WOLFGANG BOEHM / HARTMUT PRAUTZSCH

Geometric Concepts for Geometric Design

Geometric Concepts for Geometric Design

Advisory Board

Christopher Brown, University of Rochester Eugene Fiume, University of Toronto Brad Myers, Carnegie Mellon University Daniel Siewiorek, Carnegie Mellon University

Geometric Concepts for Geometric Design

Wolfgang Boehm Technische Universität Braunschweig Braunschweig, Germany

Hartmut Prautzsch Universität Karlsruhe Karlsruhe, Germany

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business AN A K PETERS BOOK First published 1994 by A K Peters, Ltd.

Published 2018 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 1994 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

ISBN-13: 978-1-56881-004-1 (hbk)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica tion and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Library of Congress Cataloging-in-Publication Data

Boehm, Wolfgang, 1928-Geometric Concepts for Geometric Design / Wolfgang Boehm, Hartmut Prautzsch. p. cm. Includes bibliographic references and index. ISBN 1-56881-004-0 1. Geometry. 2. Geometry—Data processing. I. Prautzsch, Hartmut. II. Title. QA445.B63 1993b 516—dc20 93-20666 CIP

About the cover: The Cover picture shows a computer generated shaded image of a chalice based on a drawing by Paolo Ucello (1397-1475). Ucello's hand drawing was the first extant complex geometrical form rendered according to the laws of perspective. (Perspective Study of a Chalice, Drawing, Gabinetto dei Disegni, Florence, ca 1430-1440.)

Contents

Preface		e	xv
N	otati	xvii	
I	Sor	ne Linear Algebra	1
1	Lin	ear Systems	
	1.1	Matrix Notation	3
	1.2	Matrix Multiplication	5
	1.3	Gaussian Elimination	6
	1.4	Gauss-Jordan Algorithm	7
	1.5	LU-Factorization	9
	1.6	Cramer's Rule	10
	1.7	Notes and Problems	11
2	Lin	ear Spaces	
	2.1	Basis and Dimension	13
	2.2	Change of Bases	14
	2.3	Linear Maps	16
	2.4	Kernel and Fibers	17
	2.5	Point Spaces	18
	2.6	Notes and Problems	20
3	Lea	ast Squares	
	3.1	Overdetermined Systems	21
	3.2	Homogeneous Systems	23
	3.3	Constrained Least Squares	24
	3.4	Linearization	25

3	.5 Underdetermined Systems	26
3	.6 Notes and Problems	27
II 1	mages and Projections	29
4 F	Parallel Projections	
	.1 Pohlke's Theorem	31
4	.2 Orthogonal Projections	35
4	.3 Computing a Parallel Projection	37
4	.4 Projecting Rays	39
4	.5 Notes and Problems	39
5 N	Moving the Object	
5	.1 Euclidean Motions	41
5	.2 Composite Motions	43
5	.3 Euler Angles	45
5	6.4 Coordinate Extension	46
5	5.5 Notes and Problems	47
6 I	Perspective Drawings	
6	6.1 Homogeneous Coordinates	48
6	6.2 Central Projection	49
6	6.3 Moving the Object	51
6	6.4 Vanishing Points	52
6	6.5 Completing a Perspective Drawing	54
6	6.6 Moving the Camera	55
6	5.7 Spatial Perspective Maps	56
6	5.8 Notes and Problems	57
7]	The Mapping Matrix	
7	7.1 Main Theorem	59
7	7.2 Camera Data	61
7	7.3 The Spatial Perspective	62
7	7.4 Vanishing Points of the System	62
7	7.5 Stereo Pairs	67
7	7.6 Notes and Problems	68

8	Re	construction	
	8.1	Knowing the Object	71
	8.2	Straight Lines in the Image Plane	72
	8.3	Several Images	73
	8.4	Camera Calibration	75
	8.5	Notes and Problems	76
IJ	I A	Affine Geometry	77
9	Aff	ine Space	
	9.1	Affine Coordinates	79
	9.2	Affine Subspaces	80
	9.3	Hyperplanes	82
	9.4	Intersection	83
	9.5	Parallel Bundles	84
	9.6	Notes and Problems	85
10) Th	e Barycentric Calculus	
	10.1	Barycentric Coordinates	86
	10.2	2 Subspaces	88
	10.3	3 Affine Independence	89
	10.4	Hyperplanes	91
	10.5	5 Join	92
	10.6	5 Volumes	93
	10.7	A Generalization of Barycentric Coordinates	95
	10.8	3 Notes and Problems	96
11		ine Maps	
		Barycentric Representation	99
		2 Affine Representation	101
		3 Parallelism and Ratio	102
		4 Fibers	102
		5 Affinities	104
		6 Correspondence of Hyperplanes	104
	11.7	7 Notes and Problems	105

12	Affi	ne Figures	
	12.1	Triangles	107
	12.2	Quadrangles	109
	12.3	Polygons and Curves	110
	12.4	Conic Sections	112
	12.5	Axial Affinities	114
	12.6	Dilatation	117
	12.7	Notes and Problems	118
13	Qua	drics in Affine Spaces	
	13.1	The Equation of a Quadric	120
	13.2	Midpoints	122
	13.3	Singular Points	124
	13.4	Tangents	125
	13.5	Tangent Planes	126
	13.6	Polar Planes	127
	13.7	Notes and Problems	129
14	Mo	re on Affine Quadrics	
	14.1	Diametric Planes	131
	14.2	Conjugate Directions	133
	14.3	Special Affine Coordinates	134
	14.4	Affine Normal Forms	136
	14.5	The Types of Quadrics in the Plane	138
	14.6	The Types of Quadrics in Space	139
	14.7	Notes and Problems	141
15	Hor	nothetic Pencils	
	15.1	The Equation	143
	15.2	Asymptotic Cones	144
	15.3	Homothetic Paraboloids	145
	15.4	Intersection with a Subspace	146
	15.5	Parallel Intersections	148
	15.6	Notes and Problems	150

