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Preface

This book addresses students, teachers and researchers in mathematics, 
computer science and engineering who are confronted with geometric prob­
lems, attracted by their beauty, and/or wish to get a deeper geometric 
background.

Its purpose is to give a solid foundation of geometric methods and their 
underlying principles. It may serve as an introduction to geometry as 
well as a practical guide to geometric design and modeling and to other 
applications of geometry.

The main idea of this book is to provide an imagination for what happens 
geometrically and to present tools for describing problems. A problem is 
often solved simply by finding the right description. The topics presented 
have been chosen from the many geometric problems the authors have 
confronted during their work in applied geometry and geometric design.

In writing this book we intended to disconnect geometric ideas and methods 
from special applications, in order to make these ideas clear and to allow 
the reader to apply the presented material to other problems of a geometric 
nature. Also, in many situations, a figure can say more than a thousand 
words. This old Chinese proverb ought to be a guideline in writing a text 
on geometry. Therefore, figures are crucial throughout this book, while 
diagrams are an integral part of Chapters 1 and 28.

xv



xvi Preface

This book owes its inception to lectures given by Boehm at Rensselaer 
Polytechnic Institute and the Technical University of Braunschweig sev­
eral times between 1986 and 1990. This book has been partly written at 
Rensselaer, and we are greatly indebted to Harry McLaughlin who has 
been promoting Applied Geometry at Rensselaer and who together with 
Joe Ecker initiated their cooperation with the TU Braunschweig. Andreas 
Johannsen read the first and later drafts of the book very carefully, and 
we benefitted much from his helpful suggestions. We thank Dr. Michael 
Kaps and Wolfgang Volker for typing the manuscript; Daniel Bister for 
proof reading the mathematics and Jeannette Machnis for proofreading 
the English text; and Mrs. Diane McNulty for her judicial and committed 
assistance in the cooperation with Rensselaer.

Troy, in December 1992

Wolfgang Boehm 
Hartmut Prautzsch



Notation

The following notation is used throughout this book:

Scalars a , a, 6, . . .

Vectors, points, coordinate columns a, b , . . . ,  p, q , . . .

Extended columns (by an additional coordinate) k, y , . . .

Differences between two points Ax, A y , . . . ,  Ax, A y . . .

Matrices A, I?,. . .

Augmented matrices A, B, . . .

Vector spaces V, A , . . .

Point spaces A, V , . . .

Orthogonal angles t i

Parallelism //

Bold type is used whenever a new term is introduced.

R em ark : Each chapter starts with an abstract and a short bibliography 
for further information on the particular subject. The complete references 
are listed at the end of the book.

xvii
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PART ONE

Some Linear Algebra

Many problems encountered in applied mathematics are linear or can be 
approximated by linear systems which are, in general, computationally 
tractable. The corresponding mathematical subdiscipline is called linear 
algebra. At the heart of linear algebra are techniques, such as Gaussian 
elimination and the Gauss-Jordan algorithm, for computing solutions of 
linear systems. The main tool of linear algebra is matrices which help to 
arrange coefficients and describe operations.
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1 Linear Systems

Most finite linear systems can be described by matrices, a very useful short­
hand notation which emphasizes the underlying linear structure and the 
interdependencies between the equations.

L ite ra tu re : Atkinson, Boehm Prautzsch, Conte de Boor

1.1 Matrix Notation 

A linear system is a set of equations of the form

where the a ’s are given real numbers and the x ’s are unknowns. The array 
A of the coefficients
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where a* represents the fcth column of A. Note that a scalar a can be 
viewed as a 1 x 1 matrix.

