
Newcomers to R are often intimidated by the command-line interface, the
vast number of functions and packages, or the processes of importing
data and performing a simple statistical analysis. The R Primer provides
a collection of concise examples and solutions to R problems frequently
encountered by new users of this statistical software.

Rather than explore the many options available for every command as
well as the ever-increasing number of packages, the book focuses on
the basics of data preparation and analysis and gives examples that can
be used as a starting point. The numerous examples illustrate a specific
situation, topic, or problem, including data importing, data management,
classical statistical analyses, and high-quality graphics production. Each
example is self-contained and includes R code that can be run exactly as
shown, enabling results from the book to be replicated. While base R is
used throughout, other functions or packages are listed if they cover or
extend the functionality.

Features
• Presents concise examples and solutions to common problems in R
• Explains how to read and interpret output from statistical analyses
• Covers importing data, data handling, and creating graphics
• Requires a basic understanding of statistics

After working through the examples found in this text, new users of R
will be able to better handle data analysis and graphics applications in
R. Additional topics and R code are available from the book’s supporting
website.

K12876

CLAUS THORN EKSTRØM

E
K

S
T

R
Ø

M

The

The R
 Prim

er

Primer

Statistics

K12876_Cover.indd 1 7/19/11 11:47 AM

The R Primer

K12876_FM.indd 1 7/14/11 11:27 AM

This page intentionally left blankThis page intentionally left blank

CLAUS THORN EKSTRØM

The R Primer

K12876_FM.indd 3 7/14/11 11:27 AM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20110713

International Standard Book Number-13: 978-1-4398-6208-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Rea-
sonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences
of their use. The authors and publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowl-
edged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, repro-
duced, transmitted, or utilized in any form by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming, and recording, or in
any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit orga-
nization that provides licenses and registration for a variety of users. For organizations that
have been granted a photocopy license by the CCC, a separate system of payment has been
arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks,
and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface xi

1 Importing data 1
1.1 Read data from a text file 1
1.2 Read data from a simple XML file 3
1.3 Read data from an XML file 4
1.4 Read data from an SQL database using ODBC 8
Reading spreadsheets . 9
1.5 Read data from a CSV file 9
1.6 Read data from an Excel spreadsheet 10
1.7 Read data from an Excel spreadsheet under Windows . . 12
1.8 Read data from a LibreOffice or OpenOffice Calc spread-

sheet . 13
1.9 Read data from the clipboard 14
Importing data from other statistical software programs . . 15
1.10 Import a SAS dataset . 15
1.11 Import an SPSS dataset 16
1.12 Import a Stata dataset . 16
1.13 Import a Systat dataset . 17
Exporting data . 17
1.14 Export data to a text file 17
1.15 Export a data frame to a CSV file 18
1.16 Export a data frame to a spreadsheet 19
1.17 Export a data frame to an Excel spreadsheet under Win-

dows . 20
1.18 Export a data frame to a SAS dataset 20
1.19 Export a data frame to an SPSS dataset 21
1.20 Export a data frame to a Stata dataset 22
1.21 Export a data frame to XML 22

2 Manipulating data 25
2.1 Using mathematical functions and operations 27
2.2 Working with common functions 29
2.3 Working with dates . 31

v

vi

2.4 Working with character vectors 33
2.5 Find the value of x corresponding to the maximum or

minimum of y . 34
2.6 Check if elements in one object are present in another

object . 35
2.7 Transpose a matrix (or data frame) 35
2.8 Impute values using last observation carried forward . . 37
2.9 Convert comma as decimal mark to period 39
Working with data frames . 40
2.10 Select a subset of a dataset 40
2.11 Select the complete cases of a dataset 41
2.12 Delete a variable from a data frame 42
2.13 Join datasets . 43
2.14 Merge datasets . 44
2.15 Stack the columns of a data frame together 45
2.16 Reshape a data frame from wide to long format or vice

versa . 47
2.17 Create a table of counts 50
2.18 Convert a table of counts to a data frame 52
2.19 Convert a data frame to a vector 53
Factors . 54
2.20 Convert a factor to numeric 54
2.21 Add a new level to an existing factor 55
2.22 Combine the levels of a factor 56
2.23 Remove unused levels of a factor 56
2.24 Cut a numeric vector into a factor 57
Transforming variables . 58
2.25 Sort data . 58
2.26 Transform a variable . 59
2.27 Apply a function multiple times to parts of a data frame