IV Euclidean Geometry

16	The	Euclidean Space	
	16.1	The Distance of Points	155
	16.2	The Dot Product	156
	16.3	Gram-Schmidt Orthogonalization	158
	16.4	Cartesian Coordinates	159
	16.5	The Alternating Product	160
	16.6	Euclidean Motions	161
	16.7	Shortest Distances	162
	16.8	The Steiner Surface in Euclidean Space	163
	16.9	Notes and Problems	166
17	Som	e Euclidean Figures	
	17.1	The Orthocenter	168
	17.2	The Incircle	169
	17.3	The Circumcircle	170
	17.4	Power of a Point	172
	17.5	Radical Center	173
	17.6	Orthogonal Spheres	174
	17.7	Centers of Similitude	175
	17.8	Notes and Problems	177
18	Qua	drics in Euclidean Space	
	18.1	Normals	179
	18.2	Principal Axes	180
	18.3	Real and Symmetric Matrices	181
	18.4	Principal Axis Transformation	182
	18.5	Normal Forms of Euclidean Quadrics	183
	18.6	Notes and Problems	186
19	Foca	al Properties	
	19.1	The Ellipse	188
	19.2	The Hyperbola	190
	19.3	The Parabola	192
	19.4	Confocal Conic Sections	193
	19.5	Focal Conics	195
	19.6	Focal Distances	198

	19.7	Dupin's Cyclide	199
	19.8	Notes and Problems	202
v	So	me Projective Geometry	205
20	The	Projective Space	
	20.1	Homogeneous Coordinates	207
	20.2	Projective Coordinates	209
	20.3	The Equations of Planes and Subspaces	211
	20.4	The Equation of a Point	212
	20.5	Pencils and Bundles	214
	20.6	Duality	216
	20.7	Notes and Problems	219
21	Pro	jective Maps	
		Matrix Notation	221
		Exceptional Spaces	223
		The Dual Map	224
		Collineations and Correlations	225
	21.5	The Crossratio	227
		Harmonic Position	229
	21.7	Notes and Problems	230
22	Son	ne Projective Figures	
	22.1	Complete Quadruples in the Plane	231
	22.2	Desargues' Configuration	234
		Pappus' Configuration	235
	22.4	Conic Sections	237
	22.5	Pascal's Theorem	238
	22.6	Brianchon's Theorem	240
	22.7	Rational Bézier Curves	242
	22.8	Rational Bézier surfaces	244
	22.9	Notes and Problems	245
23		jective Quadrics	_
		Projective Quadrics	247
	23.2	Tangent Planes	248

23.3 The Role of the Ideal Plane	250
23.4 Harmonic Points and Polarity	252
23.5 Pencils of Quadrics	253
23.6 Ranges of Quadrics	255
23.7 The Imaginary in Projective Geometry	257
23.8 The Steiner Surface	260
23.9 Notes and Problems	262

VI Some Descriptive Geometry 265

24 Associated Projections 24.1 Plan and Elevation 267 24.2 Side Elevation 269 24.3 Special Side Elevations 271 24.4 Cross Elevation 273 24.5 Curves on Surfaces 276 24.6 Canal Surface 278 24.7 The Four-Dimensional Space 28024.8 Notes and Problems 282 **25** Penetrations 25.1 Intersections 284 25.2 Distinguished Points 286 25.3 Double Points 287 25.4 The Order 289 25.5 Bezout's Theorem 291 25.6 Decompositions 292 25.7 Projections 294 25.8 Notes and Problems 295

VII Basic Algebraic Geometry 297

26	Imp	Implicit Curves and Surfaces		
	26.1	Plane Algebraic Curves	299	
	26.2	Multiple Points	300	

	26.3	Euler's Identity	302
	26.4	Polar Forms of Curves	303
	26.5	Algebraic Surfaces	305
	26.6	Polar Forms of Surfaces	307
	26.7	Notes and Problems	309
27	Para	ametric Curves and Surfaces	
	27.1	Rational Curves	310
	27.2	Changing the Parameter	312
	27.3	Osculants of a Curve	314
	27.4	Bézier Curves	317
	27.5	Splines	319
	27.6	Osculants of a Surface	321
	27.7	Notes and Problems	324
28	Son	e Elimination Methods	
	28.1	Sylvester's Method	327
	28.2	Cayley's Method	329
	28.3	Computing Cayley's Matrix	330
	28.4	Dixon's Method	331
	28.5	Computing Dixon's Matrix	332
	28.6	Triangular Matrices	333
	28.7	Notes and Problems	335
29	Imp	licitization, Inversion and Intersection	
	29.1	Parametric Curves in the Plane	337
	29.2	Parametric Space Curves	340
	29.3	Normal Curves	341
	29.4	Parametric Tensor Product Surfaces	343
	29.5	Parametric Triangular Surfaces	345
	29.6	Intersections	346
	29.7	Notes and Problems	348

VIII Differential Geometry

30	Curves			
	30.1	Parametric Curves and Arc Length	353	
	30.2	The Frenet Frame	354	
	30.3	Moving the Frame	356	
	30.4	The Spherical Image	357	
	30.5	Osculating Plane and Sphere	358	
	30.6	Osculating Curves	361	
	30.7	Notes and Problems	362	
31	Cur	Curves on Surfaces		
	31.1	Parametric Surfaces and Arc Element	366	
	31.2	The Local Frame	369	
	31.3	The Curvature of a Curve	370	
	31.4	Meusnier's Theorem	371	
	31.5	The Darboux Frame	373	
	31.6	Notes and Problems	374	
32	2 Surfaces			
	32.1	Dupin's Indicatrix and Euler's Theorem	376	
	32.2	Gaussian Curvature and Mean Curvature	379	
	32.3	Conjugate Directions and Asymptotic Lines	381	
	32.4	Ruled Surfaces and Developables	382	
	32.5	Contact of Order r	385	
	32.6	Notes and Problems	386	
Bibliography			389	
Index			395	

351

Preface

This book addresses students, teachers and researchers in mathematics, computer science and engineering who are confronted with geometric problems, attracted by their beauty, and/or wish to get a deeper geometric background.

Its purpose is to give a solid foundation of geometric methods and their underlying principles. It may serve as an introduction to geometry as well as a practical guide to geometric design and modeling and to other applications of geometry.

The main idea of this book is to provide an imagination for what happens geometrically and to present tools for describing problems. A problem is often solved simply by finding the right description. The topics presented have been chosen from the many geometric problems the authors have confronted during their work in applied geometry and geometric design.

In writing this book we intended to disconnect geometric ideas and methods from special applications, in order to make these ideas clear and to allow the reader to apply the presented material to other problems of a geometric nature. Also, in many situations, a figure can say more than a thousand words. This old Chinese proverb ought to be a guideline in writing a text on geometry. Therefore, figures are crucial throughout this book, while diagrams are an integral part of Chapters 1 and 28. This book owes its inception to lectures given by Boehm at Rensselaer Polytechnic Institute and the Technical University of Braunschweig several times between 1986 and 1990. This book has been partly written at Rensselaer, and we are greatly indebted to Harry McLaughlin who has been promoting Applied Geometry at Rensselaer and who together with Joe Ecker initiated their cooperation with the TU Braunschweig. Andreas Johannsen read the first and later drafts of the book very carefully, and we benefitted much from his helpful suggestions. We thank Dr. Michael Kaps and Wolfgang Völker for typing the manuscript; Daniel Bister for proof reading the mathematics and Jeannette Machnis for proofreading the English text; and Mrs. Diane McNulty for her judicial and committed assistance in the cooperation with Rensselaer.