The n x  m matrix A1 =  [a* fc] , defined by a\ k =  is called the trans­
pose of A , e.g., for A above

In particular, the transpose a* of an m column a forms an m row

Often it is helpful to visualize an m x n matrix A  or an m  column a in 
block form, i.e., as a rectangle of height m  and width n or 1, respectively:

The matrix A is a square matrix if m  =  n, and it is symmetric if addi­
tionally dî k — &k,i- A square matrix [uiyk] is called upper triangular if 
Ui£ =  0 for i > k. Similarly a square matrix [/*,*] is called lower triangular 
if l^k — 0 for i < k. The Kronecker symbol

is used to define the identity matrix as the n x n  square matrix I  =  [£»,*:].

is called an m x n matrix. The matrix A  contains the element a*,*, in 
its «th row and fcth column. Similarly, the a* can be written as an m x 1 
matrix or m  column,

Consequently one has
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1.2 M atrix M ultip lication

Let A  =  [d ij] be an m x Z matrix and B  =  [bj#] an Z x n matrix. The 
m x n  matrix C =  [c^*] with the entries

is called the product AB  of A  and B, in this order. Note that the width I 
of A has to match the height Z of B. It is helpful to visualize the product 
AB  =  C in block form, as introduced above:

where x denotes the n column of the unknown X{. Likewise the scalar 
product a of two m  columns a and b can be written as

The element is the dot or scalar product of the ith  row of A with the 
fcth column of B. This may be memorized as “row times column”.
Using this product the linear system in Section 1.1 can be written more 
compactly as

and visualized by blocks as
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Note that the product xa  is defined as a matrix multiplication, but Aa  is 
not. It is convenient to define Aa = a A  as the matrix of elements a ^ a ,  
i.e., one has

In particular, one gets for a  =  0 the null column o =  xO and the null 
matrix O =  0 A.

A square matrix A  is said to be non-singular if its inverse A~x defined by 
A-1 A = AA~X = I  exists. Finally, a matrix B  is said to be orthonormal 
if B %B  =  J.

1.3 G aussian E lim ination

Linear systems are most frequently solved by Gaussian elimination. It is 
convenient to represent the linear system A x  — a by the augmented matrix

Then the linear systems obtained by the following simple operations on 
[A | a] will have the same solutions:

1 exchanging two rows,
2 multiplying one row by a factor /  0,
3 adding one row to another,
4 exchanging two columns of A while simultaneously 

exchanging the corresponding unknowns in the column x.

It was Gauss’ idea to use these four simple operations to transform [A|a] 
into the matrix [B|b], where B  is composed of an upper triangular, non­
singular r x r  matrix [/, an r x  n-r matrix matrix B *, an m - r x  n null 
matrix, an r column b, and an m -r  column s, as shown below.
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If s ^  o, there exists no solution. However, if s =  o, there exists an 
n - r  parameter family of solutions which can easily be determined from 
the equivalent system 2?x =  b as follows. Assigning arbitrary values to 
xr+ i , . . . ,  xn as parameters one can compute xr backward from row r , then 
xr- i  from row r - 1 , . . . ,  and finally x\ from row 1.

Remark 1: The number r  is called the rank of A, denoted by rank A. 
Note that r < m  and r < n .

Remark 2: If a =  o, the linear system Ax =  a is called homogeneous. 
Then one also has b =  o. The homogeneous system has a non-trivial 
solution if and only if r  < n as can be inferred from the equivalent system 
B x = O. If x is a solution of a homogeneous system, then x • g, where 
q ^  0, is also a solution.

1.4 G auss-Jordan A lgorithm

Gaussian elimination can further be used to construct an explicit represen­
tation for the set of all solutions of the linear system A x  =  a. W ith the 
aid of the operations 1, 2, 3, one transforms the matrix [U\B*\b] from 
above into [I\C* |c*] as illustrated in the following diagram.

r

The general solution of this system is depicted below where —I  denotes 
the negative n-r x n-r identity matrix and t an n — r parameter column.
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Note that for r  < n the representation of x depends on the sequence of 
operations performed during Gaussian elimination.

Remark 3: The construction can be reversed. Let [C |c] represent the set

of (given) solutions where c is some n column, C an n x m matrix, and 
t  a column of m  free parameters. The set represented by [C | c] does not 
change if the transposed matrix [Clef is modified by Gaussian elimination. 
Using the operations 1 , . . .  ,4, the matrix Cl can be transformed into an 
s x n matrix [—I\D l] provided rankC — s. This is illustrated below where 
the superfluous zero rows are discarded. Adding appropriate multiples of 
rows of [—/ID 1] to c* one obtains a row [o11 d 1] as illustrated below.

