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Fourier Series in Several Variables with Applications to Partial 
Differential Equations illustrates the value of Fourier series methods 
in solving difficult nonlinear partial differential equations (PDEs). 
Using these methods, the author presents results for stationary 
Navier-Stokes equations, nonlinear reaction-diffusion systems, and 
quasilinear elliptic PDEs and resonance theory. He also establishes 
the connection between multiple Fourier series and number theory.

The book first presents four summability methods used in studying 
multiple Fourier series: iterated Fejer, Bochner-Riesz, Abel, and 
Gauss-Weierstrass. It then covers conjugate multiple Fourier series, 
the analogue of Cantor’s uniqueness theorem in two dimensions, 
surface spherical harmonics, and Schoenberg’s theorem. After 
describing five theorems on periodic solutions of nonlinear PDEs, the 
text concludes with solutions of stationary Navier-Stokes equations.

Features 
•	 Shows how various Fourier series methods can solve nonlinear 

PDEs
•	 Discusses the connection between multiple Fourier series and 

number theory
•	 Presents the periodic Cα-theory of Calderon and Zygmund
•	 Explores the extension of Fatou’s famous work on 

antiderivatives and nontangential limits to higher dimensions
•	 Emphasizes the importance of surface spherical harmonic 

functions
•	 Provides the solution to a 100-year-old problem

Discussing many results and studies from the literature, this book 
demonstrates the robust power of Fourier analysis in solving 
seemingly impenetrable nonlinear problems.
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Preface

The primary purpose of this book is to show the great value that Fourier
series methods provide in solving difficult problems in nonlinear partial dif-
ferential equations. We illustrate these methods in three different cases.

Probably the most important of these three cases are the results that we
present for the stationary Navier-Stokes equations. In particular, we show
how to obtain the best possible results for periodic solutions of the stationary
Navier-Stokes equations when the driving force is nonlinear. We also present
the basic theorem for the distribution solutions of said equations. The ideas
for this material come from a paper published by the author in the Journal
of Differential Equations.

Also, we show how to obtain classical solutions to the stationary Navier-
Stokes equations by applying the Calderon-Zygmund Ca-theory developed
for multiple Fourier series earlier in the book. This technique using the
Calderon-Zygmund Ca-theory does not appear to be in any other text deal-
ing with this subject and is based on a paper that appeared in the Transac-
tions of the AMS.

The second case we consider handles nonlinear reaction-diffusion systems
and uses a technique involving multiple Fourier series to strongly improve
on a theorem previously introduced by Brezis and Nirenberg. The idea for
doing this comes from a recent (2009) paper published by the author in the
Indiana University Math Journal. Reaction-diffusion systems are important
in many areas of applied mathematics including mathematical biology. The
main reason we were able to improve on the results of Brezis and Nirenberg
is because the use of multiple Fourier series enables one to make sharper
estimates and thus obtain a better compactness lemma. The second theorem
we present in this area involves a conventional result involving weak solutions
to the reaction-diffusion system.

The third case we consider is in the area of quasilinear elliptic partial
differential equations and resonance theory. We deal with an elliptic operator
of the form

Qu = −
N∑

i,j=1

Di[a
ij(x, u)Dju] +

N∑

j=1

bj(x, u,Du)Dju

and establish a resonance result based on the work of Defigueredo and Gossez
in a Journal of Differential Equations paper and on the work of the author in
a Transactions of the AMS manuscript. The resonance result obtained is the

vii
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best possible and is proved via a Galerkin type argument that illustrates once
again the power of Fourier analysis in handling tough problems in nonlinear
PDE. The second and third theorems that we present give necessary and
sufficient conditions for the solution of certain other equations at a resonance
involving the above operator Qu.

Another aim of this book is to establish the connection between multiple
Fourier series and number theory. We present an N -dimensional, N ≥ 2,
number theoretic result, which gives a necessary and sufficient condition
that

C(ξ1)× · · · × C(ξN )

be a set of uniqueness for a class of distributions on the N -torus, TN . The
ideas behind this result come from a paper published in the Journal of
Functional Analysis.

Here, C(ξj) is the familiar symmetric Cantor set on [−π, π] depending

on the real number ξj where 0 < ξj < 1/2. The condition is that each ξ−1
j

be an algebraic integer called a Pisot number. What is important about this
result is that the considered class of distributions, labeled A(TN ), does not
necessarily have Fourier coefficients that go to zero as the spherical norm
|m| = (m2

1 + · · ·+m2
N )1/2 →∞ but as min(|m1| , ..., |mN |)→∞. This gives

rise to a wider class of distributions; when it appeared, it was the first result
of this nature in the mathematical literature.

As a corollary to the result just mentioned, we have the following:
Let p and q be positive relatively-prime integers with p < 2q. Then a

necessary and sufficient condition that

C(
p1

q1
)× · · · × C(

pN

qN
)

be a set of uniqueness for the class A(TN ) is that pj = 1 for j = 1, ..., N.
An additional aim of this book is to present the periodic Cα-theory

of Calderon and Zygmund. We deal with a Calderon-Zygmund kernel of
spherical-harmonic type, called K∗ (x), and show that it has a principal-

valued Fourier coefficient K̂∗ (m). We set f̃ = f ∗ K∗ and show that the
following very important theorem prevails:

f ∈ Cα (TN ) , 0 < α < 1,⇒ f̃ ∈ Cα (TN ) .

We also give an application of this theorem to a periodic boundary value
problem involving the Laplace operator and later use it to obtain the regu-
larity result mentioned above for the stationary Navier-Stokes equations.

Another aim of this book is to present the recent (2006) article in
the Proceedings of the AMS, which extends Fatou’s famous work on anti-
derivatives and nontangential limits to higher dimensions. The big question
answered is “How does an individual handle a concept that depends on the
one-dimensional notion of the anti-derivative in dimension N ≥ 2?” Our
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answer to the question is

“Generalize the notion of the Lebesgue point set and show

that the concepts are the same in one-dimension.”

Chapter 1 of the book deals with four different summability methods
used in the study of multiple Fourier series, namely the methods of (i) it-
erated Fejer, (ii) Bochner-Riesz, (iii) Abel, and (iv) Gauss-Weierstrass. The
iterated Fejer method in §2 gives a global uniform approximation for con-
tinuous periodic functions as well as a global Lp approximation theorem.
In §3, the classical Bochner theorem for pointwise Bochner-Riesz summabil-
ity of multiple Fourier series is established. To understand the proof of this
theorem, a knowledge of various Bessel identities and estimates is essential.
This Bessel background material is presented in §1 and §2 of Appendix A.

Several Abel summability theorems, which are important in the study of
harmonic functions including the nontangential result discussed above, are
also presented in Chapter 1, §4. In §5 of Chapter 1, the Gauss-Weierstrass
summability method, which is fundamental in the study of the heat equa-
tion, is developed; it includes a theorem necessary for a subsequent number
theoretic result appearing later in the book.

Chapter 2 is devoted to the study of conjugate multiple Fourier series
where the conjugacy is defined by means of periodic Calderon-Zygmund ker-
nels that are of spherical harmonic type. In particular, the periodic Calderon-
Zygmund kernel, K∗(x), is defined, and it is proved that its principal-valued

Fourier coefficient K̂∗(m) exists. The conjugate function of f is designated

by f̃ , and it is shown that if things are good,
̂̃
f (m) = K̂∗(m)f̂(m), which is

similar to the one-dimensional situation. The main result established is the
following: If f ∈ Cα (TN ), then f̃ ∈ Cα (TN ) . This Cα- theorem is presented
in complete detail in §4 of Chapter 2 and is based on a paper published by
Calderon and Zygmund in the Studia Mathematica.