Troy, in December 1992

Wolfgang Boehm Hartmut Prautzsch

Notation

The following notation is used throughout this book:

Scalars	$\alpha, \beta, \ldots, a, b, \ldots$	
Vectors, points, coordinate columns	$\mathbf{a}, \mathbf{b}, \dots, \mathbf{p}, \mathbf{q}, \dots$	
Extended columns (by an additional coordinate)	x, y,	
Differences between two points	$\Delta \mathbf{x}, \Delta \mathbf{y}, \dots, \Delta \mathbf{x}, \Delta \mathbf{y} \dots$	
Matrices	A, B, \ldots	
Augmented matrices	▲ , 𝔅,	
Vector spaces	$\mathbf{V}, \mathbf{A}, \dots$	
Point spaces	$\mathcal{A}, \mathcal{P}, \ldots$	
Orthogonal angles	$\overline{\mathcal{P}}$	
Parallelism	//	

Bold type is used whenever a new term is introduced.

Remark: Each chapter starts with an abstract and a short bibliography for further information on the particular subject. The complete references are listed at the end of the book.

PART ONE

Some Linear Algebra

Many problems encountered in applied mathematics are linear or can be approximated by linear systems which are, in general, computationally tractable. The corresponding mathematical subdiscipline is called **linear algebra**. At the heart of linear algebra are techniques, such as Gaussian elimination and the Gauss-Jordan algorithm, for computing solutions of linear systems. The main tool of linear algebra is matrices which help to arrange coefficients and describe operations.

1 Linear Systems

Most finite linear systems can be described by matrices, a very useful shorthand notation which emphasizes the underlying linear structure and the interdependencies between the equations.

Literature: Atkinson, Boehm · Prautzsch, Conte · de Boor

1.1 Matrix Notation

A linear system is a set of equations of the form

```
a_{1,1} x_1 + \dots + a_{1,n} x_n = a_1

\vdots \vdots \vdots

a_{m,1} x_1 + \dots + a_{m,n} x_n = a_m,
```

where the *a*'s are given real numbers and the *x*'s are unknowns. The array A of the coefficients $a_{i,k}$,

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix} = [a_{i,k}] ,$$

is called an $m \times n$ matrix. The matrix A contains the element $a_{i,k}$ in its *i*th row and *k*th column. Similarly, the a_i can be written as an $m \times 1$ matrix or *m* column,

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$$

Consequently one has

$$A = [\mathbf{a}_1 \ldots \mathbf{a}_n] ,$$

where \mathbf{a}_k represents the kth column of A. Note that a scalar a can be viewed as a 1×1 matrix.

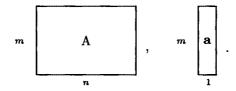
The $n \times m$ matrix $A^{t} = [a_{i,k}^{t}]$, defined by $a_{i,k}^{t} = a_{k,i}$, is called the **transpose** of A, e.g., for A above

$$A^{\mathbf{t}} = egin{bmatrix} a_{1,1} & \ldots & a_{m,1} \ dots & \ddots & dots \ a_{1,n} & \ldots & a_{m,n} \end{bmatrix} = [a_{k,i}] \; .$$

In particular, the transpose \mathbf{a}^{t} of an m column \mathbf{a} forms an m row

$$\mathbf{a}^{\mathbf{t}} = [a_1 \ldots a_m]$$
.

Often it is helpful to visualize an $m \times n$ matrix A or an m column a in block form, i.e., as a rectangle of height m and width n or 1, respectively:



The matrix A is a square matrix if m = n, and it is symmetric if additionally $a_{i,k} = a_{k,i}$. A square matrix $[u_{i,k}]$ is called **upper triangular** if $u_{i,k} = 0$ for i > k. Similarly a square matrix $[l_{i,k}]$ is called **lower triangular** if $l_{i,k} = 0$ for i < k. The **Kronecker symbol**

$$\delta_{i,k} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{otherwise} \end{cases}$$

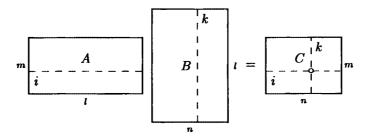
is used to define the **identity matrix** as the $n \times n$ square matrix $I = [\delta_{i,k}]$.

1.2 Matrix Multiplication

Let $A = [a_{i,j}]$ be an $m \times l$ matrix and $B = [b_{j,k}]$ an $l \times n$ matrix. The $m \times n$ matrix $C = [c_{i,k}]$ with the entries

$$c_{i,k} = \sum_{j=1}^l a_{i,j} \, b_{j,k}$$

is called the **product** AB of A and B, in this order. Note that the width l of A has to match the height l of B. It is helpful to visualize the product AB = C in block form, as introduced above:



The element $c_{i,k}$ is the **dot** or scalar product of the *i*th row of A with the kth column of B. This may be memorized as "row times column". Using this product the linear system in Section 1.1 can be written more compactly as

$$A\mathbf{x} = \mathbf{a}$$

and visualized by blocks as

 $m \begin{bmatrix} A \\ \\ n \end{bmatrix} = \begin{bmatrix} a \\ a \end{bmatrix} m$

where x denotes the *n* column of the unknown x_i . Likewise the scalar product α of two *m* columns a and b can be written as

$$\alpha = \mathbf{a}^{\mathbf{t}}\mathbf{b} = \mathbf{b}^{\mathbf{t}}\mathbf{a} \; .$$

Note that the product $\mathbf{x}\alpha$ is defined as a matrix multiplication, but $A\alpha$ is not. It is convenient to define $A\alpha = \alpha A$ as the matrix of elements $a_{i,k}\alpha$, i.e., one has

$$A \cdot \alpha = [\mathbf{a}_1 \alpha \dots \mathbf{a}_n \alpha] = [a_{i,k} \alpha]$$

In particular, one gets for $\alpha = 0$ the null column $\mathbf{o} = \mathbf{x} \mathbf{0}$ and the null matrix $O = \mathbf{0} A$.