or array . 60
2.28 Use a Box-Cox transformation to make non-normally dis-

tributed data approximately normal 62
2.29 Calculate the area under a curve 64

3 Statistical analyses 67
Descriptive statistics . 70
3.1 Create descriptive tables 70
Linear models . 72
3.2 Fit a linear regression model 72
3.3 Fit a multiple linear regression model 74
3.4 Fit a polynomial regression model 75
3.5 Fit a one-way analysis of variance 76

vii

3.6 Fit a two-way analysis of variance 79
3.7 Fit a linear normal model 82
Generalized linear models . 85
3.8 Fit a logistic regression model 85
3.9 Fit a multinomial logistic regression model 89
3.10 Fit a Poisson regression model 92
3.11 Fit an ordinal logistic regression model 96
Methods for analysis of repeated measurements 100
3.12 Fit a linear mixed-effects model 100
3.13 Fit a linear mixed-effects model with serial correlation . 104
3.14 Fit a generalized linear mixed model 110
3.15 Fit a generalized estimating equation model 113
3.16 Decompose a time series into a trend, seasonal, and resid-

ual components . 117
3.17 Analyze time series using an ARMA model 120
Specific methods . 123
3.18 Compare populations using t test 123
3.19 Fit a nonlinear model . 125
3.20 Fit a Tobit regression model 129
Model validation . 131
3.21 Test for normality of a single sample 131
3.22 Test for variance homogeneity across groups 132
3.23 Validate a linear or generalized linear model 134
Contingency tables . 137
3.24 Analysis of two-dimensional contingency tables 137
3.25 Analyze contingency tables using log-linear models . . . 139
Agreement . 142
3.26 Create a Bland-Altman plot of agreement to compare two

quantitative methods . 142
3.27 Determine agreement among several methods of a quan-

titative measurement . 144
3.28 Calculate Cohen’s kappa 148
Multivariate methods . 150
3.29 Fit a multivariate regression model 150
3.30 Cluster observations . 152
3.31 Use principal component analysis to reduce data dimen-

sionality . 155
3.32 Fit a principal component regression model 158
3.33 Classify observations using linear discriminant analy-

sis . 160
3.34 Use partial least squares regression for prediction 163
Resampling statistics and bootstrapping 166
3.35 Non-parametric bootstrap analysis 166

viii

3.36 Use cross-validation to estimate the performance of a model
or algorithm . 169

3.37 Calculate power or sample size for simple designs 172
Robust statistics . 176
3.38 Correct p-values for multiple testing 176
Non-parametric methods . 178
3.39 Use Wilcoxon’s signed rank test to test a sample median 178
3.40 Use Mann-Whitney’s test to compare two groups 180
3.41 Compare groups using Kruskal-Wallis’ test 181
3.42 Compare groups using Friedman’s test for a two-way

block design . 183
Survival analysis . 185
3.43 Fit a Kaplan-Meier survival curve to event history data . 185
3.44 Fit a Cox regression model (proportional hazards model) 188
3.45 Fit a Cox regression model (proportional hazards model)

with time-varying covariates 192

4 Graphics 197
4.1 Including Greek letters and equations in graphs 199
4.2 Set colors in R graphics 201
4.3 Set color palettes in R graphics 202
High-level plots . 204
4.4 Create a scatter plot . 204
4.5 Create a histogram . 206
4.6 Make a boxplot . 208
4.7 Create a bar plot . 209
4.8 Create a bar plot with error bars 211
4.9 Create a plot with estimates and confidence intervals . . 213
4.10 Create a pyramid plot . 214
4.11 Plot multiple series . 217
4.12 Make a 2D surface plot . 218
4.13 Make a 3D surface plot . 220
4.14 Plot a 3D scatter plot . 222
4.15 Create a heat map plot . 224
4.16 Plot a correlation matrix 226
4.17 Make a quantile-quantile plot 227
4.18 Graphical model validation for linear models 229
More advanced graphics . 233
4.19 Create a broken axis to indicate discontinuity 233
4.20 Create a plot with two y-axes 234
4.21 Rotate axis labels . 236
4.22 Multiple plots . 237
4.23 Add a legend to a plot . 239

ix

4.24 Add a table to a plot . 240
4.25 Label points in a scatter plot 241
4.26 Identify points in a scatter plot 243
4.27 Visualize points, shapes, and surfaces in 3D and interact

with them in real-time . 244
Working with graphics . 247
4.28 Exporting graphics . 247
4.29 Produce graphics output in LATEX-ready format 248
4.30 Embed fonts in postscript or pdf graphics 250