In §5 of Chapter 2, an application of this Cα- result to a periodic bound-
ary value problem involves the Laplace operator. Also, a Tauberian conver-
gence theorem for conjugate multiple Fourier series motivated by an interest-
ing one-dimensional result of Hardy and Littlewood is given in §3 of Chapter
2. The Tauberian background material is developed in Appendix B.

Chapter 3 contains the details of the solution to a one hundred year old
problem, namely

Establish the two-dimensional analogue of Cantor’s famous

uniqueness theorem dealing with the convergence

of one-dimensional trigonometric series.

The solution depends upon an elegant paper published by Roger Cooke
in the Proceedings of the AMS establishing the two-dimensional Cantor-
Lebesgue lemma joined with a manuscript of the author that appeared in
the Annals of Mathematics.
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Chapter 3 also contains the N-dimensional number theoretic theorem
discussed above giving a necessary and sufficient condition that

C(ξ1)× · · · × C(ξN )

be a set of uniqueness for the class of distributions A(TN ) on the N-torus.
In addition, Chapter 3 contains the recent (2004) article about fractal sets
called generalized carpets that are not Cartesian product sets but are sets of
uniqueness for a smaller class of distributions on the N-torus labeled B(TN ).
These fractal results come from a paper published in the Proceedings of the
AMS.

The analogous problem to Cantor’s uniqueness theorem for a series of
two-dimensional surface spherical harmonics on S2 is still open and is pre-
sented in complete detail in Chapter 3, §2. This problem has been open now
for 140 years. The background material in spherical harmonics, which plays
an important role throughout this monograph, is presented in Appendix A,
§3.

The material in Chapter 4 is motivated by Schoenberg’s theorem in-
volving positive definite functions on S2 and surface spherical harmonics
published in the Duke Journal of Math. It turns out that part of Schoen-
berg’s theorem is highly useful in studying the kissing problem, k(3), in
discrete geometry, as Musin’s 2006 result shows. Here, k(3) is the largest
number of white billiard balls that can simultaneously kiss (touch) a black
billiard ball and represents a problem going back to Isaac Newton’s time in
1694.

Chapter 4 presents Schoenberg’s theorem on SN−1, then on TN , and
finally on SN1−1 × TN . The proof on SN1−1 × TN makes use of a number of
different concepts that occur in this monograph.

Chapter 5 presents five theorems dealing with periodic solutions of non-
linear partial differential equations. As mentioned earlier, the methods em-
ployed illustrate the huge power of Fourier analysis in solving seemingly
impenetrable problems in a nonlinear analysis. Chapter 5, §1 presents, in
particular, periodic solutions in the space variables to a system of nonlinear
reaction-diffusion equations of the form





∂uj

∂t −∆uj = fj(x, t, u1, ..., uJ ) in TN × (0, T )

uj(x, 0) = 0

j = 1, ..., N.
Two theorems are established with respect to this nonlinear parabolic

system. The first theorem deals with one-sided conditions placed on the fj,
and the second deals with two-sided conditions on the fj. As discussed above,
the first theorem strongly improves (for periodic solutions) on a one-sided
classical theorem previously established by Brezis and Nirenberg.

In §2 of Chapter 5, we deal with the equation

Qu = f (x, u)
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where Qu is the partial differential operator discussed above. We set

F± (x) = lim sup
s→±∞

f (x, s) /s,

and show that if ∫

TN

F+ (x) dx < 0 and

∫

TN

F− (x) dx < 0

and certain other conditions are met, then a distribution solution u ∈
W 1,2 (TN ) of Qu = f (x, u) exists. We also show that this is the best possible
result.

In §2 of Chapter 5, we also handle the equation

Qu = g (u)− h (x)

and define

lim
s→∞

g (s) = g (∞) and lim
s→−∞

g (s) = g (−∞) .

We show that if certain other assumptions are met, then the condition

(2π)N g (∞) <

∫

TN

h (x) dx < (2π)N g (−∞)

is both necessary and sufficient that a distribution solution u ∈ W 1,2 (TN )
of Qu = g (u)− h (x) exists.

In §1 of Chapter 6, we handle the stationary Navier-Stokes equations
with a nonlinear driving force:

−ν∆v (x) + (v (x) · ∇)v (x) +∇p (x) = f (x,v (x))

(∇ · v) (x) = 0

where ν is a positive constant, and v and f are vector-valued functions.
In particular, f = (f1, ..., fN ) : TN ×RN → RN . We set

Ej(f) = {x ∈ TN : lim sup|sj |→∞ fj (x, s) /sj < 0

uniformly for sk ∈ R,k 6= j, k = 1, ..., N}
and show that if certain other assumptions are met, then

|Ej(f)| > 0 for j = 1, ..., N,

is a sufficient condition for the pair (v, p) to be a distribution solution of
the stationary Navier-Stokes equations with vj∈W 1,2 (TN ) and p ∈ L1 (TN ).
Here, |Ej(f)| represents the Lebesgue measure of Ej(f). We also demonstrate
that this is the best possible result.

Another theorem that we establish in §1 of Chapter 6 handles the situ-
ation when

fj (x, s) = gj (sj)− hj (x) .
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In particular, we prove that if certain other conditions are met, then

(2π)N gj (∞) <

∫

TN

hj (x) dx < (2π)N gj (−∞)

for j = 1, ...N, is both a necessary and sufficient condition that the pair
(v, p) be a distribution solution of the stationary Navier-Stokes equations
with vj∈W 1,2 (TN ) and p ∈ L1 (TN ).

In §2 of Chapter 6, we deal with the classical solutions of the stationary
Navier-Stokes equations. The main tool for proving the theorem involved is
the Cα-theory of Calderon and Zygmund established earlier in Chapter 2.

Given f ∈ [C(TN )]N , we will say the pair (v,p) is a periodic classical
solution of the stationary Navier-Stokes system provided:

v ∈
[
C2 (TN )

]N
and p ∈ C1 (TN )

and

−ν∆v (x) + (v (x) · ∇)v (x) +∇p (x) = f (x) ∀x ∈ TN

(∇ · v) (x) = 0 ∀x ∈ TN .

To obtain the classical solutions of the Navier-Stokes system, we require
slightly more for the driving force f than periodic continuity. In particular,
we say f1 ∈ Cα (TN ), 0 < α < 1, provided the following holds:

(i) f1 ∈ C (TN ) ;
(ii) ∃ c1 > 0 s. t. |f1 (x)− f1 (y)| ≤ c1 |x− y| α ∀x, y ∈ RN .

Working in dimension N = 2 or 3, we show in §2 of Chapter 6 that if

fj ∈ Cα (TN ) , 0 < α < 1 for j = 1, ...N ,

then there is a pair (v, p) which is a periodic classical solution of the sta-
tionary Navier-Stokes system with vj ∈ C2+α (TN ) and p ∈ C1+α (TN ).

I have lectured on the mathematics developed in this book at various
mathematical seminars at the University of California, Riverside, where I
have been a professor for the last 45 years. Also, I would like to thank my
colleague James Stafney for the many discussions that we have had about
spherical harmonics and related matters.

I had the good fortune to write my doctoral thesis with Antoni Zyg-
mund at the University of Chicago. Also, I did post-doctoral work with Arne
Beurling at the Institute for Advanced Study and with Salomon Bochner
from Princeton University. My subsequent mathematical work was backed
by Marston Morse from the Institute for Advanced Study. I am indebted to
these four outstanding mathematicians.

