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Foreword

You may have wondered: does not the shoemaker go barefoot? Mathemat
ics boasts of being the epitome o f exactness, but what is the exact meaning 
o f proof? Construction? Computation?
Or you may be very ambitious and wonder whether we can prove theorems 
concerning the collection o f all possible mathematical theories.
Or you may have resigned yourself to having no exact answer, as you cannot 
“pull yourself out of the mud,” at most you can philosophize about it.
Or you may wonder: is mathematics one body or is it fragmented into many 
branches; i.e. can we put it all in one framework?
Or you may be philosophically inclined and wonder whether having a proof 
and being true are the same.

However there is a branch of mathematics dealing exactly with those prob
lems: LOGIC. It is one of the oldest intellectual disciplines (see Aristotle) 
yet also one which has developed enormously in this century.

Yes! Mathematics can deal with these problems and give exact answers 
with proof; i.e. we can define relevant notions and give answers.
Yes! We can define what a proof is, and show in a sense that being true 
and having a proof are the same (Godel’s completeness theorem).
Yes! We cannot raise ourselves out of the mud: we cannot prove in our 
system that it does not have a contradiction (Godel’s incompleteness the
orem).
Yes! We can have a general theory of mathematical theories (model theory). 
Yes! We can define what it means to be computable i.e. having an algorithm 
(for this purpose mathematical machines were invented, and you probably 
have met their offspring, the computers).

Saharon Shelah
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Introduction

This book is a course in Mathematical Logic, It is divided illto four chapters 
which can be taught in two semesters. The first two chapters provide a basic 
background in mathematical logic. All details are explained for students 
not so familiar with the abstract method used in mathematical logic. The 
last two chapters are more sophisticated, and here we assume that the 
reader will be able to fill in more details; in fact, this ability is an essential 
step for this sphere of mathematical thinking.

Mathematical logic is the most abstract branch of mathematical thought, 
the most abstract human discipline. The main objective in this area is to 
understand the logic implicit in all mathematical thought. The difference 
between logic (considered as a branch of philosophy) and mathematical 
logic is that in mathematical logic we use and develop mathematical meth
ods. That is, we use mathematical theorems to investigate and explain the 
logic implicit in mathematics. It should be clear that some o f the results 
can also shed light on more general questions in epistemology and philoso
phy of science, but this is not the subject of this book. The main result in 
basic mathematical logic is that every “reasonable” mathematical system 
is intrinsically incomplete. This means that axiom systems cannot capture 
all semantical truths. This can also be expressed in the following way: If 
we assume that the human mind works in a way similar to an ideal com
puter, then there are mathematical problems which can never be solved 
by mathematicians. This is one aspect o f Godel’s famous incompleteness 
theorem, and the study of this phenomenon of incompleteness will be the 
main focus of this book. We think that the material of this book should 
be part of the basic background of every student in any discipline which 
employs deductive and formal reasoning as a part of its methodology. This 
definitely includes a large part o f the social sciences.

Chapter 1 contains the basic material a student has to know about 
mathematical languages and logical systems. The most fundamental tool 
in this book is the concept of mathematical induction. Section 1.1 intro
duces this concept in a very general way through the notion of an “inductive 
structure.” This notion is essential for everything in the rest of the book. In 
Section 1.2 we study propositional logic and tautologies. In Section 1.3 we 
present “first order logic” as a typical example o f a mathematical language, 
and the notion o f a “model,” i.e., a mathematical structure which allows us 
to interpret symbols of the language. For example, a model for the language 
of groups (in which we can speak about “ multiplication” and “ inverses” ) 
will be a group. In this section we also study the concept of validity, i.e.,
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semantical truth. In Section 1.4 we will study the concept of a “formal 
proof.” We will define an axiom system and a deductive tool called modus 
ponens. Together they try to capture the notion of logical truth.

The main objective o f Chapter 2 is to show that the syntactical con
cept o f “provability” and the semantical concept of “validity” coincide. This 
theorem is called the completeness theorem (since it shows that the logical 
system presented in 1.4 is “complete” ). An equivalent version of this theo
rem says that every axiom system which does not contain a contradiction 
will be realized in some model. This theorem was discovered by Godel; 
the proof we present is due to Henkin. The main idea is as follows: If we 
want a sentence such as “Reagan is Batman” to be true in some model, 
we can consider a model with an element x, which has two names, “Rea
gan” and “Batman.” More generally, we will build a model from names 
(i.e., syntactical objects), and two names will denote the same object only 
if our axioms tell us that they have to. (A philosophical question for the 
reader: Is Reality no more than a Henkin model? We doubt it.) We start 
this chapter with a study of the concept of “enumerability,” which plays an 
important role in the proof of the completeness theorem. In Section 2.2 we 
present Henkin’s proof. We close the chapter by applying the completeness 
theorem to show that there are nonstandard models of number theory.

In Chapter 3 we deal with model theory. Model theory investigates the 
relation a logical theory has to its models. We exhibit several tools used 
in model theory, and we show how to apply them to classical problems 
of model theory such as finding the number of nonisomorphic countable 
models of a first order theory.

The last chapter is mainly devoted to Godel’s famous incompleteness 
theorem, which says that any reasonable axiom system for the natural num
bers is intrinsically incomplete. We start by proving that the Peano axioms 
for number theory are incomplete and then give a more general version of 
this theorem. We prove the incompleteness theorem in a simplified form to 
make the proof more accessible to beginners who are not especially inter
ested in mathematical logic. The proof of the incompleteness theorem is 
conceptually based on the “ liar’s paradox,” which was already known to the 
ancient Greeks. Godel’s novel idea was to encode the language into the for
mal system itself. We present the details of this main tool of Godel’s proof. 
The main change from the traditional proof is that we prove everything 
semantically, working in the model of natural numbers rather than talking 
about derivations from the Peano axioms. In this way we can simplify the 
proofs, while keeping near to the main idea underlying the incompleteness 
phenomenon. We close Chapter 4 with an introduction to recursion theory, 
a branch of mathematical logic which is closely related to the methods used 
in the proof of the incompleteness theorem.
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We have included exercises at the end of each section. They are an 
intrinsic part o f this book. We believe that it is impossible to understand 
mathematics without actually doing mathematics.

This book is based on Judah’s logic lectures, given in Berkeley and 
Bar Ilan. We want to thank all our friends who have read the manuscript 
at various stages and have made important contributions. We especially 
thank Boaz Tsaban for preparing the index and Tzvi Scarr and Andy Lewis, 
who wrote early parts o f the first two chapters, for their dedication to the 
project.

Martin Goldstern 
Haim Judah
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Chapter 1

The Framework of Logic

1.1. Induction
Induction is the main tool used to prove theorems in mathematical logic. 
The best way to develop an intuitive feel for inductive proofs is to look 
at some examples. We start this section with examples that are close to 
ordinary experience, followed by mathematical examples. In the middle 
of the section we establish our induction principle by defining inductive 
structures. We conclude this section with a proof that the usual language 
for sentential logic is an inductive structure.

1 .1.1. E xam ple . Everyone has a name

We begin with the fact that everyone has parents.
Let’s assume that parents with names always give names to their children. 
Adam and Eve had names.
So we conclude that every person who ever lived had a name.
For if not, let Person be the first person with no name.
Person was not Adam or Eve, who had names.
So Person had parents.
Person’s parents had names, since Person is the first person without a name. 
But by assumption, the parents must have given Person a name.
So it cannot be that Person had no name.
Thus there cannot have been a first person without a name.
So everyone had a name.

1
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In the previous example we were using a strong assumption about 
reality, namely that the initial conditions determine the future of the system 
forever. Clearly, systems like this do not exist in reality, but in mathematics 
we deal with ideal objects that are not subject to any external influence or 
the influence of time.

The first mathematical objects were the numbers:

1 , 2,3 ,4 ,5 ,6,7 ,8 ,9 ,10

What are the natural numbers? This is a good question. The first 
thing we can say is that it is not a m ath em atical question , but rather, a 
philosophical question about mathematics. There is controversy, as always 
in philosophy, about the nature o f the natural numbers, and the various 
opinions are strongly influenced by the positions the philosophers have on 
the existence o f objects in reality. We mention a few of these positions 
without further remarks:

(1) The numbers are abstract objects in a world of ideas.
(2) The number 5, say, is what all objects with 5 components 

(or all sets with 5 members) have in common
(3) The number 5 is a human category used to communicate.

Are there infinitely many numbers? Again this is a philosophical ques
tion. The following argument is usually given to “prove” that there are 
infinitely many numbers.

Assume that there are not infinitely many numbers. Then 
there must be the biggest one, call it n. Then n +  1 is 
bigger than n, a contradiction.

There are several problems with this argument. One objection is: If n 
is a number, why should it follow that n +  1 is a number? Let us replace 
the concept o f “number” by “conceivable number,” where we call a number 
n “conceivable” if we can imagine somebody owning n dollars.

Thus, 5 is a conceivable number, 10000 is a conceivable number, and 
even 109, a thousand millions (also called billion or milliard), is a conceiv
able number. What about 1012? What about n +  1, where n is the total 
value o f all property anybody on earth owns? And if this is still conceivable, 
is 10lo° conceivable? 1010 ?

We can also consider the following (related) argument: The universe, 
as perceived by us, is finite. So how can there be infinitely many numbers?

A second problem is the following: Even if we agree that for every 
number n there is a number n + 1 , does that mean that the infinite totality 
o f all numbers exists? Assume we want to make a list o f all numbers. Even 
if we know that whenever we write down the number n, there will be room
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for the number n +  1 (and time to write it down, too), does that mean we 
will ever have a complete list?

It is possible to avoid all this discussion by using the axiomatic method 
and stipulating that the natural numbers are any universe of objects and 
operations that satisfies our list of axioms.

For our purpose we will assume that the reader has a good feel for the 
natural numbers, the operations of addition, multiplication, and exponen
tiation, and the <-relation.

We will write N for the set of natural numbers (including 0). Thus,
N =  { 0 ,1 ,2 , . . . } .

1 .1.2. E xam ple . Show that for all n > 0 the following holds:

P r o o f: by induction on n.
First Stage: n =  1. The sum on the left side consists of the single term 1, 
and the expression on the right side is =  1 • (1 +  l )/2 =  1 .
Second Stage:

n =  k +  1. Assume that we already know that 1 +  • • • +  k =  M*^1) . 
We need to show that:

( 1  +  . . . + k + ( k + 1 ) )  =  £ ± M t ± ± l ± l 1

So we start with:

(1 +  • • • +  k +  (k +  1 )) =  (1 +  • • ■ +  k) +  (k +  1 ).

We already know that the first sum is equal to M**1) 1 so we get

Hk +  1 ) . „  . 1X fc(fc +  l )  . (fc +  l )2 (fc +  l ) ( f c + 2)
-  2 + ( *  +  1 ) -  -  +  -  -  -

which concludes the proof.
Why is the proof complete? If (*) does not hold for all n, then there 

must be a first number n for which (*) does not hold. But we just showed 
that there can be no such “ first number” : n cannot be 1 , by the “first
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stage,” and if n > 1, then (*) must hold for n — 1. In the second stage we 
showed that (*) must then hold for n also.

1 .1.3. E xam ple . Every convex polygon with n > 3 vertices has exactly 
n^2~3  ̂ diagonals.

P r o o f: Here the first case is for n =  3. The polygon in this case is a 
triangle and it has no diagonals. This is also what the formula says.

Now, assume that the formula is correct for a polygon with n vertices. 
Given a convex polygon with n +  1 vertices, we use our “induction hypoth
esis” in the following way: take a subset of n vertices and connect it (using 
one diagonal of the original polygon) to get a closed polygon. This polygon 
has nte~3) diagonal all o f which are also diagonals of the original polygon. 
In addition, one edge on this polygon is a diagonal of the original polygon. 
Finally we need to add n — 2 diagonals going from the extra vertex to each 
one o f the other vertices except its two neighbors. The total number is 
therefore:

n (n ~ 3) 11 i (u (n +  l ) ( « - 2 )_ _ _  +  i +  (n _  2) _  ----------- ----------

The above examples are typical inductive proofs in mathematics. This 
argument can in general be used in the following way to show that all the 
natural numbers have a certain property P:

(a) Show that the number 0 has the property P.
(b) Use the assumption that k has the property P  in order 

to show that k +  1 has the property P.
(c) Conclude from (a) and (b) that all natural numbers have 

the property P.

Why do we accept (c)? We do so because mathematical intuition says 
that the numbers can be generated as follows:
First we have the number 0 (by (a), 0 has property P).
From 0 we can go to the number 0 +  1(= 1) (by (b) and the above, 1 also 
has the property P).
From 1 we can go to the number 1 +  1 (=  2) (by (b) and the above, 2 also 
has the property P).
From 2 we can go to the number 2 +  1(= 3) (by (b) and the above, 3 also 
has the property P).

From k we can go to the number k +  1 (using (b) and the above).
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Looking at this process of “generating numbers,” we can see that an 
inductive proof is a sch em atization  o f an infinite proof starting from 0 
and continuing through all the numbers.

The point here is that the above description of the natural numbers 
may be schematized as follows: We start by assuming the existence of 0 
and the existence of the operator +1 (this means to add 1). Then we say 
that n is a number if:

(a) n is 0, or
(b) There is a number m such that n =  m +  1.

We can see that in this process two different concepts are involved, 
namely: “0” is an object given a priori, and it is the basis from which 
we build the rest o f the numbers, which are formed from “0” by repeatedly 
applying the process o f “adding 1.” This process of “adding 1” is the second 
concept implicit in this presentation of the natural numbers. This process 
is also given a priori, and we can think o f it as the “method” of getting 
a new object from a previously given object. Such “methods” are usually 
described by functions.

An abstract view of this situation gives us the following important 
concepts that will be the main ingredient of all our mathematical construc
tions:

(1) B lock s: are the objects, given a priori (like the object 
“0” in the above example).

(2) O pera tors : are the methods, given a priori and used to 
create new objects from the previously created objects 
(like “adding 1” in the above example).

Now we may assume that we have a set B  o f blocks and a set K  o f 
operators.

What can we do with B  and K1  We want to form a collection of 
objects using the elements of B and the operations in K.  The first objects 
will be the objects in B. Then we can apply the operations o f K  to the 
elements o f B  to get new objects. Then we can again apply the operations 
of K  to these new objects to get more objects, and we can continue this 
process for ever, to get a collection of objects which is denoted by C(B,  K ).

To exemplify this construction, define the following operation:

8 : N -► N
n i—» s(n)  =  n +  1 .

This function s is called the successor function. Now if B =  {0 }  and 
K  =  {* } ,  then N =  C ( B , K ) .

We will give two more examples of inductive structures:
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A/\ /\ / \ 
6 a a b a /\

b

Figure 1.

1.1.4. E xam ple . Let us consider a two element set B =  {a, b}, and 
let D be the collection o f all finite sequences of members of B.  Let 
K  =  where

f  : D D
x  t—*■ f ( x ) =  axa

and
g :  D -♦ D

x  t—► g(x)  =  6x6.

Then the C ( B , K )  is the set of all sequences of odd length which are 
their own mirror image.

1 .1.5. E xam ple . Our set of blocks will again be the two-element set {a, 6}. 
We will consider finite sequences that contain a, 6, ., and the square 
brackets [,]. Our only operator will be the 2-place function /  defined 
by

fi.x ,v)  =  [x -v\■

The following are examples of elements of C '({a ,6}, { / } ) :

a
b

[a.b]
[a.a]

[[6.a].[a.6]]
[a.[a.[a.[a.6]]]] .

When we deal with an inductive structure, it is sometimes convenient 
to associate to each element o f C ( B , K )  its “syntax tree.” We will not 
formalize this concept, but only give a few examples. The syntax trees for 
the last two objects from example 1.1.5 are given in figure 1.
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Now we will give a formal definition of C{B,  K) :

1.1.6. D efin ition .
(a) Every block is in C(B,  K )  (that is, every element in B  is 

also an element of C ( B , K ) ) .
(b) If F  is an n-place operator in K ,  and c i , . . . , c „  are 

elements o f C ( B , K )  then F(c\, . . . ,  cn) is an element 
o f C ( B , K ) .

(c) Every element of C ( B , K )  is obtained by (a) or (b).

We call C { B , K )  the set generated  from B  by K .  If C =  C ( B , K ) ,  
then (B , K ) is called an indu ctive  stru ctu re  on C.

Note that a given set C can be generated by different inductive struc
tures (see exercise 7).

For example, every set can be viewed as an inductive structure by 
simply taking B =  C (i.e. taking each element of the set as a block). We 
also do not exclude the possibility that the result o f applying an operator 
is again a “block.” For example, we could view the natural numbers as 
an inductive system with the set o f blocks =  { 0, 2} and one operator (the 
successor operation). However, this is very unnatural: Why do we need 2 
as a block, if it can already be obtained from the other block, 0, by applying 
the successor operation twice?

In general we want an inductive structure to be a sim ple d escrip tion  
o f  a set —  the simpler the description, the easier it is to prove properties 
by induction. Often there is a unique “natural” way to define an inductive 
structure on a set C .

1.1.7. E xam ple . The natural inductive structure on the set o f natural 
numbers is given by choosing { 0} as the set o f blocks, and the successor 
operation as the only operator.

1 .1.8. D efin ition .Let C =  C ( B , K )  be an inductive structure, and let P  
be a property that elements o f C may or may not have. Let F  be an 
n-place operator in K.
We say that “F  preserves P ,” if:

Whenever a i , . . . , a n satisfy the property P , then 
F ( a i , . . . ,  an) also satisfies the property P.

1.1.9. In d u ction  law. Let C =  C ( B , K )  be an inductive structure with 
B  as the set o f blocks and K  as the set o f operators such that the 
following is true:



(a) Every block satisfies the property P,  and
(b) Every operator preserves the property P.

Then:
(*) Every element of C satisfies the property P.

1.1 .10 . N o ta tio n . When we prove that a property P  holds for all elements 
x  o f an inductive structure C ( B , K ), we usually start by saying:

We will prove P  by induction on C ( B , K )

or
We will prove P(x )  by induction on x.

Such a proof consists of two parts: In the first part we deal with the 
blocks, i.e., we show that all blocks have the property P.  (This is called 
the induction basis.) In the second part we deal with the operators,
i.e., we show that all operators preserve P.  This is called the inductive 
step.
Usually the essence of these proofs is in the second part. Sometimes 
we can give a general argument that works for all operators, sometimes 
we have to deal with each operator separately.
To show that an n-ary operator F  preserves the property P,  we as
sume that a i, . . . ,  an are arbitrary elements in our inductive structure 
satisfying P,  and we have to show that F (a i , . . .  ,an) satisfies P.
The assumption “a i, . . . ,  an satisfy P"  is often called the “induction 
hypothesis” or “ inductive assumption.”

8 Chapter 1. The Framework o f  Logic

Induction is one o f the most natural ways to deal with infinite objects. 
There are many examples of mathematical objects which can be seen as 
inductive structures. One example that we have in mind is the language 
for “sentential logic.” We will study the mathematical properties o f this 
language below. We will then generalize these properties to other inductive 
structures. The language of sentential logic will be defined starting from a 
set o f blocks and a set o f operators. The blocks will be basic sentences like:

New York is a city.
2 is odd.

The operators will be the logical connectives used to build more com
plex sentences from the blocks and other sentences. For instance, “and” 
and “if and only if” are logical connectives.

Before we define the language of sentential logic, we will make a few 
remarks about formal languages. We consider an “alphabet” or “set of 
symbols” S. The set o f all “words” in our formal language will be all
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elements of S + , the set o f all finite sequences of elements from S. (We 
allow only sequences o f length >  1 , i.e., we will not consider the empty 
sequence as a word.) It does not matter what the true nature of these 
“symbols” is, we only demand that

No symbol is also a finite sequence o f symbols. (*)

We do not strictly distinguish between a symbol x and the one element 
sequence containing only the symbol x. This causes no ambiguities because 
o f (*).

If x and y denote symbols, we write xy  to denote the sequence with 
first element x  and second element y, i.e., (x , y ). (Here, x  may be equal to 
y.) We call the sequence (x , y ) a “pair” and say that the sequence (x , y ) 
has “ length” 2. The set of all pairs of elements of S is called S2.

Similarly, we call a sequence (x, y, z) o f length 3 a “triple” or “3-tuple.” 
A sequence ( x i , . . . ,  x n) of length n will be called “an n-tuple” or “word of 
length n.” The set of all n-tuples is written as Sn. So S 1 is the set of all 
words of length 1, which is essentially the same as S.

For two sequences x  and y we write xy  for the concatenation of these 
two sequences. Similarly for xyz,  etc.

We will not explain what a “finite sequence” is. We assume that the 
reader is familiar with basic facts such as (xy)z  =  x{yz)  whenever x, y, z 
are finite sequences, and

If xr  =  ys, then x =  y and r =  s

whenever x  and y are symbols and r and s are sequences.
We will often use letters such as “x” to denote symbols of our language. 

It is important to keep in mind that such a letter “x” is not the symbol 
itself, but only a name for the actual symbol. Thus it is possible that the 
letter “x” on one page denotes a different symbol than the letter “x” on 
some other page. Also, different letters may denote the same symbol (or 
sequence o f symbols).

Before giving the explicit definitions of the language for sentential logic, 
let us introduce some sets.

Let B =  (Ai, A2, A3, . . . }  be a set of distinct symbols (i.e., when
ever i and j  are distinct natural numbers, then “Aj” and “A j” stand for 
distinct symbols) and let F  be the following set with 6 elements: F  =  
{~ ', A, V, —►, *->, |}.
The elements of B  are called sentential sym bols. They will serve as 
blocks when we build our language as an inductive structure. The elements 
o f F  are called con n ectives. -> is called “not” , A is called “and” , V is
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called “or” , —> is called “implies” , is called “iff” (=  if and only if), and 
| is called “nand” .

1 .1.11. D efin ition . The alphabet for the sentential language will be the 
set S =  B  U F  U { ( , ) } .  S+ is the collection of finite sequences from S.

The following are examples of members of S+ :
A i
A3

( ~  a m i ))
Q A i -»  a 2.

1.1.12 . D efin ition . We define some operations over S+ . For any two ele
ments ct,j3 o f S + we define F-,(c*)> FA(a ,/i) , Fv ( a , 0 ), F _ (a , / i ) ,  F _ ( a ,/i) 
and F|(a,/3) by

F i ( « )  =  (-■a)
FA(a,/3) =  (a A/i)
F _ ( a , / 3 ) =  (a -» /3 )
Fy{a,f3) =  (a V f3)
F „ ( a , P ) =  (a <->/?)
F((a,/3) -  (a|/3)

Each o f these operators has domain S’"1" and range in S+ .

1.1.13. D efin ition . Let K  =  {F-,, FA, Fv, F_>, F „ ,  F|}. Then we define £  
to be C ( B , K ) .

We will call £  the sentential language, or the language o f sentential 
logic. The elements of the sentential language will be called sentential 
formulas.

The following are examples of sentential formulas:
(Ai V (A2 V A3))

(((■’Ai) A A2) V (Ai A ( -^ 2)))
((Ai V A2) (A2 V Ai))

( A i lA r ) .

For example (Ai V (A2 V A3)) is a sentential formula, because 

(Ai V (A2 V A3)) =  Fv (Ai, FV(A2, A3)).

Again we will give examples of “syntax trees” of elements of C(B,  K) .
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/  \  A j A A3
Ai  A3

Figure 2.

y  ( ( _ ,a 2) A ((- 'A 1) V a 3))

a 2 - i a 3

A i

Figure 3.

For example, the syntax tree of (Aj A A3) is given in figure 2, and the 
syntax tree of ( (_,A2) A ( ( - ’Ai) V A3)) is given in figure 3.

It is not immediately obvious which elements of S+ are in C ( B , K ) .  
The next proposition will help us in deciding which elements of S+ are 
sentential formulas.

1 .1 .14 . L em m a. Let a  be in £ . Then the number o f right parentheses 
in a  is equal to the number o f left parentheses.

P r o o f: by induction. Let P  be the property o f having an equal number of 
right and left parentheses.

(a) If a  is a block then a  has the property P
(since the number o f left parentheses =  the number of 
right parentheses =  0).

(b) Assume that a  and 0  have the property P,  then
_F-,(ar) =  (_1<*) has the property P

FA(a ,0 )  =  ( «  A 0)  has the property P

F|(a,/3) =  {a \P) has the property P.

So by the induction law every element of £  has the property P  (i.e. has 
an equal number o f right and left parentheses). This ends the proof of
1.1.14.

If a and (1 are two strings o f symbols from £ , say a  =  a i  ■ • • a n and 
0  =  0 1  • ■■ 0 m, then by a 0  we mean the concatenation o f the two strings, 
so in this case, a 0  =  a i  • • - a n0 1 • • • 0 m.
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1.1.15. D efin ition . We say that a in S+ is an initial segment o f 0  in S + 
if there exists 7  in S + such that 07  =  0.

1.1.16 . E xam ple . AAi is an initial segment o f AAi)A2.
(AiA is a initial segment of (Ai A A2).
No string is an initial segment of itself.

1 .1 .17 . L em m a. If a is in £  and a' is an initial segment of a, then a' 
has more left parentheses than right parentheses.

P r o o f: by induction.
Induction Basis:

If a is in B,  then there are no initial segments, so a has the property. 
Induction Step, Case 1: a =  ( - 10 ). a ' can be:

( M " T
(i.b )
(l.c ) “ (-i/? '” (where 0 ' is an initial segment of 0 )
(l.d ) “ (->/?” .

In cases (l.a ) and (l.b ), a' has one left parenthesis and no right paren
theses, so it has more left parentheses than right parentheses.

Case (l.c ): If a'  is (->0* then by the induction hypothesis 0'  has 
more left parentheses than right parentheses, a' has the same number of 
right parentheses as 0 ', but one more left parenthesis. Hence also a'  has 
more left than right parentheses.

Case (l.d ): If a'  =  (—■/?, then as 0  has the same number of left 
and right parentheses (by lemma 1.1.14), so a' has more left than right 
parentheses, since it has one left parenthesis more than 0 .
Induction Step, Case 2: a =  (0  A 7 ). So a'  is an initial segment o f (0 A 7 ). 
a 1 must be one of the following:

(2 .a) “ (”
(2.b) “ (0 where 0 ' is an initial segment of 0  

(2 .c) “ (0 ”
(2.d) “ (0 A”
(2.e) “ (0 A 7 ' ” , where 7 ' is an initial segment of 7 
(2.f) “ (0  A 7 ”

In cases (2.a), (2.c), (2.d), (2.f), the number of left parentheses o f a' 
is exactly one more than the number of right parentheses, because 0  (and 
7 ) have the same number o f right and left parentheses.

Case (2.b): 0'  has more left parentheses than right parentheses, so 
a 1, having an additional left parentheses (but the same number o f right 
parentheses as /?'), has more left parentheses than right parentheses.