Now one easily obtains a linear system for which x =  c +  C't is a solution, 
namely
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1.5 LU-Factorization

Often the matrix A  of a linear system is square, i.e., m =  n. Such a 
system is uniquely solvable if and only if A  is non-singular or equivalently 
if rank A  =  n.

A non-singular matrix A  can sometimes be factored into a lower-triangular 
matrix L, whose diagonal entries are all equal to 1, and an upper triangular 
matrix {/, i.e., A — LU ,

The entries of L  and U can successively be computed by means of the ma­
trix multiplication rule for a M , . . . ,  ahn, a2yi, - . . ,  a2,n, . . . ,  an, i , . . . ,  an.n in 
this order. At each step there is exactly one unknown or u^k to be 
determined.

If a non-singular matrix A cannot be factored in this way, one can always 
rearrange the rows of A to obtain a matrix A* which has an LU-factor- 
ization. In all cases one can start to compute L  and U as if .4 were to be 
factored and interchange the rows of A  during the computation whenever 
it becomes necessary to avoid dividing by zero. The LU-factorization is 
another organization of Gaussian elimination and can be used to solve a 
system Ax. =  a. Let [A* |a*] be obtained from [A |a] by a row permutation 
such that an LU-factorization A* =  LU exists. Solving the two triangular 
systems

by forward and backward substitution respectively, yields the solution for 
A*x = a* and hence for Ax  =  a.



10 Part I Some Linear Algebra

Remark 4: The LU-factorization is useful for solving the system Ax =  a 
repeatedly for a fixed coefficient matrix A and different right hand sides a. 
In particular, if the right hand sides are the columns of the identity matrix
I  one obtains the inverse of A .

Remark 5: If A  is symmetric and x*Ax > 0 for all x ^ 0, then A is 
called positive definite, and a symmetric factorization A =  C^C, where C 
is an upper triangular matrix, is possible without row interchanges. This 
is called a Cholesky factorization.

1.6 C ram er’s R ule

Let A = [a^k] be a square n x n  matrix and A^  the submatrix obtained 
from A by deleting the ith  row and kth column. Then the determinant of 
A, written det A, is defined by the recursion

for any scalar a. This definition does not depend on the choice of i and is 
called Laplace expansion along the «th row. The term (—l) t+fcdet A^k is 
called the cofactor of .

The determinant can be used to solve a non-homogeneous linear system 
Ax =  a  when A is some non-singular n x n  matrix .

Let Afc =  [ax . . .  a  . . .  an] be obtained from A =  [ai . . .  a* - - - a„] by 
replacing the feth column with a. Then Cramer’s rule,

gives the coordinates Xk of the solution. Note that det A ^  0 whenever A 
is non-singular.

In the case of a homogeneous system Ax = o, where A is an n-1 x n matrix
with rank A = n — 1, one can show that
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provides the solution of the system, where g ^  0 is a free parameter and
A*k is obtained from A by deleting the fcth column.

R em ark  6: Cramer’s rule is of practical use only for small n.

1.7 Notes and Problems

1 It is possible to improve the numerical stability of Gaussian elimination 
by row interchanges.

2 One of the numerically most stable algorithms used to solve linear sys­
tems is the so-called Householder algorithm.

3 Let A* and I* be obtained from the matrices A and I  of equal height 
by the same row permutation. Then P = I* can be used to write down 
the permutation of A, i.e.,

P  is called a permutation matrix. It is inverse to its transpose, i.e., 
PtP = I  .

4 Using a permutation matrix P  (see Note 3), Gaussian elimination can 
be summarized as

5 The LU-factorization of A* = PA  can be used to compute X  =  A~x by 
solving A*X = P  column by column.

6 Most elimination methods for solving linear systems are actually just 
different organizations of the Gaussian elimination process. They differ 
only in the ordering of the computation steps.

7 For two n x n matrices A  and B  one has det AB  =  det A • det B.

8 Matrix multiplication by hand is best organized by Falk’s scheme as 
illustrated in Figure 1.1.
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9 Falk’s scheme can also be used to procure an LU-factorization or a 
Cholesky factorization.

Figure 1.1: Falk’s scheme.



