $A^{-1} A=A A^{-1}=I$ exists. Finally, a matrix B is said to be orthonormal if $B^{\mathbf{t}} B=I$.

1.3 Gaussian Elimination

Linear systems are most frequently solved by Gaussian elimination. It is convenient to represent the linear system $A \mathbf{x}=\mathbf{a}$ by the augmented matrix

$$
[A \mid \mathbf{a}]=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n} \mid \mathbf{a}\right]
$$

Then the linear systems obtained by the following simple operations on [$A \mid a]$ will have the same solutions:

1 exchanging two rows,
2 multiplying one row by a factor $\neq 0$,
3 adding one row to another,
4 exchanging two columns of A while simultaneously exchanging the corresponding unknowns in the column \mathbf{x}.

It was Gauss' idea to use these four simple operations to transform [A|a] into the matrix [$B \mid \mathbf{b}$], where B is composed of an upper triangular, nonsingular $r \times r$ matrix U, an $r \times n-r$ matrix matrix B^{*}, an $m-r \times n$ null matrix, an r column \mathbf{b}, and an $m-r$ column \mathbf{s}, as shown below.

If $\mathbf{s} \neq \mathbf{o}$, there exists no solution. However, if $\mathbf{s}=\mathbf{o}$, there exists an $n-r$ parameter family of solutions which can easily be determined from the equivalent system $B \mathbf{x}=\mathbf{b}$ as follows. Assigning arbitrary values to x_{r+1}, \ldots, x_{n} as parameters one can compute x_{r} backward from row r, then x_{r-1} from row $r-1, \ldots$, and finally x_{1} from row 1 .

Remark 1: The number r is called the rank of A, denoted by rank A. Note that $r \leq m$ and $r \leq n$.

Remark 2: If $\mathbf{a}=\mathbf{o}$, the linear system $A \mathbf{x}=\mathbf{a}$ is called homogeneous. Then one also has $\mathbf{b}=\mathbf{o}$. The homogeneous system has a non-trivial solution if and only if $r<n$ as can be inferred from the equivalent system $B \mathbf{x}=O$. If \mathbf{x} is a solution of a homogeneous system, then $\mathbf{x} \cdot \varrho$, where $\varrho \neq 0$, is also a solution.

1.4 Gauss-Jordan Algorithm

Gaussian elimination can further be used to construct an explicit representation for the set of all solutions of the linear system $A \mathbf{x}=\mathbf{a}$. With the aid of the operations $1,2,3$, one transforms the matrix $\left[U\left|B^{*}\right| \mathbf{b}\right]$ from above into $\left[I\left|C^{*}\right| \mathbf{c}^{*}\right]$ as illustrated in the following diagram.

The general solution of this system is depicted below where $-I$ denotes the negative $n-r \times n-r$ identity matrix and t an $n-r$ parameter column.

Note that for $r<n$ the representation of \mathbf{x} depends on the sequence of operations performed during Gaussian elimination.

Remark 3: The construction can be reversed. Let [$C \mid \mathbf{c}]$ represent the set

$$
\mathbf{x}=\mathbf{c}+C \mathbf{t}
$$

of (given) solutions where \mathbf{c} is some n column, C an $n \times m$ matrix, and \mathbf{t} a column of m free parameters. The set represented by $[C \mid \mathrm{c}]$ does not change if the transposed matrix $[C \mid c]^{t}$ is modified by Gaussian elimination. Using the operations $1, \ldots, 4$, the matrix C^{t} can be transformed into an $s \times n$ matrix $\left[-I \mid D^{t}\right]$ provided $\operatorname{rank} C=s$. This is illustrated below where the superfluous zero rows are discarded. Adding appropriate multiples of rows of $\left[-I \mid D^{\mathfrak{t}}\right]$ to $\mathbf{c}^{\mathbf{t}}$ one obtains a row $\left[\mathbf{o}^{\mathbf{t}} \mid \mathbf{d}^{\mathbf{t}}\right]$ as illustrated below.

Now one easily obtains a linear system for which $\mathbf{x}=\mathbf{c}+C \mathbf{t}$ is a solution, namely

1.5 LU-Factorization

Often the matrix A of a linear system is square, i.e., $m=n$. Such a system is uniquely solvable if and only if A is non-singular or equivalently if $\operatorname{rank} A=n$.