Victor L. Shapiro
Riverside, California
January, 2010
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CHAPTER 1

Summability of Multiple Fourier Series

1. Introduction

We shall operate in real N -dimensional Euclidean space, RN , N ≥ 1,
and use the following notation:

x = (x1, ..., xN ) y = (y1, ..., yN )

αx+ βy = (αx1 + βy1, ..., αxN + βyN )

x · y = x1y1 + ...+ xNyN , |x| = (x · x) 1
2 .

With TN , the N -dimensional torus,

TN = {x : −π ≤ xj < π, j = 1, ..., N} ,
we shall say f ∈ Lp(TN ), 1 ≤ p < ∞, provided f is a real-valued (unless
explicitly stated otherwise) Lebesgue measurable function defined on RN of
period 2π in each variable such that

∫

TN

|f |p dx <∞.

A similar definition prevails for f ∈ L∞(TN ).
With m as an integral lattice point in RN and ΛN representing the set

of all such points, we shall designate the series
∑

m∈ΛN

f̂(m)eim·x

by S[f ] and call it the Fourier series of f where

f̂(m) = (2π)−N

∫

TN

e−im·xf(x)dx.

In this chapter, we study the relationship between f and its Fourier series
S[f ].

To begin, we let ∆ = ∂2/∂x2
1+· · ·+∂2/∂x2

N be the usual Laplace operator

and observe that ∆eim·x = − |m|2 eim·x. Consequently, from an eigenvalue
point of view, it is natural to ask, “In what manner does the series

(1.1)

∞∑

n=0


 ∑

|m|2=n

f̂(m)eim·x




1



2 1. SUMMABILITY OF MULTIPLE FOURIER SERIES

approximate f?” Bearing in mind the classical counter-examples of both
Fejer and Lebesgue concerning the convergence of one-dimensional Fourier
series, [Zy1, Chapter 8], we see that the answer to the previous question
should involve some spherical summability method of the series given in
(1.1).

The two most natural methods involving spherical summability are those
of Bochner-Riesz and Abel. In particular, we say that S[f ] is Bochner-Riesz
summable of order α, henceforth designated by (B −R,α) to f(x) if

(1.2) lim
R→∞

∑

|m|≤R

f̂(m)eim·x(1− |m|2 /R2)α = f(x).

Bochner-Riesz summability plays the same role for multiple Fourier series
that Cesaro summability plays for one-dimensional Fourier series. In §3
of this chapter, we shall establish a fundamental result for Bochner-Riesz
summability of Fourier series.

S[f ] is Abel summable to f(x), this means that the

(1.3) lim
t→0

∑

m∈ΛN

f̂(m)eim·x−|m|t = f(x).

The reason for calling this method of summability Abel summability is mo-
tivated by the fact that the series

∑

m∈ΛN

f̂(m)eim·x−|m|t

is harmonic in RN+1
+ , i.e., in the variables (x,t) for t > 0.

We shall discuss Abel summability in detail in §4 of this chapter. Also,
in Chapter 2, we shall deal with the Abel summability of conjugate multiple
Fourier series. But first, it turns out that we can get some very good global
results connecting f and S[f ] by iterating well-known one-dimensional re-
sults involving the Fejer kernel, and we will now show this iteration.

2. Iterated Fejer Summability of Fourier Series

We leave Dn(t) as the well-known one-dimensional Dirichlet kernel

(2.1) Dn(t) =
n∑

j=−n

eijt =
sin(n+ 1

2 )t

sin(t/2)
,

and Kn(t) as the well-known one-dimensional Fejer kernel [Ru1, p. 199],

(2.2) Kn(t) =
1

n+ 1

n∑

j=0

Dj(t) =
1

n+ 1

1− cos(n+ 1)t

1− cos t
.
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We also observe from [Ru1, p. 199] that Kn(t) has the following three prop-
erties:

(2.3)

(a) Kn(t) ≥ 0 ∀t ∈ R,

(b) 1
2π

∫ π
−π Kn(t)dt = 1,

(c) Kn(t) ≤ 1
n+1

2
1−cos δ if 0 < δ ≤ |t| ≤ π.

It follows from (2.1) and (2.2) that

(2.4) Kn(t) =
n∑

j=−n

eijt(1− |j|
n+ 1

),

and we shall refer to

(2.5) K♦
n (x) = Kn(x1) · · ·Kn(xN )

as the iterated N -dimensional Fejer kernel.
For f ∈ L1(TN ) with S[f ] as its Fourier series, we shall prove three

global theorems involving K♦
n (x) and the iterated Fejer summability of S[f ].

In particular, we call σ♦
n(f, x) the iterated Fejer partial sum of S[f ] where

m = (m1, ...,mN ) and

(2.6) σ♦
n(f, x) =

n∑

m1=−n

· · ·
n∑

mN=−n

f̂(m)eim·x(1− |m1|
n+ 1

) · · · (1− |mN |
n+ 1

).

With f ∈ C(TN ) signifying that f is a real-valued continuous function
defined on RN of period 2π in each variable and with B(x, r) designating
the open N-ball with a center x and radius r, the first theorem we shall prove
is the following:

Theorem 2.1. Let f ∈ C(TN ) and suppose σ♦
n(f, x) is defined as in (2.6).

Then
lim

n→∞
σ♦

n(f, x) = f(x) uniformly for x ∈ TN .

Proof of Theorem 2.1. We observe from (2.3)-(2.6) that

(2.7) σ♦
n(f, x)− f(x) = (2π)−N

∫

TN

[f(x− y)− f(x)]K♦
n (y)dy.

Let ε > 0 be given. Choose δ > 0 so that |f(x− y)− f(x)| <ε for y ∈
B(0, δ) uniformly for x ∈ TN . Now it is clear that Cu(0, δ

N ) ⊂ B(0, δ) where

Cu(0, δ
N ) is the open N-cube with center 0 and a half-side δ/N. So

(2.8) |f(x− y)− f(x)| <ε for y ∈ Cu(0, δ
N

) uniformly for x ∈ TN .

Designating P+
1,δ as the rectangular parallelopiped

P+
1,δ = {x : δ ≤ x1 ≤ π, -π ≤ xj ≤ π, j = 2, ..., N.} ,
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we see from (2.3) that limn→∞

∫
P+

1,δ/N

∣∣K♦
n (y)

∣∣ dy = 0. Since TN\Cu(0, δ
N ) is

covered by a finite number of parallelopipeds similar to P+
1,δ/N , we conclude

that

lim
n→∞

∫

TN\Cu(0, δ
N

)

∣∣∣K♦
n (y)

∣∣∣ dy = 0.

Since f(x) is uniformly bounded on RN , we also see from this last limit
that n0 can be chosen so large that

(2.9) (2π)−N

∫

TN\Cu(0, δ
N

)
|f(x− y)− f(x)|

∣∣∣K♦
n (y)

∣∣∣ dy ≤ ε for n ≥ n0

uniformly for x ∈ TN .
Next, returning to (2.8), we obtain from (2.3)(b) that

∫

Cu(0, δ
N

)
|f(x− y)− f(x)|

∣∣∣K♦
n (y)

∣∣∣ dy ≤ ε

∫

TN

∣∣∣K♦
n (y)

∣∣∣ dy

≤ ε (2π)N ∀n

uniformly for x ∈ TN .
Hence, (2.7) and this last fact joined with (2.9) shows that

∣∣∣σ♦
n(f, x)− f(x)

∣∣∣ ≤ 2ε for n ≥ n0 uniformly for x ∈ TN ,

which gives the conclusion to the theorem. �

The second summability theorem that we obtain using the N -
dimensional iterated Fejer kernel is the following:

Theorem 2.2. Let f ∈ Lp(TN ), 1 ≤ p < ∞ and suppose σ♦
n(f, x) is

defined as in (2.6). Then

lim
n→∞

∫

TN

∣∣∣σ♦
n(f, x)− f(x)

∣∣∣
p
dx = 0.

