
K12933

Mathematics

M
olitiern

o
A

PPLIC
A

T
IO

N
S O

F C
O

M
B

IN
A

T
O

R
IA

L  
M

A
T

R
IX

 T
H

EO
R

Y
 T

O
 LA

PLA
C

IA
N

 M
A

T
R

IC
ES O

F G
R

A
PH

S

APPLICATIONS OF  
COMBINATORIAL  

MATRIX THEORY TO  
LAPLACIAN MATRICES  

OF GRAPHS

DISCRETE MATHEMATICS AND ITS APPLICATIONS
Series Editor KENNETH H. ROSEN

DISCRETE MATHEMATICS AND ITS APPLICATIONS
Series Editor KENNETH H. ROSEN

On the surface, matrix theory and graph theory seem like very different branches 
of mathematics. However, adjacency, Laplacian, and incidence matrices are 
commonly used to represent graphs, and many properties of matrices can give 
us useful information about the structure of graphs.

Applications of Combinatorial Matrix Theory to Laplacian Matrices of 
Graphs is a compilation of many of the exciting results concerning Laplacian 
matrices developed since the mid 1970s by well-known mathematicians such 
as Fallat, Fiedler, Grone, Kirkland, Merris, Mohar, Neumann, Shader, Sunder, and 
more. The text is complemented by many examples and detailed calculations, 
and sections followed by exercises to aid the reader in gaining a deeper 
understanding of the material. Although some exercises are routine, others 
require a more in-depth analysis of the theorems and ask the reader to prove 
those that go beyond what was presented in the section. 

Matrix-graph theory is a fascinating subject that ties together two seemingly 
unrelated branches of mathematics. Because it makes use of both the 
combinatorial properties and the numerical properties of a matrix, this area 
of mathematics is fertile ground for research at the undergraduate, graduate, 
and professional levels. This book can serve as exploratory literature for the 
undergraduate student who is just learning how to do mathematical research, 
a useful “start-up” book for the graduate student beginning research in matrix-
graph theory, and a convenient reference for the more experienced researcher.
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Preface

On the surface, matrix theory and graph theory are seemingly very different
branches of mathematics. However, these two branches of mathematics interact
since it is often convenient to represent a graph as a matrix. Adjacency, Laplacian,
and incidence matrices are commonly used to represent graphs. In 1973, Fiedler
[28] published his first paper on Laplacian matrices of graphs and showed how
many properties of the Laplacian matrix, especially the eigenvalues, can give us
useful information about the structure of the graph. Since then, many papers have
been published on Laplacian matrices. This book is a compilation of many of the
exciting results concerning Laplacian matrices that have been developed since the
mid 1970s. Papers written by well-known mathematicians such as (alphabetically)
Fallat, Fiedler, Grone, Kirkland, Merris, Mohar, Neumann, Shader, Sunder, and
several others are consolidated here. Each theorem is referenced to its appropri-
ate paper so that the reader can easily do more in-depth research on any topic of
interest. However, the style of presentation in this book is not meant to be that
of a journal but rather a reference textbook. Therefore, more examples and more
detailed calculations are presented in this book than would be in a journal article.
Additionally, most sections are followed by exercises to aid the reader in gaining a
deeper understanding of the material. Some exercises are routine calculations that
involve applying the theorems presented in the section. Other exercises require a
more in-depth analysis of the theorems and require the reader to prove theorems
that go beyond what was presented in the section. Many of these exercises are taken
from relevant papers and they are referenced accordingly.

Only an undergraduate course in linear algebra and experience in proof writing
are prerequisites for reading this book. To this end, Chapter 1 gives the necessities
of matrix theory beyond that found in an undergraduate linear algebra course that
are needed throughout this book. Topics such as matrix norms, mini-max princi-
ples, nonnegative matrices, M-matrices, doubly stochastic matrices, and generalized
inverses are covered. While no prior knowledge of graph theory is required, it is help-
ful. Chapter 2 provides a basic overview of the necessary topics in graph theory that
will be needed. Topics such as trees, special classes of graphs, connectivity, degree
sequences, and the genus of graphs are covered in this chapter.

Once these basics are covered, we begin with a gentle approach to Laplacian
matrices in which we motivate their study. This is done in Chapter 3. We begin
with a brief study of other types of matrix representations of graphs, namely the
adjacency and incidence matrices, and use these matrices to define the Laplacian
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matrix of a graph. Once the Laplacian matrix is defined, we present one of the most
famous theorems in matrix-graph theory, the Matrix-Tree Theorem, which tells us
the number of spanning trees in a given graph. Its proof is combinatoric in nature
and the concepts in linear algebra that are employed are well within the grasp of
a student who has a solid background in linear algebra. Chapter 3 continues to
motivate the study of Laplacian matrices by deriving their construction from the
continuous version of the Laplacian matrix which is used often in differential equa-
tions to study heat and energy flow through a region. We adopt these concepts to
the study of energy flow on a graph. We further investigate these concepts at the
end of Chapter 3 when we discuss networks which, historically, is the reason math-
ematicians began studying Laplacian matrices.

Once the motivation of studying Laplacian matrices is completed, we begin with
a more rigorous study of their spectrum in Chapter 4. Since Laplacian matrices are
symmetric, all eigenvalues are real numbers. Moreover, by the Gersgorin Disc Theo-
rem, all of the eigenvalues are nonnegative. Since the row sums of a Laplacian matrix
are all zero, it follows that zero is an eigenvalue since e, the vector of all ones, is
an eigenvector corresponding to zero. We then explore the effects of the spectrum
of the Laplacian matrix when taking the unions, joins, products, and complements
of graphs. Once these results are established, we can then find upper bounds on
the largest eigenvalue, and hence the entire spectrum, of the Laplacian matrix in
terms of the structure of the graph. For example, an unweighted graph on n vertices
cannot have an eigenvalue greater than n, and will have an eigenvalue of n if and
only if the graph is the join of two graphs. Sharper upper bounds in terms of the
number and the location of edges are also derived. Once we have upper bounds for
the spectrum of the Laplacian matrix, we continue our study of its spectrum by
illustrating the distribution of the eigenvalues less than, equal to, and greater than
one. Additionally, the multiplicity of the eigenvalue λ = 1 gives us much insight
into the number of pendant vertices of a graph. We then further our study of the
spectrum by proving the recently proved Grone-Merris Conjecture which gives an
upper bound on each eigenvalue of the Laplacian matrix of a graph. This is sup-
plemented by the study of maximal or threshold graphs in which the Grone-Merris
Conjecture is sharp for each eigenvalue. Such graphs have an interesting structure
in that they are created by taking the successive joins and complements of com-
plete graphs, empty graphs, and other maximal graphs. Moreover, since the upper
bounds provided by the Grone-Merris Conjecture are integers, it becomes natural
to study other graphs in which all eigenvalues of the Laplacian matrix are integers.
In such graphs, the number of cycles comes into play.

In Chapter 5 we focus our study on the most important and most studied eigen-
value of the Laplacian matrix - the second smallest eigenvalue. This eigenvalue is
known as the algebraic connectivity of a graph as it is used extensively to measure
how connected a graph is. For example, the algebraic connectivity of a disconnected
graph is always zero while the algebraic connectivity of a connected graph is always
strictly positive. For a fixed n, the connected graph on n vertices with the largest
algebraic connectivity is the complete graph as it is clearly the “most connected”
graph. The path on n vertices is the connected graph on n vertices with the small-
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est algebraic connectivity since it is seen as the “least connected” graph. Also, the
algebraic connectivity is bounded above by the vertex connectivity. Hence graphs
with cut vertices such as trees will never have an algebraic connectivity greater than
one. Overall, graphs containing more edges are likely to be “more connected” and
hence will usually have larger algebraic connectivities. Adding an edge to a graph
or increasing the weight of an existing edge will cause the algebraic connectivity
to monotonically increase. Additionally, graphs with larger diameters tend to have
fewer edges and thus usually have lower algebraic connectivities. The same holds
true for planar graphs and graphs with low genus. In Chapter 5, we prove many
theorems regarding the algebraic connectivity of a graph and how it relates to the
structure of a graph.