A linear or vector space V  over I I  is a set which is closed under linear 
combinations with real coefficients. The elements of V are called vectors, 
the coefficients are scalars. A map from one linear space into another is 
called a linear map if it preserves linear combinations. The standard vector 
space is R m.

L ite ra tu re : Greub, Strang, van der Waerden

2.1 Basis and Dimension

Let o denote the zero vector, then any r  vectors a i , . . .  ,ar  belonging to 
a vector space V  are said to be linearly dependent if there exist scalars 
x i , . . . ,  xr not all of which are zero such that

Otherwise a i , . . . ,  a r are said to be linearly independent. On building the 
matrix A =  [ai . . .  ar], one has that a i , . . . ,  ar are linearly dependent if 
and only if Ax  =  o has a non-trivial solution.

The set of all linear combinations of the given a* forms a linear space, 
called the span of the a», or span [ai . . .  a r].

The space A =  span [ai . . .  a r] is called a subspace of V. The dimension 
of A, or dim A, is defined as the maximum number of linearly independent 
vectors in A. Occasionally, n =  dim A is given as a superscript, A n
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Let a i , . . . ,  ^  be n linearly independent vectors of an n-dimensional linear 
space V, and let v be some vector of V. Then these n -h i  vectors are 
linearly dependent, i.e.,

in matrix notation v =  Ax.. In this equation the factors x* can be uniquely 
determined, otherwise the a* would not be linearly independent. Hence A  
is non-singular. One says that the vectors a i , . . . ,  an form a basis of V. 
The SiiXi are called the components of v, while the Xi are referred to as 
the coordinates of v with respect to the a*.

Remark 1: It is convenient to denote a vector by the vector of its coor­
dinates x = [x\ . . .  xn]1. This convention is used throughout this book.

Remark 2: On choosing some fixed basis of V n every vector of V n 
corresponds to a unique element of ]Rn , and every linear combination in 
V n corresponds to the same linear combination in IRn . Therefore it is 
sufficient to consider H n instead of V n. In particular, the a* from above 
may be viewed as elements of lRm, m > n.

2.2 C hange o f Bases

Let a i , . . . ,  an and b i , . . . ,  b n denote two bases of a linear space V. Then 
the a ’s can be expressed uniquely in terms of the b ’s,

Using matrix notation one gets
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or more concisely A = BC. As a consequence one has C = B~XA, 
i.e., C =  [ci,*] is non-singular since it is the product of non-singular ma­
trices. Let v be some arbitrary vector of V with the representations 
v =  Ax. — B y , i.e.,

It then follows that y =  Cx, i.e.,

Note that the a ’s are expressed in terms of the b ’s, but the y's are expressed 
in terms of the ar’s. Both transformations are called contragredient to each 
other.

The representation a* =  f?c* has a simple but important geometric mean­
ing:

The column c* of C represents the coordinates of the basis vector 
a* with respect to the basis b i , . . . ,  bn.

Exam ple 1:

one has

For
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Of particular interest are maps which are compatible with the linear struc­
ture of linear spaces. Such maps must preserve linear combinations. Con­
sider two linear spaces A and B with bases a i , . . .  , a n and bi, . . .  ,bm 
respectively, and a map <p : A —► B which preserves linear combinations, 
i.e.,

for all a, b G A and all a , (3 E R . Such a map is called a linear map. 

The images of the a* can uniquely be expressed in terms of the b ’s,

which may be written in matrix notation as

Note that the <pa’s are expressed in terms of the b ’s via C, but the y ’s are 
expressed in terms of the x ’s, i.e., both transformations are contragredient 
to each other.

or in condensed form as if A =  B C . Let a be a vector of A,

and b =  (pa. its image in B,

Then one has y  =  B  *b and b  =  (pAx — B C jc. This implies y  =  <7x, i.e.,
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The representation ip&k =  Bek has a simple but important geometric 
meaning:

The column c* of C represents the coordinates of the image 
of the basis vector a*; with respect to the basis b i , . . . ,  b m.