Proof of Theorem 2.2. We prove this for the case 1 < p < ∞, with a
similar proof prevailing for the case p = 1. From (2.7) with p−1 + p′−1 = 1,
we see that
∣∣∣σ♦

n(f, x)− f(x)
∣∣∣ ≤ (2π)−N

∫

TN

|f(x− y)− f(x)|
∣∣∣K♦

n (y)
∣∣∣
p−1+p′−1

dy,

and hence from Holder’s inequality and (2.3)(b) that
(2.10)∫

TN

∣∣∣σ♦
n(f, x)− f(x)

∣∣∣
p
dx ≤

∫

TN

∣∣∣K♦
n (y)

∣∣∣ [
∫

TN

|f(x− y)− f(x)|p dx]dy.
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Now f ∈ Lp(TN ) and is also periodic of period 2π in each variable. Therefore,
it follows that given ε > 0, ∃δ > 0,

∫

TN

|f(x− y)− f(x)|p dx ≤ ε(2π)−N for y ∈ B(0, δ).

Consequently, we obtain from (2.10) that
∫

TN

∣∣∣σ♦
n(f, x)− f(x)

∣∣∣
p
dx ≤

∫

TN−B(0,δ)

∣∣∣K♦
n (y)

∣∣∣ [
∫

TN

|f(x− y)− f(x)|p dx]dy + ε

But f ∈ Lp(TN ) implies that the inner integral on the right-hand side of the
above inequality is uniformly bounded. Therefore, since Cu(0, δ

N ) ⊂ B(0, δ),
we infer from the limit above (2.9) and the above inequality that

lim sup
n→∞

∫

TN

∣∣∣σ♦
n(f, x)− f(x)

∣∣∣
p
dx ≤ ε.

Since ε >0 is arbitrary, this gives the conclusion to the theorem. �

Theorem 2.2 has three important corollaries, the first of which is the
following:

Corollary 2.3.
{
eim·x

}
m∈ΛN

, the trigonometric system, is a complete or-

thogonal system for L1(TN ), i.e., if f,g∈ L1(TN ) and f̂(m) = ĝ(m) for
every integral lattice point m, then f(x)=g(x) a.e. in TN .

Proof of Corollary 2.3. Since f, g ∈ L1(TN ) and f̂(m) = ĝ(m) for every
integral lattice point m, it implies that σ♦

n(f, x) = σ♦
n(g, x) ∀x ∈ TN and

∀n. Consequently, it follows from Theorem 2.2 that
∫

TN

|f(x)− g(x)| dx = 0,

which establishes the corollary. �

The next corollary that we shall prove is called the Riemann-Lebesgue
lemma and is the following:

Corollary 2.4 If f ∈ L1(TN ), then lim |m|→∞f̂(m) = 0.

Proof of Corollary 2.4. Let ε > 0 be given. Using Theorem 2.2, choose
an n sufficiently large so that

∫
TN

∣∣σ♦
n(f, x)− f(x)

∣∣ dx < ε. Then, it follows
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from the definition of f̂(m) given above (1.1) that

∣∣∣f̂(m)
∣∣∣ ≤ (2π)−N{

∫

TN

∣∣∣σ♦
n(f, x)− f(x)

∣∣∣ dx+

∣∣∣∣
∫

TN

e−im·xσ♦
n(f, x) dx

∣∣∣∣},

≤ ε + (2π)−N

∣∣∣∣
∫

TN

e−im·xσ♦
n(f, x) dx

∣∣∣∣ .

Since σ♦
n(f, x) is a fixed trigonometric polynomial, it follows that there is a

positive number s0 such that the integral in the second inequality is zero for

|m| ≥ s0. We conclude that
∣∣∣f̂(m)

∣∣∣ ≤ ε for |m| ≥ s0, which establishes the

corollary. �

The third corollary that we can obtain from Theorem 2.2 is called Par-
sevaal’s theorem and is the following:

Corollary 2.5. If f ∈ L2(TN ), then

lim
n→∞

(2π)N
n∑

m1=−n

· · ·
n∑

mN=−n

∣∣∣f̂(m)
∣∣∣
2

= ‖f‖2L2 .

Proof of Corollary 2.5. From Theorem 2.2, we see that

lim
n→∞

∥∥∥σ♦
n

∥∥∥
2

L2
= ‖f‖2L2 .

Also, we have that
{∥∥σ♦

n

∥∥2

L2

}∞

n=1
is an increasing sequence, and the proof

follows easily from this last observation. �

The third summability theorem that we get using the N -dimensional
iterated Fejer kernel is the following:

Theorem 2.6. Let f ∈ L∞(TN ) and suppose σ♦
n(f, x) is defined as in

(2.6). Then σ♦
n(f, x)→ f(x) in the weak* L∞-topology, i.e.,

lim
n→∞

∫

TN

σ♦
n(f, x) h(x)dx =

∫

TN

f(x) h(x)dx ∀h ∈ L1(TN ).

Proof of Theorem 2.6. Let h be a given function in L1(TN ). Then it
follows from Theorem 2.2 that

(2.11) lim
n→∞

∫

TN

∣∣∣σ♦
n(h, x) − h(x)

∣∣∣ dx = 0.

Next, we set

In = (2π)−N

∫

TN

σ♦
n(f, x)h(x)dx,
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and observe from (2.6) that

In =

n∑

m1=−n

· · ·
n∑

mN=−n

f̂(m)ĥ(−m)(1− |m1|
n+ 1

) · · · (1− |mN |
n+ 1

)

=

n∑

m1=−n

· · ·
n∑

mN=−n

f̂(−m)ĥ(m)(1 − |m1|
n+ 1

) · · · (1− |mN |
n+ 1

).

Consequently,
∫

TN

σ♦
n(f, x)h(x)dx =

∫

TN

σ♦
n(h, x)f(x)dx.

But then
∫

TN

[σ♦
n(f, x)− f(x)]h(x)dx =

∫

TN

[σ♦
n(h, x)− h(x)]f(x)dx.

Hence,
∣∣∣∣
∫

TN

[σ♦
n(f, x)− f(x)]h(x)dx

∣∣∣∣ ≤ ‖f‖L∞(TN )

∫

TN

∣∣∣σ♦
n(h, x) − h(x)

∣∣∣ dx,

and the conclusion to the theorem follows immediately from the limit in
(2.11). �

Exercises.

1. With Dn(t) =
∑n

j=−n e
ijt, use the well-known formula for geometric

progressions and prove that

Dn(t) =
sin(n + 1

2 )t

sin(t/2)
.

2. With Kn(t) = 1
n+1

∑n
j=0Dj(t), use the familiar formula 1 − cosφ =

2 sin2(φ/2) and prove that

Kn(t) =
1

n+ 1

1− cos(n+ 1)t

1− cos t
.

3. Prove that Kn(t) has the following properties:

(a) Kn(t) ≥ 0 ∀t ∈ R,

(b) 1
2π

∫ π
−π Kn(t)dt = 1,

(c) Kn(t) ≤ 1
n+1

2
1−cos δ if 0 < δ ≤ |t| ≤ π.