Once we have studied the interesting ideas surrounding the algebraic connec-
tivity of a graph, it is natural to want to study the eigenvector(s) corresponding
to this eigenvalue. Such an eigenvector is known as the Fiedler vector. We dedicate
Chapters 6 and 7 to the study of Fiedler vectors. Since the entries in a Fiedler vector
correspond to the vertices of the graph, we begin our study of Fiedler vectors by
illustrating how the entries of the Fiedler vector change as we travel along various
paths in a graph. This leads us to classifying graphs into one of two types depending
if there is a zero entry in the Fiedler vector corresponding to a cut vertex of the
graph. We spend Chapter 6 focusing on trees since there is much literature con-
cerning the Fiedler vectors of trees. Moreover, it is helpful to understand the ideas
behind Fiedler vectors of trees before generalizing these results to graphs which
is done in Chapter 7. When studying trees, we take the inverse of the submatrix
of Laplacian matrix created by eliminating a row and column corresponding to a
given vertex k of the tree. This matrix is known as the bottleneck matrix at ver-
tex k. Bottleneck matrices give us much useful information about the tree. In an
unweighted tree, the (i, j) entry of the bottleneck matrix is the number of edges
that lie simultaneously on the path from i to k and on the path from j to k. An
analogous result holds for weighted trees. Bottleneck matrices are also helpful in
determining the algebraic connectivity of a tree as the spectral radius of bottleneck
matrices and the algebraic connectivity are closely related. When generalizing these
results to graphs, we gain much insight into the structure of a graph. We learn a
great deal about its cut vertices, girth, and cycle structure.

Chapter 8 deals with the more modern aspects of Laplacian matrices. Since zero
is an eigenvalue of the Laplacian matrix, it is singular, and hence we cannot take
the inverse of such matrices. However, we can take the group generalized inverse
of the Laplacian matrix and we discuss this in this chapter. Since the formula for
the group inverse of the Laplacian matrix relies heavily on bottleneck matrices, we
use many of the results of the previous two chapters to prove theorems concerning
group inverses. We then apply these results to sharpen earlier results in this book.
For example, we use the group inverse to create the Zenger function which is an-
other upper bound on the algebraic connectivity. We also use the group inverse to
investigate the rate of change of increase (the second derivative) in the algebraic
connectivity when we increase the weight of an edge of a graph. The group inverse
of the Laplacian matrix is interesting in its own right as its combinatorial proper-
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ties give us much information about the stucture of a graph, especially trees. The
distances between each pair of vertices in a tree is closely reflected in the entries of
the group inverse. Moreover, within each row k of the group inverse, the entries in
that row decrease as you travel along any path in the tree beginning at vertex k.

Matrix-graph theory is a fascinating subject that ties togtether two seemingly
unrealted branches of mathematics. Because it makes use of both the combinatorial
properties and the numerical properties of a matrix, this area of mathematics is
fertile ground for research at the undergraduate, graduate, and experienced levels.
I hope this book can serve as exploratory literature for the undergraduate student
who is just learning how to do mathematical reasearch, a useful “start-up” book for
the graduate student begining research in matrix-graph theory, and a convenient
reference for the more experienced researcher.
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Notation

< - the set of real numbers

<n - the space of n-dimensional real-valued vectors

A[X,Y ] - the submatrix of A corresponding to the rows indexed by X and the
columns indexed by Y

A[X] = A[X,X]

[X] = {1, . . . , n} \X

‖x‖ - the Euclidean norm of the vector x

e - the column vector of all ones (the dimension is understood by the context)

e(n) - the n-dimensional column vector of all ones

ei - the column vector with 1 in the ith component and zeros elsewhere

yi - the ith component of the vector y

I - the identity matrix

J - the matrix of all ones

Ei,j - the matrix with 1 in the (i, j) entry and zeros elsewhere

Mn - the set of all n× n matrices

Mm,n - the set of all m× n matrices

A ≤ B - entries aij ≤ bij for all ordered pairs (i, j)

A < B - entries aij ≤ bij for all ordered pairs (i, j) with strict inequality for at
least one (i, j)
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A << B - entries aij < bij for all ordered pairs (i, j).

AT - the transpose of the matrix A

A−1 - the inverse of the matrix A

A# - the group inverse of the matrix A

A+ - the Moore-Penrose inverse of the matrix A

diag(A) - the diagonal matrix consisting of the diagonal entries of A

det(A) - the determinant of the matrix A

Tr(A) - the trace of the matrix A

mA(λ) - the multiplicity of the eigenvalue λ of the matrix A

L(G) - the Laplacian matrix of the graph G

mG(λ) - the multiplicity of the eigenvalue λ of L(G)

ρ(A) - the spectral radius of the matrix A

λk(A) - the kth smallest eigenvalue of the matrix A. (Note that we will always
use λn to denote the largest eigenvalue of the matrix A.)

σ(A) - the spectrum of A, i.e., the set of eigenvalues of the matrix A counting
multiplicity

σ(G) - the set of eigenvalues, counting multiplicity, of L(G)

Z(A) - the Zenger of the matrix A

|X| - the cardinality of a set X

w(e) - the weight of the edge e

|G| - the number of vertices in the graph G

dv or deg(v) - the degree of vertex v

mv - the average of the degrees of the vertices adjacent to v
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v ∼ w - vertices v and w are adjacent

N(v) - the set of vertices in G adjacent to the vertex v

d(u, v) - the distance between vertices u and v

d̃(u, v) - the inverse weighted distance between vertices u and v

d̃v - the inverse status of the vertex v

diam(G) - the diameter of the graph G

ρ(G) - the mean distance of the graph G

V (G) - the vertex set of the graph G

E(G) - the edge set of the graph G

v(G) - the vertex connectivity of the graph G

e(G) - the edge connectivity of the graph G

a(G) - the algebraic connectivity of the graph G

δ(G) - the minimum vertex degree of the graph G

∆(G) - the maximum vertex degree of the graph G

γ(G) - the genus of the graph G

p(G) - the number of pendant vertices of the graph G

q(G) - the number of quasipendant vertices of the graph G

Kn - the complete graph on n vertices

Km,m - the complete bipartite graph whose partite sets contain m and n vertices,
respectively

Pn - the path on n vertices

Cn - the cycle on n vertices

Wn - the wheel on n+ 1 vertices



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

Gc - the complement of the graph G

G1 + G2 - the sum (union) of the graphs G1 and G2

G1 ∨ G2 - the join of the graphs G1 and G2

G1 × G2 - the product of the graphs G1 and G2

L(G) - the line graph of the graph G
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Chapter 1

Matrix Theory Preliminaries

As stated in the Preface, this book assumes an undergraduate knowledge of linear
algebra. In this chapter, we study topics that are typically beyond that of an under-
graduate linear algebra course, but are useful in later chapters of this book. Much
of the material is taken from [6] and [41] which are two standard resources in linear
algebra. We begin with a study of vector and matrix norms. Vector and matrix
norms are useful in finding bounds on the spectral radius of a square matrix. We
study the spectral radius of matrices more extensively in the next section which cov-
ers Perron-Frobenius theory. Perron-Frobenius theory is the study of nonnegative
matrices. We will study nonnegative matrices in general, but also study interesting
subsets of this class of matrices, namely positive matrices and irreducible matri-
ces. We will see that positive matrices and irreducible matrices have many of the
same properties. Nonnegative matrices will play an important role throughout this
book and will be useful in understanding the theory behind M-matrices which also
play an important role in later chapters. Hence we dedicate a section to M-matrices
and apply the theory of nonnegative matrices to proofs of theorems involving M-
matrices. Nonnegative matrices are also useful in the study of doubly stochastic
matrices. Doubly stochastic matrices, which we study in the section following the
section on M-matrices, are nonnegative matrices whose row sums and column sums
are each one. Doubly stochastic matrices will play an important role in the study
of the algebraic connectivity of graphs. Finally, we close this chapter with a section
on generalized inverses of matrices. Since many of the matrices we will utilize in
this book are singular, we need to familiarize ourselves with more general inverses,
namely the group inverse of matrices.