A square matrix A is said to be **non-singular** if its **inverse** A^{-1} defined by $A^{-1}A = AA^{-1} = I$ exists. Finally, a matrix B is said to be **orthonormal** if $B^{t}B = I$.

1.3 Gaussian Elimination

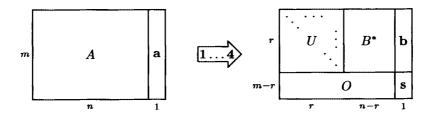
Linear systems are most frequently solved by Gaussian elimination. It is convenient to represent the linear system $A\mathbf{x} = \mathbf{a}$ by the **augmented matrix**

$$[A|\mathbf{a}] = [\mathbf{a}_1 \dots \mathbf{a}_n |\mathbf{a}] .$$

Then the linear systems obtained by the following simple operations on $[A|\mathbf{a}]$ will have the same solutions:

- 1 exchanging two rows,
- **2** multiplying one row by a factor $\neq 0$,
- 3 adding one row to another,
- 4 exchanging two columns of A while simultaneously exchanging the corresponding unknowns in the column \mathbf{x} .

It was Gauss' idea to use these four simple operations to transform $[A|\mathbf{a}]$ into the matrix $[B|\mathbf{b}]$, where B is composed of an upper triangular, nonsingular $r \times r$ matrix U, an $r \times n-r$ matrix matrix B^* , an $m-r \times n$ null matrix, an r column **b**, and an m-r column **s**, as shown below.



If $\mathbf{s} \neq \mathbf{o}$, there exists no solution. However, if $\mathbf{s} = \mathbf{o}$, there exists an n-r parameter family of solutions which can easily be determined from the equivalent system $B\mathbf{x} = \mathbf{b}$ as follows. Assigning arbitrary values to x_{r+1}, \ldots, x_n as parameters one can compute x_r backward from row r, then x_{r-1} from row $r-1, \ldots$, and finally x_1 from row 1.

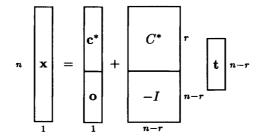
Remark 1: The number r is called the rank of A, denoted by rank A. Note that $r \leq m$ and $r \leq n$.

Remark 2: If $\mathbf{a} = \mathbf{o}$, the linear system $A\mathbf{x} = \mathbf{a}$ is called **homogeneous**. Then one also has $\mathbf{b} = \mathbf{o}$. The homogeneous system has a non-trivial solution if and only if r < n as can be inferred from the equivalent system $B\mathbf{x} = O$. If \mathbf{x} is a solution of a homogeneous system, then $\mathbf{x} \cdot \rho$, where $\rho \neq 0$, is also a solution.

1.4 Gauss-Jordan Algorithm

Gaussian elimination can further be used to construct an explicit representation for the set of all solutions of the linear system $A\mathbf{x} = \mathbf{a}$. With the aid of the operations 1, 2, 3, one transforms the matrix $[U|B^*|\mathbf{b}]$ from above into $[I|C^*|\mathbf{c}^*]$ as illustrated in the following diagram.

The general solution of this system is depicted below where -I denotes the negative $n-r \times n-r$ identity matrix and t an n-r parameter column.

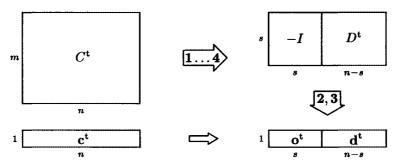


Note that for r < n the representation of **x** depends on the sequence of operations performed during Gaussian elimination.

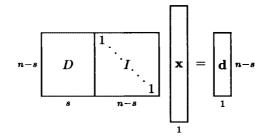
Remark 3: The construction can be reversed. Let $[C|\mathbf{c}]$ represent the set

$$\mathbf{x} = \mathbf{c} + C\mathbf{t}$$

of (given) solutions where **c** is some *n* column, *C* an $n \times m$ matrix, and **t** a column of *m* free parameters. The set represented by $[C|\mathbf{c}]$ does not change if the transposed matrix $[C|\mathbf{c}]^{t}$ is modified by Gaussian elimination. Using the operations $1, \ldots, 4$, the matrix C^{t} can be transformed into an $s \times n$ matrix $[-I|D^{t}]$ provided rank C = s. This is illustrated below where the superfluous zero rows are discarded. Adding appropriate multiples of rows of $[-I|D^{t}]$ to \mathbf{c}^{t} one obtains a row $[\mathbf{o}^{t} | \mathbf{d}^{t}]$ as illustrated below.



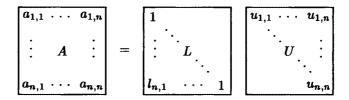
Now one easily obtains a linear system for which $\mathbf{x} = \mathbf{c} + C\mathbf{t}$ is a solution, namely



1.5 LU-Factorization

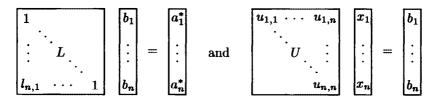
Often the matrix A of a linear system is square, i.e., m = n. Such a system is uniquely solvable if and only if A is non-singular or equivalently if rank A = n.

A non-singular matrix A can sometimes be factored into a lower-triangular matrix L, whose diagonal entries are all equal to 1, and an upper triangular matrix U, i.e., A = LU,



The entries of L and U can successively be computed by means of the matrix multiplication rule for $a_{1,1}, \ldots, a_{1,n}, a_{2,1}, \ldots, a_{2,n}, \ldots, a_{n,1}, \ldots, a_{n,n}$ in this order. At each step there is exactly one unknown $l_{i,k}$ or $u_{i,k}$ to be determined.

If a non-singular matrix A cannot be factored in this way, one can always rearrange the rows of A to obtain a matrix A^* which has an **LU-factor**ization. In all cases one can start to compute L and U as if A were to be factored and interchange the rows of A during the computation whenever it becomes necessary to avoid dividing by zero. The LU-factorization is another organization of Gaussian elimination and can be used to solve a system $A\mathbf{x} = \mathbf{a}$. Let $[A^* | \mathbf{a}^*]$ be obtained from $[A | \mathbf{a}]$ by a row permutation such that an LU-factorization $A^* = LU$ exists. Solving the two triangular systems



by forward and backward substitution respectively, yields the solution for $A^*\mathbf{x} = \mathbf{a}^*$ and hence for $A\mathbf{x} = \mathbf{a}$.

Remark 4: The LU-factorization is useful for solving the system $A\mathbf{x} = \mathbf{a}$ repeatedly for a fixed coefficient matrix A and different right hand sides \mathbf{a} . In particular, if the right hand sides are the columns of the identity matrix I one obtains the inverse of A.