4. Complete the proof of Corollary 2.5.
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3. Bochner-Riesz Summability of Fourier Series

As we observed in the introduction to this chapter, ∆eim·x = − |m|2 eim·x

where ∆ is the usual Laplace operator. Hence, from an eigenvalue point of
view, since the eigenfunctions with the same eigenvalue have their integral
lattice points lying on spheres, it is a good idea to study multiple Fourier se-
ries using spherical techniques. One of the most effective spherical technique
is the method of Bochner-Riesz summation, defined previously in (1.2). With
B(x, r) representing the open N -ball with center x and radius r, the first
theorem for this method of summation that we shall prove is the following
due to Bochner [Boc1]:

Theorem 3.1. Let f ∈ L1(TN ) and set

(3.1) σα
R(f, x) =

∑

|m|≤R

f̂(m)eim·x(1− |m|2 /R2)α.

Suppose that |B(0, ρ)|−1 ∫
B(0,ρ) |f(x0 + x)− f(x0)| dx→ 0 as ρ→ 0. Then

lim
R→∞

σα
R(f, x0) = f(x0) for α > (N − 1)/2.

We refer to σα
R(f, x) on the left-hand side of (3.1) as the R-th Bochner-

Riesz mean of order α. Also, |B(0, ρ)| designates the volume of the N -ball
of radius ρ, which we shall now compute.

In order to make this computation, we introduce the N -dimensional
spherical coordinate notation

x1 = r cos θ1

x2 = r sin θ1 cos θ2

x3 = r sin θ1 sin θ2 cos θ3

...

xN−1 = r sin θ1 sin θ2 · · · sin θN−2 cosφ

xN = r sin θ1 sin θ2 · · · sin θN−2 sinφ

where 0 ≤ r < ρ, 0 ≤ θj ≤ π for j = 1, . . . , N − 2, and 0 ≤ φ < 2π.
We label the Jacobian of this transformation, JN (r, θ1, . . . , θN−2, φ). For

example,

J3(r, θ1, φ) = r2

∣∣∣∣∣∣

cos θ1 − sin θ1 0
sin θ1 cosφ cos θ1 cosφ − sin θ1 sinφ
sin θ1 sinφ cos θ1 sinφ sin θ1 cosφ

∣∣∣∣∣∣
,

and an easy computation shows that J3(r, θ1, φ) = r2 sin θ1.
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In a similar manner, we see that J4(r, θ1, θ2, φ)/r3 is going to be the
determinant of the following array:

cos θ1 − sin θ1 0 0
sin θ1 cos θ2 cos θ1 cos θ2 − sin θ1 sin θ2 0

sin θ1 sin θ2 cosφ cos θ1 sin θ2 cosφ sin θ1 cos θ2 cosφ − sin θ1 sin θ2 sinφ
sin θ1 sin θ2 sinφ cos θ1 sin θ2 sinφ sin θ1 cos θ2 sinφ sin θ1 sin θ2 cosφ.

Expanding this determinant using the first row, we observe that

J4(r, θ1, θ2, φ)/r3 = cos2 θ1 sin2 θ1J3(r, θ2, φ)/r2 + sin4 θ1J3(r, θ2, φ)/r2

= sin2 θ1J3(r, θ2, φ)/r2

= sin2 θ1 sin θ2.

Hence, J4(r, θ1, θ2, φ) = r3 sin2 θ1 sin θ2.
Continuing in this manner, we compute JN (r, θ1, . . . , θN−2, φ) using in-

duction and obtain

(3.2) JN (r, θ1, . . . , θN−2, φ) = rN−1(sin θ1)
N−2 · · · (sin θN−3)

2(sin θN−2).

Now, is well known,
(3.3)

|B(0, ρ)| =
∫ ρ

0

∫ π

0
· · ·
∫ π

0

∫ 2π

0
JN (r, θ1, . . . , θN−2, φ)dφdθ1 · · · dθN−2dr.

Also, it is easy to see that

|B(0, ρ)| =
∫ ρ

0
rN−1 |SN−1| dr = ρN |SN−1| /N,

where SN−1 is the unit (N-1)-sphere in RN and |SN−1| is its (N − 1)-
dimensional volume.

In particular, we see from (3.2) and (3.3) that

|SN−1| = 2π

∫ π

0
· · ·
∫ π

0
(sin θ1)

N−2 · · · (sin θN−2)dθ1 · · · dθN−2

= 2π

N−2∏

j=1

∫ π

0
(sin θ)jdθ.

From [Ti1, p. 56], we obtain
∫ π

0
(sin θ)jdθ = Γ(

j + 1

2
)Γ(

1

2
)/Γ(

j + 2

2
).

Consequently, it follows from this last calculation that

|SN−1| = 2π[Γ(
1

2
)]N−2/Γ(

N

2
) = 2(π)N/2/Γ(

N

2
),

and therefore that

(3.4) |B(0, ρ)| = 2(π)N/2

NΓ(N
2 )
ρN .
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|SN−1| can also be computed from the following observation:
∫

RN

e−|x|2dx = |SN−1|
∫ ∞

0
rN−1e−r2

dr

= |SN−1| 2−1

∫ ∞

0
s

N
2
−1e−sds

= |SN−1|Γ(
N

2
)/2.

Since, is well known,
∫∞
0 e−t2dt = π

1
2

2 , the left-hand side of the above equal-

ity is (π)N/2, and we obtain the same value for |SN−1| as we did before.
In order to prove Theorem 3.1, we shall need some lemmas. The first of

such lemmas is concerned with the Bochner-Riesz summability of Fourier
integrals. In particular, if g ∈ L1(RN ) and is complex-valued, we designate
the Fourier transform of g by ĝ and define it in a manner analogous to the
one used for the Fourier coefficients of a function in L1(TN ), namely,

ĝ(y) = (2π)−N

∫

RN

e−iy·xg(x)dx.

The first lemma we prove is the following:

Lemma 3.2. Let g ∈ L1(RN ) and be complex-valued. Set

(3.5) τα
R(g, x) =

∫

B(0,R)
ĝ(y)eix·y(1− |y|2 /R2)α dy.

Suppose that |B(0, ρ)|−1 ∫
B(0,ρ) |g(x0 + x)− g(x0)| dx→ 0 as ρ→ 0. Then

lim
R→∞

τα
R(g, x0) = g(x0) for α > (N − 1)/2.

Proof of Lemma 3.2. We will first prove a special case of the lemma,

namely, when g(x) = e−|x−x0|
2
. We start out by observing once again that

∫∞
0 e−s2

ds = π
1
2

2 , and from (1.12) in Appendix A that

∫ ∞

0
e−s2

cos 2ts ds =
π

1
2

2
e−t2 .

Hence,
∫∞
−∞ e−s2

e−istds = π
1
2 e−

t2

4 , and consequently

(3.6)

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
N

e−(x2
1+···+x2

N )e−ix·ydx = πN/2e−|y|2/4 for y ∈ RN .

On setting 2x = u and y = 0 in this last equation, we see that

(3.7)

∫

RN

e−|u|2/4du = πN/22N .
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We are now able to establish the lemma in the particular case when

g(x) = e−|x−x0|
2
. From (3.6), we obtain that

ĝ(y) = (2π)−N

∫

RN

e−ix·ye−|x−x0|
2

dx

= (2π)−N

∫

RN

e−iy·(x+x0)e−|x|2dx

= (2π)−Ne−iy·x0πN/2e−|y|2/4.