5 R 253
Getting information . 253
5.1 Getting help . 253
5.2 Finding R source code for a function 255
R packages . 257
5.3 Installing R packages . 257
5.4 Update installed R packages 259
5.5 List the installed packages 260
5.6 List the content of a package 260
5.7 List or view vignettes . 262
5.8 Install a package from BioConductor 263
5.9 Permanently change the default directory where R in-

stalls packages . 264
5.10 Automatically load a package when R starts 265
The R workspace . 266
5.11 Managing the workspace 266
5.12 Changing the current working directory 267
5.13 Saving and loading workspaces 268
5.14 Saving and loading histories 268
5.15 Interact with the file system 270
5.16 Locate and choose files interactively 271
5.17 Interact with the operating system 272

Bibliography 275

Index 277

This page intentionally left blankThis page intentionally left blank

Preface

This book is not about statistical theory, neither is it meant to teach R
programming. This book is intended for readers who know the ba-
sics of R, but find themselves with problems or situations that are com-
monly encountered by newcomers to R or for readers who want to see
compact examples of different types of typical statistical analyses. In
other words, if you understand basic statistics and already know a bit
about R then this book is for you.
R has rapidly become the lingua franca of statistical computing; it is a
free statistical programming software and it can be downloaded from
http://cran.r-project.org. Many newcomers to R are often in-
timidated by the command-line interface, or the sheer number of func-
tions and packages, or just trying to figure out how to import data and
perform a simple statistical analysis.
The book consists of a number of examples that illustrate a specific sit-
uation, topic or problem from data import over data management and
classical statistical analyses to graphics. Each example is self-contained
and provides R code that can be run exactly as shown and the results
from the book can be reproduced. The only change — barring simu-
lated data, machine set-up and small tweaks to make figures suitable
for printing — is that some of the output lines have been removed for
brevity.
This is not a “missing manual” or a thorough exploration of the func-
tions used. Instead of trying to cover every possible option or special
case that might be of interest, we focus on the common situations that
most beginning users are likely to encounter. Thus we concentrate on
the basics of getting things done and giving examples that can be used
as a starting point for the reader rather than exploring the multitude of
options available with every command and the ever-increasing num-
ber of packages. For most problems — and this is particularly true for a
programming language like R— there is more than one way to solve a
problem. Here, I have provided a single solution to most problems and
have tried to use base R if at all possible. If there are other functions
and/or packages available that cover or extend the same functionality,
then some of them are listed at the end of each example.

xi

xii

The R list of frequently asked questions is highly recommended and
covers a few of the same topics mentioned here. However, it does not
cover examples of statistical analyses and it rarely covers some of the
most basic problems new users encounter.
Base graphics are used throughout the book. More advanced graph-
ics can be produced with the recent lattice and ggplot2 packages
(see Sarkar (2008), Wickham (2009), or Murrell (2011) for further in-
formation on advanced R graphics). A more complete coverage of R
and/or statistics can be found in the books by Venables and Ripley
(2002), Verzani (2005), Crawley (2007), Dalgaard (2008), and Everitt and
Hothorn (2010). These books have a slightly different target audience
than the present text and are all highly recommended.

The R Primer has a supporting web site at

http://www.statistics.life.ku.dk/primer/

where additional topics are covered and where the R code used in the
book can be found.
I would like to thank all R developers and package writers for the
enormous work they have done and continue to put into the R pro-
gram and extensions. I appreciate all the helpful responses to my en-
quiries and suggestions. I am grateful to my colleagues at the Fac-
ulty of Life Sciences, University of Copenhagen as well as Klaus K.
Holst, Duncan Temple Lang, and Bendix Carstensen for their ideas,
comments, suggestions and encouragement on various stages of the
manuscript. Many thanks to Tina Ekstrøm for once again creating a
wonderful cover, and last, but not least, thanks to Marlene, Ellen and
Anna for bearing with me through yet another book.

Claus Thorn Ekstrøm
Frederiksberg 2011

Chapter 1

Importing data

1.1 Read data from a text file
Problem: You want to import a dataset stored in an ASCII text file.

Solution: Data stored in simple text files can be read into R using the
read.table function. By default, the observations should be listed
in columns where the individual fields are separated by one or more
white space characters, and where each line in the file corresponds to
one row of the data frame. The columns do not need to be straight or
formatted, but multi-word observations like high income need to be
put in quotes or combined into a single word. Assume we have a text
file, mydata.txt, with the following contents

acid digest name
30.3 70.6 NA
29.8 67.5 Eeny

NA 87.0 Meeny
4.1 89.9 Miny
4.4 . Moe
2.8 93.1 .
3.8 96.7 ""

which we read the data into R with the following command:

> indata <- read.table("mydata.txt", header=TRUE)
> indata
acid digest name

1 30.3 70.6 <NA>
2 29.8 67.5 Eeny
3 NA 87.0 Meeny
4 4.1 89.9 Miny
5 4.4 . Moe
6 2.8 93.1 .
7 3.8 96.7