2.4 Kernel and Fibers

The images (ps.k span <pA, the image of A. The image of A is a subspace 
of B with dim cpA < dim A . These dimensions can be analyzed in more 
detail. There exists a subspace K  C A, called the kernel of <p, K  =  kern (p, 
which is the set of all vectors in A mapped into the null vector o of B. 
The subspace K  is represented by the solution of the homogeneous system

For any fixed vector a  of A and all elements k of this kernel K , the subset 
J~a of A formed by all a  4* k is called the fiber over a. Evidently, (p maps 
all elements of Ta into the same image Ca. Note that a fiber is a linear 
space only if a  =  o.

Using a basis of A which contains a basis of K  one finds that

E xam ple 3: In Example 2, K  consists of all vectors [3 1 — 2]tA, with 
A G R .

Exam ple 2: On inspecting the fig­
ure one obtains the matrix C,
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2.5 Point Spaces

One can see the world as a space of points. This point space is closely 
related to a linear space in a natural way. Two points are connected by a 
vector and a vector added to a point gives a point again. These relations 
are expressed by the notation

where a and p are points and v is the vector pointing from a to p. Let v  
be given with respect to a basis of A n, v =  ai# i H------ 1- a„xn, then

Let a  be a fixed point, then every coordinate column x  =  [xi . . .  #„]* 
defines a point p, with different x ’s generating different points.

Affine spaces: The set of points p corresponding to all x € ]Rn is called 
an affine space A, while span [ai . . .  an] is called the underlying vector 
space A. One defines dim A  =  dim A. A point a G A  together with a 
basis a i , . . .  , an  G A form an affine system in A .  The point a is referred 
to as the origin while the Xi are called the affine coordinates of p with 
respect to the frame a; a i , . . . ,  an. Affine spaces are discussed in Part III.

Figure 2.1: Parallelism and affine scale.

In most parts of this book, when points are viewed as vectors they will be 
denoted by their coordinate columns x with respect to some fixed frame. 
Note that p and x  above denote the same point with respect to different 
systems.
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An affine subspace S  of A  is defined by some point b € A  and a subspace
S of A, i.e., <S =  {b +  v | v E S}. In particular, a line 
£  is a 1-dimensional subspace. It will be represented as

The parameter A is called an affine scale on £ . It represents x with respect 
to the affine system b;v. Using this scale, the ratio of the point A with 
respect to the points Ao and Ai is defined by

Note that this ratio depends on the ordering of the points, but not on the 
respective affine scale.

The line C is said to be parallel to a second line C* given by

Euclidean spaces: If the basis vectors a* of the underlying vector space 
A have length 1 and are pairwise perpendicular, then the corresponding 
affine system is called a Cartesian system. The are called Cartesian 
coordinates, while the space A  is called a Euclidean space and denoted by 
S . In a Cartesian system the square of the distance between two points 
x and x  +  d equals d*d, and two vectors u and v are perpendicular if 
u*v =  0. Euclidean spaces are discussed in Part IV.

Projective spaces: Often it is easier to describe geometric properties 
if one introduces points at infinity — one point for each 1-dimensional 
subspace of A. Then any two parallel lines meet in a point at infinity. 
These points are called ideal points, while the 1-dimensional subspaces of A  
are called directions of A. The ideal points of A  form the ideal hyperplane 
Aoo of A. The union V  =  A  U A qq is called the projective extension of 
A. It represents the prototype of a projective space. Projective spaces are 
discussed in Part V.
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1 Although the elements of lRn can be interpreted as the elements of 
either an affine space or a linear space, the structures of these spaces 
are different.

2 The solution of a homogeneous linear system forms a linear space.

3 The solution of a non-homogeneous linear system forms an affine space.

4 More exactly, any r independent linear equations in n variables define 
an affine space of dimension n — r, provided that the corresponding 
linear system has a solution.

5 Any linear space is in a natural way an affine space, but not vice versa.

6 The set theoretical intersection of two subspaces A and B of a linear 
space is a linear space and is called the intersection A f l B  of A and B.

7 The set theoretical union of two subspaces A and B of a linear space is 
a linear space only if A C B or B C A.

8 Let A = span [ai . . .  ar] and B =  span [ar+i . . .  sls] > then span [ai . . .  a8] 
is called the join A U B of A and B.

9 Let ax, . . . ,  ar be linearly independent vectors of some n-dimensional 
linear space A. They can be supplemented to a basis a x , . . . ,  an of A.

LO Given r non-zero but linearly dependent vectors a i , . . . , a r ,  one can 
construct a basis of span [ax . . .  ar] by the Gauss-Jordan algorithm.

LI The set of all one-dimensional subspaces of a linear space V forms a 
projective space V .



3 Least Squares

A linear system is overdetermined if the number of equations exceeds the 
number of unknowns. Since such a system has no solution in general, one 
usually seeks unknowns which “solve ’’the system best, approximatively. 
Frequently, one minimizes some Euclidean distance. This concept leads to 
the method of least squares.

L ite ra tu re : Boehm-Prautzsch, Conte *de Boor, Wilkinson

3.1 O verdeterm ined System s

Let A be a tall m x n  matrix, i.e., m  > n, with rank A — n , and let Ax =  a 
be a linear system

Only if a  is a linear combination of the columns a* of A, is there a solution 
x. But, in general, one has
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The column r is called the residual vector associated with x. It can be 
interpreted in ]Rm as the vector from the point a  to the point A x  as 
illustrated in Figure 3.1. An approximate solution x which minimizes 
r =  r(x) in some sense is all one can hope for. Minimizing r*r is rather a 
simple task.

In the Euclidean space £ m the length of r is minimal if r is orthogonal to 
the subspace A spanned by o; a i , . . . , an, i.e., if

Figure 3.1: The residual vector.

Substituting A x — a for r results in the so-called Gaussian normal equa­
tions,

i*A x = A*a .

The solution x represents the foot of the perpendicular from a onto A  
with respect to the affine system o; a i? . . . ,  a ^  Note that A1 A  is an n x n 
matrix and Ata  is an n column. Moreover, AtA is symmetric and, if the 
a* are linearly independent, also positive definite. In this case the normal 
equations can be solved via a symmetric factorization of AtA, as mentioned 
in Remark 5 of Section 1.5.

Remark Is In general, normal equations are poorly conditioned. Hence, 
it is advisable to use a numerically stable method such as Householder’s. 
In Householder’s method, the matrix [A | a] is multiplied by a sequence H  
of orthonormal transformations to obtain a matrix [B |b] such that B  is 
composed of an upper triangular matrix U and a null matrix O,
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Since orthonormal transformations do not change the Euclidean length of 
a vector, r  =  A x — a  and Hr =  B x  — b  have the same length, i.e., the 
solution of Ux =  u  minimizes i^r, where sts is the minimum value of r 4r.

R em ark  2: The individual equations of A x  =  a  may be multiplied with 
arbitrary weights. This “scaling” changes the coordinates of the residual 
vector and, hence, influences the result. Thus one may distinguish equa­
tions corresponding to very accurate measurements. In this way, equations 
stemming from accurate measurements can become more influential than 
others.

3.2 H om ogeneous System s

The least squares method fails for homogeneous systems, i.e., if a  =  o, 
because x =  o solves the system. A simple way to avoid this problem is 
to add a constraint by setting one of the x*.’s equal to 1. On constraining, 
e.g., £ i, one has to “solve” the overdetermined non-homogeneous system

Obviously, the “solution” depends on which coordinate x* is constrained. 
Note that the corresponding a^ must be distinctly different from o to avoid 
numerical instabilities.
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3.3 C onstrained Least Squares

Sometimes the “solution” of an overdetermined system Ax  =  a is required 
to satisfy an additional system B x  =  b, b /  o. One can compute the 
solution of the system B x = b by the Gauss-Jordan algorithm and obtain 
an equivalent system

These additional constraints are hard constraints which could be, for ex­
ample, the boundary conditions of some initial problem. On substituting 
c + Cy for x, the initial system Ax  =  a reduces to the overdetermined 
system

If A is an m x n matrix and B is an /x  n matrix, then AC  is an m x n-l 
matrix. Note that m >  n >  I.

Geometrically, this procedure may be interpreted as the restriction of x  
to a subspace C of A  and the introduction of new affine coordinates in C 
represented by y. Note that this method works even if a =  o.

Figure 3.2: Constrained least squares.

Exam ple Is An example is discussed in Section 3.2 where x\ =  1 repre­
sents the hard constraint, i.e.,