Hence, ĝ(y) ∈ L1(RN ), and the equality in (3.7) together with this last
value of ĝ(y) then implies that

lim
R→∞

∫

B(0,R)
ĝ(y)eiy·x0(1− |y|2 /R2)α dy = (2π)−NπN/2

∫

RN

e−|y|2/4dy

= (2π)−NπN/2πN/22N

= g(x0).

Therefore, the lemma is proved in the special case g(x) = e−|x−x0|
2
.

From what we have just established, we can prove the lemma. Without
loss of generality we can assume from the start that

(3.8) g(x0) = 0.

Otherwise, we could work with the function

h(x) = g(x)− g(x0)e
−|x−x0|

2

.

In order to prove the lemma, we will need two estimates concerning
Bessel functions that are established in Appendix A. The first estimate we
need is

(3.9) |Jν(t)| ≤ Kνt
ν for 0 < t ≤ 1 and ν > −1

2
,

and the second is

(3.10) |Jν(t)| ≤ Kνt
− 1

2 for 1 ≤ t <∞ and ν > −1,

where Kν is a positive constant. The estimates (3.9) and (3.10) correspond
respectively to (2.1) and (2.2) in Appendix A.

Continuing with the proof of the lemma, we set

(3.11) (2π)NHα
R(x) =

∫

B(0,R)
eiy·x(1− |y|2 /R2)α dy,

and observe from (3.5) and Fubini’s theorem that

τα
R(g, x0) =

∫

RN

g(x)Hα
R(x− x0)dx.

Hence,

(3.12) τα
R(g, x0) =

∫

RN

g(x+ x0)H
α
R(x)dx.
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In (1.11) in Appendix A, it is shown that

(3.13) Hα
R(x) = c(N,α)JN

2
+α(R |x|)RN

2 −α/ |x|N2 +α ,

where c(N,α) = (2π)−N ωN−22
αΓ(α+ 1) = 2αΓ(α+ 1)/(2π)N/2. We there-

fore conclude from (3.12) and (3.13) that

(3.14) τα
R(g, x0) = c(N,α)RN

∫

RN

g(x+ x0)JN
2

+α(R |x|)/(R |x|)N
2

+αdx.

Next, we set

G(r) =

∫

B(0,r)
|g(x+ x0)| dx,

and observe from (3.8) and the hypothesis of the lemma that

(3.15)

(i) G(r) = o(rN ) as r→ 0,

(ii) G(r) is uniformly bounded for 0 < r <∞,

(iii) G(r) is absolutely continuous on 0 < r <∞,

(iv) dG(r)/dr ≥ 0 a.e. on 0 < r <∞.
From the definition of G(r) above, we see from (3.14) and (3.15)(iii) and

(iv) that

(3.16) |τα
R(g, x0)| ≤ c(N,α)RN

∫ ∞

0

dG(r)

dr

∣∣∣JN
2

+α(Rr)
∣∣∣ /(Rr)N

2
+α dr.

Also, we see that the statements in (3.15) together with α > (N − 1)/2
imply that for any δ > 0,

RN/2−(α+ 1
2
)

∫ ∞

δ
r−(N

2
+α+ 1

2
)dG(r)/dr dr = o(1) as R→∞.

Hence, we obtain from (3.12) and (3.16) that

(3.17) lim sup
R→∞

|τα
R(g, x0)| /c(N,α) ≤ RN

∫ δ

0

dG(r)

dr

∣∣∣JN
2

+α(Rr)
∣∣∣

(Rr)
N
2

+α
dr.

Next, given ε > 0 and using (3.15)(i), we choose δ, with 0 < δ < 1, so
that

|G(r)| < εrN for 0 < r < δ,

and observe after an integration by parts that

lim sup
R→∞

RN/2−(α+ 1
2
)

∫ δ

R−1

r−(N
2

+α+ 1
2
)dG(r)/dr dr ≤ εα+ 1

2 + N
2

α+ 1
2 − N

2

.

So using (3.10) and this last computation, we obtain

lim sup
R→∞

RN

∫ δ

R−1

dG(r)

dr

∣∣∣JN
2

+α(Rr)
∣∣∣

(Rr)
N
2

+α
dr ≤ εKN

2
+α

α+ 1
2 + N

2

α+ 1
2 − N

2

.



3. BOCHNER-RIESZ SUMMABILITY OF FOURIER SERIES 13

Also, using (3.9) and (3.15) (iii) and (iv), we see that

RN

∫ R−1

0

dG(r)

dr

∣∣∣JN
2

+α(Rr)
∣∣∣ /(Rr)N

2
+α dr ≤ εKN

2
+α

for R sufficiently large.
Hence, on writing the integral on the right-hand side of the inequality in

(3.17) in the form
∫ δ
0 =

∫ R−1

0 +
∫ δ
R−1 , we see from these last two inequalities

that

lim sup
R→∞

|τα
R(g, x0)| /c(N,α) ≤ εKN

2
+α(

α+ 1
2 + N

2

α+ 1
2 − N

2

+ 1).

Since ε is an arbitrary positive number, we conclude that

lim
R→∞

|τα
R(g, x0)| = 0,

which finishes the proof of the Lemma 3.2 because g(x0) = 0. �

The next lemma that we need for the proof of Theorem 3.1 is the fol-
lowing:

Lemma 3.3. Let S(x) be the trigonometric polynomial
∑

|m|≤R1
bme

im·x,

i.e., S(x)=
∑

m∈ΛN
bme

im·x where bm = 0 for |m| > R1. For R>0, set

σα
R(S, x) =

∑

|m|≤R

bme
im·x(1− |m|2 /R2)α.

Then for α > (N − 1)/2,

(3.18) σα
R(S, x) = c(N,α)RN/2−α

∫

RN

S(y)
JN

2
+α(R |x− y|)

|x− y|N2 +α
dy

where c(N,α) is the constant in (3.13).

Proof of Lemma 3.3. Define φ(t) = (1 − t2)α, 0 ≤ t ≤ 1, and φ(t) = 0
for t ≥ 1. Then since S(x) is a finite linear combination of exponentials, it
is clear that the lemma will follow if we can show that for fixed x and every
u ∈ RN ,

(3.19) eiu·x
φ(|u| /R)

c(N,α)
= RN/2−α

∫

RN

eiu·y
JN

2
+α(R |x− y|)

|x− y|N2 +α
dy.

Set g(u) = eiu·xφ(|u| /R). Then g(u) is a continuous function which is
also in L1(RN ). If ĝ(y) is also in L1(RN ), it follows from Lemma 3.2 and
the Lebesgue dominated convergence theorem that

g(u) =

∫

RN

eiu·yĝ(y)dy.
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For fixed x, (3.9) and (3.10) let

JN
2

+α(R |x− y|)/ |x− y|N2 +α ∈ L1(RN ) with respect to y.

So (3.19) will be established if we show that

ĝ(y)

c(N,α)
= RN/2−α

JN
2

+α(R |x− y|)

|x− y|N2 +α
.

But from (3.11), we see that ĝ(y) = Hα
R(x − y); this last fact follows from

the equality in (3.13). �

Proof of Theorem 3.1. We first observe from (3.9), (3.10), and (3.13)
that there is a constant K(α,R) and an η > 0 such that for fixed R,

(3.20) |Hα
R(x)| ≤ K(α,R)/(1 + |x|)N+η for x ∈ RN ,

where K(α,R) is a constant depending on α and R. Consequently, the series
∑

m∈ΛN

Hα
R(x+ 2πm) = H∗α

R (x)

is absolutely convergent, and furthermore

(3.21) lim
R1→∞

∑

|m|≤R1

Hα
R(x+ 2πm) = H∗α

R (x)

uniformly for x in a bounded domain.
Set Sj(x) = σ♦

j (f, x), which is the trigonometric polynomial defined in

(2.6). Then by (3.20), Sj(y)Hα
R(x− y) ∈ L1(RN ) with respect to y, and we

obtain from Lemma 3.3 and (3.21) that for x in a bounded domain,

σα
R(Sj , x) =

∫

RN

Sj(y)Hα
R(x− y)dy

= lim
R1→∞

∑

|m|≤R1

∫

TN

Sj(y + 2πm)Hα
R(x− y − 2πm)dy

= lim
R1→∞

∫

TN

Sj(y)(
∑

|m|≤R1

Hα
R(x− y − 2πm))dy

=

∫

TN

Sj(y)H∗α
R (x− y)dy.