The first argument is the name of the data file, and the second argu-
ment (header=TRUE) is optional and should be used only if the first

1

2 The R Primer

line of the text file provides the variable names. If the first line does
not contain the column names, the variables will be labeled consecu-
tively V1, V2, V3, etc. Each line in the input file must contain the same
number of columns for read.table to work. The sep option should
be included to indicate which character separates the columns if the
columns are separated by other characters than spaces. For example,
if the columns are separated by tabs then we can use sep="\t". Data
read with read.table are stored as a data frame within R.
The default code for missing observations is the character string NA
which we can see works both for the first and third observation above
(acid is read as a numeric vector and name as a factor). Empty char-
acter fields are scanned as empty character vectors, unless the option
na.strings contains the value "" in which case they become missing
values. Empty numeric fields (for example if the columns are separated
by tabs) are automatically considered missing.
> indata <- read.table("mydata.txt", header=TRUE,
+ na.strings=c("NA", ""))
> indata
acid digest name

1 30.3 70.6 <NA>
2 29.8 67.5 Eeny
3 NA 87.0 Meeny
4 4.1 89.9 Miny
5 4.4 . Moe
6 2.8 93.1 .
7 3.8 96.7 <NA>

Note that due to the period ‘.’ for observation 5, R considers the vari-
able digest as a factor and not numeric since the period is read as a
character string. If periods should also be considered missing variables
we need to include that in na.strings.
> indata <- read.table("mydata.txt", header=TRUE,
+ na.strings=c("NA", "", "."))
> indata
acid digest name

1 30.3 70.6 <NA>
2 29.8 67.5 Eeny
3 NA 87.0 Meeny
4 4.1 89.9 Miny
5 4.4 NA Moe
6 2.8 93.1 <NA>
7 3.8 96.7 <NA>

R looks for the file mydata.txt in the current working directory, but
the full path can be specified in the call to read.table, e.g.,
> indata <- read.table("d:/mydata.txt", header=TRUE)

See Rule 5.12 on how to change the current working directory.

Importing data 3

1.2 Read data from a simple XML file
Problem: You want to import a dataset stored as a simple structure in
the XML file format.

Solution: The XML (eXtensible Markup Language) was designed to
transport and store data and XML has seen widespread use in inter-
changing data over the Internet.
An XML file consists of a series of elements which form a document
tree. The tree starts at the root and branches to the lowest level of the
tree. XML documents must contain a root node (or element) which is
“the parent” of all other nodes, and all nodes can have their own sub-
nodes (“child elements”).
An example XML file is shown below where the tree data from the
trees dataset are stored in XML format. The root node <document>
has several child nodes (the <rows>) and each row has its own child
elements corresponding to the variables in the data frame and their val-
ues.

<?xml version="1.0"?>
<document>
<row>
<Girth>8.3</Girth>
<Height>70</Height>
<Volume>10.3</Volume>

</row>
<row>
<Girth>8.6</Girth>
<Height>65</Height>
<Volume>10.3</Volume>
.
.
.
<Volume>77</Volume>

</row>
</document>

The XML package provides numerous tools for parsing and generating
XML in R. Since XML is such a flexible format, the XML package pri-
marily consists of functions that must be combined to parse and extract
information from a specific type of XML structure.
XML document files with a simple structure can be imported and con-
verted to a data frame directly using the xmlToDataFrame function.
By simple, we mean a collection of nodes that have the same sub-nodes
such that each node corresponds to an observation or row in the data
frame and each of its sub-nodes contains primitive values correspond-

4 The R Primer

ing to the variables. The data file shown above has such a simple struc-
ture.

> library(XML)
> url <- "http://www.statistics.life.ku.dk/primer/mydata.xml"
> indata <- xmlToDataFrame(url)
> head(indata)
Girth Height Volume

1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7

Note: Installing the XML package can be a little trickier than other pack-
ages. The package uses libxml, the XML parser that is frequently found
as part of the Gnome system, but also exists as a stand-alone library for
many systems.
See also: Use Rule 1.3 to import XML files that do not have a simple
structure.

1.3 Read data from an XML file
Problem: You want to import a dataset stored in the XML file format
by manually coding how to extract the relevant information.

Solution: Rule 1.2 showed how to import data from an XML (eXten-
sible Markup Language) file with a simple structure. Here we will try to
import data from a more non-trivial situation, which xmlToDataFrame
cannot handle.
As a more complex example we will try to import the following XML
file that contains artificial data on currency exchange rates. The first
couple of nodes are document creation data, while the actual exchange
rates begin with the <rates> node. The exchange rates (measured
against the euro) and dates are coded as tags to the <exch> and <Date>
nodes while the bank source is a leaf node with no children. Also note,
that information from both banks are not available for both dates and
that not all exchange rates nodes may be present.