Remark 5: If A is symmetric and $\mathbf{x}^t A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$, then A is called positive definite, and a symmetric factorization $A = C^t C$, where C is an upper triangular matrix, is possible without row interchanges. This is called a **Cholesky factorization**.

1.6 Cramer's Rule

Let $A = [a_{i,k}]$ be a square $n \times n$ matrix and $A_{i,k}$ the submatrix obtained from A by deleting the *i*th row and *k*th column. Then the **determinant** of A, written det A, is defined by the recursion

det
$$A = \sum_{k=1}^{n} (-1)^{i+k} a_{i,k} \det A_{i,k}$$
 and det $[a] = a$,

for any scalar *a*. This definition does not depend on the choice of *i* and is called **Laplace expansion** along the *i*th row. The term $(-1)^{i+k} \det A_{i,k}$ is called the **cofactor** of $a_{i,k}$.

The determinant can be used to solve a non-homogeneous linear system $A\mathbf{x} = \mathbf{a}$ when A is some non-singular $n \times n$ matrix.

Let $A_k = [\mathbf{a}_1 \dots \mathbf{a}_k \dots \mathbf{a}_n]$ be obtained from $A = [\mathbf{a}_1 \dots \mathbf{a}_k \dots \mathbf{a}_n]$ by replacing the kth column with **a**. Then **Cramer's rule**,

$$x_k = \frac{\det A_k}{\det A}, \quad k = 1, \dots, n$$

gives the coordinates x_k of the solution. Note that det $A \neq 0$ whenever A is non-singular.

In the case of a homogeneous system $A\mathbf{x} = \mathbf{0}$, where A is an $n-1 \times n$ matrix with rank A = n - 1, one can show that

$$x_k = \varrho \cdot (-1)^k \det A_k^*, \quad k = 1, \dots, n ,$$

provides the solution of the system, where $\rho \neq 0$ is a free parameter and A_k^* is obtained from A by deleting the kth column.

Remark 6: Cramer's rule is of practical use only for small n.

1.7 Notes and Problems

- 1 It is possible to improve the numerical stability of Gaussian elimination by row interchanges.
- 2 One of the numerically most stable algorithms used to solve linear systems is the so-called **Householder algorithm**.
- **3** Let A^* and I^* be obtained from the matrices A and I of equal height by the same row permutation. Then $P = I^*$ can be used to write down the permutation of A, i.e.,

$$A^* = PA$$
.

P is called a permutation matrix. It is inverse to its transpose, i.e., $P^{\rm t}P=I$.

4 Using a permutation matrix P (see Note 3), Gaussian elimination can be summarized as

$$L^{-1}P[A|\mathbf{a}] = U \; .$$

- 5 The LU-factorization of $A^* = PA$ can be used to compute $X = A^{-1}$ by solving $A^*X = P$ column by column.
- 6 Most elimination methods for solving linear systems are actually just different organizations of the Gaussian elimination process. They differ only in the ordering of the computation steps.
- 7 For two $n \times n$ matrices A and B one has det $AB = \det A \cdot \det B$.
- 8 Matrix multiplication by hand is best organized by Falk's scheme as illustrated in Figure 1.1.

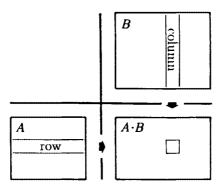


Figure 1.1: Falk's scheme.

9 Falk's scheme can also be used to procure an LU-factorization or a Cholesky factorization.

2 Linear Spaces

A linear or vector space V over \mathbb{R} is a set which is closed under linear combinations with real coefficients. The elements of V are called vectors, the coefficients are scalars. A map from one linear space into another is called a linear map if it preserves linear combinations. The standard vector space is \mathbb{R}^m .

Literature: Greub, Strang, van der Waerden

2.1 Basis and Dimension

Let o denote the zero vector, then any r vectors $\mathbf{a}_1, \ldots, \mathbf{a}_r$ belonging to a vector space V are said to be **linearly dependent** if there exist scalars x_1, \ldots, x_r not all of which are zero such that

$$\mathbf{a}_1 x_1 + \cdots + \mathbf{a}_r x_r = \mathbf{o} \; .$$

Otherwise $\mathbf{a}_1, \ldots, \mathbf{a}_r$ are said to be linearly independent. On building the matrix $A = [\mathbf{a}_1 \ldots \mathbf{a}_r]$, one has that $\mathbf{a}_1, \ldots, \mathbf{a}_r$ are linearly dependent if and only if $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.

The set of all linear combinations of the given \mathbf{a}_i forms a linear space, called the span of the \mathbf{a}_i , or span $[\mathbf{a}_1 \dots \mathbf{a}_r]$.

The space $\mathbf{A} = span[\mathbf{a}_1 \dots \mathbf{a}_r]$ is called a subspace of V. The dimension of A, or $dim \mathbf{A}$, is defined as the maximum number of linearly independent vectors in A. Occasionally, $n = dim \mathbf{A}$ is given as a superscript, \mathbf{A}^n

Let $\mathbf{a}_1, \ldots, \mathbf{a}_n$ be *n* linearly independent vectors of an *n*-dimensional linear space \mathbf{V} , and let \mathbf{v} be some vector of \mathbf{V} . Then these n + 1 vectors are linearly dependent, i.e.,

$$\mathbf{v} = \mathbf{a}_1 x_1 + \cdots + \mathbf{a}_n x_n , \qquad x_i \in \mathbb{R} ,$$

in matrix notation $\mathbf{v} = A\mathbf{x}$. In this equation the factors x_i can be uniquely determined, otherwise the \mathbf{a}_i would not be linearly independent. Hence \mathbf{A} is non-singular. One says that the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$ form a **basis** of \mathbf{V} . The $\mathbf{a}_i x_i$ are called the **components** of \mathbf{v} , while the x_i are referred to as the **coordinates** of \mathbf{v} with respect to the \mathbf{a}_i .

Remark 1: It is convenient to denote a vector by the vector of its coordinates $\mathbf{x} = [x_1 \dots x_n]^t$. This convention is used throughout this book.

Remark 2: On choosing some fixed basis of \mathbf{V}^n every vector of \mathbf{V}^n corresponds to a unique element of \mathbb{R}^n , and every linear combination in \mathbf{V}^n corresponds to the same linear combination in \mathbb{R}^n . Therefore it is sufficient to consider \mathbb{R}^n instead of \mathbf{V}^n . In particular, the \mathbf{a}_i from above may be viewed as elements of \mathbb{R}^m , $m \geq n$.