By Theorem 2.2, Sj → f in L1(TN ). Also, H∗α
R ∈ C(TN ). So from this

last computation we can see by passing to the limit as j →∞, that

(3.22) σα
R(f, x) =

∫

TN

f(y)H∗α
R (x− y)dy.
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But f(y) is defined in RN by periodicity of period 2π in each variable.
So we see that

(3.23)

∫

B(0,R1+1)\B(0,R1)
|f(y)| dy = O(RN−1

1 ) as R1 →∞.

This fact in conjunction with (3.20), implies that f(y)Hα
R(x− y) ∈ L1(RN )

with respect to y.
Hence, using (3.22), we can reverse the previous calculation and obtain

(3.24) σα
R(f, x0) =

∫

RN

f(y)Hα
R(x0 − y)dy =

∫

RN

f(x+ x0)H
α
R(x)dx.

Since the theorem is obviously true if f(x) is a constant function, we can
prove the theorem, with no loss in generality, if we assume that f(x0) = 0.
Therefore, from the hypothesis of the theorem,

∫

B(0,r)
|f(x+ x0)| dx = o(rN ) as r → 0.

So using (3.15) and comparing (3.24) with (3.14), we see that locally the
same proof will apply here as it was applied in the proof of Lemma 3.2.
Consequently, to complete the proof of the theorem, we must to show that
for fixed δ > 0,

(3.25) lim
R→∞

∫

RN\B(0,δ)
f(x+ x0)H

α
R(x)dx = 0.

Using (3.13) in conjunction with the estimate in (3.12), we see that
∣∣∣∣∣

∫

RN\B(0,δ)

f(x+ x0)

λ(N,α)
Hα

R(x)dx

∣∣∣∣∣ ≤ R
(N−1)/2−α

∫

RN\B(0,δ)

|f(x+ x0)|
|x|α+(N+1)/2

dx

where λ(N,α) = c(N,α)KN
2

+α is a constant. Since α > (N − 1)/2, we see

from (3.23) that the integral on the right-hand side of this last inequality is
finite. Also we see that (N − 1)/2−α is strictly negative. Consequently, the
right-hand side of this last inequality is o(1) as R→∞.

We conclude that the limit in (3.25) is indeed valid, and we complete
the proof of Theorem 3.1. �

α = (N−1)/2 is called the critical index for Bochner-Riesz summability.
What is very interesting about Theorem 3.1 is that it fails at the critical
index for N ≥ 2, even if f = 0 in a neighborhood of x0. Bochner has shown,
in particular that with 0 < δ < 1,

(3.26)
∃ f ∈ L1(TN ), N ≥ 2,with f = 0 in B(0, δ)

such that
lim supR→∞

∣∣∣σ(N−1)/2
R (f, 0)

∣∣∣ =∞.
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To see this ingenious counter-example, we refer the reader to [Boc, p.
193] or [Sh1, pp. 57-64].

It is clear from the Riemann-Lebesgue Lemma and the form of the
Dirichlet kernel given in (2.1) that Bochner’s counter-example itself does
not hold when N = 1.

We close this section with the following corollary of Theorem 3.1:

Corollary 3.4. Suppose f ∈ L1 (TN ) . Then for α > (N − 1) /2,

lim
R→∞

σα
R (x) = f (x) for a.e. x ∈ TN .

Proof of Corollary 3.4. Since almost every x ∈ TN is in the Lebesgue
set of f (see page 22), Corollary 3.4 follows immediately from Theorem 3.1.
�

Exercises.

1. Show that Bochner’s counter-example does indeed fail in dimension
N = 1.

2. Find the third and fourth rows in the determinant corresponding to
JN(r, θ1, . . . , θN−2, φ) when N = 5.

3. By direct calculation, show that the following formula is true when
j = 3 : ∫ π

0
(sin θ)jdθ = Γ(

j + 1

2
)Γ(

1

2
)/Γ(

j + 2

2
).

4. Given that G (r) satisfies the conditions in (3.15) and that α >
(N − 1) /2, δ > 0 prove that

RN/2−(α+ 1
2
)

∫ ∞

δ
r−(N

2
+α+ 1

2
)dG(r)/dr dr = o(1) as R→∞.

4. Abel Summability of Fourier Series

The Abel summability of Fourier series was defined in (1.3) of this chap-
ter, and in this section, we shall prove three theorems regarding this method
of summation. The first theorem we establish is an N -dimensional version
of a well-known theorem in one dimension originally due to Fatou [Zy1, p.
100].

Theorem 4.1. Let f ǫL1(TN ), and for t > 0, set

At(f, x) =
∑

m∈ΛN

f̂(m)eim·x−|m|t.
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Also, set

β−(x) = lim sup
r→0

∫
B(x,r) f(y)dy

|B(x, r)| and β−(x) = lim inf
r→0

∫
B(x,r) f(y)dy

|B(x, r)| .

Then

β−(x) ≤ lim inf
t→0

At(f, x) ≤ lim sup
t→0

At(f, x) ≤ β−(x).

Of course, this theorem implies that in case β−(x) = β−(x), then the
Fourier series of f is Abel summable at x to this common value.

Proof of Theorem 4.1. To prove Theorem 4.1, we proceed in a manner
similar to the proof given in Theorem 3.1. First, let gǫL1(RN ), and set

(4.1) At(g, x) =

∫

RN

ĝ(y)eiy·x−|y|tdy for t > 0,

where ĝ(y) is the Fourier transform of g and is defined above Lemma 3.2.
Then, for t > 0, by Fubini’s theorem,

(4.2) At(g, x) = (2π)−N

∫

RN

g(u)[

∫

RN

eiy·(x−u)−|y|tdy]du.

But, for N ≥ 2,
∫

RN

eiy·(x−u)−|y|tdy = |SN−2|
∫ ∞

0
e−rtrN−1

∫ π

0
ei|x−u|r cos θ(sin θ)N−2dθ.

Consequently,

(4.3)

∫

RN

eiy·(x−u)−|y|tdy = ωN−2

∫ ∞

0
e−rtrN−1J(N−2)/2(r |x− u|)

(r |x− u|)(N−2)/2
dr,

where we have made use of the integral identity in (1.5) in Appendix A and

ωN−2 = (2π)N/2 is the constant defined below (1.11) in Appendix A.

For N = 1, the equality in (4.3) continues to hold with ω−1 = (2π)1/2.
This follows from a direct calculation that uses the well-known fact that

cos t = (π/2)1/2t1/2J−1/2(t) for t > 0.

Next, we use the integral identity (1.7) in Appendix A and conclude
from the equality in (4.3) that

∫

RN

eiy·(x−u)−|y|tdy = bN t[t
2 + |x− u|2]−(N+1)/2

where bN = (2)N/2Γ(N+1
2 )ωN−2(π)−

1
2 .