<?xml version="1.0"?>
<bankdata>
<author>Claus</author>
<valid>Not at all</valid>

Importing data 5

<rates>
<Date time="2011-03-10">
<bank>
<source>Some bank</source>
<exch currency="USD" rate="1.3817"/>
<exch currency="DKK" rate="7.4581"/>

</bank>
<bank>
<source>Some other bank</source>
<exch currency="USD" rate="1.2382"/>
<exch currency="DKK" rate="7.3312"/>

</bank>
</Date>
<Date time="2011-03-09">
<bank>
<source>Some bank</source>
<exch currency="USD" rate="1.3884"/>

</bank>
</Date>
</rates>
</bankdata>

Recall that an XML tree structure consists of a series of nodes branching
out from the root node, and that each of the nodes may itself have chil-
dren. Data are stored either as values or as attributes/tags of a node.

The xmlTreeParse is the work-horse for importing general XML doc-
uments. xmlTreeParse parses an XML file and stores the tree in an
R structure. We subsequently traverse the tree and extract data from
the relevant nodes. xmlTreeParse requires a file name or location as
input for where to find the XML file, and it returns an R XML object
with the parsed XML file. The useInternalNodes option can be set
to TRUE to increase parsing speed.
First, xmlRoot should be called to get a pointer to the top-level node or
parent of the XML tree. The skip option can be set to FALSE to prevent
R from skipping over document type definitions in the XML file if those
are present.
The XML tree structure works like a recursive list-like object and the
individual nodes in the tree are accessed using named or numbered
indices, [[]]. The XML tree can be traversed with the proper indices
and for each node we can get the parent and list of children sub-nodes
using the xmlParent and xmlChildren functions, respectively.
Information can be extracted from a node using one of the xmlName,
xmlValue, xmlGetAttr and xmlAttrs functions, which return the
node name, node contents, a named attribute and all attributes, respec-
tively.

> library(XML)
> # Location of the example XML file

6 The R Primer

> url <- "http://www.statistics.life.ku.dk/primer/bank.xml"
> # Parse the tree
> doc <- xmlTreeParse(url, useInternalNodes=TRUE)
> top <- xmlRoot(doc) # Identify the root node
> xmlName(top) # Show node name of root node
[1] "bankdata"
> names(top) # Name of root node children
author valid rates

"author" "valid" "rates"
> xmlValue(top[[1]]) # Access first element
[1] "Claus"
> xmlValue(top[["author"]]) # First element with named index
[1] "Claus"
> names(top[[3]]) # Children of node 3
Date Date

"Date" "Date"
> xmlAttrs(top[[3]][[1]]) # Extract tags from a Date node

time
"2011-03-10"
> top[["rates"]][[1]][[1]] # Tree from first bank and date
<bank>
<source>Some bank</source>
<exch currency="USD" rate="1.3817"/>
<exch currency="DKK" rate="7.4581"/>

</bank>
> xmlValue(top[[3]][[1]][[1]][[1]]) # Bank name is node value
[1] "Some bank"
> xmlAttrs(top[[3]][[1]][[1]][[1]]) # but has no tags
NULL
> xmlAttrs(top[[3]][[1]][[1]][[2]]) # The <exch> node has tags
currency rate

"USD" "1.3817"
> xmlValue(top[[3]][[1]][[1]][[2]]) # but no value
[1] ""

A function can be applied recursively to children of a node using the
xmlApply and xmlSApply functions, which works similarly as apply
and sapply except for XML tree structures. Extracting the individual
exchange rates and combining them with the proper bank name and
date can be quite cumbersome using indices, loops and xmlApply. In-
stead, we can use the XML Path Language, XPath, to query and ex-
tract information from specific nodes in the XML tree structure. Ta-
ble 1.1 shows examples of useful XPath query strings. These can be
used with the xpathApply or xpathSApply functions, which accept
a node from where to start the search as first argument, an XPath query
string as second argument, and the function to apply as third argument.

> # Search tree for all source nodes and return their value
> xpathSApply(doc, "//source", xmlValue)
[1] "Some bank" "Some other bank" "Some bank"

> # Search full tree for all exch nodes where currency is "DKK"

Importing data 7

Table 1.1: Examples of XPath search expression

Expression Description
/node top-level node only
//node node at any level
//node[@name] node with an attribute named “name”
//node[@name="a"] node with named attr. with value “a”
//node/@x value of attribute x in node with such attr.