2.2 Change of Bases

Let $\mathbf{a}_1, \ldots, \mathbf{a}_n$ and $\mathbf{b}_1, \ldots, \mathbf{b}_n$ denote two bases of a linear space V. Then the **a**'s can be expressed uniquely in terms of the **b**'s,

$$\mathbf{a}_k = \mathbf{b}_1 c_{1,k} + \cdots + \mathbf{b}_n c_{n,k} \; .$$

Using matrix notation one gets

$$\begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \dots & \mathbf{b}_n \end{bmatrix} \begin{bmatrix} c_{1,1} & \cdots & c_{1,n} \\ \vdots & \vdots \\ c_{n,1} & \cdots & c_{n,n} \end{bmatrix} ,$$

or more concisely A = BC. As a consequence one has $C = B^{-1}A$, i.e., $C = [c_{i,k}]$ is non-singular since it is the product of non-singular matrices. Let **v** be some arbitrary vector of **V** with the representations $\mathbf{v} = A\mathbf{x} = B\mathbf{y}$, i.e.,

$$\mathbf{v} = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \dots & \mathbf{b}_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

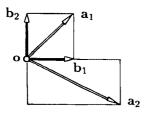
It then follows that $\mathbf{y} = C\mathbf{x}$, i.e.,

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} c_{1,1} \cdots c_{1,n} \\ \vdots & \vdots \\ c_{n,1} \cdots c_{n,n} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Note that the \mathbf{a} 's are expressed in terms of the \mathbf{b} 's, but the y's are expressed in terms of the x's. Both transformations are called **contragredient** to each other.

The representation $\mathbf{a}_k = B\mathbf{c}_k$ has a simple but important geometric meaning:

The column \mathbf{c}_k of C represents the coordinates of the basis vector \mathbf{a}_k with respect to the basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$.



Example 1:

For
$$[\mathbf{a}_1 \mathbf{a}_2] = [\mathbf{b}_1 \mathbf{b}_2] \begin{bmatrix} 1 & 2\\ 1 & -1 \end{bmatrix}$$

one has $\begin{bmatrix} y_1\\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 2\\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$.

2.3 Linear Maps

Of particular interest are maps which are compatible with the linear structure of linear spaces. Such maps must preserve linear combinations. Consider two linear spaces **A** and **B** with bases $\mathbf{a}_1, \ldots, \mathbf{a}_n$ and $\mathbf{b}_1, \ldots, \mathbf{b}_m$ respectively, and a map $\varphi : \mathbf{A} \to \mathbf{B}$ which preserves linear combinations, i.e.,

$$\varphi \left[\mathbf{a} \cdot \alpha + \mathbf{b} \cdot \beta \right] = \varphi \mathbf{a} \cdot \alpha + \varphi \mathbf{b} \cdot \beta$$

for all $\mathbf{a}, \mathbf{b} \in \mathbf{A}$ and all $\alpha, \beta \in \mathbb{R}$. Such a map φ is called a linear map.

The images of the \mathbf{a}_k can uniquely be expressed in terms of the **b**'s,

$$\varphi \mathbf{a}_k = \mathbf{b}_1 c_{1,k} + \cdots + \mathbf{b}_m c_{m,k} ,$$

which may be written in matrix notation as

$$[\varphi \mathbf{a}_1 \ldots \varphi \mathbf{a}_n] = [\mathbf{b}_1 \ldots \mathbf{b}_m] \begin{bmatrix} c_{1,1} \cdots c_{1,n} \\ \vdots & \vdots \\ c_{m,1} \cdots c_{m,n} \end{bmatrix},$$

or in condensed form as $\varphi A = BC$. Let **a** be a vector of **A**,

$$\mathbf{a} = \mathbf{a}_1 x_1 + \cdots + \mathbf{a}_n x_n = A \mathbf{x} ,$$

and $\mathbf{b} = \varphi \mathbf{a}$ its image in \mathbf{B} ,

$$\mathbf{b} = \mathbf{b}_1 y_1 + \dots + \mathbf{b}_m y_m = B \mathbf{y} \; .$$

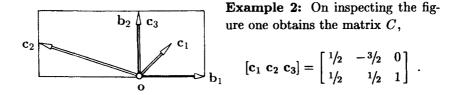
Then one has $\mathbf{y} = B^{-1}\mathbf{b}$ and $\mathbf{b} = \varphi A\mathbf{x} = BC\mathbf{x}$. This implies $\mathbf{y} = C\mathbf{x}$, i.e.,

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} c_{1,1} \cdots c_{1,n} \\ \vdots & \vdots \\ c_{m,1} \cdots c_{m,n} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Note that the $\varphi \mathbf{a}$'s are expressed in terms of the **b**'s via C, but the y's are expressed in terms of the x's, i.e., both transformations are **contragredient** to each other.

The representation $\varphi \mathbf{a}_k = B\mathbf{c}_k$ has a simple but important geometric meaning:

The column \mathbf{c}_k of C represents the coordinates of the image $\varphi \mathbf{a}_k$ of the basis vector \mathbf{a}_k with respect to the basis $\mathbf{b}_1, \ldots, \mathbf{b}_m$.



2.4 Kernel and Fibers

The images $\varphi \mathbf{a}_k$ span $\varphi \mathbf{A}$, the **image** of \mathbf{A} . The image of \mathbf{A} is a subspace of \mathbf{B} with $\dim \varphi \mathbf{A} \leq \dim \mathbf{A}$. These dimensions can be analyzed in more detail. There exists a subspace $\mathbf{K} \subset \mathbf{A}$, called the **kernel** of φ , $\mathbf{K} = \ker \varphi$, which is the set of all vectors in \mathbf{A} mapped into the null vector \mathbf{o} of \mathbf{B} . The subspace \mathbf{K} is represented by the solution of the homogeneous system

$$C\mathbf{x} = \mathbf{o}$$
.

For any fixed vector **a** of **A** and all elements **k** of this kernel **K**, the subset \mathcal{F}_{a} of **A** formed by all $\mathbf{a} + \mathbf{k}$ is called the **fiber** over **a**. Evidently, φ maps all elements of \mathcal{F}_{a} into the same image $C\mathbf{a}$. Note that a fiber is a linear space only if $\mathbf{a} = \mathbf{0}$.