1.1 Vector Norms, Matrix Norms, and the Spectral Ra-
dius of a Matrix

Vector and matrix norms have many uses in mathematics. In this section, we inves-
tigate vector and matrix norms and show how they give us insight into the spectral
radius of a square matrix. To do this, we begin by understanding vector norms. In
<n, vectors are used to quantify length and distance. The length of a vector, or

1
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2 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

equivalently, the distance between two points in <n, can be defined in many ways.
However, for the sake of convenience, there are conditions that are often placed on
the way such distances can be defined. This leads us to the formal definition of a
vector norm:

DEFINITION 1.1.1 In <n, the function ‖ • ‖ : <n → < is a vector norm if for
all vectors x, y ∈ <n, it satisfies the following properties:

i) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0
ii) ‖cx‖ = |c|‖x‖ for all scalars c
iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

EXAMPLE 1.1.2 The most commonly used norm is the Euclidean norm:

‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

Given two vectors x and y whose initial point is at the origin, we often use the
Euclidean norm to find the distance between the end points of these vectors. We
do this by finding ‖x − y‖2. In other words, the Euclidean norm is often used to
find the distance between two points in <n. For example, the set of all points in <2

whose Euclidean distance from the origin is at most 1 is the following:

EXAMPLE 1.1.3 We can generalize the Euclidean norm to the `p norm for p ≥ 1:

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

OBSERVATION 1.1.4 The `1 norm is often referred to as the sum norm since:

‖x‖1 = |x|1 + |x|2 + . . .+ |x|n.

Since norms are often used to measure distance, we can compare the manners
in which distance is defined between the norms `1 and `2. We saw above that the
set of all points whose distance from the origin in <2 is at most 1 with respect to
`2 is the unit disc. However, the set of all points whose distance from the origin in
<2 is at most 1 with respect to `1 is the following:
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Matrix Theory Preliminaries 3

OBSERVATION 1.1.5 The `∞ norm is often referred to as the max norm since:

‖x‖∞ = max{|x|1, |x|2, . . . , |x|n}.

Keeping with the concept of distance, the set of all points whose distance from the
origin in <2 is at most 1 with respect to `∞ is the following

Since norms are used to quantify distance in <n, this leads us to the concept of
a sequence of vectors converging. To this end, we have the following definition:

DEFINITION 1.1.6 Let {x(k)} be a sequence of vectors in <n. We say that {x(k)}
converges to the vector x with respect to the norm ‖•‖ if ‖x(k)−x‖ → 0 as k →∞.

With the idea of convergence, we are now able to compare various vector norms
in <n. We do this in the following theorem from [41]:

THEOREM 1.1.7 Let ‖ • ‖α and ‖ • ‖β be any two vector norms in <n. Then
there exist finite positive constants cm and cM such that cm‖x‖α ≤ ‖x‖β ≤ cM‖x‖α
for all x ∈ <n.

Proof: Define the function h(x) = ‖x‖β/‖x‖α on the Euclidean unit ball
S = {x ∈ <n | ‖x‖2 = 1} which is a compact set in <n. Observe that the de-
nominator of h(x) is never zero on S by (i) of Definition 1.1.1. Since vector norms
are continuous functions and since the denominaror of h(x) is never zero on S, it
follows that h(x) is continuous on the compact set S. Hence by the Weierstrass
theorem, h achieves a finite positive maximum cM and a positive minimum cm on
S. Hence cm‖x‖α ≤ ‖x‖β ≤ cM‖x‖α for all x ∈ S. Because x/‖x‖2 ∈ S for every
nonzero vector x ∈ <n, it follows that these inequalities hold for all nonzero x ∈ <n.
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4 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

These inequalities trivially hold for x = 0. This completes the proof. 2

Theorem 1.1.7 suggests that given a vector x ∈ <n, the values of x with respect
to various norms will not vary too much. This leads to the idea of equivalent norms.

DEFINITION 1.1.8 Two norms are equivalent if whenever a sequence of vectors
{x(k)} converges to a vector x with respect to the first norm, then it converges to
the same vector with respect to the second norm.

With this definition, we can now prove a corollary for Theorem 1.1.7 which is
also from [41].

COROLLARY 1.1.9 All vector norms in <n are equivalent.

Proof: Let ‖ • ‖α and ‖ • ‖β be vector norms in <n. Let {x(k)} be a sequence of
vectors that converges to a vector x with respect to ‖ • ‖α. By Theorem 1.1.7, there
exist constants cM ≥ cm > 0 such that

cm‖x(k) − x‖α ≤ ‖x(k) − x‖β ≤ cM‖x(k) − x‖α

for all k. Therefore, it follows that ‖x(k) − x‖α → 0 if and only if ‖x(k) − x‖β → 0
as k →∞. 2

The idea of equivalent norms will be useful as we turn our attention to matrix
norms. We begin with a definition of a matrix norm. Observe that this definition is
of similar flavor to that of a vector norm.

DEFINITION 1.1.10 Let Mn denote the set of all n× n matrices. The function
‖ • ‖ : Mn → < is a matrix norm if for all A,B ∈ Mn, it satisfies the following
properties:

i) ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = 0
ii) ‖cA‖ = |c|‖A‖ for all complex scalars c
iii) ‖A+B‖ ≤ ‖A‖+ ‖B‖
iv) ‖AB‖ ≤ ‖A‖‖B‖

Matrix norms are often defined in terms of vector norms. For example, a commonly
used matrix norm is ‖A‖p which is defined as

‖A‖p = max
‖x‖p 6=0

‖Ax‖p
‖x‖p

= max
‖x‖p=1

‖Ax‖p.

As with vector norms, letting p = 1 and letting p → ∞ are of interest. We now
present the following observations from [41] concerning p-norms for matrices for
important values of p:

OBSERVATION 1.1.11 For any n× n matrix A,
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Matrix Theory Preliminaries 5

‖A‖1 = max
1≤j≤n

n∑
i=1

|ai,j |.

In other words, the 1-norm of a matrix is the maximum of the 1-norm of the column
vectors of the matrix.

OBSERVATION 1.1.12 For any n× n matrix A,

‖A‖∞ = max
1≤i≤n

n∑
j=1

|ai,j |.

In other words, the ∞-norm of a matrix is the maximum of the 1-norm of the row
vectors of the matrix.

Matrix norms are very useful in finding bounds on the eigenvalues of a square
matrix. The following theorem from [41] shows that the spectral radius of a matrix
is always bounded above by any norm of a matrix:

THEOREM 1.1.13 If ‖•‖ is any matrix norm and if A ∈Mn, then ρ(A) ≤ ‖A‖.

Proof: Let λ be an eigenvalue of A such that |λ| = ρ(A). Let x be a correspond-
ing eigenvector. Using the properties of matrix norms, we have

|λ|‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖.

Since ‖x‖ > 0, dividing through by ‖x‖ gives us ρ(A) = |λ| ≤ ‖A‖. 2

We can use Observations 1.1.11 and 1.1.12 to obtain the following corollary from
[41] which gives conditions as to when ρ(A) and ‖A‖ can be equal.

COROLLARY 1.1.14 Let A ∈Mn and suppose that A is nonnegative. If the row
sums of A are constant, then ρ(A) = ‖A‖∞. If the column sums are constant, then
ρ(A) = ‖A‖1.

Proof: We know from Theorem 1.1.13 that ρ(A) ≤ ‖A‖ for any matrix norm
‖ • ‖. However, if the row sums are constant, then e is an eigenvector of A with
eigenvalue ‖A‖∞, and so ρ(A) = ‖A‖∞. The statement for column sums follows
from applying the same argument to AT . 2

The goal for the remainder of this section is to prove a theorem which gives us
a formula for the spectral radius in terms of matrix norms. To this end, we begin
with an important lemma from [41].