> xpathApply(doc, "//exch[@currency=’DKK’]", xmlAttrs)
[[1]]
currency rate

"DKK" "7.4581"

[[2]]
currency rate

"DKK" "7.3312"

Below we search through the complete XML tree for each node, <exch>,
which may be found at any level. From the <exch> node we extract its
attributes and get the bank name through its parent and the exchange
rate date from the time attribute from its grandparent. The do.call
function is used rbind to combine the resulting lists.

> res <- xpathApply(doc, "//exch",
+ function(ex) {
+ c(xmlAttrs(ex),
+ bank=xmlValue(xmlParent(ex)[["source"]]),
+ date=xmlGetAttr(xmlParent(xmlParent(ex)), "time"))
+ })
> result <- do.call(rbind, res)
> result

currency rate bank date
[1,] "USD" "1.3817" "Some bank" "2011-03-10"
[2,] "DKK" "7.4581" "Some bank" "2011-03-10"
[3,] "USD" "1.2382" "Some other bank" "2011-03-10"
[4,] "DKK" "7.3312" "Some other bank" "2011-03-10"
[5,] "USD" "1.3884" "Some bank" "2011-03-09"

The variables in the resulting object can then be converted to their proper
formats and combined in a data frame.

8 The R Primer

1.4 Read data from an SQL database using ODBC
Problem: Import data from an application that supports Open Data-
Base Connectivity.

Solution: Open DataBase Connectivity (ODBC) makes it possible for
any application to access data from a SQL database regardless of which
database management system is used to handle the data.
The RODBC package provides an interface to databases that support
an ODBC interface, which includes most popular commercial and free
databases such as MySQL, PostgreSQL, Microsoft SQL Server, Microsoft
Access, and Oracle. Having one package with a common interface al-
lows the same R code to access different database systems.
The odbcConnect function opens a connection to a database and re-
turns an object which works as a handle for the connection. A character
string containing the data source name (DSN) should be supplied as
the first argument to odbcConnect to set the database server to con-
nect to. The function has two optional arguments, uid and pwd, which
set the user id and password for authentication, respectively, if that is
required by the database server, and is not provided by the DSN.
The data source name is located in a separate text file or in the reg-
istry and it contains the information that the ODBC driver needs in
order to connect to a specific database. This includes the name, di-
rectory, and driver of the database, and possibly the user id and pass-
word. Each database requires a separate entry in the DSN, and DSN-
less connections require that all the necessary information to be sup-
plied within R (for example by using odbcDriverConnect instead of
odbcConnect). The information for setting up the DSN should accom-
pany your database software.
Once a connection to a database server is established, then the available
database tables can be seen with the sqlTables function, with the
proper handle as first argument. The sqlFetch function fetches the
entire table from the SQL database and returns it as an R data frame.
sqlFetch requires two arguments, where the first is the connection
handle and the second is a character string containing the desired table
to extract from the database.
The workhorse is the sqlQuery function which is used to make SQL
queries directly to the database and return the results as R data frames.
The first argument to sqlQuery sets the connection channel to use and
the second argument is the selection string which should be specified
as a regular SQL query string. Finally, the odbcClose function closes
the connection to the channel specified by the first argument.

Importing data 9

In the example below, we use an existing DSN to access a database
called “myproject” which contains a “paper” table. The entire table
is extracted as well as a selection of salespeople with sales larger than a
given number.

> library(RODBC)
> # Connect to SQL database with username and password
> channel <- odbcConnect("mydata", uid="tv", pwd="office")
> sqlTables(channel) # List tables in the database
TABLE_CAT TABLE_SCHEM TABLE_NAME TABLE_TYPE REMARKS

1 myproject paper TABLE
> mydata <- sqlFetch(channel, "paper") # Fetch entire table
> mydata
ID Sales Person

1 3 10 David Brent
2 4 12 Michael Scott
3 5 13 Gareth Keenan
4 6 20 Tim Canterbury
5 7 13 Jim Halpert
6 8 23 Dwight Schrute
> sqlQuery(channel,
+ "SELECT * FROM paper WHERE Sales>12 ORDER BY Person")
ID Sales Person

1 8 23 Dwight Schrute
2 5 13 Gareth Keenan
3 7 13 Jim Halpert
4 6 20 Tim Canterbury
> odbcClose(channel)

See also: Rule 1.7 for an example on how to use the RODBC package to
import data from Excel under Windows. Microsoft Access Databases
can be accessed directly from within Windows without creating a DSN
using the odbcConnectAccess or odbcConnectAccess2007 func-
tions.