A non-singular matrix \boldsymbol{A} can sometimes be factored into a lower-triangular matrix L, whose diagonal entries are all equal to 1 , and an upper triangular matrix U, i.e., $A=L U$,

$$
\begin{aligned}
& \left.\begin{array}{|ccc|}
\hline a_{1,1} & \cdots & a_{1, n} \\
\vdots & A & \vdots \\
a_{n, 1} & \cdots & a_{n, n}
\end{array}\right] \left.=\begin{array}{|ccccc|}
\hline 1 & & & \\
\vdots & \ddots & & & \\
\vdots & & L & & \\
l_{n, 1} & \cdots & 1
\end{array} \right\rvert\, \\
& \left.\begin{array}{|cccc}
\hline u_{1,1} & \cdots & u_{1, n} \\
\ddots & & & \\
& & U & \\
& & & \ddots \\
& & & u_{n, n}
\end{array}\right]
\end{aligned}
$$

The entries of L and U can successively be computed by means of the matrix multiplication rule for $a_{1,1}, \ldots, a_{1, n}, a_{2,1}, \ldots, a_{2, n}, \ldots, a_{n, 1}, \ldots, a_{n, n}$ in this order. At each step there is exactly one unknown $\boldsymbol{l}_{\boldsymbol{i}, \boldsymbol{k}}$ or $\boldsymbol{u}_{\boldsymbol{i}, \boldsymbol{k}}$ to be determined.

If a non-singular matrix A cannot be factored in this way, one can always rearrange the rows of A to obtain a matrix A^{*} which has an LU-factorization. In all cases one can start to compute L and U as if A were to be factored and interchange the rows of A during the computation whenever it becomes necessary to avoid dividing by zero. The LU-factorization is another organization of Gaussian elimination and can be used to solve a system $A \mathbf{x}=\mathbf{a}$. Let $\left[A^{*} \mid \mathbf{a}^{*}\right]$ be obtained from $[A \mid \mathbf{a}]$ by a row permutation such that an LU-factorization $A^{*}=L U$ exists. Solving the two triangular systems

by forward and backward substitution respectively, yields the solution for $A^{*} \mathbf{x}=\mathbf{a}^{*}$ and hence for $A \mathbf{x}=\mathbf{a}$.

Remark 4: The LU-factorization is useful for solving the system $A \mathbf{x}=\mathbf{a}$ repeatedly for a fixed coefficient matrix A and different right hand sides a. In particular, if the right hand sides are the columns of the identity matrix I one obtains the inverse of A.

Remark 5: If A is symmetric and $\mathbf{x}^{t} A \mathbf{x}>0$ for all $\mathbf{x} \neq 0$, then A is called positive definite, and a symmetric factorization $A=C^{\mathrm{t}} C$, where C is an upper triangular matrix, is possible without row interchanges. This is called a Cholesky factorization.

1.6 Cramer's Rule

Let $A=\left[a_{i, k}\right]$ be a square $n \times n$ matrix and $A_{i, k}$ the submatrix obtained from A by deleting the i th row and k th column. Then the determinant of A, written $\operatorname{det} A$, is defined by the recursion

$$
\operatorname{det} A=\sum_{k=1}^{n}(-1)^{i+k} a_{i, k} \operatorname{det} A_{i, k} \quad \text { and } \quad \operatorname{det}[a]=a
$$

for any scalar a. This definition does not depend on the choice of i and is called Laplace expansion along the i th row. The term $(-1)^{i+k} \operatorname{det} A_{i, k}$ is called the cofactor of $a_{i, k}$.

The determinant can be used to solve a non-homogeneous linear system $A \mathbf{x}=\mathbf{a}$ when A is some non-singular $n \times n$ matrix .

Let $A_{k}=\left[\begin{array}{llll}\mathbf{a}_{1} \ldots & \mathbf{a} \ldots \mathbf{a}_{n}\end{array}\right]$ be obtained from $A=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{k} \ldots \mathbf{a}_{n}\right]$ by replacing the k th column with a. Then Cramer's rule,

$$
x_{k}=\frac{\operatorname{det} A_{k}}{\operatorname{det} A}, \quad k=1, \ldots, n
$$

gives the coordinates x_{k} of the solution. Note that $\operatorname{det} A \neq 0$ whenever A is non-singular.

In the case of a homogeneous system $A \mathbf{x}=0$, where A is an $n-1 \times n$ matrix with $\operatorname{rank} A=n-1$, one can show that

$$
x_{k}=\varrho \cdot(-1)^{k} \operatorname{det} A_{k}^{*}, \quad k=1, \ldots, n
$$

provides the solution of the system, where $\varrho \neq 0$ is a free parameter and A_{k}^{*} is obtained from A by deleting the k th column.

Remark 6: Cramer's rule is of practical use only for small n.

1.7 Notes and Problems

1 It is possible to improve the numerical stability of Gaussian elimination by row interchanges.

2 One of the numerically most stable algorithms used to solve linear systems is the so-called Householder algorithm.

3 Let A^{*} and I^{*} be obtained from the matrices A and I of equal height by the same row permutation. Then $P=I^{*}$ can be used to write down the permutation of A, i.e.,

$$
A^{*}=P A .
$$

P is called a permutation matrix. It is inverse to its transpose, i.e., $P^{\mathrm{t}} P=I$.

4 Using a permutation matrix P (see Note 3), Gaussian elimination can be summarized as

$$
L^{-1} P[A \mid \mathbf{a}]=U
$$

5 The LU-factorization of $A^{*}=P A$ can be used to compute $X=A^{-1}$ by solving $A^{*} X=P$ column by column.

6 Most elimination methods for solving linear systems are actually just different organizations of the Gaussian elimination process. They differ only in the ordering of the computation steps.

7 For two $n \times n$ matrices A and B one has $\operatorname{det} A B=\operatorname{det} A \cdot \operatorname{det} B$.
8 Matrix multiplication by hand is best organized by Falk's scheme as illustrated in Figure 1.1.

Figure 1.1: Falk's scheme.

9 Falk's scheme can also be used to procure an LU-factorization or a Cholesky factorization.

2 Linear Spaces

A linear or vector space \mathbf{V} over \mathbb{R} is a set which is closed under linear combinations with real coefficients. The elements of \mathbf{V} are called vectors, the coefficients are scalars. A map from one linear space into another is called a linear map if it preserves linear combinations. The standard vector space is $\mathbf{R}^{\boldsymbol{m}}$.

Literature: Greub, Strang, van der Waerden

2.1 Basis and Dimension

Let o denote the zero vector, then any r vectors $\mathbf{a}_{1}, \ldots, a_{r}$ belonging to a vector space V are said to be linearly dependent if there exist scalars x_{1}, \ldots, x_{r} not all of which are zero such that

$$
\mathbf{a}_{1} x_{1}+\cdots+\mathbf{a}_{r} x_{r}=\mathbf{o} .
$$

Otherwise $\mathbf{a}_{1}, \ldots, \mathbf{a}_{r}$ are said to be linearly independent. On building the matrix $A=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{r}\right]$, one has that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{r}$ are linearly dependent if and only if $A x=0$ has a non-trivial solution.

The set of all linear combinations of the given $\mathbf{a}_{\boldsymbol{i}}$ forms a linear space, called the span of the a_{i}, or $\operatorname{span}\left[a_{1} \ldots a_{r}\right]$.

The space $\mathbf{A}=\operatorname{span}\left[\mathbf{a}_{1} \ldots \mathbf{a}_{\tau}\right]$ is called a subspace of \mathbf{V}. The dimension of \mathbf{A}, or $\operatorname{dim} \mathbf{A}$, is defined as the maximum number of linearly independent vectors in \mathbf{A}. Occasionally, $n=\operatorname{dim} \mathbf{A}$ is given as a superscript, $\mathbf{A}^{\boldsymbol{n}}$

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{\boldsymbol{n}}$ be \boldsymbol{n} linearly independent vectors of an \boldsymbol{n}-dimensional linear space \mathbf{V}, and let \mathbf{v} be some vector of \mathbf{V}. Then these $n+1$ vectors are linearly dependent, i.e.,

$$
\mathbf{v}=\mathbf{a}_{1} x_{1}+\cdots+\mathbf{a}_{n} x_{n}, \quad x_{i} \in \mathbb{R}
$$

in matrix notation $\mathbf{v}=A \mathbf{x}$. In this equation the factors x_{i} can be uniquely determined, otherwise the \mathbf{a}_{i} would not be linearly independent. Hence \mathbf{A} is non-singular. One says that the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ form a basis of \mathbf{V}. The $a_{i} x_{i}$ are called the components of v, while the x_{i} are referred to as the coordinates of v with respect to the a_{i}.

Remark 1: It is convenient to denote a vector by the vector of its coordinates $\mathbf{x}=\left[x_{1} \ldots x_{n}\right]^{t}$. This convention is used throughout this book.

Remark 2: On choosing some fixed basis of $\mathbf{V}^{\boldsymbol{n}}$ every vector of $\mathbf{V}^{\boldsymbol{n}}$ corresponds to a unique element of \mathbb{R}^{n}, and every linear combination in $\mathbf{V}^{\boldsymbol{n}}$ corresponds to the same linear combination in $\mathbb{R}^{\boldsymbol{n}}$. Therefore it is sufficient to consider \mathbb{R}^{n} instead of \mathbf{V}^{n}. In particular, the a_{i} from above may be viewed as elements of $\mathbb{R}^{m}, m \geq n$.

2.2 Change of Bases

Let a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} denote two bases of a linear space V. Then the a's can be expressed uniquely in terms of the b 's,

$$
\mathbf{a}_{k}=\mathbf{b}_{1} c_{1, k}+\cdots+\mathbf{b}_{n} c_{n, k}
$$

Using matrix notation one gets

$$
\left[\begin{array}{lll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{b}_{1} & \ldots & \mathbf{b}_{n}
\end{array}\right]\left[\begin{array}{ccc}
c_{1,1} & \cdots & c_{1, n} \\
\vdots & & \vdots \\
c_{n, 1} & \cdots & c_{n, n}
\end{array}\right]
$$

or more concisely $A=B C$. As a consequence one has $C=B^{-1} A$, i.e., $C=\left[c_{i, k}\right]$ is non-singular since it is the product of non-singular matrices. Let v be some arbitrary vector of V with the representations $\mathbf{v}=A \mathbf{x}=B \mathbf{y}$, i.e.,

$$
\mathbf{v}=\left[\begin{array}{lll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{b}_{1} & \ldots & \mathbf{b}_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

It then follows that $\mathbf{y}=C \mathbf{x}$, i.e.,

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{ccc}
c_{1,1} & \cdots & c_{1, n} \\
\vdots & & \vdots \\
c_{n, 1} & \cdots & c_{n, n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Note that the a's are expressed in terms of the b's, but the y 's are expressed in terms of the x 's. Both transformations are called contragredient to each other.

The representation $\mathbf{a}_{\boldsymbol{k}}=B \mathbf{c}_{\boldsymbol{k}}$ has a simple but important geometric meaning:

The column c_{k} of C represents the coordinates of the basis vector \mathbf{a}_{k} with respect to the basis b_{1}, \ldots, b_{n}.

Example 1:

For $\left[\mathbf{a}_{1} \mathbf{a}_{2}\right]=\left[\mathbf{b}_{1} \mathbf{b}_{2}\right]\left[\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right]$
one has $\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

2.3 Linear Maps

Of particular interest are maps which are compatible with the linear structure of linear spaces. Such maps must preserve linear combinations. Consider two linear spaces \mathbf{A} and \mathbf{B} with bases $\mathbf{a}_{1}, \ldots, \mathbf{a}_{\boldsymbol{n}}$ and $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ respectively, and a map $\varphi: \mathbf{A} \rightarrow \mathbf{B}$ which preserves linear combinations, i.e.,

$$
\varphi[\mathbf{a} \cdot \alpha+\mathbf{b} \cdot \beta]=\varphi \mathbf{a} \cdot \alpha+\varphi \mathbf{b} \cdot \beta
$$

for all $\mathbf{a}, \mathbf{b} \in \mathbf{A}$ and all $\alpha, \beta \in \mathbb{R}$. Such a map φ is called a linear map.
The images of the a_{k} can uniquely be expressed in terms of the b 's,

$$
\varphi \mathbf{a}_{k}=\mathbf{b}_{1} c_{1, k}+\cdots+\mathbf{b}_{m} c_{m, k}
$$

which may be written in matrix notation as

$$
\left[\begin{array}{lll}
\varphi \mathbf{a}_{1} & \ldots & \varphi \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{b}_{1} & \ldots & \mathbf{b}_{m}
\end{array}\right]\left[\begin{array}{ccc}
c_{1,1} & \cdots & c_{1, n} \\
\vdots & & \vdots \\
c_{m, 1} & \cdots & c_{m, n}
\end{array}\right]
$$

or in condensed form as $\varphi A=B C$. Let a be a vector of \mathbf{A},

$$
\mathbf{a}=\mathbf{a}_{1} x_{1}+\cdots+\mathbf{a}_{n} x_{n}=A \mathbf{x}
$$

and $\mathbf{b}=\varphi \mathbf{a}$ its image in \mathbf{B},

$$
\mathbf{b}=\mathbf{b}_{1} y_{1}+\cdots+\mathbf{b}_{m} y_{m}=B \mathbf{y}
$$

Then one has $\mathbf{y}=B^{-1} \mathbf{b}$ and $\mathbf{b}=\varphi A \mathbf{x}=B C \mathbf{x}$. This implies $\mathbf{y}=C \mathbf{x}$, i.e.,

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]=\left[\begin{array}{ccc}
c_{1,1} & \cdots & c_{1, n} \\
\vdots & & \vdots \\
c_{m, 1} & \cdots & c_{m, n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Note that the φ a's are expressed in terms of the b's via C, but the y 's are expressed in terms of the x 's, i.e., both transformations are contragredient to each other.

The representation $\varphi \mathbf{a}_{k}=B c_{k}$ has a simple but important geometric meaning:

The column \mathbf{c}_{k} of C represents the coordinates of the image $\varphi \mathbf{a}_{k}$ of the basis vector \mathbf{a}_{k} with respect to the basis b_{1}, \ldots, b_{m}.

Example 2: On inspecting the figure one obtains the matrix C,

$$
\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 / 2 & -3 / 2 & 0 \\
1 / 2 & 1 / 2 & 1
\end{array}\right]
$$

2.4 Kernel and Fibers

The images $\varphi \mathbf{a}_{k}$ span $\varphi \mathbf{A}$, the image of \mathbf{A}. The image of \mathbf{A} is a subspace of \mathbf{B} with $\operatorname{dim} \varphi \mathbf{A} \leq \operatorname{dim} \mathbf{A}$. These dimensions can be analyzed in more detail. There exists a subspace $\mathbf{K} \subset \mathbf{A}$, called the kernel of $\varphi, \mathbf{K}=\operatorname{kern} \varphi$, which is the set of all vectors in A mapped into the null vector of B. The subspace \mathbf{K} is represented by the solution of the homogeneous system

$$
C \mathbf{x}=\mathbf{o}
$$

For any fixed vector a of \mathbf{A} and all elements \mathbf{k} of this kernel \mathbf{K}, the subset $\mathcal{F}_{\mathbf{a}}$ of \mathbf{A} formed by all $\mathbf{a}+\mathbf{k}$ is called the fiber over a. Evidently, φ maps all elements of $\mathcal{F}_{\mathbf{a}}$ into the same image $C \mathbf{a}$. Note that a fiber is a linear space only if $\mathbf{a}=\mathbf{o}$.

Using a basis of \mathbf{A} which contains a basis of \mathbf{K} one finds that

$$
\operatorname{dim} \varphi \mathbf{A}+\operatorname{dim} \mathbf{K}=\operatorname{dim} \mathbf{A}
$$

Example 3: In Example 2, K consists of all vectors [$\left.\begin{array}{lll}3 & 1 & -2\end{array}\right]^{\mathrm{t}} \lambda$, with $\lambda \in \mathbb{R}$.

2.5 Point Spaces

One can see the world as a space of points. This point space is closely related to a linear space in a natural way. Two points are connected by a vector and a vector added to a point gives a point again. These relations are expressed by the notation

$$
\mathbf{v}=\mathbf{p}-\mathbf{a} \quad \text { and } \quad \mathbf{p}=\mathbf{a}+\mathbf{v}
$$

where \mathbf{a} and \mathbf{p} are points and \mathbf{v} is the vector pointing from \mathbf{a} to \mathbf{p}. Let \mathbf{v} be given with respect to a basis of $A^{n}, v=\mathbf{a}_{1} x_{1}+\cdots+\mathbf{a}_{n} x_{n}$, then

$$
\mathbf{p}=\mathbf{a}+\mathbf{a}_{1} x_{1}+\cdots+\mathbf{a}_{n} x_{n}
$$

Let \mathbf{a} be a fixed point, then every coordinate column $\mathbf{x}=\left[x_{1} \ldots x_{n}\right]^{t}$ defines a point \mathbf{p}, with different \mathbf{x} 's generating different points.

Affine spaces: The set of points \mathbf{p} corresponding to all $\mathbf{x} \in \mathbb{R}^{n}$ is called an affine space \mathcal{A}, while span $\left[\mathbf{a}_{1} \ldots a_{n}\right]$ is called the underlying vector space \mathbf{A}. One defines $\operatorname{dim} \mathcal{A}=\operatorname{dim} \mathbf{A}$. A point $\mathbf{a} \in \mathcal{A}$ together with a basis $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbf{A}$ form an affine system in \mathcal{A}. The point \mathbf{a} is referred to as the origin while the x_{i} are called the affine coordinates of \mathbf{p} with respect to the frame $\mathbf{a} ; \mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. Affine spaces are discussed in Part III.

Figure 2.1: Parallelism and affine scale.
In most parts of this book, when points are viewed as vectors they will be denoted by their coordinate columns \mathbf{x} with respect to some fixed frame. Note that \mathbf{p} and \mathbf{x} above denote the same point with respect to different systems.

An affine subspace \mathcal{S} of \mathcal{A} is defined by some point $\mathbf{b} \in \mathcal{A}$ and a subspace \mathbf{S} of \mathbf{A}, i.e., $\mathcal{S}=\{\mathbf{b}+\mathbf{v} \mid \mathbf{v} \in \mathbf{S}\}$. In particular, a line
\mathcal{L} is a 1 -dimensional subspace. It will be represented as

$$
\mathbf{x}=\mathbf{b}+\mathbf{v} \lambda .
$$

The parameter λ is called an affine scale on \mathcal{L}. It represents \mathbf{x} with respect to the affine system $\mathbf{b} ; \mathbf{v}$. Using this scale, the ratio of the point λ with respect to the points λ_{0} and λ_{1} is defined by

$$
\operatorname{ratio}\left(\lambda ; \lambda_{0}, \lambda_{1}\right)=\frac{\lambda-\lambda_{0}}{\lambda_{1}-\lambda} .
$$

Note that this ratio depends on the ordering of the points, but not on the respective affine scale.

The line \mathcal{L} is said to be parallel to a second line \mathcal{L}^{*} given by

$$
\mathbf{x}=\mathbf{b}^{*}+\mathbf{v}^{*} \boldsymbol{\mu}
$$

if $\mathbf{v}=\mathbf{v}^{*} \sigma, \sigma \neq 0$.
Euclidean spaces: If the basis vectors \mathbf{a}_{i} of the underlying vector space A have length 1 and are pairwise perpendicular, then the corresponding affine system is called a Cartesian system. The x_{i} are called Cartesian coordinates, while the space \mathcal{A} is called a Euclidean space and denoted by \mathcal{E}. In a Cartesian system the square of the distance between two points \mathbf{x} and $\mathbf{x}+\mathbf{d}$ equals $\mathbf{d}^{\mathbf{t}} \mathbf{d}$, and two vectors \mathbf{u} and \mathbf{v} are perpendicular if $\mathbf{u}^{\mathbf{t}} \mathbf{v}=\mathbf{0}$. Euclidean spaces are discussed in Part IV.

Projective spaces: Often it is easier to describe geometric properties if one introduces points at infinity - one point for each 1 -dimensional subspace of \mathbf{A}. Then any two parallel lines meet in a point at infinity. These points are called ideal points, while the 1-dimensional subspaces of A are called directions of \mathcal{A}. The ideal points of \mathcal{A} form the ideal hyperplane \mathcal{A}_{∞} of \mathcal{A}. The union $\mathcal{P}=\mathcal{A} \cup \mathcal{A}_{\infty}$ is called the projective extension of \mathcal{A}. It represents the prototype of a projective space. Projective spaces are discussed in Part V.

2.6 Notes and Problems

1 Although the elements of $\mathbb{R}^{\boldsymbol{n}}$ can be interpreted as the elements of either an affine space or a linear space, the structures of these spaces are different.

2 The solution of a homogeneous linear system forms a linear space.
3 The solution of a non-homogeneous linear system forms an affine space.
4 More exactly, any r independent linear equations in n variables define an affine space of dimension $n-r$, provided that the corresponding linear system has a solution.

5 Any linear space is in a natural way an affine space, but not vice versa.
6 The set theoretical intersection of two subspaces \mathbf{A} and \mathbf{B} of a linear space is a linear space and is called the intersection $\mathbf{A} \sqcap \mathbf{B}$ of \mathbf{A} and \mathbf{B}.

7 The set theoretical union of two subspaces \mathbf{A} and \mathbf{B} of a linear space is a linear space only if $\mathbf{A} \subset \mathbf{B}$ or $\mathbf{B} \subset \mathbf{A}$.

8 Let $\mathbf{A}=\operatorname{span}\left[\mathbf{a}_{1} \ldots \mathbf{a}_{r}\right]$ and $\mathbf{B}=\operatorname{span}\left[\mathbf{a}_{r+1} \ldots \mathbf{a}_{s}\right]$, then $\operatorname{span}\left[\mathbf{a}_{\mathbf{1}} \ldots \mathbf{a}_{s}\right]$ is called the join $\mathbf{A} \sqcup \mathbf{B}$ of \mathbf{A} and \mathbf{B}.

9 Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{r}$ be linearly independent vectors of some n-dimensional linear space \mathbf{A}. They can be supplemented to a basis $\mathbf{a}_{1}, \ldots, \mathbf{a}_{\boldsymbol{n}}$ of \mathbf{A}.

10 Given r non-zero but linearly dependent vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{r}$, one can construct a basis of span $\left[\mathbf{a}_{1} \ldots \mathbf{a}_{r}\right]$ by the Gauss-Jordan algorithm.

11 The set of all one-dimensional subspaces of a linear space \mathbf{V} forms a projective space \mathcal{P}.

3 Least Squares

A linear system is overdetermined if the number of equations exceeds the number of unknowns. Since such a system has no solution in general, one usually seeks unknowns which "solve "the system best, approximatively. Frequently, one minimizes some Euclidean distance. This concept leads to the method of least squares.

Literature: Boehm•Prautzsch, Conte•de Boor, Wilkinson

3.1 Overdetermined Systems

Let A be a tall $m \times n$ matrix, i.e., $m>n$, with $\operatorname{rank} A=n$, and let $A x=\mathbf{a}$ be a linear system

Only if \mathbf{a} is a linear combination of the columns \mathbf{a}_{k} of A, is there a solution x. But, in general, one has

$$
\mathbf{r}=A \mathbf{x}-\mathbf{a} \neq \mathbf{0} \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n}
$$

The column \mathbf{r} is called the residual vector associated with \mathbf{x}. It can be interpreted in \mathbb{R}^{m} as the vector from the point a to the point $A \mathbf{x}$ as illustrated in Figure 3.1. An approximate solution \mathbf{x} which minimizes $\mathbf{r}=\mathbf{r}(\mathbf{x})$ in some sense is all one can hope for. Minimizing $\mathbf{r}^{\mathbf{t}} \mathbf{r}$ is rather a simple task.

In the Euclidean space \mathcal{E}^{m} the length of \mathbf{r} is minimal if \mathbf{r} is orthogonal to the subspace \mathcal{A} spanned by $\mathbf{o} ; \mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, i.e., if

$$
A^{\mathbf{t}} \mathbf{r}=\mathbf{0}
$$

Figure 3.1: The residual vector.

Substituting $A \mathbf{x}-\mathbf{a}$ for \mathbf{r} results in the so-called Gaussian normal equations,

$$
A^{\mathrm{t}} A \mathbf{x}=A^{\mathrm{t}} \mathbf{a}
$$

The solution \mathbf{x} represents the foot of the perpendicular from a onto \mathcal{A} with respect to the affine system $\mathbf{o} ; \mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. Note that $A^{t} A$ is an $n \times n$ matrix and $A^{\mathrm{t}} \mathbf{a}$ is an n column. Moreover, $A^{\mathrm{t}} A$ is symmetric and, if the $\mathbf{a}_{\boldsymbol{i}}$ are linearly independent, also positive definite. In this case the normal equations can be solved via a symmetric factorization of $A^{t} A$, as mentioned in Remark 5 of Section 1.5.

Remark 1: In general, normal equations are poorly conditioned. Hence, it is advisable to use a numerically stable method such as Householder's. In Householder's method, the matrix $[A \mid a]$ is multiplied by a sequence H of orthonormal transformations to obtain a matrix $[B \mid \mathbf{b}]$ such that B is composed of an upper triangular matrix U and a null matrix O,

Since orthonormal transformations do not change the Euclidean length of a vector, $\mathbf{r}=A \mathbf{x}-\mathbf{a}$ and $H \mathbf{r}=B \mathbf{x}-\mathbf{b}$ have the same length, i.e., the solution of $U \mathbf{x}=\mathbf{u}$ minimizes $\mathbf{r}^{t} \mathbf{r}$, where $s^{t} \mathbf{s}$ is the minimum value of $\mathbf{r}^{t} \mathbf{r}$.

Remark 2: The individual equations of $A \mathbf{x}=\mathbf{a}$ may be multiplied with arbitrary weights. This "scaling" changes the coordinates of the residual vector and, hence, influences the result. Thus one may distinguish equations corresponding to very accurate measurements. In this way, equations stemming from accurate measurements can become more influential than others.

3.2 Homogeneous Systems

The least squares method fails for homogeneous systems, i.e., if $\mathbf{a}=\mathbf{o}$, because $\mathbf{x}=\mathbf{0}$ solves the system. A simple way to avoid this problem is to add a constraint by setting one of the x_{k} 's equal to 1 . On constraining, e.g., x_{1}, one has to "solve" the overdetermined non-homogeneous system

Obviously, the "solution" depends on which coordinate x_{k} is constrained. Note that the corresponding \mathbf{a}_{k} must be distinctly different from \mathbf{o} to avoid numerical instabilities.

3.3 Constrained Least Squares

Sometimes the "solution" of an overdetermined system $A \mathbf{x}=\mathbf{a}$ is required to satisfy an additional system $B \mathbf{x}=\mathbf{b}, \mathbf{b} \neq \mathbf{o}$. One can compute the solution of the system $B \mathbf{x}=\mathbf{b}$ by the Gauss-Jordan algorithm and obtain an equivalent system

$$
\mathbf{x}=\mathbf{c}+C \mathbf{t}
$$

These additional constraints are hard constraints which could be, for example, the boundary conditions of some initial problem. On substituting $\mathbf{c}+C \mathbf{y}$ for \mathbf{x}, the initial system $A \mathbf{x}=\mathbf{a}$ reduces to the overdetermined system

$$
A C \mathbf{y}=\mathbf{a}-A \mathbf{c}
$$

If A is an $m \times n$ matrix and B is an $l \times n$ matrix, then $A C$ is an $m \times n-l$ matrix. Note that $m>n>l$.

Geometrically, this procedure may be interpreted as the restriction of \mathbf{x} to a subspace \mathcal{C} of \mathcal{A} and the introduction of new affine coordinates in \mathcal{C} represented by \mathbf{y}. Note that this method works even if $\mathbf{a}=\mathbf{o}$.

Figure 3.2: Constrained least squares.
Example 1: An example is discussed in Section 3.2 where $x_{1}=1$ represents the hard constraint, i.e.,

$$
\mathbf{c}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{ccc}
0 & \cdots & 0 \\
1 & & \\
& \ddots & \\
& & 1
\end{array}\right]
$$

[^0]: CRC Press is an imprint of the
 Taylor \& Francis Group, an informa business
 AN A K PETERS BOOK