This last equality, in conjunction with (4.2), establishes the useful fact
that for t > 0,

(4.4) At(g, x) = (2π)−N bN

∫

RN

g(y)t[t2 + |x− y|2]−(N+1)/2dy.

Next, we observe that the analog of Lemma 3.2 holds for At(g, x).
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Also, we see that the analog of Lemma 3.3 holds, namely, if S (x) is a
trigonometric polynomial, then

(4.4
′
) At(S, x) = (2π)−NbN

∫

RN

S(y)t[t2 + |x− y|2]−(N+1)/2dy.

To show that this is indeed the case, we need to only establish, as in the
proof of Lemma 3.3, that

eiu·xe−|u|t/bN = (2π)−N

∫

RN

eiu·yt[t2 + |x− y|2]−(N+1)/2dy

for u ∈ RN and t > 0. This equality will follow from the fact that the Fourier
transform of eiu·xe−|u|t/bN is

(2π)−N t[t2 + |x− y|2]−(N+1)/2,

which is the statement three lines above (4.4) when u and y are interchanged.
Using the same technique that we used in the proof of Theorem 3.1 (i.e.,

see (3.25) through (3.27) in §3), to pass from Fourier integrals to Fourier

series, we obtain from (4.4
′
) that for f ∈ L1 (TN ) ,

(4.5) At(f, x) = (2π)−NbN

∫

RN

f(x+ y)t[t2 + |y|2]−(N+1)/2dy.

To prove Theorem 4.1, it is sufficient to just establish the last inequality
stated in the conclusion, namely,

(4.6) lim sup
t→0

At(f, x) ≤ β−(x).

For then the first inequality follows from a consideration of −f.
If β−(x) = ∞, (4.6) is established. So we need only consider the two

cases: (i) β−(x) is finite, or (ii) β−(x) = −∞ in establishing (4.6). It is clear
that the inequality in (4.6) will follow in both these cases if we show that
the following holds for γǫR :

(4.7) β−(x) < γ =⇒ lim sup
t→0

At(f, x) ≤ γ.

We now establish (4.7). To do this, first of all, we observe from (4.5)
that f(y) identically one implies that

(4.8) (2π)−N bN t

∫

RN

[t2 + |y|2]−(N+1)/2dy = 1 for t > 0.

Next, we set

(4.9) f[r](x) =

∫
B(0,r) f(x+ y)dy

|B(0, r)| ,

and use the hypothesis in (4.7) choose δ > 0 so that

(4.10) f[r](x) < γ for 0 < r < δ.
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Observing that f(x + y) |y|−(N+1) ǫL1(RN\B(0, δ)) with respect to y
(because for fixed x, f(x + y)ǫL1(TN ) and is periodic of period 2π in each
variable), we see that

lim
t→0

t

∫

RN\B(0,δ)
f(x+ y)[t2 + |y|2]−(N+1)/2dy = 0.

Consequently, we obtain from (4.5) that
(4.11)

lim sup
t→0

At(f, x) ≤ (2π)−NbN lim sup
t→0

∫

B(0,δ)
tf(x+ y)[t2 + |y|2]−(N+1)/2dy.

From (4.9), we next observe that the integral on the right-hand side of
this last inequality can be written as

t

∫ δ

0
[t2 + r2]−(N+1)/2 d[|B(0, r)| f[r](x)]

dr
dr.

So we conclude from (4.9) and (4.10), after performing an integration by
parts on this last integral, that
(4.12)

lim sup
t→0

At(f, x) ≤ γ(2π)−N bN lim sup
t→0

(N + 1)t

∫ δ

0
r[t2 + r2]−

N+3
2 |B(0, r)| dr.

Likewise, after integrating by parts, we see from the identity in (4.8)
that

(2π)−N bN lim
t→0

(N + 1)t

∫ δ

0
r[t2 + r2]−

N+3
2 |B(0, r)| dr = 1.

This last equality together with the inequality in (4.12) establishes the
implication in (4.7) and concludes the proof to Theorem 4.1. �

The next theorem that we establish involves the concept of nontangential
Abel summability. With x0ǫ RN and γ > 0, let Cγ(x0) stand for the cone in

RN+1
+ with vertex (x0, 0) given as follows:

(4.13) Cγ(x0) = {(x, t) : t > 0 and
t

|x− x0|
≥ γ } .

We say that the Fourier series of f , namely S[f ], is nontangentially Abel
summable at x0 to the limit l if for every γ > 0,

lim
(x,t)→((x0,0)

At(f, x) = l

where (x, t) tends to (x0, 0) within the cone Cγ(x0).
The nontangential Abel summability theorem that we shall present here

is an improvement (for N ≥ 2) over the usual one presented in books related
to this subject (e.g., see [SW, p. 62]). In order to do this, we introduce the
σ-set of f where f ∈ L1(TN ). We say x0 is in the σ-set of f provided the
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following holds: ∀ε > 0, ∃δ > 0 such that |x− x0| < δ and r < δ implies
that

(4.14)

∣∣∣∣∣

∫

B(x,r)
[f(y)− f(x0)]dy

∣∣∣∣∣ < ε(|x− x0|+ r)N .

We prove the following theorem (see [Sh4]):

Theorem 4.2. Let f ǫL1(TN ), and suppose that x0 ∈ σ-set of f. Then
S[f ] is nontangentially Abel summable at x0 to f(x0).

For N = 1, this result is the same as the result given in [Zy1, p. 61]
which is evidently due to Fatou and states that if F=

∫
f and F has a finite

derivative equal to f(x0) (henceforth referred to as the Fatou condition at
x0), then nontangential Abel summability occurs at x0. It is not difficult to
show that for N = 1, x0 ∈ σ-set of f if and only if the Fatou condition holds
for f at x0.

For N ≥ 2, this result about x0 ∈ σ-set of f has not appeared previously
in any book and is due to the author (see [Sh 4]). The usual theorem proved
is that if x0 ∈Lebesgue set of f , nontangential Abel summability occurs
at x0, [SW, p. 62]. After we prove the above theorem, we shall show x0 ∈
Lebesgue set of f implies that x0 ∈ σ-set of f . Also, we shall give an example
of an f ∈ L∞(T2) such that x0 is not in the Lebesgue set of f , but x0 is in
the σ-set of f .

Proof of Theorem 4.2. To prove the theorem, it is easy to see from the
start that we can assume that x0 = 0. Therefore, to prove the theorem, we
assume that γ > 0 and that {(xn, tn)}∞n=1 ⊂ Cγ(0) with xn → 0 and tn → 0.
The proof will be complete when we show that

(4.15) lim
n→∞

Atn(f, xn) = f(0).

Given ε > 0, it is clear that the limit in (4.15) will follow if we show that

(4.16) lim sup
n→∞

∣∣∣∣
Atn(f, xn)− f(0)

(2π)−N bN

∣∣∣∣ ≤ 2(N + 1)ε(
1

γ
+ 1)N .

It follows from (4.5) and (4.8) in the proof of Theorem 4.1 that

Atn(f, xn)− f(0)

(2π)−N bN
=

∫

RN

[f(xn + y)− f(0)]tn[t2n + |y|2]−(N+1)/2dy

where bN = (2)N/2Γ(N+1
2 )ωN−2(π)−

1
2 and ωN−2 = (2π)N/2. Hence, the

inequality in (4.16) will follow if we show that
(4.17)

lim sup
n→∞

∣∣∣∣
∫

RN

[f(xn + y)− f(0)]tn[t2n + |y|2]−(N+1)/2dy

∣∣∣∣ ≤ 2(N+1)ε(
1

γ
+1)N .