Reading spreadsheets

1.5 Read data from a CSV file
Problem: You want to import a dataset stored as a comma-separated
values (CSV) file.

Solution: A CSV file is a plain text file where each line corresponds

10 The R Primer

to a case and where the case variables are separated by commas. Quo-
tation marks are used to embed field values that contain the separator
character.
Use read.csv to read in the delimited file just like you would use
read.table. Actually, read.csv is a wrapper function that sets the
correct options for read.table.
read.csv2 is used to read in semicolon separated files which is the
default CSV-format in some locales where comma is the decimal point
character and where semicolon is used as separator. To read the CSV
file mydata.csv:

"Id","Sex","Age","Score"
21,"Male",14,"Little"
26,"Male",13,"None"
27,"Male",13,"Moderate, severe"
29,"Female",13,"Little"
30,"Female",15,"Little"
31,"Male",14,"Moderate, severe"

we use the command

> indata <- read.csv("mydata.csv")
> head(indata)
Id Sex Age Score

1 21 Male 14 Little
2 26 Male 13 None
3 27 Male 13 Moderate, severe
4 29 Female 13 Little
5 30 Female 15 Little
6 31 Male 14 Moderate, severe

Both read.csv and read.csv2 assume that a header line is present
in the CSV file (i.e., header=TRUE is the default). If no header line is
present you need to specify the header=FALSE argument.

1.6 Read data from an Excel spreadsheet
Problem: You want to import a dataset stored as a Microsoft Excel file.

Solution: The easiest way to read data from an Excel spreadsheet into
R is to export the spreadsheet to a delimited file like a comma-separated
file and then import the CSV file as described in Rule 1.5.

Alternatively, the read.xlsx function from the xlsx can be used to
read Excel worksheets (both older Excel formats as well as Excel 2007

Importing data 11

and above formats) directly into R. The xlsx package depends on the
xlsxjars and rJava packages so they need to be installed for xlsx
to work.
The first argument to read.xlsx should be the path to the Excel spread-
sheet, and the second argument, sheetIndex, takes a number repre-
senting which sheet to import from the Excel file. By default, the first
line in the Excel sheet is assumed to be a header line, but that can be
changed by setting the header=FALSE option.
The following Excel worksheet saved as the file cunningplan.xlsx
can be imported with the following code:

> library(xlsx)
Loading required package: xlsxjars
Loading required package: rJava
> goesforth <- read.xlsx("Documents/cunningplan.xlsx", 1)
> goesforth

Name DOB value Rank
1 Blackadder 1955-01-06 1 Cpt
2 Baldrick 1946-08-15 2 Pvt
3 George 1959-06-11 3 Lt
4 Melchett 1957-08-24 4 Gen
5 Darling 1956-09-18 5 Cpt

Note that we set the sheet to load with the second argument. The
rowIndex and colIndex options can be set to numeric vectors to in-
dicate which rows and columns to extract from the worksheet, respec-
tively. They are set to NULL by default, which means that all rows and
columns are imported.
See also: If you have Perl installed on your computer, you can use the

12 The R Primer

read.xls function from the gdata package. It automates the process
of saving the Excel sheet as a CSV file and reading it in R. See Rule 1.9
for an example of importing spreadsheet data through the clipboard.

1.7 Read data from an Excel spreadsheet under Windows
Problem: You want to read data stored in an Excel spreadsheet on a
machine running Windows.

Solution: You can always use Rule 1.6 to read Excel spreadsheets un-
der Windows. However, under Windows the package RODBC can be
used to import data directly from an Excel spreadsheet into R.
To access the Excel file example.xls we first open a connection using
odbcConnectExcel, then extract any information from the spread-
sheet using the sqlFetch function before finally closing the ODBC
connection with odbcClose. For example, the following dataset can
be read into R by using the commands

> library(RODBC)
> channel <- odbcConnectExcel("example.xls")
> indata <- sqlFetch(channel, "Sheet1")
> odbcClose(channel)

Importing data 13

> indata
Id Sex Age Score

1 21 Male 14 Little
2 26 Male 13 None
3 27 Male 13 Moderate, severe
4 29 Female 13 Little
5 30 Female 15 Little
6 31 Male 14 Moderate, severe

Note that some language installations of Excel rename the sheets so
they are called, for example, “Ark1”, “Ark2”, . . . , instead of “Sheet1”,
“Sheet2”, etc. If that is the case you should provide the correct name for
the sheet in the call to odbcConnectExcel.

It should also be pointed out that odbcConnectExcel will only work
with English-language versions of the Microsoft drivers, which may or
may not be installed in other locales.