LEMMA 1.1.15 Let A ∈ Mn and ε > 0 be given. Then there is a matrix norm
‖ • ‖ such that ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε.
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Proof: By the Schur triangularization theorem (see [41]), there is a unitary
matrix U and an upper triangular matrix V such that A = UTV U . Let Dt =
diag(t, t2, . . . , tn) and observe

DtV D
−1
t =



λ1 t−1d12 t−2d13 . . . t−n+1d1n

0 λ2 t−1d23 . . . t−n+2d2n

0 0 λ3 . . . t−n+3d3n

. . . . . . . . . . . . . . .
0 0 0 . . . t−1dn−1,n

0 0 0 0 λn


,

where λ1, . . . , λn are the eigenvalues of A. For t > 0 large enough, the sum of the
off-diagonal entries of DtV D

−1
t are less that ε. In particular, by Observation 1.1.11

we have ‖DtV D
−1
t ‖1 ≤ ρ(A) + ε for large enough t. Hence if we define the matrix

norm ‖ • ‖ by

‖B‖ = ‖DtUTBUD
−1
t ‖1 = ‖(UD−1

t )−1B(UD−1
t )‖1

for any B ∈Mn, and if we choose t large enough, we will have constructed a matrix
norm such that ‖A‖ ≤ ρ(A) + ε. Since by Theorem 1.1.13, we have ρ(A) ≤ ‖A‖,
this lemma is proven. 2

We now consider matrices whose norm is less than one for some norm. We do
this with a lemma from [41].

LEMMA 1.1.16 Let A ∈ Mn be a given matrix. If there is a matrix norm ‖ • ‖
such that ‖A‖ < 1, then limk→∞A

k = 0; that is, all the entries of Ak tend to zero
as k →∞.

Proof: If ‖A‖ < 1, then ‖Ak‖ ≤ ‖A‖k → 0 as k → ∞. Thus ‖Ak‖ → 0 as
k →∞. But since all vector norms on the n2-dimensional space Mn are equivalent
by Corollary 1.1.9, it must also be the case that ‖Ak‖∞ → 0. The result follows. 2

Intuitively, if limk→∞A
k = 0, then the entries of A must be relatively small.

Hence the spectral radius should be small. In the following lemma from [41], we
make this idea more precise.

LEMMA 1.1.17 Let A ∈Mn. Then limk→∞A
k = 0 if and only if ρ(A) < 1.

Proof: If Ak → 0 and if x 6= 0 is an eigenvector corresponding to the eigenvalue
λ, then Akx = λkx → 0 if and only if |λ| < 1. Since this inequality must hold for
every eigenvalue of A, we conclude that ρ(A) < 1. Conversely, if ρ(A) < 1, then by
Lemma 1.1.15, there is some matrix norm ‖ • ‖ such that ‖A‖ < 1. Thus by Lemma
1.1.16, it follows that Ak → 0 as k →∞. 2

We now prove the main result of this section which gives us a formula for the
spectral radius of a matrix. This result is from [41].
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THEOREM 1.1.18 Let A ∈Mn. For any matrix norm ‖ • ‖

ρ(A) = lim
k→∞

‖Ak‖1/k

Proof: Observe ρ(A)k = ρ(Ak) ≤ ‖Ak‖, the last inequality follows from Theo-
rem 1.1.13. Hence ρ(A) ≤ ‖Ak‖1/k for all natural numbers k. Given ε > 0, the matrix
Â := [1/(ρ(A)+ ε)]A has a spectral radius strictly less than one and hence it follows
from Lemma 1.1.17 that ‖Âk‖ → 0 as k →∞. Thus for a fixed A and ε, there exists
N (depending on A and ε) such that ‖Âk‖ < 1 for all k ≥ N . But this is equivalent
to saying ‖Ak‖ ≤ (ρ(A) + ε)k for all k ≥ N , or that ‖Ak‖1/k ≤ ρ(A) + ε for all
k ≥ N . Since ε was arbitrary, it follows that ‖Ak‖1/k ≤ ρ(A) for k ≥ N . But we saw
earlier in the proof that ρ(A) ≤ ‖Ak‖1/k for all k. Hence ρ(A) = limk→∞ ‖Ak‖1/k. 2

Theorem 1.1.18 will be useful to us in later sections and chapters when we need
to compare the spectral radii of matrices, especially nonnegative matrices. To this
end, we close this section with three corollaries from [41] which allow us to compare
the spectral radii of matrices. We prove the first corollary and leave the proofs of
the remaining corollaries as exercies.

COROLLARY 1.1.19 Let A and B be n × n matrices. If |A| ≤ B, then ρ(A) ≤
ρ(|A|) ≤ ρ(B).

Proof: First note that for every natural number m we have |Am| ≤ |A|m ≤ Bm.
Hence

‖Am‖2 ≤ ‖|A|m‖2 ≤ ‖Bm‖2
and

‖Am‖1/m2 ≤ ‖|A|m‖1/m2 ≤ ‖Bm‖1/m2

for all natural numbers m. Letting m tend to infinity and applying Theorem 1.1.18
results in ρ(A) ≤ ρ(|A|) ≤ ρ(B). 2

COROLLARY 1.1.20 Let A and B be n × n matrices. If 0 ≤ A ≤ B, then
ρ(A) ≤ ρ(B).

COROLLARY 1.1.21 Let A be an n×n matrix where A ≥ 0. If Ã is any principle
submatrix of A, then ρ(Ã) ≤ ρ(A). In particular, max1≤i≤nai,i ≤ ρ(A).

Exercises:

1. (See [41]) Prove that for each p ≥ 1 that `p is a vector norm by verifying the
properties in Definition 1.1.1.

2. (See [41]) Prove that `∞ is a vector norm by verifying the properties in Defi-
nition 1.1.1, and show that

‖x‖∞ = lim
p→∞

‖x‖p.
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8 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

3. Define the Frobenius norm for a matrix A as

‖A‖F =

 n∑
i,j=1

|aij |2
1/2

Use Definition 1.1.10 to verify that this is a matrix norm.

4. Prove Corollary 1.1.20.

5. Prove Corollary 1.1.21.

1.2 Location of Eigenvalues

In this section, we develop theory that shows where the eigenvalues of a matrix lie
and how the eigenvalues of a matrix change when the matrix is perturbed. Most of
this section will focus on symmetric matrices since mainly symmetric matrices will
be used throughout this book. We begin with a well-known theorem known as the
Gersgorin Disc Theorem which states that all of the eigenvalues of a square matrix
lie in certain discs on the complex plane.

THEOREM 1.2.1 The Gersgorin Disc Theorem. Let A be an n × n matrix and
let σ be the set of all eigenvalues of A. Then

σ ⊂
n⋃
i=1

r ∈ C : |ai.i − r| ≤
n∑
k=1

k 6=i

|ai,k|

 (1.2.1)

Proof: Suppose λ is an eigenvalue of A with x as a corresponding eigenvector,
i.e., Ax = λx. Let xi be the entry of x such that xi = max1≤k≤n |xk|. Observe

n∑
k=1

ai,kxk = λxi

and therefore

(λ− ai,i)xi =
n∑
k=1

k 6=i

ai,kxk.

By the triangle inequality we have

|λ− ai,i| |xi| ≤
n∑
k=1

k 6=i

|ai,k| |xk| .

Dividing through by |xi| and recalling that xi = max1≤k≤n |xk|, we obtain

|λ− ai,i| ≤
n∑
k=1

k 6=i

|ai,k|
|xk|
|xi|

≤
n∑
k=1

k 6=i

|ai,k| .
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Therefore, the distance from ai,i to λ is at most
∑n

k=1

k 6=i
|ai,k| on the complex plane,

i.e.,

λ ∈ {r ∈ C : |ai,i − r| ≤
n∑
k=1

k 6=i

|ai,k|}.

Taking all eigenvalues of A into account gives us (1.2.1). 2

In summary, the Gersgorin Disc Theorem states that all of the eigenvalues of
a square matrix lie in the union of discs whose centers are the diagonal entries of
the matrix and whose radii are the sum of the absolute values of the off-diagonal
entries in the corresponding row.

EXAMPLE 1.2.2 Consider the matrix

A =

 1 + 2i 0 1
−1 3 1
0 i −i


We create three discs in accordance with the Gersgorin Disc Theorem. The first disc
has center 1 + 2i and radius 1; the second disc has center 3 and radius 2; the third
disc has center −i and radius 1. All eigenvalues of A will lie in the union of these
discs.

Note that the eigenvalues of A are 3.1 + 0.2i, 1.1 + 2.1i, and −0.2− 1.3i.

Since we will primarily deal with symmetric matrices in this book, we present
a well-known theorem which shows that all eigenvalues of a symmetric matrix are
real numbers.

THEOREM 1.2.3 Let A be a real symmetric matrix. Then all eigenvalues of A
are real.

Proof: Let xH and AH denote the conjugate transpose of the vector x and
matrix A, respectively. If λ is a complex number such that λ = a + bi for real
numbers a and b, note that λH = a − bi. We will prove this statement for the set
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10 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

of complex matrices A such that A = AH noting that the set of real symmetric
matrices is a subset of this set. Let λ be an eigenvalue of A with corresponding
eigenvector x normalized so that xHx = 1. Then

λ = xHAx = xHAHx = (xHAx)H = λH .

Since λ = λH , it follows that λ is real. 2

Since all of eigenvalues of a symmetric matrix are real, we can order the eigen-
values as follows:

λmin = λ1 ≤ λ2 ≤ . . . ≤ λn−1 ≤ λn = λmax

Now that we know that all of the eigenvalues of a symmetric matrix are real and the
approximate location of such eigenvalues via the Gersgorin Disc Theorem, we now
proceed with the goal of this section which is to gain insight into the eigenvalues of
symmetric matrices with respect to unit vectors. We begin by investigating the well-
known Rayleigh-Ritz equations with a theorem found in [41] which give us useful
formulas for the largest and smallest eigenvalues of a symmetric matrix in terms of
unit vectors.

THEOREM 1.2.4 Let A ∈Mn be symmetric. Then

(i) λ1x
Tx ≤ xTAx ≤ λnx

Tx

for all x ∈ <n. In addition

(ii) λn = max
x6=0

xTAx

xTx
= max

xT x=1
xTAx

and

(iii) λ1 = min
x6=0

xTAx

xTx
= min

xT x=1
xTAx.

Proof: Since A is symmetric, there exists a unitary matrix U ∈ Mn such that
A = UDUT where D = diag(λ1, . . . , λn). For any vector x ∈ <n, we have

xTAx = xTUDUTx = (UTx)TD(UTx) =
n∑
i=1

λi|(UTx)i|2.

Since each term |(UTx)i|2 is nonnegative, it follows that

λ1

n∑
i=1

|(UTx)i|2 ≤ xTAx =
n∑
i=1

λi|(UTx)i|2 ≤ λn

n∑
i=1

|(UTx)i|2.

Since U is unitary, it follows that

n∑
i=1

|(UTx)i|2 =
n∑
i=1

|xTUUTx| =
n∑
i=1

|xi|2 = xTx.
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Therefore
λ1x

Tx ≤ xTAx ≤ λnx
Tx, (1.2.2)

which proves (i).
To prove (ii), we see that dividing (1.2.2) through by xTx we obtain

λ1 ≤
xTAx

xTx
≤ λn

However, if x is an eigenvector of A corresponding the eigenvalue λn, then

xTAx

xTx
=

λnx
Tx

xTx
= λn

which implies

max
x6=0

xTAx

xTx
= λn. (1.2.3)

Finally, if x 6= 0 then

xTAx

xTx
=

(
x√
xTx

)T
A

(
x√
xTx

)
and

(
x√
xTx

)T ( x√
xTx

)
= 1

which shows (1.2.3) is equivalent to

max
xT x=1

xTAx = λn

This finishes the proof of (ii). The proof of (iii) is similar. 2

Our goal will be to generalize the Rayleigh-Ritz equations to obtain formulas for
the other eigenvalues of a symmetric matrix. This is known as the Courant-Fischer
Minimax Principle. Before making such generalizations, we need a lemma from [41]:

LEMMA 1.2.5 Let A ∈ Mn and let U = [u1, . . . , un] be a unitary matrix such
that A = UTDU where D = diag(λ1, . . . , λn). Then

max
x6=0

x⊥un,un−1,...,un−k+1

xTAx

xTx
= max

xT x=1

x⊥un,un−1,...,un−k+1

xTAx = λn−k

where u1, . . . , un are the columns of U .

Proof: Suppose we consider only those vectors x ∈ <n that are orthogonal to
un, un−1, . . . , un−k+1. Then

xTAx =
n∑
i=1

λi|(UTx)i|2 =
n∑
i=1

λi|uTi x|2 =
n−k∑
i=1

λi|uTi x|2.

This is a nonnegative linear combination of λ1, . . . , λn−k. Therefore

xTAx =
n−k∑
i=1

λi|uTi x|2 ≤ λn−k
n−k∑
i=1

|uTi x|2 = λn−k

n∑
i=1

|(UTx)i|2 = λn−kx
Tx.

The inequality is sharp if x = un−k. The result now follows. 2
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12 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

REMARK 1.2.6 For each k = 1, . . . , n, the column vector uk of U is a unit
eigenvector corresponding to the eigenvalue λk of A.

We are now ready to prove the main theorem of this section which generalizes
the Rayleigh-Ritz equations. In this theorem from [41], we present the well-known
Courant-Fischer Minimax Theorem.

THEOREM 1.2.7 Let A ∈ Mn be symmetric and let k be an integer 1 ≤ k ≤ n.
Then

λk = min
w1,w2,...,wn−k∈<n

max
x6=0
x∈<n

x⊥w1,w2,...,wn−k

xTAx

xTx
(1.2.4)

and

λk = max
w1,w2,...,wk−1∈<n

min
x6=0
x∈<n

x⊥w1,w2,...,wk−1

xTAx

xTx
(1.2.5)

Proof: We will only prove (1.2.4) as the proof of (1.2.5) is similar. Writing
A = UDUT as in the proof of Lemma 1.2.5 and fixing k where 2 ≤ k ≤ n, then if
x 6= 0, we have

xTAx

xTx
=

(UTx)TD(UTx)

xTx
=

(UTx)TD(UTx)

(UTx)T (UTx).

Since U is unitary, we have

{UTx : x ∈ <n, x 6= 0} = {y ∈ <n : y 6= 0}.

Therefore, if w1, . . . , wn−k ∈ <n are given, we have

sup x6=0

x⊥w1,...,wn−k

xTAx
xT x

= sup y 6=0

y⊥UTw1,...,UTwn−k

yTDy
yT y

= sup
yT y=1

y⊥UTw1,...,UTwn−k

∑n
i=1 λi|yi|2

≥ sup
yT y=1

y⊥UTw1,...,U
T wn−k

y1=y2=...=yk−1=0

∑n
i=1 λi|yi|2

= sup|yk|2+|yk+1|2+...+|yn|2=1

y⊥UTw1,...,UTwn−k

∑n
i=k λi|yi|2

≥ λk.

Therefore

sup
x6=0

x⊥w1,...,wn−k

xTAx

xTx
≥ λk
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Matrix Theory Preliminaries 13

for any n− k vectors w1, . . . , wn−k. However, Lemma 1.2.5 and Remark 1.2.6 show
that equality holds for one choice of the vectors wi, namely wi = un−i+1. Therefore

inf
w1,...,wn−k

sup
x6=0

x⊥w1,...,wn−k

xTAx

xTx
= λk

Since the extrema is achieved in all of these cases, we replace “inf” and “sup” with
“min” and “max,” respectively. This completes the proof. 2

One of the most important consequences of the Courant-Fisher Minimax Theo-
rem are the interlacing theorems of eigenvalues. In the following theorem and corol-
laries from [41], we show that if we perturb a given symmetric matrix A to obtain a
symmetric matrx B, then the eigenvalues of A and B interlace in some fashion. In
the following theorem, we investigate the eigenvalues of the matrix A+ zzT where
A is symmetric and z is any real vector.

THEOREM 1.2.8 Let A ∈Mn be symmetric and let z ∈ <n be a given vector. If
the eigenvalues of A and A+ zzT are arranged in increasing order, then

(i)λk(A+ zzT ) ≤ λk+1(A) ≤ λk+2(A+ zzT ), for k = 1, 2, . . . , n− 2

(ii)λk(A) ≤ λk+1(A+ zzT ) ≤ λk+2(A), for k = 1, 2, . . . , n− 2.

Proof: Let 1 ≤ k ≤ n− 2. Then by Theorem 1.2.7 we have

λk+2(A± zzT ) = minw1,...,wn−k−2
max x6=0

x⊥w1,...,wn−k−2

xT (A+zzT )x
xT x

≥ minw1,...,wn−k−2
max x6=0, x⊥z

x⊥w1,...,wn−k−2

xT (A+zzT )x
xT x

= minw1,...,wn−k−2
wn−k−1=z

max x6=0

x⊥w1,...,wn−k−1

xT (A+zzT )x
xT x

≥ minw1,...,wn−k−1
max x6=0

x⊥w1,...,wn−k−1

xT (A+zzT )x
xT x

= λk+1(A).
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Similarly, for 2 ≤ k ≤ n− 1 we have

λk(A± zzT ) = maxw1,...,wk−1
min x6=0

x⊥w1,...,wk−1

xT (A+zzT )x
xT x

≤ maxw1,...,wk−1
min x6=0, x⊥z

x⊥w1,...,wk−1

xT (A+zzT )x
xT x

= maxw1,...,wk−1
wk=z

min x6=0

x⊥w1,...,wk

xT (A+zzT )x
xT x

≤ maxw1,...,wk min x6=0

x⊥w1,...,wk

xT (A+zzT )x
xT x

= λk+1(A).

Combining these inequalities proves the theorem. 2

We close this section with three useful corollaries (see [41]) of Theorem 1.2.8
whose proofs we leave as exercises.

COROLLARY 1.2.9 Let A,B ∈ Mn be symmetric and suppose that B has rank
at most r. Then

(i)λk(A+B) ≤ λk+r(A) ≤ λk+2r(A+B), for k = 1, 2, . . . , n− 2r

(ii)λk(A) ≤ λk+r(A+B) ≤ λk+2r(A), for k = 1, 2, . . . , n− 2r.

COROLLARY 1.2.10 Let A ∈Mn be symmetric, z ∈ <n be a vector, and c ∈ <.
Let Â ∈Mn+1 be the symmetric matrix obtained from A by bordering A with z and
c as follows

Â =

[
A z

zT c

]
.

Then

λ1(Â) ≤ λ1(A) ≤ λ2(Â) ≤ λ2(A) ≤ . . . ≤ λn−1(A) ≤ λn(Â) ≤ λn(A) ≤ λn+1(Â).

COROLLARY 1.2.11 Let A,B ∈Mn be symmetric where B is positive semidef-
inite. Then

λk(A) ≤ λk(A+B)

for all k = 1, . . . , n.

Exercises:

1. Prove Corollary 1.2.9.

2. Prove Corollary 1.2.10.

3. Prove Corollary 1.2.11.
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1.3 Perron-Frobenius Theory

Perron-Frobenius theory deals with the eigenvalues and eigenvectors corresponding
to the spectral radius of a nonnegative matrix. Nonnegative matrices are of great
importance in matrix theory and will be of special importance later in this book
as we apply them extensively in graph theory. Therefore, we dedicate a section to
these results. We begin with a definition:

DEFINITION 1.3.1 A matrix A is nonnegative if all entries of A are nonnegative.
In this case, we write A ≥ 0. If all entires of A are strictly positive, then we say A
is positive and write A >> 0.

Note that the set of positive matrices is a subset of the set of nonnegative matrices.
Further if we want to denote that a nonnegative matrix A has at least one positive
entry, we write A > 0.

In this section, we will first develop Perron-Frobenius theory for positive matri-
ces. We then relax the condition of the matrices being positive and investigate how
Perron-Frobenius theory changes when dealing with nonnnegative matrices. Finally,
we study a special class of nonnegative matrices known as irreducible matrices and
show that they behave similarly to positive matrices. We begin with the study of
positive matrices. Since the set of positive matrices is a subset of nonnegative ma-
trices, we begin with an important preliminary lemma and three useful corollaries
from [41] concerning the larger class of nonnegative matrices:

LEMMA 1.3.2 Let A ∈Mn be nonnegative. Then

min
1≤i≤n

n∑
j=1

ai,j ≤ ρ(A) ≤ max
1≤i≤n

n∑
j=1

ai,j (1.3.1)

and

min
1≤j≤n

n∑
i=1

ai,j ≤ ρ(A) ≤ max
1≤j≤n

n∑
i=1

ai,j (1.3.2)

Proof: Let α = min1≤i≤n
∑n
j=1 ai,j and let B ∈ Mn be such that

bi,j = αai,j/
∑n
j=1 ai,j . Observe A ≥ B ≥ 0. By Corollary 1.1.14 we see that

ρ(B) = α; by Corollary 1.1.20 we have ρ(B) ≤ ρ(A). Hence α ≤ ρ(A) which estab-
lishes the first inequality in (1.3.1). The second inequality in (1.3.1) is established
in a similar fashion. Finally, (1.3.2) is established by applying the above argument
to AT . 2

Now that we have some preliminary bounds on the spectral radius of nonnegative
matrices, we can apply this lemma to get more precise results. In our first corollary,
we recall that if S is an invertible matrix, then ρ(S−1AS) = ρ(A).
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16 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

COROLLARY 1.3.3 Let A ∈ Mn be nonnegative. Then for any positive vector
x ∈ <n we have

min
1≤i≤n

1

xi

n∑
j=1

ai,jxj ≤ ρ(A) ≤ max
1≤i≤n

1

xi

n∑
j=1

ai,jxj

and

min
1≤j≤n

xj

n∑
i=1

ai,j
xi
≤ ρ(A) ≤ max

1≤j≤n
xj

n∑
i=1

ai,j
xi

Proof: Let S = diag(x1, . . . , xn). Since S is invertible, it follows that
ρ(S−1AS) = ρ(A). Moreover, S−1AS is nonnegative. Thus we can apply Lemma
1.3.2 to S−1AS = [ai,jxj/xi] to obtain the result. 2

We now continue to sharpen our bounds on the spectral radius of nonnegative
matrices found in Lemma 1.3.2 in the next corollary which helps us determine
bounds on the spectral radius in terms of vectors. Observe that this corollary is
somewhat reminiscent of Theorem 1.2.4(i).

COROLLARY 1.3.4 Let A ∈Mn be nonnegative and suppose x ∈ <n is a positive
vector. If α, β ≥ 0 are such that αx ≤ Ax ≤ βx, then α ≤ ρ(A) ≤ β. Moreover, if
αx < Ax then α < ρ(A); if Ax < βx, then ρ(A) < β.

Proof: If αx ≤ Ax, then α ≤ min1≤i≤n(1/xi)
∑n
j=1 ai,jxj . Thus by Corollary

1.3.3, it follows that α ≤ ρ(A). If αx < Ax, then there exists some α′ > α such that
α′ ≤ Ax. In this case, ρ(A) ≥ α′ > α, thus ρ(A) > α. The upper bounds are verified
in a similar fashion. 2

The previous two corollaries have led up to the next corollary which will be
useful when proving the first main result of this section.

COROLLARY 1.3.5 Let A ∈Mn be nonnegative. If A has a positive eigenvector,
then the corresponding eigenvalue is ρ(A).

Proof: Suppose Ax = λx where x >> 0. Then λx ≤ Ax ≤ λx by Corollary
1.3.4. Applying Corollary 1.3.4 again, we obtain λ ≤ ρ(A) ≤ λ. 2

Now that we have some preliminary results concerning nonnegative matrices,
we return our focus to positive matrices. The first goal of this section is to prove
Perron’s theorem which is a well-known theorem concerning the eigenvalues and
eigenvectors of positive matrices. First we need a lemma from [41].

LEMMA 1.3.6 Let A ∈ Mn. Suppose that λ is an eigenvalue of A such that
|λ| = ρ(A) and that λ is the only eigenvalue of A with modulus ρ(A). Suppose x
and y are vectors such that Ax = λx and AT y = λy where x and y are normalized
so that xT y = 1. Let L = xyT . Then limm→∞[(1/λ(A))A]m = L.
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Proof: First, observe that (a) Lm = L and (b) AmL = LAm = λmL for all
integers m. Then (a) and (b) imply (A − λL)m = Am − λmL for all integers m.
Hence (

1

λ
A− L

)m
=

[
1

λ
(A− λL)

]m
=

1

λm
Am − L.

Therefore (
1

λ
A

)m
= L+

(
1

λ
A− L

)m
. (1.3.3)

Since

ρ

(
1

λ
A− L

)
=

ρ(A− λL)

ρ(A)
≤ |λn−1(A)|

ρ(A)
< 1,

the result follows from (1.3.3). 2

OBSERVATION 1.3.7 Since L is the product of two vectors, it follows that the
rank of L is 1.

We are now ready to prove Perron’s Theorem for positive matrices which is the
first main result of this section. The proof is adapted from [41].

THEOREM 1.3.8 Let A ∈Mn be positive. Then
(i) ρ(A) is an eigenvalue of A,
(ii) There is a positive eigenvector corresponding to ρ(A),
(iii) |λ| < ρ(A) for every eigenvalue such that λ 6= ρ(A),
(iv) ρ(A) is a simple eigenvalue of A.

Proof: Let x 6= 0 be such that Ax = λx where |λ| = ρ(A). Then

ρ(A)|x| = |λ||x| = |λx| = |Ax| ≤ |A||x| = A|x|.

Thus y := A|x| − ρ(A)|x| ≥ 0. Since |x| > 0 and A >> 0, it follows that z :=
A|x| >> 0. If y 6= 0 then

0 < Ay = Az − ρ(A)z

which simplifies to Az > ρ(A)z. This implies that ρ(A) > ρ(A) which is clearly
false. Thus y = 0, and therefore A|x| = ρ(A)|x|. Hence ρ(A) is a positive eigenvalue
of A corresponding to the positive eigenvector |x|, thus (i) and (ii) are proved.

To prove (iii), we will show that if λ is an eigenvalue of A where |λ| = ρ(A),
then λ = ρ(A). Let x be an eigenvector corresponding to λ. We first show that there
exits an argument 0 ≤ θ < 2π such that e−iθx = |x| >> 0. To see this, observe from
(i) and (ii) that

ρ(A)|xk| = |λ||xk| = |λxk| =

∣∣∣∣∣∣
n∑
p=1

akpxp

∣∣∣∣∣∣ ≤
n∑
p=1

|akp||xp| =
n∑
p=1

akp|xp| = ρ(A)|xk|.

Thus equality must hold in the triangle inequality and hence the nonzero complex
numbers akpxp, p = 1, . . . , n must all have the same argument, say θ. Since akp > 0
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18 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

for all p, it follows that e−iθx >> 0. Letting w = e−iθx >> 0, we have Aw = λw.
But by Corollary 1.3.5 it follows that λ = ρ(A).

To prove (iv), write A = U∆UT where U is unitary and ∆ is an upper trian-
gular matrix with main diagonal entries ρ, . . . , ρ, λk+1, . . . , λn, where ρ = ρ(A) is
an eigenvalue of A with algebraic multiplicity k ≥ 1; the eigenvalues λi are all such
that |λi| < ρ(A) for all k + 1 ≤ i ≤ n (by part (iii)). Using Lemma 1.3.6 we have

L = lim
m→∞

(
1

ρ(A)
A

)m
= U lim

m→∞



1
. . . ∗

1
λk+1

ρ

0 . . .
λn
ρ



m

UT

= U



1
. . . ∗

1
0

0 . . .
0


UT

where the diagonal entry 1 is repeated k times in the last two expressions, and the
diagonal entry 0 is repeated n − k times. Since the upper triangular matrix in the
last expression has rank at least k, and since L has rank 1 (Observation 1.3.7), we
conclude that k > 1 is impossible, thus proving (iv). 2

EXAMPLE 1.3.9 Consider the positive matrix

A =

 8 8 8
4 2 1
4 12 4


The eigenvalues of A are 16, −1 + 3.32i, and −1 − 3.32i. Note that the eigenvalue
of largest modulus is 16 and that ρ(A) = 16. Moreover, the eigenvector correspond-
ing to 16 is positive, namely [3, 1, 2]T . Finally, 16 is the only eigenvalue with a
positive eigenvector as the eigenvectors corresponding to −1 + 3.32i and −1− 3.32i
are [−0.52+1.23i, 1,−0.93−1.6i]T and [−0.52−1.23i, 1,−0.93+1.6i]T , respectively.

Since the eigenvector corresponding to the spectral radius of a positive matrix
is of special importance, we have the following definition. Note in this definition,
we relax the conditions of the matrix and eigenvector corresponding to the spectral
radius to be nonnnegative rather than positive. We will see in the theorem that
follows that relaxing such conditions is desirable.

DEFINITION 1.3.10 A nonnegative eigenvector of A ≥ 0 corresponding to ρ(A)
is called a Perron vector of A.
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We now turn our attention to nonnegative matrices. Since we are relaxing the
conditions of Theorem 1.3.8 by allowing our matrices to have entries of zero, we
expect the conclusions of the theorem to be more relaxed in that the eigenvector
corresponding to the spectral radius be allowed entries of zero. This is indeed the
case as we see in the following theorem from [41].

THEOREM 1.3.11 Let A be a nonnegative n× n matrix. Then
(i) ρ(A) is an eigenvalue of A, and
(ii) A has a nonnegative eigenvector corresponding to ρ(A).

Proof: For any ε > 0, define the matrix A(ε) := [ai,j + ε] >> 0. Let x(ε) be
the positive eigenvector of A(ε) corresponding to ρ(A(ε)) as per Theorem 1.3.8(i).
Normalize each vector x(ε) so that

∑n
i=1 x(ε)i = 1. Since the set of vectors {x(ε) :

ε > 0} is contained in the compact set {x : x ∈ Cn, ‖x‖1 ≤ 1}, there is a monotone
decreasing sequence ε1, ε2, . . ., with limk→∞ εk = 0 such that x := limk→∞ x(εk)
exists. Since x(εk) >> 0 for all k, it follows that x ≥ 0. However, since

n∑
i=1

xi = lim
k→∞

n∑
i=1

x(εk)i = 1

it follows that x 6= 0, hence x > 0. By Corollary 1.1.20 it follows that
ρ(A(εk)) ≥ ρ(A(εk+1)) ≥ . . . ≥ ρ(A), for any k. Thus the sequence of real
numbers {ρ(A(εk))}k=1,2,... is a bounded monotone decreasing sequence and hence
ρ := limk→∞ ρ(A(εk)) exists and ρ ≥ ρ(A). However,

Ax = limk→∞A(εk)x(εk)

= limk→∞ ρ(A(εk))x(εk)

= limk→∞ ρ(A(εk)) limk→∞ x(εk) = ρx.

Since x 6= 0, it follows that ρ is an eigenvalue of A with x as the corresponding
eigenvector. Therefore ρ = ρ(A) and x > 0 is a corresponding eigenvector. 2

In Theorem 1.3.8 which concerns positive matrices, i.e., nonnegative matrices
which do not contain a zero entry, we see that the eigenvector corresponding to the
largest eigenvalue in modulus is also positive, hence it does not contain a zero entry.
Moreover, the spectral radius of such a matrix is a simple eigenvalue. However, when
we relax the conditions of allowing zero entries in a nonnegative matrix as we do
in Theorem 1.3.11, we see that while the spectral radius is still an eigenvalue, it
need not be a simple eigenvalue. Moreover, the eigenvector corresponding to such
an eigenvalue is nonnegative, hence it may have a zero entry. We now turn our
attention to a specific class of nonnegative matrices known as irreducible matrices.
We will see that while these matrices may have a zero entry, they will behave like
positive matrices. To this end, we have a definition:

DEFINITION 1.3.12 A matrix A ∈Mn is reducible if A is permutationally sim-
ilar to a matrix of the form
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[
B C
0 D

]

where B and D are both square matrices. If A is not permutationally similar to a
matrix of this form, we say that A is irreducible.

In order to be able to determine if a nonnegative matrix is irreducible, it is helpful
for us to have a pictorial representation of the matrix:

DEFINITION 1.3.13 The associated directed graph, G(A), of a matrix A ∈ Mn

is a graph on n vertices v1, . . . , vn where there is a directed edge from vi to vj if and
only if ai,j 6= 0.

EXAMPLE 1.3.14 Consider the following matrices:

A =

 0 5 3
0 0 1
4 0 0

 B =


2 0 4 1
0 0 0 3
6 5 0 0
0 7 0 2


Their associated directed graphs are

DEFINITION 1.3.15 A directed graph is strongly connected if for any pair of
vertices vi and vj , it is possible to travel from vi to vj along a sequence of directed
edges. We refer to such a sequence of directed edges as a directed path.

Observe that G(A) is strongly connected. However, G(B) is not strongly connected
as there does not exist a directed path from v4 to v1 (or v4 to v3). The existence of
directed paths between any pairs of vertices leads us to the following theorem from
[6] concerning irreducible matrices:
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THEOREM 1.3.16 A matrix A is irreducible if and only if G(A) is strongly con-
nected.

Proof: Suppose A is reducible, then there exists a permutation matrix P such
that

A = P

[
B C
0 D

]
P T : = PÂP T

where B ∈ Mr, D ∈ Mn−r, C ∈ Mr,n−r, and 0 ∈ Mn−r,r for some 1 ≤ r ≤ n. Let
v1, . . . , vn ∈ V (G(A)) and v̂1, . . . , v̂n ∈ V (G(Â)). In G(Â), observe that there does
not exist a directed path from v̂i to v̂j if r+1 ≤ i ≤ n and 1 ≤ j ≤ r. Hence G(Â) is
not strongly connected. Since G(A) and G(Â) are isomorphic, it follows that G(A)
is not strongly connected.

Now suppose G(A) is not strongly connected. Then there exists nonempty sets
of vertices S1 and S2 of G(A) such that no directed path from vi to vj exists if
vi ∈ S2 and vj ∈ S1. Let |S1| = r and |S2| = n− r. Relabel the vertices of G(A) as
v̂1, . . . , v̂n where v̂1, . . . , v̂r ∈ S1 and v̂r+1, . . . , v̂n ∈ S2; permute the matrix A in the
same fashion to create Â. Thus graph created from relabeling the vertices of G(A)
is precisely G(Â). Since there are no directed paths in G(Â) from the vertices in S2

to the vertices in S1, it follows that Â must have an (n− r)× r block of zeros in the
lower left corner. Thus Â is reducible. Since A and Â are permutationally similar,
it follows that A is reducible. 2

EXAMPLE 1.3.17 Revisiting the nonnegative matrices in Example 1.3.14, we
see that A is irreducible since the associated directed graph is strongly connected.
However B is reducible since its associated directed graph is not strongly connected.
Partioning the matrix below to highlight reducibility, observe that B is permuta-
tionally similar to


2 4 0 1
6 0 5 0

0 0 0 3
0 0 7 2

 .
Our goal will be to show that nonnegative irreducible matrices behave in a

similar way to positive matrices. To this end, we present two lemmas from [41] and
[6] which shed light on the relationship between nonnegative and positive matrices.

LEMMA 1.3.18 Let A ∈Mn and suppose A is nonnegative. Then A is irreducible
if and only if (I +A)n−1 is positive.

Proof: Suppose first that A is reducible. Then for some permutation matrix P
we have A = PÂP T where Â is as in Theorem 1.3.16. Observe

(I +A)n−1 = (I + PÂP T )n−1 = (P [I + Â]P T )n−1



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

22 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

= P

[
I + (n− 1)Â+

(
n− 1

2

)
Â2 + . . .+

(
n− 1

n− 1

)
Ân−1

]
P T .

By matrix multiplication, note that Â2, Â3, . . . , Ân−1 all have the same (n− r)× r
block of 0’s in the lower left corner as Â. Therefore, all of the terms in the square
brackets have an (n−r)×r block of 0’s in the lower left corner, and hence (I+A)n−1

does also. Therefore (I +A)n−1 is not positive.
Suppose now that A is irreducible, then so is I+A. Let Y be the set of all nonneg-

ative nonzero vectors in <n with at least one entry of zero. Since I+A is irreducible,
it follows by matrix-vector multiplication that (I +A)y will have fewer zero entries
than y for each vector y ∈ Y . Hence (I+A)n−1y is positive for all vectors y ∈ Y . The
only way that this can hold for every vector y ∈ Y is for (I+A)n−1 to be positive. 2

LEMMA 1.3.19 If A ∈Mn, A is nonnegative, and Ak is positive for some k ≥ 1,
then ρ(A) is a simple eigenvalue of A.

Proof: If λ1, . . . , λn are the eigenvalues of A, then λk1, . . . , λ
k
n are the eigenvalues

of Ak. By Theorem 1.3.11, ρ(A) is an eigenvalue of A. Hence if ρ(A) were a multiple
eigenvalue of A, then ρ(A)k = ρ(Ak) would be a multiple eigenvalue of Ak. But this
is impossible since ρ(Ak) is a simple eigenvalue of Ak by Theorem 1.3.8. 2

We are now able to present the culminating theorem (from [41]) of this section
which illustrates that the majority of Theorem 1.3.8 still holds for nonnegative
matrices so long as the matrix is irreducible.

THEOREM 1.3.20 Let A ∈Mn be an irreducible nonnegative matrix. Then
(i) ρ(A) > 0
(ii) ρ(A) is an eigenvalue of A
(iii) There is a positive eigenvector x corresponding to ρ(A)
(iv) ρ(A) is a simple eigenvalue.

Proof: Since A is nonnegative and irreducible, all row sums are positive. Thus (i)
follows from Lemma 1.3.2. Statement (ii) follows from Theorem 1.3.11 and the fact
that A is nonnegative (irreducibility is not even required here). Theorem 1.3.11 also
guarantees that there exists a nonnegative eigenvector x corresponding to ρ(A).
To prove (iii), we need only show that x does not have a zero coordinate. Since
Ax = ρ(A)x, it follows that (I + A)n−1x = (1 + ρ(A))n−1x. By Lemma 1.3.18 the
matrix (I + A)n−1 is positive, so by Theorem 1.3.8, x is positive. To prove (iv),
suppose ρ(A) is a multiple eigenvalue of A. Then 1 + ρ(A) = ρ(I +A) is a multiple
eigenvalue of I + A. Hence (1 + ρ(A))n−1 = ρ((I + A)n−1) is a multiple eigenvalue
of (I + A)n−1. But I + A is nonnegative and (I + A)n−1 is positive by Lemma
1.3.18. Therefore by Lemma 1.3.19, ρ((I + A)n−1) cannot be a multiple eigenvalue
of (I +A)n−1, producing a contradiction. Thus ρ(A) is a simple eigenvalue of A. 2