Using a basis of A which contains a basis of K one finds that

$$\dim \varphi \mathbf{A} + \dim \mathbf{K} = \dim \mathbf{A} \; .$$

Example 3: In Example 2, **K** consists of all vectors $\begin{bmatrix} 3 & 1 & -2 \end{bmatrix}^t \lambda$, with $\lambda \in \mathbb{R}$.

2.5 Point Spaces

One can see the world as a **space of points**. This point space is closely related to a linear space in a natural way. Two points are connected by a vector and a vector added to a point gives a point again. These relations are expressed by the notation

$$\mathbf{v} = \mathbf{p} - \mathbf{a}$$
 and $\mathbf{p} = \mathbf{a} + \mathbf{v}$,

where **a** and **p** are points and **v** is the vector pointing from **a** to **p**. Let **v** be given with respect to **a** basis of \mathbf{A}^n , $\mathbf{v} = \mathbf{a}_1 x_1 + \cdots + \mathbf{a}_n x_n$, then

$$\mathbf{p} = \mathbf{a} + \mathbf{a}_1 x_1 + \cdots + \mathbf{a}_n x_n \; .$$

Let **a** be a fixed point, then every coordinate column $\mathbf{x} = [x_1 \dots x_n]^t$ defines a point **p**, with different **x**'s generating different points.

Affine spaces: The set of points **p** corresponding to all $\mathbf{x} \in \mathbb{R}^n$ is called an **affine space** \mathcal{A} , while $span[\mathbf{a}_1 \dots \mathbf{a}_n]$ is called the **underlying vector space** \mathbf{A} . One defines $dim \mathcal{A} = dim \mathbf{A}$. A point $\mathbf{a} \in \mathcal{A}$ together with a basis $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbf{A}$ form an **affine system** in \mathcal{A} . The point **a** is referred to as the **origin** while the x_i are called the **affine coordinates** of **p** with respect to the frame $\mathbf{a}; \mathbf{a}_1, \dots, \mathbf{a}_n$. Affine spaces are discussed in Part III.

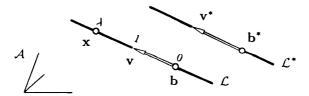


Figure 2.1: Parallelism and affine scale.

In most parts of this book, when points are viewed as vectors they will be denoted by their coordinate columns \mathbf{x} with respect to some fixed frame. Note that \mathbf{p} and \mathbf{x} above denote the same point with respect to different systems.

An affine subspace S of A is defined by some point $\mathbf{b} \in A$ and a subspace \mathbf{S} of \mathbf{A} , i.e., $S = {\mathbf{b} + \mathbf{v} | \mathbf{v} \in \mathbf{S}}$. In particular, a line \mathcal{L} is a 1-dimensional subspace. It will be represented as

$$\mathbf{x} = \mathbf{b} + \mathbf{v}\boldsymbol{\lambda} \; .$$

The parameter λ is called an **affine scale** on \mathcal{L} . It represents **x** with respect to the affine system **b**; **v**. Using this scale, the **ratio** of the point λ with respect to the points λ_0 and λ_1 is defined by

$$ratio(\lambda; \lambda_0, \lambda_1) = rac{\lambda - \lambda_0}{\lambda_1 - \lambda}$$

Note that this ratio depends on the ordering of the points, but not on the respective affine scale.

The line \mathcal{L} is said to be **parallel** to a second line \mathcal{L}^* given by

$$\mathbf{x} = \mathbf{b}^* + \mathbf{v}^* \boldsymbol{\mu}$$

if $\mathbf{v} = \mathbf{v}^* \sigma$, $\sigma \neq 0$.

Euclidean spaces: If the basis vectors \mathbf{a}_i of the underlying vector space A have length 1 and are pairwise perpendicular, then the corresponding affine system is called a **Cartesian system**. The x_i are called **Cartesian coordinates**, while the space \mathcal{A} is called a **Euclidean space** and denoted by \mathcal{E} . In a Cartesian system the square of the distance between two points \mathbf{x} and $\mathbf{x} + \mathbf{d}$ equals $\mathbf{d}^t \mathbf{d}$, and two vectors \mathbf{u} and \mathbf{v} are perpendicular if $\mathbf{u}^t \mathbf{v} = 0$. Euclidean spaces are discussed in Part IV.

Projective spaces: Often it is easier to describe geometric properties if one introduces points at infinity — one point for each 1-dimensional subspace of **A**. Then any two parallel lines meet in a point at infinity. These points are called **ideal points**, while the 1-dimensional subspaces of **A** are called **directions** of \mathcal{A} . The ideal points of \mathcal{A} form the **ideal hyperplane** \mathcal{A}_{∞} of \mathcal{A} . The union $\mathcal{P} = \mathcal{A} \cup \mathcal{A}_{\infty}$ is called the **projective extension** of \mathcal{A} . It represents the prototype of a **projective space**. Projective spaces are discussed in Part V.

2.6 Notes and Problems

- 1 Although the elements of \mathbb{R}^n can be interpreted as the elements of either an affine space or a linear space, the structures of these spaces are different.
- 2 The solution of a homogeneous linear system forms a linear space.
- **3** The solution of a non-homogeneous linear system forms an affine space.
- 4 More exactly, any r independent linear equations in n variables define an affine space of dimension n - r, provided that the corresponding linear system has a solution.
- 5 Any linear space is in a natural way an affine space, but not vice versa.
- 6 The set theoretical intersection of two subspaces A and B of a linear space is a linear space and is called the intersection $A \sqcap B$ of A and B.
- 7 The set theoretical **union** of two subspaces A and B of a linear space is a linear space only if $A \subset B$ or $B \subset A$.
- 8 Let $\mathbf{A} = span[\mathbf{a}_1 \dots \mathbf{a}_r]$ and $\mathbf{B} = span[\mathbf{a}_{r+1} \dots \mathbf{a}_s]$, then $span[\mathbf{a}_1 \dots \mathbf{a}_s]$ is called the join $\mathbf{A} \sqcup \mathbf{B}$ of \mathbf{A} and \mathbf{B} .
- 9 Let $\mathbf{a}_1, \ldots, \mathbf{a}_r$ be linearly independent vectors of some *n*-dimensional linear space **A**. They can be supplemented to a basis $\mathbf{a}_1, \ldots, \mathbf{a}_n$ of **A**.
- 10 Given r non-zero but linearly dependent vectors $\mathbf{a}_1, \ldots, \mathbf{a}_r$, one can construct a basis of span $[\mathbf{a}_1 \ldots \mathbf{a}_r]$ by the Gauss-Jordan algorithm.
- 11 The set of all one-dimensional subspaces of a linear space V forms a **projective space** \mathcal{P} .

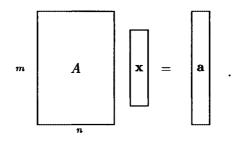
3 Least Squares

A linear system is **overdetermined** if the number of equations exceeds the number of unknowns. Since such a system has no solution in general, one usually seeks unknowns which "solve "the system best, approximatively. Frequently, one minimizes some Euclidean distance. This concept leads to the **method of least squares**.

Literature: Boehm-Prautzsch, Conte-de Boor, Wilkinson

3.1 Overdetermined Systems

Let A be a tall $m \times n$ matrix, i.e., m > n, with rank A = n, and let $A\mathbf{x} = \mathbf{a}$ be a linear system



Only if **a** is a linear combination of the columns \mathbf{a}_k of A, is there a solution **x**. But, in general, one has

$$\mathbf{r} = A\mathbf{x} - \mathbf{a} \neq \mathbf{o}$$
 for all $\mathbf{x} \in \mathbb{R}^n$.

The column \mathbf{r} is called the **residual vector** associated with \mathbf{x} . It can be interpreted in \mathbb{R}^m as the vector from the point \mathbf{a} to the point $A\mathbf{x}$ as illustrated in Figure 3.1. An approximate solution \mathbf{x} which minimizes $\mathbf{r} = \mathbf{r}(\mathbf{x})$ in some sense is all one can hope for. Minimizing $\mathbf{r}^t \mathbf{r}$ is rather a simple task.

In the Euclidean space \mathcal{E}^m the length of **r** is minimal if **r** is orthogonal to the subspace \mathcal{A} spanned by $\mathbf{0}; \mathbf{a}_1, \ldots, \mathbf{a}_n$, i.e., if

$$A^{\mathbf{t}}\mathbf{r}=\mathbf{o}$$
.

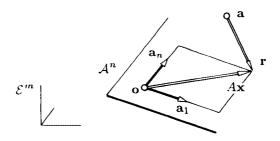


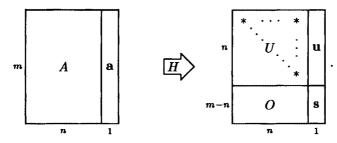
Figure 3.1: The residual vector.

Substituting $A\mathbf{x} - \mathbf{a}$ for **r** results in the so-called Gaussian normal equations,

$$A^{\mathbf{t}}A\mathbf{x} = A^{\mathbf{t}}\mathbf{a}$$
 .

The solution **x** represents the **foot** of the perpendicular from **a** onto \mathcal{A} with respect to the affine system $\mathbf{o}; \mathbf{a}_1, \ldots, \mathbf{a}_n$. Note that $A^t A$ is an $n \times n$ matrix and $A^t \mathbf{a}$ is an *n* column. Moreover, $A^t A$ is symmetric and, if the \mathbf{a}_i are linearly independent, also positive definite. In this case the normal equations can be solved via a symmetric factorization of $A^t A$, as mentioned in Remark 5 of Section 1.5.

Remark 1: In general, normal equations are poorly conditioned. Hence, it is advisable to use a numerically stable method such as Householder's. In **Householder's method**, the matrix $[A|\mathbf{a}]$ is multiplied by a sequence H of orthonormal transformations to obtain a matrix $[B|\mathbf{b}]$ such that B is composed of an upper triangular matrix U and a null matrix O,

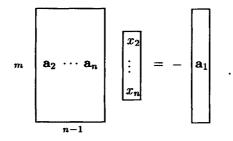


Since orthonormal transformations do not change the Euclidean length of a vector, $\mathbf{r} = A\mathbf{x} - \mathbf{a}$ and $H\mathbf{r} = B\mathbf{x} - \mathbf{b}$ have the same length, i.e., the solution of $U\mathbf{x} = \mathbf{u}$ minimizes $\mathbf{r}^{t}\mathbf{r}$, where $\mathbf{s}^{t}\mathbf{s}$ is the minimum value of $\mathbf{r}^{t}\mathbf{r}$.

Remark 2: The individual equations of $A\mathbf{x} = \mathbf{a}$ may be multiplied with arbitrary weights. This "scaling" changes the coordinates of the residual vector and, hence, influences the result. Thus one may distinguish equations corresponding to very accurate measurements. In this way, equations stemming from accurate measurements can become more influential than others.

3.2 Homogeneous Systems

The least squares method fails for homogeneous systems, i.e., if $\mathbf{a} = \mathbf{o}$, because $\mathbf{x} = \mathbf{o}$ solves the system. A simple way to avoid this problem is to add a constraint by setting one of the x_k 's equal to 1. On constraining, e.g., x_1 , one has to "solve" the overdetermined non-homogeneous system



Obviously, the "solution" depends on which coordinate x_k is constrained. Note that the corresponding \mathbf{a}_k must be distinctly different from **o** to avoid numerical instabilities.

3.3 Constrained Least Squares

Sometimes the "solution" of an overdetermined system $A\mathbf{x} = \mathbf{a}$ is required to satisfy an additional system $B\mathbf{x} = \mathbf{b}$, $\mathbf{b} \neq \mathbf{o}$. One can compute the solution of the system $B\mathbf{x} = \mathbf{b}$ by the Gauss-Jordan algorithm and obtain an equivalent system

$$\mathbf{x} = \mathbf{c} + C\mathbf{t} \; .$$

These additional constraints are **hard constraints** which could be, for example, the boundary conditions of some initial problem. On substituting $\mathbf{c} + C\mathbf{y}$ for \mathbf{x} , the initial system $A\mathbf{x} = \mathbf{a}$ reduces to the overdetermined system

$$AC\mathbf{y} = \mathbf{a} - A\mathbf{c}$$
.

If A is an $m \times n$ matrix and B is an $l \times n$ matrix, then AC is an $m \times n-l$ matrix. Note that m > n > l.

Geometrically, this procedure may be interpreted as the restriction of \mathbf{x} to a subspace C of A and the introduction of new affine coordinates in C represented by \mathbf{y} . Note that this method works even if $\mathbf{a} = \mathbf{o}$.

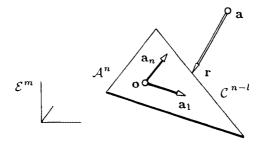


Figure 3.2: Constrained least squares.

Example 1: An example is discussed in Section 3.2 where $x_1 = 1$ represents the hard constraint, i.e.,

$$\mathbf{c} = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 0 & \cdots & 0\\1 & & \\& \ddots & \\& & 1 \end{bmatrix}.$$