See also: Excel spreadsheets can also be read directly from R using
the read.xls function from the xlsReadWrite package. The gdata
package also provides a function read.xls which works by translat-
ing the Excel file into a temporary CSV file using a Perl script and di-
rectly reading the CSV file. See Rule 1.9 for an example of importing
spreadsheet data through the clipboard. See Rule 1.4 for more exam-
ples of the RODBC package.

1.8 Read data from a LibreOffice or OpenOffice Calc
spreadsheet

Problem: You want to read data stored as a LibreOffice or OpenOffice
Calc spreadsheet.

Solution: Start Calc, save the spreadsheet as a CSV file and use Rule 1.5
to import the spreadsheet.

See also: Rule 1.9 shows an example of importing spreadsheet data
through the clipboard.

14 The R Primer

1.9 Read data from the clipboard
Problem: You have selected some data and copied them to the clip-
board and want to import the selection into R.

Solution: Sometimes it is desirable to select data from a document, a
web page, or from a spreadsheet and import the selection directly into
R. This can be done by copying the selection to the clipboard and then
subsequently importing the contents of the clipboard into R. This ap-
proach can be used on platforms that have the equivalent of a clipboard,
which is the case for Windows, Mac OS X and machines running the X
Window System used on many Linux systems.
The contents of the clipboard can be read using the value "clipboard"
for the file option to read.table under Windows and X, any by us-
ing pipe("pbpaste") under Mac OS X.

Figure 1.1: Selection of cells to be copied to the clipboard.

If we select some cells in, for example, an OpenOffice spreadsheet as
shown in Figure 1.1 and copy the selection to the clipboard then we
import the selection with the following code:

> mydata <- read.table(file="clipboard", header=TRUE) # Windows/X
> mydata <- read.table(pipe("pbpaste"), header=TRUE) # Mac OS X
> mydata
very important data

1 1 2 3
2 5 4 3
3 2 3 2
4 1 3 5

Note that read.table reads and parses the input from the clipboard
as if it had read the data from an ASCII file (see Rule 1.1). This causes

Importing data 15

problems with empty cells and if there is text with spaces in any of
the cells. If the data are separated by tabs on the clipboard — which
is generally the case for spreadsheet data — we can specify the field
separator to be tabs in the call to read.table, which will handle these
two situations.

> mydata <- read.table(file="clipboard", sep="\t", header=TRUE)

On machines running the X11 Windows system the "X11_clipboard"
value can be used for the file option to copy from the clipboard.

See also: The help file for the file function lists information about
clipboards. Spreadsheet data on the clipboard are often stored in the
Data Interchange Format (DIF) and the read.DIF function can be used
to read DIF formats directly. read.DIF is sometimes more robust than
using read.table when there are empty cells.

Importing data from other statistical software programs

1.10 Import a SAS dataset
Problem: You want to import a SAS dataset into R.

Solution: The read.xport function from the foreign package reads
SAS datasets stored as SAS transport (XPORT) files.
SAS datasets are stored in different formats that depend on the oper-
ating system and the version of SAS. To read in SAS datasets it is nec-
essary to save the SAS dataset as a SAS transport (XPORT) file since
that can be read on any platform. The following code can be used from
within SAS to store the SAS dataset sasdata in the XPORT format.

libname mydata xport "somefile.xpt";

/* Create a dataset in XPORT format and save it in

* the somefile.xpt file. The file is referenced

* internally in SAS by the name mydata.

* Here we take an existing SAS dataset called

* sasdata and put it into the mydata file.

*/

16 The R Primer

DATA mydata.thisdata;
SET sasdata;

RUN;

Once the data are stored in the SAS XPORT format we can read the file
directly using read.xport:

> library(foreign)
> indata <- read.xport("somefile.xpt")

See also: The read.xport function from the SASxport package ex-
tends the functionality for reading SAS XPORT files when custom for-
mats are present in the data.

1.11 Import an SPSS dataset
Problem: You want to import an SPSS dataset into R.

Solution: Datasets stored by the SPSS “save” and “export” commands
can be read by the read.spss function from the foreign package.
To read an SPSS dataset saved in the spssfilename.sav file we use
the following command in R:

> library(foreign)
> indata <- read.spss("spssfilename.sav", to.data.frame = TRUE)

The to.data.frame=TRUE option ensures that the SPSS data file is
stored as a data frame in R. If that option is not included, the dataset is
stored as a list.

1.12 Import a Stata dataset
Problem: You want to import a Stata dataset into R.

Solution: Datasets stored by the “SAVE” command in Stata can be
read in R by the read.dta function from the foreign package.
To read a Stata dataset saved as the file statafile.dta we use the
following commands in R:

