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With its uncommon presentation of instructional material regarding mathematical
modeling, measurements, and solution of inverse problems, Thermal Measurements

and Inverse Techniques is a one-stop reference for those dealing with various
aspects of heat transfer.

Progress in mathematical modeling of complex industrial and environmental systems
has enabled numerical simulations of most physical phenomena. In addition, recent
advances in thermal instrumentation and heat transfer modeling have improved
experimental procedures and indirect measurements for heat transfer research of both
natural phenomena and manmade applications. These new resources and methods help
theoretical, computational, and experimental researchers synergistically interact to
better understand the physical phenomena being studied. This book explores how
inverse analysis can be used to increase understanding of interactions between
technological systems and nature, by bridging the gap between data derived from
measurements and information from theoretical predictions.

Assembled in three parts—Modeling and Measurements in Heat Transfer,

Inverse Heat Transfer Problems, and Applications—this self-contained resource:

• Explores theoretical background and examples

• Outlines practical applications, including sample test cases

• Presents inverse techniques to estimate spatially and time-varying functions
(such as heat sources, fluxes, and thermophysical properties), as well as constant
parameters in heat transfer problems

Written by international experts, this book assumes basic heat transfer knowledge,
presenting a balanced approach suitable for advanced undergraduates and graduate
students, as well as practicing engineers and academic and industrial researchers. With
coverage of modeling at the micro- and nanoscales, this book covers classic and novel
approaches to help readers understand and solve heat transfer problems of all kinds.
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Preface

The design and operation of modern technological systems and the proper comprehension
of their interaction with nature (e.g., in pollution control and global warming issues)
require the permanent processing of a large amount of measured data. Nowadays, progress
in the mathematical modeling of complex industrial or environmental systems, associated
with the continuous increase in memory and calculation power of computers, has made
numerical simulations of almost any physical phenomena possible. These facts bring about
the need for an appropriate tool that rigorously bridges the gap between the information
stemming from measurements and that corresponding to theoretical predictions, aiming at
the better understanding of physical problems, including real-time applications. Inverse
analysis is such a tool.
Heat transfer permanently takes part in our daily life. Examples can be found in natural

phenomena, such as the solar heating of Earth, meteorology or thermoregulation of
biological activity, as well as in a wide range of man-made applications, such as the
conversion of energy in heat engines, thermal control of chemical reactors, air conditioning,
cooling of electronic equipment, development of micro- and nano-technologies with the
associated thermal challenges, etc. Recent advances in both thermal instrumentation and
heat transfer modeling permit the combination of efficient experimental procedures and of
indirect measurements within the research paradigm of inverse problems. In this para-
digm, the groups of theoretical, computational, and experimental researchers synergistic-
ally interact during the course of the work in order to better understand the physical
phenomena under study. Although initially associated with the estimation of boundary
heat fluxes by using temperature measurements taken inside a heated body, inverse
analyses are nowadays encountered in single- and multi-mode heat transfer problems
dealing with multiscale phenomena. Applications range from the estimation of constant
heat transfer parameters to the mapping of spatially and timely varying functions, such as
heat sources, fluxes, and thermophysical properties.
In heat transfer, the classical inverse problem of estimating a boundary heat flux with

temperature measurements taken inside a heat-conducting medium has many practical
applications. For example, the heat load of the surface of a space vehicle reentering the
atmosphere can be estimated through inverse analysis by using temperature measure-
ments taken within the thermal protection shield. If a technique that sequentially estimates
such boundary heat flux is used, inverse analysis may allow for online trajectory correc-
tions in order to reduce the heat load. Therefore, overheating of the structure of the
spacecraft can be avoided, reducing the risk of fatal accidents. Moreover, modern engin-
eering strongly relies on newly developed materials, such as composites, and inverse
analysis can be used for the characterization of the unknown properties of such nonho-
mogeneous materials. The use of nonintrusive measurement techniques with high spatial
resolutions and high measurement frequencies, such as temperature measurements taken

vii



with infrared cameras, allows the characterization of nonhomogeneous materials even at
small scales, including crack or defect detection. The latest research in heat transfer follows
a trend toward small scales, at micro- and nano-levels. This requires that physical phe-
nomena be taken into consideration, which may be negligible and, hence, not accounted for
at macroscales. By the same token, modern techniques now permit nonintrusive measure-
ments to be taken at small space and time scales, thus allowing the observation of such
complex physical phenomena.
All subjects required for the understanding and solution of the physical situations

described above are available in this book, including the modeling of heat transfer prob-
lems, even at micro- and nano-scales, modern measurement techniques, and the solution of
inverse problems by using classical and novel approaches. This book is aimed at engineers,
senior undergraduate students, graduate students, researchers both in academia and
industry, in the broad field of heat transfer. It is assumed, however, that the reader has
basic knowledge on heat transfer, such as that contained in an undergraduate heat transfer
course.
This book is intended to be a one-source reference for those involved with different

aspects of heat transfer, including the modeling of physical problems, the measurement of
primary heat transfer variables, and the estimation of quantities appearing in the formu-
lation (indirect measurements) through the solution of inverse problems. Keeping this
main objective in mind, the book was divided into three parts, namely: Part I—Modeling
and Measurements in Heat Transfer, Part II—Inverse Heat Transfer Problems, and Part
III—Applications. Parts I and II provide a concise theoretical background along with
examples on modeling, measurements, and solutions of inverse problems in heat transfer.
Part III deals with applications of the knowledge built up in Parts I and II to several
practical test cases. Each chapter contains its own lists of variables and references. Hence,
depending on the reader’s background and interest, they can be read independently.
This book results from the Advanced Schools METTI (Thermal Measurements and

Inverse Techniques) held in 1995, 1999, 2005, and 2009. Started under the auspices of
SFT—French Heat Transfer Society, the last METTI School was co-organized with
ABCM—Brazilian Society of Mechanical Engineering and Sciences, and held in Angra
dos Reis (state of Rio de Janeiro) as one of the activities of the Year of France in Brazil.
However, the book was intended to be self-consistent and didactic, not being at all the
single collection of lectures previously given during the METTI schools.
We would like to thank all the contributors for their diligent work that made this book

possible. We are indebted to Professor Afshin J. Ghajar, the Heat Transfer series editor for
CRC Press=Taylor & Francis, for his encouragement and support to pursue this book
project. We also appreciate the valuable recommendation by Professor Sadik Kakac, who
carefully reviewed our book proposal. The cooperation of the staff at CRC Press=Taylor &
Francis is greatly appreciated, especially that from Jonathan W. Plant, the senior editor for
mechanical, aerospace, nuclear, and energy engineering, and from our project coordinator,
Amber Donley. Finally, we would like to express our deepest gratitude for the financial
support provided for the publication of this book by CAPES, an agency of the Brazilian
government for the fostering of science and graduate studies.
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Modeling in Heat Transfer

Jean-Luc Battaglia and Denis Maillet
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1.1 Introduction

Modeling constitutes a very general activity in engineering. A system can be considered as
modeled if its behavior or its response to a given excitation can be predicted. So prediction
is one of the natural characteristics of modeling.
In the second section of this chapter, the basics on heat transfer physics are presented.

The existence of temperature and more specifically of temperature gradient must be
discussed carefully when time and length scales become very small. This is the case for
new applications in the field of inverse heat conduction problems. This point is known for
a long time at very low temperature. It becomes also particularly true at the nanoscale
when temperature is greater than the Debye temperature (above this temperature, the
quantum effects are generally neglected). Classical Fourier’s law, at the basis of standard
heat transfer models, is no longer valid, and either a new model or a definition of the
reliable time range for the pertinent use of Fourier’s law is thus required. In the third
section of this chapter, the concept of homogenization for heterogeneous materials through
macroscopic homogenized models is presented. This topic is also studied in Chapter 2.
An illustration of such a problem is represented in Figure 1.1.

FIGURE 1.1
Phase change material for energy storage (double porosity
carbon graphite=salt porous media with phase change
material [PCM]). Scanning electron microscopy (SEM)
imaging illustrates different heterogeneity levels accord-
ing to the observation scale and shows that a specific
model is required for each.

1 mm

50 μm
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Another important feature of a model, which is only a theoretical representation of the
physical reality in the case of a material system, is its structure (we do not deal here with
information systems). In heat transfer, the choice is quite large, and the model structure
should be selected according to the objective of the model. The model-builder can have in
mind an optimal design problem, a parameter estimation problem using measurements, a
control problem to define the best excitation shape for a given desired output, or a model
reduction problem, just to quote a few applications.
The choice of the structure of a model in heat transfer depends on many things:

. State variable and observed quantities
In a heat diffusion problem, temperature is the quantity that constitutes the state
variable, in the thermodynamics sense. In order to calculate temperature and heat
flux at any time t and at any point P, one has to know the initial temperature field
(at time t¼ 0) at the local scale, as well as the history of the different thermal
disturbances between times 0 and t. So, one has to define what is a local point P and
a local scale. For instance, if heat transfer is intended to be studied at the very small
scale in a metal (smaller than the grain size), Fourier’s law, relating heat flux to
temperature gradient, may no longer be valid. In such a case, two temperatures
(respectively for the electron gas and the lattice) are required to describe heat
transfer at this scale (see Section 1.2.3). Such a detailed state model will be necessary
if observations or predictions are looked for at the nanoscale or at the picosecond
timescale. The upper thresholds of both scales depend on the considered material.
A similar effect appears in a heterogeneous medium composed of two homoge-
neous materials (grains made of one material embedded in a matrix made of the
other material, for example): instead of using temperature at the local scale (grain
or matrix), some averaging, that is a space filtering, will be used at the macroscopic
scale (see Sections 1.3 and 1.4 and Chapter 2).

. State definition
The continuous state equations have then to be defined for the modeling problem
at stake: it can be a partial differential equation, the heat equation (state¼ tempera-
ture), or an integro-differential equation, the radiative transfer equation (state¼
radiative intensity), or both coupled equations. Their solution, that is constituted
by both temperature and intensity fields in the third case, should be calculated
everywhere and any time past the initial time (see Section 1.5.2).

. Quantities of the direct problem
We focus on the diffusion heat equation in a medium composed of one or several
homogeneous materials, with its associated initial, boundary, and interface equa-
tions. Its solution, the state variable, here the continuous temperature field T(P, t), has
first to be found, and the desired observed quantities, that is, the (theoretical) output
of the model at a given point P, ymo(t) ¼ T(P, t), have to be calculated next (see
Section 1.5.1). Here the quantities that are required for solving the direct problem are
the structural parameters of the system (conductivities, volumetric heat capacities,
heat exchange coefficients, emissivities of walls, . . . ), the thermal excitation, and the
initial temperature field T(P, t ¼ 0). Let us note here that it is possible to make a
physical reduction of a model based on the three-dimensional (3D) transient heat
equation to get simpler models of lower dimensionality. The thermal fin (1D) or the
bulk temperature (0D) types (see Section 1.6.2) constitute such reduced models. This
type of reductionmay also reduce the number of parameters defining the excitations.
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. Numerical=analytical model
There are many ways for solving the heat equation and finding a state model for the
observations: analytical solutions provide the temperature field explicitly as a func-
tion of the structural parameters of the system, the excitation, and the initial state.
They can be constructed if the heat equation in each material and the associated
conditions are all linear and the corresponding geometry simple. The other class of
state models relies on the discrete formulation of the heat equation: one can quote the
nodal, boundary element, finite elements, and finite volume methods, for example.
State models rely on an internal representation of the system: the temperature field
has to be found first and the observations are calculated next. External represen-
tations that short circuit the state variable and link directly the observation to the
excitation(s), for example, through a time or space transfer function, in the linear
case, constitute another class of models (see Section 1.5.2.1).

. Parameterization for inverse problem solution
Parameterization of the data of the direct problem constitutes another characteris-
tic of the structure of a model: structural parameters, thermal excitations, and the
initial temperature field are, in the very general case, functions of different
explanatory variables: space, time, and temperature. The conversion of functions
into vectors of finite dimensions does not involve any problem in the direct problem
(calculation of the observations, the model output, as a function of the input). It is
no more the case when the inverse problem is considered. This point will be
discussed in Section 1.5.2.2. The interested reader can also consult Chapter 14,
where reduction of experimental data is studied. One of the objectives of math-
ematical reduction methods is to construct a reduced model that will have a reduced
number of structural parameters, starting from a detailed reference model (see Chap-
ter 13 for details on model reduction), while physical reduction also changes the
definitions of both output and excitations (see Section 1.6.2).

1.2 Pertinent Definition of a Direct Model for Inversion of Measurements

1.2.1 Heat Conduction at the Macroscopic Level

Heat transfer by diffusion takes place in solids and motionless fluids and was mathemat-
ically described for the first time by Joseph Fourier (1828) in his ‘‘Mémoire sur la théorie
analytique de la chaleur’’ (Treatise on the analytical theory of heat). Fourier’s relation is
phenomenological, that is, derived experimentally. It relates the heat flux density (a vector)
to the temperature gradient inside the material under the form of the following linear
relationship:

~w ¼ �kr!T (1:1)

where operator r!T ¼ (qT=qx, qT=qy, qT=qz) denotes the temperature gradient. Conse-
quently, the heat flow rate df traversing an elementary surface of area dS, centered at
this location with an orientation defined by a unit length outward pointing vector ~n, is

df ¼ wn dS with wn ¼ ~w �~n ¼ �kr!T �~n (1:2)

6 Thermal Measurements and Inverse Techniques



where
the direction of ~n is arbitrary (two choices are possible)
wn is the normal flux (a scalar, sometimes called normal flux density) expressed in Wm�2

In order to recover the heat flux f (W) going through a finite surface (not necessary planar)
of area S, Equation 1.2 has to be integrated over its whole area. In the particular case of a
one-dimensional heat transfer through a planar surface of area S, normal to the x-direction
(a cross section), the heat flux is

f ¼ �kS qT
qx

(1:3)

Finally, k is defined as the thermal conductivity of the material. It can be viewed as an
intrinsic thermal property of the material. However, it is expressed frommore fundamental
quantities such as the mean free path of heat carriers (phonons, electrons, and fluid
particles), the velocity group as well as fundamental constants (the reduced Planck con-
stant �h and the Boltzmann constant kB).
In many cases encountered in nature or in man-made objects, thermal conductivity is no

longer isotropic but orthotropic, or more generally anisotropic. In the orthotropic case (for
composite materials, for example, and in the principal axes of the tensor), Fourier’s law
becomes

~w ¼ �kx qTqx~x� ky
qT
qy

~y� kz
qT
qy

~z (1:4)

The three components of the heat flux are expressed according to the three corresponding
values for the thermal conductivity in each direction. In case of an anisotropic medium, the
symmetrical thermal conductivity tensor can be introduced:

k ¼
kxx kxy kxz

kyy kyz
sym kzz

24 35 (1:5)

Thermal conductivity of materials can vary significantly with temperature. In a general
manner, materials act as superconductors at very low temperature (in the 1–10 K tempera-
ture range) whereas the thermal conductivity decreases as the temperature increases. The
thermal conductivity varies slightly when temperature is greater than the Debye tempera-
ture up to the phase change. In the molten state, the thermal conductivity does not change
significantly, but in such a configuration, heat transport by convection becomes as import-
ant as conduction.
Thermal diffusivity is defined as the ratio of the thermal conductivity and the specific

heat per unit volume:

a ¼ k
rcp

(1:6)

It is thus possible to estimate the diffusion time tdiff ¼ L2=a when heat diffuses in the
direction defined by its characteristic length L as reported in Table 1.1.
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Fourier’s law becomes unappropriate to simulate heat transfer by conduction at very
short times of the order of the picosecond that are related to the nanoscale (according to
Table 1.1). If one considers the response to a localized heat pulse on the material, Fourier’s
law shows that the temperature field is modified instantaneously at every point of space
since the pulse start. However, at a later time t, temperature cannot have been modified
beyond a distance equal to the quantity: c t, otherwise the effect of the pulse would have
propagated faster than the speed of light c. The relationship relating heat flux and tem-
perature gradient must therefore be modified. It has been done by Caetano who intro-
duced a form involving a relaxation time t:

t
q~w
qt
þ~w ¼ �kr!T (1:7)

This relaxation time t depends on the nature of the heat carriers (phonons, electrons, or
fluid particles) and more generally on the collision processes between them.
Equivalently, we may compare a characteristic length scale for evolution of the system

with the other intrinsic property: the mean free path of the heat carriers. If the latter is
much greater than the characteristic length of the medium, the local Fourier law is no
longer valid.

1.2.2 An Experimental Observation

Before presenting theoretical developments, it would be interesting to start with an experi-
mental result obtained using the femtoseconds (1 fs¼ 10�15 s) time domain thermoreflec-
tance (TDTR) technique. This experiment consists in applying a very short pulse (some
tenths of femtoseconds) at the front face of a material and to measure the transient
temperature response on the heated area (see Figure 1.2). The pulse laser is called the
pump. A probe laser beam is focused on the heated area, and a photodiode allows
measuring the reflected beam intensity from the surface. Since the intensity of the reflected
beam is known to vary linearly with temperature (for small pump intensity), the measured
signal is proportional to the variation of the time-dependent surface temperature. An
ad hoc postprocessing of the output signal allows building a normalized impulse response
for the sample.
This experiment is known as the front face method (the thermal disturbance and the

temperature measurement are realized at the same location). In a sense, the TDTR can be
viewed as an extension of the classical ‘‘flash’’ method for very short times. In the
experimental configuration described in Figure 1.2, the TDTR technique is used for char-
acterizing a very thin layer (100 nm thick) of a semiconducting alloy: Ge2Sb2Te5
(commonly denoted GST) whose thermal effusivity is bGST ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kGST(rcp)GST

p
. A thermal

TABLE 1.1

Characteristic Diffusion Times (Thermal Diffusivity
Is a¼ 10�6 m2 s�1)

L
Sphere

(Radius 6400 km) 0.3 m 1 cm 100 nm 1 nm

tdiff 1012 years 105 s 100 s 10�8 s 10�12 s¼ 1 ps

8 Thermal Measurements and Inverse Techniques



transducer is an aluminum film (denoted Al), of thickness eAl and specific heat per unit
volume (rcp)Al, deposited on the GST layer in order to increase the signal–noise ratio
during the TDTR experiment. For the duration of the experiment (a tenth of nanoseconds),
the GST layer is viewed as a semi-infinite medium. Using the classical heat diffusion
model, based on Fourier’s law, an analytical expression is obtained for the average (with
respect to the spatial distribution of temperature on the heated area) normalized impulse
response as follows:

TDTR ¼ exp
t
tc

� �
erfc

ffiffiffiffi
t
tc

r� �
with tc ¼

eAl(rcp)Al

bGST

� �2

(1:8)

Experimental measurements are reported in Figure 1.3, as well as the simulation obtained
from the analytical solution (1.8).
It clearly appears that the measured impulse response fits very well with the simulated

semi-infinite behavior when time becomes higher than tc ¼ 0:3 ns. This result comes from
the fact that thermal equilibrium, also called thermalization, between the electrons gas and
the lattice in the aluminum film must be taken into account in the model for short times just
after the pulse. This effect can be modeled through a specific model: the two-temperature
model (see Section 1.2.3.4). This time is defined as the thermalization time of the heat
carriers: electrons and phonons. It can be viewed as the relaxation time that has been
introduced in Equation 1.6. However, as it will be shown in Section 1.2.3.4, the relaxation
time t is lower than time tc, estimated from Figure 1.3, since the thermal resistance at the
Al–GST interface was not taken into account in this equation.
This observation leads us to take care of the direct model formulation that will be used to

solve an inverse problem. It should be adapted to the timescale concerned within the
experiment. Indeed, in the example presented above, one can only estimate the thermal
effusivity of the layer for time t such as t > tc. This last point has a significance since the

Laser

AOM

Delay
line

Sample

SiO2 GST

Si

Al

Objective

Lock-in
PD

BBO

0.1 ps pulse

FIGURE 1.2
Radiation of pump is doubled by a b-BaB2O4 (BBO) nonlinear optical crystal. The probe pulse is delayed according
to the pump pulse up to 7 ns with a temporal precision of a few tens of femtoseconds by means of a variable
optical path. The pump beam, whose optical path length remains constant during the experiment, is modulated at
a given frequency of 0.3 MHz by an acousto-optic modulator (AOM). In order to increase the signal over noise
ratio, a lock-in amplifier synchronized with the modulation frequency is used. Probe and pump beams have a
Gaussian profile. The experimental setup is described in Battaglia et al. (2007). An example of sample is
represented on the SEM image; the Al layer is used as a thermal transducer to absorb the incident radiation of
the pump.
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concepts of thermal conductivity and even of temperature do not make sense anymore at
the very small scales. Finally, it is also clear that different thermal parameters, in terms of
their physical meaning, will be introduced according to the direct model formulation.

1.2.3 How Can Heat Transfer Be Modeled at the Nanoscale?

1.2.3.1 Discussion

We have highlighted above the intimate link between temperature gradient and mean free
path of the carriers in solids: phonons and electrons. In particular, if the characteristic
dimension of the material is smaller than the mean free path L of these carriers, only a
thermal conductance K can be used for relating heat flux to the temperature difference DT
at the material surface as w ¼ KDT. In other words, expressing the thermal conductance as
the classical ratio k=e when e � L does not make any sense (see Figure 1.4).
Nevertheless, current challenges for miniaturization force engineers to implement mater-

ials in structures whose dimensions lie between several nanometers and a few hundreds of
nanometers (see Figure 1.5). Study of the heat transfer in these structures requires using

FIGURE 1.3
Impulse response obtained using the TDTR experi-
ment on a GST layer capped with an Al transducer.
Plain line is the measurement from 1 ps up to 2 ns.
The dotted line is the simulation using the Fourier law
(Model 1T), and the plain circles are obtained from
the simulation of the two-temperature model (Model
2T, described later in this text).
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FIGURE 1.4
Thermal characterization using the front
face experiment. (a) If the sample thick-
ness e is less than the mean free path L

of the heat carriers (electrons=phonons)
the experiment allows identification of
the thermal resistance (or conductance)
of the layer only. (b) In the opposite case,
the method allows identification of the
thermal effusivity of the layer.

Thermal
disturbance

(a) (b)

e
e

e < Л e > Л

Measure
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specific tools that will be developed now. According to the scale, four types of methods will
be used for constructing a heat transfer model, as described schematically in Figure 1.6.
We will first present the transport of heat through molecular dynamics (MD). We will

then skip to Boltzmann transport equations (BTE) and present the two-temperature model
further on. These models allow taking local thermal nonequilibrium into account. This
nonequilibrium occurs between the thermal states of the electron gas and the crystal lattice,
for metals and for semiconductors and only of the lattice for insulators. We will come
finally to the model of heat diffusion designed by Fourier nearly 200 years ago. We will
pinpoint, for each type of approach, the possibilities of measurement inversion. In other
words, we will seek to define what are the physical parameters accessible to measurement
and what are the thermal properties inherent to each.

1.2.3.2 Molecular Dynamics

MD aims at calculating the position, speed, and acceleration of ions or molecules that make
up the material according to the classical Newtonians’ mechanics equations, that is, the
fundamental principle of dynamics (FPD). For a detailed description of the method, see the

FIGURE 1.5
Nanoelectronics: a nonvolatile memory cell based on phase
change chalcogenide alloy (GST stands for germanium–antimony–
tellurium). The characteristic dimension of the cell is 50 nm.
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FIGURE 1.6
At dimensions comparable to the phonon wave-
length l and temperatures much smaller than the
Debye temperature uD, heat transfer rests essen-
tially on quantum mechanics. For larger dimen-
sions and room temperatures, the BTE and the
classical MD are well adapted for modeling heat
transfer inside the studied structure. For even
larger dimensions, Fourier’s law can be effi-
ciently implemented with a denoting thermal dif-
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ata0

Te
m

pe
ra

tu
re

, θ

H
ea

t d
iff

us
io

n

λ Л √

θD

T << θD

Boltzmann transport
equation

Molecular mechanics

Quantum
mechanics

Modeling in Heat Transfer 11



book of Volz (2007) as well as that of Frenkel and Berend (1996). MD also leads to reliable
results when quantum effects are predominant by using ab initio calculation starting from
the Schrödinger relation. These quantum effects appear at low temperature and more
precisely below Debye temperature. One will be able thus to use the FPD in MD only for
T > QD. Another criterion to validate the use of FPD consists in calculating the ratio l=a0
where l is the averagewavelength of the ion (ormolecule) vibration and a0 is the interatomic
distance. The relationship between wavelength l, particle mass m, and temperature T is

l ¼ �hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT
p (1:9)

In this relation, �h is Planck’s constant and kB is Boltzmann’s constant. We note ~ri,
~vi ¼ d~ri=dt, and~ai ¼ d~vi=dt the position, speed, and acceleration of particle i, respectively.
The total energy of particle i is the sum of its kinetic and potential energy:

Ei ¼ Eci þ Epi (1:10)

The potential energy is itself the sum of an external potential field (such as an electromag-
netic field) and of an internal field (caused by mutual interactions of the particles).
The force that is exerted on each particle thus derives from the potential energy:

~Fi ¼ �r!Epi (~ri) (1:11)

FPD applied to one particle is then

~Fi ¼ m~ai (1:12)

Solving this vector-relationship (three scalar equations in three dimensions) for each
particle (see Figure 1.7) leads to the position and then to the velocity of each particle.
Calculation of its kinetic energy derives from knowledge of its speed:

Eci ¼
miv2i
2

(1:13)

FIGURE 1.7
Classical configuration used for particle motion simulation
using the MD. Periodic boundary conditions on the cell
are generally assumed.
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The kinetic theory provides temperature as follows:

T ¼ 2
3kB

Eci (1:14)

Temperature is not subscripted by i deliberately because the notion of temperature relies
on a large number of particles. Even if the mass of the particle is not present explicitly in the
expression of temperature above, that is not true any more when various elements make
up the material. In this case, one of the masses is taken as a reference and a mass correction
is made for the other elements.
The theoretical difficulty in MD stems from the calculation of the potential of interaction

between the particles.
MD can be implemented at the very low scale in order to calculate thermal conductivity

of solids using non-homogeneous non-equilibrium molecular dynamics (NEMD) (see
Figure 1.8). This is certainly the simplest technique (compared to the Green–Kubo calcu-
lation at equilibrium) to understand and implement, for it is analogous to the well-known
guarded hot plate experiment. The idea is to simulate steady-state one-dimensional heat
transfer in a system by inserting a hot and a cold source and then calculating the flux
exchanged between the sources as well as the temperature gradient. The most widely used
approach consists in adapting the velocity field of the atoms belonging to the heat sources
in such a way as to impose the thermal power exchanged between the hot and cold
sources. This method requires a large computation time: the number of particles that
must be retained in this simulation is large since temperature is a statistical quantity.
Moreover, since thermal conductivity calculation requires defining a thermal gradient,

the number of required particles increases dramatically in order to get a precise enough
corresponding derivative. Moreover, this simulation always leads to the value of the
thermal resistance Rth (the inverse of thermal conductance K defined in Section 1.2.3.1)
of the material inserted between the hot and cold plates. This quantity is certainly as

FIGURE 1.8
Nonequilibrium MD simulation for thermal
conductivity simulation.
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interesting as thermal conductivity in practical configurations encountered in engineering.
As we said previously, if one wants to relate thermal resistance Rth to thermal conductivity
k from the classical relationship Rth¼ L=k, then the dimension of the simulation box must
be chosen as L >> L, where L is the mean free path of the phonons.
We introduce now some basic ideas concerning the statistical nature of temperature since

it is not always clear at very small scales. Using statistical mechanics arguments, tempera-
ture in a perfect gas can be defined for each particle of the gas. For liquids or solids, another
definition, based on the interactions between the particles, must be given. Thus, the true
question is the lowest size down to which the average energy of the phonons can be
calculated. The answer is related to the value of the mean free path introduced in the
preceding paragraph that is the distance separating two successive collisions of a phonon.
If two areas in space have different temperatures, then they have also a different distribu-
tion of phonons. We know that this distribution can be modified only through the process
of collisions. Anharmonic processes (processes where the assumption of small oscillations
of particles around their equilibrium state is no longer valid) are responsible on thermal
conductivity itself. The low frequency phonons have a large mean free path and corres-
pond to low temperatures. In the so-called Casimir limit, for low temperatures, the mean
free path size is about the same as the dimension of the material system. For high
temperatures, on the contrary, phonons have a high frequency and mean free paths
become much smaller. An illustration is given in Figure 1.9, where it is clearly demon-
strated that the thermal conductivity and thus the temperature gradient take sense only
when the number of particles involved in the MD simulation is high enough.
MD can be efficiently used as the direct model in an inverse procedure. Since inversion

calls upon the model several times, it seems that it will take huge computational times. In
order to answer the question about the parameters than can be estimated, it clearly appears
that the unknown parameters in the model relate to the potential functions between each
particle. Thus, one can imagine measuring the thermal conductance of a thin layer and then
using this result as the minimizing function. To our knowledge, no work has ever been
published on such a topic.

FIGURE 1.9
Result of NEMD simulation for silicon.
Thermal conductivity is calculated
according to the number of unit cells
(crystal cell). As expected, thermal con-
ductivity tends asymptotically toward
the experimental value as the number of
unit cell becomes high enough. Number of unit cells
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1.2.3.3 Boltzmann Transport Equation

The phonon BTE describes the rate of change of a statistical distribution function for
phonons. The fundamental assumption in deriving the phonon BTE is that a distribution
function,Nq(~r, t), exists. It describes the average occupation of phonon mode q (this mode is
associated with frequency vq and with wave vector ~kq that are related through the
dispersion curve for the studied material) in the neighborhood of a location ~r at time t.
This equation relies on the assumption that phonon position and momentum can simul-
taneously be known with an arbitrary precision. However, in quantum mechanics, these
quantities correspond to noncommuting operators and hence obey the uncertainty prin-
ciple. The BTE is formally written as follows (see Volz [2007]):

qNq(~r, t)
qt

þ~vq � r!Nq(~r, t) ¼
qNq(~r, t)

qt

�
c

(1:15)

where~vq is the group velocity associated to phonon of wave vector~kq. The term on the right-
hand side is the rate of change due to collisions. Solution of the phonon BTE requires
evaluation of the collision term, which constitutes the challenging problem here. The relax-
ation time approximation, associated with mode q, is widely used to model it. Under this
approximation, the BTE is rewritten using the average distribution function N as follows:

qNq(~r, t)
qt

þ~vq � r!Nq(~r, t) ¼ �
Nq(~r, t)�N

tq
(1:16)

A key conceptual problem in using the relaxation time approximation is the requirement
for a thermodynamic temperature that governs the scattering rate. Since phonons are not in
an equilibrium distribution, there is no temperature to strictly speak of. The usual practice
in such nonequilibrium problems is to define an ad hoc equivalent temperature based on
the local energy.
The BTE can be efficiently used in order to compute the thermal conductivity of solids.

Indeed, it is demonstrated that thermal conductivity can be related to thermal capacity
cv (J kg

�1) as follows:

k ¼
ðqmax

0

v2qcv(q)tq dq (1:17)

Specific heat can also be expressed analytically in terms of frequency mode vq and of
temperature T as follows:

cv(vq) ¼ 3�h2

2p2kBT2vq

ðvmax

0

e�hvq=kBT

e�hvq=kBT � 1
� �2 v2

qq
2 dvq (1:18)

The frequency mode is related to the wave vector through the dispersion curves of the
material. However, we must insist on the fact that this definition of thermal conductivity
rests on the fact that the use of Fourier’s law is allowed. In other words, time t must verify
t� tc, and characteristic dimension L of the medium must be such as L� L, in order to
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define the temperature gradient inside the medium. These conditions are less restrictive for
the definition of the specific heat since it only involves temperature and not its gradient.
The question now is as follows: does the BTE can be considered as the direct model in an

inverse procedure and for identifying what? The answer is clearly yes since, as viewed
previously, there is an analytical model for both specific heat and thermal conductivity.
This model could be implemented in order to estimate the mean relaxation time of the
phonons inside the material, which is generally unknown. Again, to our knowledge, such a
work has not been made or published yet.

1.2.3.4 The Two-Temperature Model

We conclude this first part with the two-temperature model that constitutes a very good
transition to homogenization methods at the macroscopic scale that will be described
further on. The two-temperature model describes the time-dependent electron and lattice
temperatures, Te and Tl, respectively, in a metal or in a semiconductor during the thermal-
ization process as follows:

ce(Te)
qTe

qt
¼ r! � (ke(Te,Tl)r!Te)� G(Te � Tl)þ qvol (1:19)

cl
qTl

qt
¼ G(Te � Tl) (1:20)

In these equations, ce and cl are the electronic and lattice specific heat per unit volume, ke is
the electronic thermal conductivity that can be assimilated to bulk thermal conductivity for
metals, and qvol is the volumetric heat source in the lattice. These two nonlinear equations
are coupled through the electron–phonon coupling constant G that can be explicitly
defined starting from the BTE for both electrons and phonons. A detailed explanation of
this model foundation can be found in the paper of Anisimov et al. (1974, 1975).
Regarding the TDTR reference experiment (see Section 1.2.2), Equation 1.19 means that,

after the pulse, hot electrons will move inside the medium while losing their energy to the
lattice. Let us insist on the fact that this model has a physical meaning only during the
thermalization process, since Equation 1.20 shows that the lattice temperature remains
constant as soon as Te ¼ Tl or, in other words, when the thermalization process between
electrons and lattice ends.
It must be also emphasized that this model involves a temperature gradient in the

electron gas whereas thermal conduction in the lattice is neglected with respect to heat
exchange between electrons and the lattice. It means that the characteristic length of the
medium is such as L� Le, where Le is the mean free path of the electrons. Indeed, we saw
previously that the mean free path for electrons is larger than for phonons. However, the
constraint on time is just related to the relaxation time for electrons, which is of the order of
some tenth of femtoseconds. In other words, the simulation time range for the two-
temperature model can be (and should be) shorter than the relaxation time for the
phonons.
When implementing the model in relation with the thermoreflectance experiment, the

heat source qvol is a function of the heated area (laser beam radius) of the optical penetra-
tion depth of the beam inside the material (related to the extinction coefficient) and of the
intensity of the source.
We used the finite element method in order to simulate the two-temperature model

starting from parameters given in the literature for aluminum. This simulation remains
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coherent with the definition of temperature for the electron gas and the lattice since the
sample thickness has been chosen larger than the mean free path of the electrons in
aluminum, which is approximately 10 nm (in other words, the minimum distance between
two nodes of the mesh should be larger than this critical length). The resulting time-
dependent temperatures of the lattice and of the electron gas are reported in Figure 1.10.
The electron gas temperature increases very quickly and reaches its maximum at 50 fs.
Temperature of the lattice begins to increase at 20 fs and reaches the electrons gas
temperature at tc ¼ 200 fs. The calculation shows the undercooling of the electrons relative
to the lattice at the surface. This undercooling comes from the high value of the coupling
factor for aluminum. It is also observed for gold or copper whose coupling factors are
smaller, but it is less pronounced than for aluminum. Figure 1.10 shows that complete
thermalization between electron gas and lattice is reached at times between 25 and 30 ps.
It demonstrates what was said in Section 1.2.2, that is, the relaxation time is lower than
time tc that has been estimated through the TDTR experiment.
The use of the two-temperature model as a model to invert has been made by Orlande

et al. (1995) in order to estimate the coupling factor G for several kinds of metals. In fact,
analytical expressions for this parameter are generally inaccurate: knowledge of the dis-
persion curve for the studied material is required. It is then interesting to estimate it
directly from measurements similar to those given by the TDTR.
Our reference experiment shows that at the thermalization end, the TDTR measured

response is only sensitive to the lattice cooling, which means that use of the classical one-
temperature model becomes appropriate in order to describe heat diffusion inside the
medium. Let us note that the two-temperature model degenerates naturally toward the
one-temperature model when t > tc.
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FIGURE 1.10
Two-temperature model simulation for the aluminum sample using the finite element method. Line with circles
represents the lattice temperature; plain line is the electron gas temperature.
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1.3 Heat Diffusion Model for Heterogeneous Materials: The Volume
Averaging Approach

1.3.1 Model at Local Scale

Thermal properties of heterogeneous materials are often determined experimentally by
assuming the sample behaves macroscopically like a homogeneous medium. Therefore, the
reliability of measurements depends heavily on the validity of the ‘‘homogeneous med-
ium’’ assumption (see also Chapter 2 on the same subject). This is particularly true for
measurements based on transient heat conduction. Let us consider now an elementary
volume (a sample of the medium) whose configuration is representative of the material.
Such a representative elementary volume (REV) is shown in Figure 1.11 for a medium
constituted of two phases s and b.
The shape of the REV is arbitrary but its size is not: if the REV is a sphere of diameter

D¼ 2r0, this diameter should be much smaller than the size of the whole system L:D=L� 1;
this sphere constitutes a sample of the material and its diameter must be larger than the
scale representative of the distribution of the two phases in space (an averaged distance lb
separating the ‘‘grains’’ of the discontinuous phases embedded in the continuous phaseb in
Figure 1.11, for example):D=lb� 1. If the local structure of thematerial within this REVdoes
not change too much when this sphere is moved anywhere in the whole medium, this
medium can be homogenized.
One assumes here that Fourier’s law is applicable for both phases at any point whose

location is determined by its position vector~r and for each time t. Thermal conductivities
are denoted ks and kb, and specific heat per unit volume is denoted (rcp)s and (rcp)b, for
phases s and b, respectively.
The heat transfer model at the local scale is as follows:

(rcp)s
qTs(~r, t)

qt
¼ r! � (ksr!Ts(~r, t)) for~r in the s-phase (1:21)

FIGURE 1.11
REV of a two-phase heterogeneous medium.
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for the s-phase, and

(rcp)b
qTb(~r, t)

qt
¼ r! � (kbr!Tb(~r, t)) for~r in the b-phase (1:22)

for the b-phase. Heat transfer between the two phases appears at the boundary condition
at the s–b interface.
Two homogenized models that transform this two-phase model into one single homo-

geneous (equivalent) phase can be now introduced. This homogenized medium may exist
or not.

1.3.2 The One-Temperature Model

A volume averaging operator, noted h i, can be defined here for any space field f at a point~r
located at the center~r of the REV as follows:

h f i(~r, t) ¼ 1
V(~r,D)

ð
V(~r,D)

f (~r 0, t) dV(~r 0) (1:23)

where
V(~r,D), pD3=6 here, is the volume of an REV centered at point~r
dV(~r 0) is a microscopic volume centered at any point~r 0 located inside the REV

Thus, an averaged ‘‘enthalpic’’ temperature TH can always be defined:

TH(~r, t) ¼ 1
hrcpiV(~r,D)

ð
V(P,D)

rc(~r 0)T(~r 0, t) dV(~r 0) ¼ 1
rct
hHi (~r, t) (1:24)

where H(~r, t) is the local enthalpy by unit volume: H(~r, t) ¼ rct(~r )TH(~r, t), the total volumic
heat rct being defined by

rct(~r ) ¼ hrcpi(~r ) ¼ es(rcp)s þ eb(rcp)b (1:25)

Here es and eb are the local volume fractions of the s and b phases (es þ eb ¼ 1). These
volume fractions are derived from the characteristic functions xa of each phase a (for a¼s
or b), where xa(~r ) ¼ 1 if~r belongs to the fluid phase and xa(~r ) ¼ 0 otherwise

eb(~r ) ¼ hxbi; es(~r ) ¼ hxsi ¼ 1� eb(~r ) (1:26)

One can notice that if the medium can be homogenized, its specific heat per unit volume rct
defined above should not depend on location~r.
The one-temperature model requires the definition of a thermal conductivity tensor k

whose coefficients can be considered as conductivities depending on the nature, thermo-
physical properties and geometry of the distribution of phases s and b. A diffusion energy
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equation for the space and time variations of the averaged temperature can be written in
the case of a homogenized medium (Moyne et al., 2000):

rct
qTH

qt
¼ r � (krTH)þ qvol (1:27)

where
qvol is a volumetric source term
k is an effective (or equivalent) conductivity of the material that is supposed to be locally

isotropic here (otherwise k has to be replaced by k)

This model can be extended to take fluid flow into account (see Testu et al. [2007]).

1.3.3 The Two-Temperature Model

At this stage, we introduce now the notion of intrinsic phase average, noted h ia here, for
any time–space field f (~r, t) defined in the a-phase:

h faia(~r, t) ¼ 1
Va(~r,D)

ð
Va(~r,D)

f (~r 0, t) dV(~r 0) for a ¼ s or b (1:28)

where Va(~r,D) � V(~r,D) designates the volume occupied by the a-phase (a ¼ s or b) in
the REV shown in Figure 1.11. Subscript a of fa indicates that integration is made for~r 0

belonging to the Va(~r,D) volume, while superscript a, in h ia, is related to division by
volume Va(~r,D) in the right-hand member of this equation: h:i ¼ eah:ia.
One can therefore introduce two different average temperatures hTaia at the same point~r.

These two temperatures are related to the previous averaged ‘‘enthalpic’’ temperature TH

through the definition of the average enthalpy:

hHi ¼ rct(~r )TH ¼ (rcp)shTsis þ (rcp)bhTbib (1:29)

In the case of local thermal equilibrium the temperatures both hTaia are equal, which
implies that they are also both equal to the average enthalpic temperature, because of the
previous equation and of the definition of rct: hTsis ¼ hTbib ¼ TH . In the opposite case,
the enthalpic temperature still exists but its observation is somewhat involved because a
perfect temperature detector would provide a temperature that will be either close to hTaia
or to hTbib, depending on the quality of its coupling with either of each phase. In any case,
the sensor temperature would be close to TH , because, by definition, this temperature lies
in between these two temperatures.
The macroscopic description of heat transfer in heterogeneous media by a single energy

equation does not imply the assumption of local thermal equilibrium between the two
phases. However, in order to get such an equilibrium, as described by Carbonell and
Whitaker (1984), some criteria must be verified.
We use now the following notation: D denotes the characteristic dimension of the REV of

volume V, av ¼ As�b=V is its specific area, that is the ratio of the area of the interface
As�b=V between the two phases by its volume, Vs is the volume of the s-phase, e ¼ Vs=V
is its volume fraction, and L denotes the characteristic dimension of the heterogeneous
medium.
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Then time t must verify (see Carbonell and Whitaker [1984])

e(rCp)sD
2

t
1
ks
þ 1
kb

� �
<< 1 and

(1� e)(rCp)bD
2

t
1
ks
þ 1
kb

� �
<< 1 (1:30)

And the characteristic dimension L of the REV must verify

eksD
avL2

1
ks
þ 1
kb

� �
<< 1 and

(1� e)kbD
avL2

1
ks
þ 1
kb

� �
<< 1 (1:31)

Obviously, another factor that can affect the assumption of local thermal equilibrium is the
location of the considered point with respect to the heat source: equilibrium cannot occur in
the vicinity of this source. Such a situation is met, for example, for front face heat pulse
excitation of a multilayer slab made of layers of different thermophysical properties.
For situations in which local thermal equilibrium is not valid, models have been pro-

posed based on the concept of two macroscopic continua. Intrinsic average temperatures
for the s-phase and the b-phase are denoted by hTs(~r, t)is and hTb(~r, t)ib, respectively (see
Equation 1.28).
The pore-scale temperature deviation in the s-phase is defined by

Ts(~r, t) ¼ hTs(~r, t)is þ ~Ts(~r, t) (1:32)

One can introduce this decomposition into the pore-scale equation for the s-phase and then
form the volume average in order to obtain the macroscopic equation. After extensive use
of the averaging theorem, the following energy equation emerges for the s-phase:

e(rcp)s
qhTsis

qt
¼ r � Ksb � rhTbib þ Kss � rhTsis

� 	
� avh hTsis � hTbib

� 	
(1:33)

Equivalently, the same procedure for the b-phase leads to

(1� e)(rcp)b
qhTbib

qt
¼ r � Kbb � rhTbib þ Kbs � rhTsis

� 	
� avh hTbib � hTsis

� 	
(1:34)

The macroscopic conductivity tensors Kbb,Kbs,Ksb,Kss and the volumetric exchange
coefficient avh are given by the solution of three closure problems that have to be solved
over unit cells representative of the medium characteristics (see the paper of Quintard
et al. [1997]).
Let us note that the previous one- or two-temperature models have been derived using

the volume-averaging technique. The same kind of results can be set using the homogen-
ization technique, where two different independent coordinate systems can be defined, one
at the local scale and the other one at the mesoscopic scale. The interested reader can refer
to Auriault and Ene (1994) for an example of practical application of this type of technique.

1.3.4 Application to a Stratified Medium

Here, we are interested by the macroscopic thermal behavior of a stratified medium sub-
jected to a Dirichlet boundary condition, the flux being parallel to the strata (see Figure 1.12).
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This choice is due to the fact that in this particular geometry, reference analytical exact
solutions exist for the macroscopic effective properties, and only four effective parameters
are independent and have to be identified.
Since the stratified medium is orthotropic and the main tensor axis coincides with the

direction normal to the layers, the two-equation model is reduced to

qhTsis
qt

¼ Kss

es(rcp)sL2
q2

qx*2
hTsis � avh

es(rcp)s
hTsis � hTbib
� 	

(1:35)

and

qhTbib
qt

¼ Kbb

eb(rcp)bL2
q2

qx*2
hTbib � avh

eb(rcp)b
hTbib � hTsis
� 	

(1:36)

where x* is the dimensionless space variable x=L. Then, in this configuration, the four
independent parameters to be identified are defined by

Ab ¼ Kbb

eb(rcp)bL2
; Hb ¼ avh

eb(rcp)bL2
; Ab ¼ Kss

es(rcp)s
; Hs ¼ avh

es(rcp)s
(1:37)

This study has been the subject of a paper of Gobbé et al. (1998).

1.4 Summary on the Notion of Temperature at Nanoscales and
on Homogenization Techniques for Heat Transfer Description

We have seen above that in a solid material, temperature can be considered as a potential
that ‘‘explains’’ transfer of energy and, at scales large enough, transfer of heat. At the
nanoscale, its definition requires the presence of a high enough number of particles of
each phase (ions in a lattice, electrons) because of its statistical nature. Once this condition
is fulfilled, the studied medium can be considered as continuous, which means that any
potential field or physical quantity can be assigned to any space point in the geometrical 3D
Euclidian domain. Two different temperatures can be defined then, one for each phase, at

FIGURE 1.12
Stratified medium unit cell.
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the same location. These can degenerate to one single temperature, if the two phases locally
present at the same point reach equilibrium, depending on the time–space scales considered.
The same type of approach can be adopted at larger space scales, when solid materials

composed of two phases are considered. At these larger scales, let us say above 10 nm,
(1) the material is considered as continuous and (2) Fourier’s law becomes valid at any
point in space. Both previous conditions are not equivalent, since the second condition
requires validity of the first one.
The use of an REV allows ‘‘filtering’’ the locally heterogeneous material, which leads to

the definition of either one single ‘‘average enthalpic temperature’’ or two ‘‘intrinsic
average temperatures,’’ verifying one or two coupled heat equations.
If the structure of the REV is not modified by its translation in space, the material can be

considered as homogenous. Modification by rotation leads to anisotropic properties, but
this notion does not derive from the spatial distribution of the two phases only. Under this
condition of invariance by translation, the REV averaged thermophysical properties of the
material become constant that is uniform in space. These properties are

. Its volume fractions es and eb defining its total volumetric heat rct, and its effective
thermal conductivity k (or a thermal conductivity tensor k in the more general
anisotropic case), for the one-temperature model (see Equation 1.29).

. The macroscopic thermal conductivity tensors Kbb,Kbs,Ksb,Kss and volumetric
exchange coefficient, avh, for the two-temperature model (see Equations 1.35
and 1.36).

Homogenization techniques are presented in Chapter 2.

1.5 Physical System, Model, Direct and Inverse Problems

Wewill consider now on, in the presentation of inverse problems in heat transfer and in the
remaining part of this chapter, the generic case of heat diffusion in an isotropic or
anisotropic material that verifies the one-temperature model heat equation (based on
Fourier’s law), but its (continuous) material thermophysical properties (conductivity tensor
k and total volumic heat denoted rc now) may vary in space (nonhomogeneous case) and
possibly with temperature (thermodependent properties of the material).

1.5.1 Objective of a Model

The model-builder has a given objective: he tries to represent the real physical system by a
modelM that will be used to simulate its behavior. This model requires the knowledge of a
given number of structural parameters that are put inside a parameter vector b. Its
objective is to get identical responses of both system y(t) and model ymo(t,b, u), under the
excitation by an identical time-varying stimulus u(t) (see Figure 1.13).
If the control science terminology is used, this stimulus is called « input » and the

response « output ». These two terms have no geometrical meaning here.
In heat transfer, the stimulus is produced either by a source, that is, for example, a

surface thermal power (absorption of a radiative incident flux by a solid wall, for example)
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or by an internal power (Joule effect produced by an electrical current, heat of reaction of a
chemical reaction, . . . ). It can also be an imposed temperature difference (temperature
difference between the inside and outside air environments on both sides of a solid wall,
for example).
Let us note that if steady-state regime is considered, both stimulation u and responses y

and ymo do not vary with time.

1.5.2 State Model, Direct Problem, Internal and External Representations, Parameterizing

1.5.2.1 Example 1: Mono Input=Mono Output Case

Figure 1.14 shows a semi-infinite medium in the x-direction, whose front face (x¼ 0) is
stimulated by a heat flux u (W m�2) at initial time t¼ 0. The initial temperature distribution
T0(x) may be nonuniform. A temperature sensor is embedded at a depth xs inside the
medium and delivers a signal y. So, starting at initial time, a transient 1D temperature field
T(x, t) develops inside the medium.
This temperature field, also called ‘‘state’’ of the system, is the solution of the heat

equation, a partial derivative equation here, as well as of its associated boundary and
initial conditions.
These equations are called state equations of this thermal system.
Different structural parameters appear in these equations: the medium heat conductivity

k (W m�1 K�1) and its thermal diffusivity a¼ k=rc (m2 s�1), where r and c are its density
(kg m�3) and its specific heat (J kg�1 K�1), respectively. The theoretical signal of the sensor
ymo (response of the model), caused by the medium stimulation u, is given by the output
equation.

ymo(t) ¼ T(xs, t) (1:38)

FIGURE 1.13
Real system and its representation by a model.

Real system
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T finite as x ∞

FIGURE 1.14
Model for the response of a temperature sensor embedded in a semi-infinite medium. The interrogation mark (?)
designates what is looked for.
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The state equations give an internal representation of the direct problem that allows the
calculation of the system response everywhere, for a known excitation, while the sensor
response is given by the output equation.
The state equations can be solved analytically here, and calculation of the output

can be directly implemented, because the system is causal, linear, and invariant in time
(see Ozisik [1980]):

ymo(t) ¼
ð1
0

G(xs, x, t)T0(x) dxþ
ðt
0

Z(t� t)u(t) dt ¼ ymo relax(t)þ ymo forced(t) (1:39)

with

G(xs, x, t) ¼ 1
2
ffiffiffiffiffiffiffi
pat
p exp � (xs � x)2

4at

 !
þ exp � (xs þ x)2

4at

 !" #
(1:40)

Z(t) ¼ 1
b
ffiffiffiffiffi
pt
p exp

�x2s
4at

� �
(1:41)

where
G(xs, x, t) is Green’s function associated to relaxation, at location xs, of the initial

temperature field T0(x)

Z(t) is the transfer function of the system, while b¼ (krc)1=2 is the thermal effusivity of the
medium

Equation 1.39 indicates that two effects overlap: the first term corresponds to relaxation of
the initial temperature field (free solution that vanishes for long times) while its second
term, a convolution product, corresponds to the response (‘‘forced’’ solution) to the heat
flux excitation. Transfer function Z that links a temperature response to an excitation
power is called a time impedance, the same way as in AC electrical circuits. This function,
once convoluted with the flux excitation u, yields the forced component of the temperature
signal of the model. This can be expressed by a simple product of the corresponding
Laplace transforms:

�ymo forced( p) ¼ �Z( p)�u( p) with �f ( p) ¼
ð1
0

f (t) exp (�pt) dt (1:42)

If initial temperature T0 is uniform in the medium, the first term in ymo(t) in Equation 1.39
becomes equal to T0.
This last equation constitutes an external representation of the direct problem. It makes

calculation of the state T(x, t) of the modeled system needless.
The (theoretical) output of the model depends on three parameters: the two thermo-

physical properties of the medium’s material, a and b, and a parameter that relates to the
sensor, that is, its location xs. These three parameters can be gathered in a specific
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parameter vector b¼ [a b xs]
T. This parameter vector b contains the structural parameters is

of the problem: it does not change when input u(t) and=or initial state T0(x) changes.

1.5.2.1.1 Important Point on Notation
Let us precise the notation that will be adopted now on

. A scalar or a scalar function depending continuously on an other scalar or vector
variable (time t or temperature T, for example) will be noted in lower or upper case
italic characters (k, or T(t, x), for example).

. A column vector (b, or u, or U [see Equation 1.46] further down) or a column
vector function will be noted in bold lower or upper case italic characters.

. Amatrix or a matrix function will be noted in bold upper case characters (matrix A
or matrix function E [see Equation 1.47] further down, except if this matrix
function is a standard explicit function, such as the exponential of a matrix,
noted exp(.) here).

The previous structural parameters b, input u, and initial state T0 can be assembled in a
unique list (not a column vector made of scalar quantities here) of explanatory quantities
x¼ {b, u(t), T0(x)}, gathering all the data necessary for the calculation of output ymo.
Result of this modeling is sketched in Figure 1.15.

1.5.2.2 Parameterizing a Function

In the previous list x of explanatory quantities, one can find scalar parameters (diffusivity,
lengths, . . . ) corresponding to structural parameters, as well as a time function u(t), here a
heat flux. Other functions can appear such as a nonuniform initial state T0(P) or a nonuni-
form structural parameter b(P) or a parameter depending on temperature b(T).
We suppose here that such a function is a time-depending input x¼ u(t). In order to be

able to deal with this kind of function, in the simulation (direct) problem and also in the
inverse problem (finding u from measured y’s, where this aspect becomes of prime
importance), this function has to be parameterized by its projection on a selected basis of
n chosen functions fj(t):

uparam(t) ¼
Xn
j¼1

uj fj(t) (1:43)

The new function uparam, replaced now by a vector u ¼ u1 u2 � � � un½ �T of finite size n, is
an approximation of the original u function that can consequently be considered as a vector
with an infinite number of components. This approximation, that we will call parameter-
ization now on, generates an a priori error that depends both on the chosen basis as well as
on its size.

FIGURE 1.15
Input–output model for a thermal system.
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Figure 1.16 shows two possible choices, using a constant time step Dt ¼ tj � tj�1:

. In case (a) the uj components are the discrete values of the original function on the
time grid and « hat » functions are selected as basis functions (see Figure 1.16a).

. In case (b) these components are averaged values of this function over one time
step and « door » functions are selected for this basis (see Figure 1.16b).

The choice for the basis is not unique and strongly depends on the problem at stake.

(a)

u u(t)

u1

t1

t1

t2

t2

tj

tj

tj–1

tj–1

tj+1

tj+1

t0 = tinf

fj (t)

tn = tsup

tn = tsupt0 = tinf

u2 u3

uj

un

t

t

Δt

Δt

1

1

(t – tj–1)/Δt      if  tj–1 ≤ t ≤ tj
1 – (t – tj)/Δt   if tj ≤ t ≤ tj–1
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0 if t      tinf  tj–1       tj tsup 

(b)

u u(t)
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fj (t)

tn = tsup

tn = tsup
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t

t
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Δt

fj (t) = H(t – tj–1) – H(t – tj) 

0  if  t  ≤  0
1  if  t  > 0

with H(t) =

FIGURE 1.16
Two examples of function parameterization in a local basis: (a) parameterizing with a hat function basis and
(b) parameterizing with a door function basis.
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So hat function parameterization of case (a) corresponds to linear interpolation using a
table of discrete values; this parameterization choice is appropriate if a temperature
dependency has to be modeled, for thermal conductivity l(T), for example. In that case,
time t has to be replaced by temperature T in the basis functions that become fj(T).
In case (b), a piecewise constant function basis has been chosen. It suits deconvolution

inverse problems, such as a time-varying source estimation using an experimental tem-
perature response.
In both cases, each uj component requires, for its calculation, knowledge of function u(t)

within the neighborhood of time tj only. The use of such local bases is convenient because
they directly derive from the time–space gridding. It is also possible to use projections on
nonlocal bases such as polynomials, exponentials, trigonometric functions, etc.
The choice for a type of parameterization is very large. Constraints can be a priori set for

the functions of the basis: they can present various properties such as monotony, regularity
(continuous function with continuous first and second derivatives), and positivity, or they
can be assigned fixed values on part of their time domain [tinf tsup]. One can also think of
B-splines bases, wavelets bases. . . .

Remark

The use of orthogonal function bases is possible: they correspond to functions fj(t) such as

ðtsup
tinf

fj(t)fk(t) dt ¼ Njdjk (1:44)

where
djk is Kronecker symbol (djk ¼ 0 if k 6¼ j and djk ¼ 1 otherwise)
Nj is the square of the norm of function fj

This kind of orthogonal projection, as well as its implementation, is deeply discussed in
Chapter 14.
Door functions shown in Figure 1.16b are orthogonal, but it is not the case for hat

functions shown in Figure 1.16a.
It is very interesting to choose the eigenfunctions of the heat equation (found using the

method of separation of variables, see Ozisik [1980] for these fj functions). In that case, the
components of the corresponding u vector become integral transforms, that is, the different
harmonics, of the original function (see the book Thermal Quadrupoles, by Maillet et al.
[2000]). This method is related to singular value decomposition (see Press et al. [1992]).

1.5.2.3 State-Space Representation for the Heat Equation

The one-temperature heat equation can be written for a thermal diffusion problem in an
anisotropic medium as the following partial differential equation:

div k grad T
� 	

þ qvol ¼ rc
qT
qt
þ Boundary, interface and initial conditions (1:45)

Here, qvol designates the volumic heat sources (W m�3) but other surface sources may be

present in the boundary or interface conditions. k designates the conductivity tensor here.
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This partial differential equation system is of the evolution type and can be considered as a
dynamical system. So, its solution, the temperature field T(P, t), that is, continuous in time,
constitutes the state of the system, which can be noted here TP(t), that is, for a given time t,
a vector in an infinite dimension space.
This system that corresponds to a distributed parameter system can be discretized in space,

using N nodes, the discretized state becoming a vector T(t) in a N dimension space. The
resulting state equation of this system takes the form of a lumped parameter system that
corresponds to a system of first ordinary differential equations:

dT
dt
¼ E(t,T,U) with T(t ¼ t0) ¼ T0 (1:46)

where vector U(t) ¼ [u1(t), u2(t), . . . , up(t)]T corresponds to a local parameterization in
space, but not in time, of the volumetric distributed source qvol(P, t) and of the other
sources possibly present in the boundary or interface conditions. The number of different
parameterized sources is called p here.
Let us note that this equation is written here in the very general case of a fully nonlinear

system where temperature is the only state variable: conductivity or volumetric heat may
depend on temperature, or the associated interface=boundary conditions may not be linear
(radiative surface heat losses, for example). In that case, matrix E depends on temperature
T(t) in a nonlinear way. In a similar way, stimulation vector U may also be temperature
dependent. In that case, each of the p components uj of U is an implicit function of time,
since it depends on the present and past states of the system, that is, on T on the [0 t0]
interval.
We assume to be in the linear case (linear heat equation system and linear source)

now on

E(t,T,U) ¼ AT þ BU with A and B: constant matrices (1:47)

The different vectors and matrices present in the linear form of the state equation (1.47) are
thus defined in Figure 1.17.

FIGURE 1.17
State and output equations for a linear
dynamical thermal system.
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An analytical solution for the state vector T(t) of this state-space representation of a linear
system can be found formally using the exponential function of a matrix:

T(t) ¼ exp(A(t� t0))T0 þ
ðt
t0

exp(A(t� t))BU(t) dt (1:48)

In practice, and in the case of implementation of an inverse technique, all theN components
of the state vector (temperatures at the different nodes of the model here) do not present the
same interest: only a subset of it, composed of a selected number q(q � N) of its components,
constitutes the model output. They can correspond to observations provided by q sensors,
for example. These outputs are numbered and called ymo, i, and they are put in an output
vector ymo:

ymo ¼ ymo, 1 � � � ymo, i � � � ymo, q

 �T (1:49)

Output vector ymo is linked to state vector T through an output matrix (or observation
matrix) C, of q	N dimensions: the coefficients of this observation matrix are either 0 or 1’s,
according to the observed nodes:

ymo ¼ CT (1:50)

This equation is also called the output equation.
The response of the system, which is the observed output, can be calculated thanks to

Equations 1.48 and 1.50 as

ymo(t) ¼ C exp(A(t� t0))T0 þ C
ðt
t0

exp(A(t� t))BU(t) dt (1:51)

One notices, in a very similar way as in the previous example (1.39), that this response is the
sum of a term corresponding to relaxation of initial state T0, which is the free regime, and a
convolution product term corresponding to response to stimulationU(t), the forced regime.
The meaning of the notion of state appears clearly here: knowledge of the state of the

system at a given time T(t0) as well as the history of the different sources for the [t0 t] time
interval allows calculating the current state T(t) of the material system. So, at a given time,
the thermal state contains the whole past of the system.

Remark 1.1

Equation 1.45 can easily be generalized to the case of heat transport in a pure fluid:

div(k grad T)� rcfv � grad T þ qvol ¼ rc
qT
qt

þ boundary, interface, and initial conditions (1:52)

where the advection term based on the volumetric heat of the fluid rcf ¼ rc and on the
fluid velocity v (solution of the Navier–Stokes and continuity equations) has been added
and where, in this case, k reduces simply to the thermal conductivity k of the fluid.
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In the case of heat dispersion in a porous medium, this velocity has to be replaced by a
local Darcy velocity, temperature T becomes an average ‘‘enthalpic’’ temperature at the
local scale (for the one-temperature model), while k becomes the thermal dispersion tensor,
whose coefficients depend on this local Darcy velocity. In this case, rc, the volumetric heat
in the transient storage term, differs now from rcf . This total volumetric heat rc results
from a mixing law and represents the total volumetric heat of both fluid and solid phases,
using the local volume fractions as weights (see Testu et al. [2007]).

Remark 1.2

State of a thermal system is not always composed of the sole temperature T. Two different
examples of a composite state are given next.
If a physical or chemical transformation occurs inside the modeled material, a polymer-

ization of a thermoset resin, for example, heat source is produced by the heat of reaction
and usually depends on the degree of advancement of the reaction, through a kinetic law.
This degree of advancement constitutes the second state variable. In that case, the state
equations are composed of the heat diffusion Equation 1.45 completed with a coupled mass
balance equation for each of the species present in the reacting system.
Another example can be given for coupled conduction and radiation heat transfer in

semitransparent media. The radiative intensity is the second state variable, and the radia-
tive transfer equation (an integro-differential of equation) will be associated with the heat
diffusion equation in order to constitute the new state equations.

Remark 1.3

When a steady-state Tss corresponding to an input vector Uss exists, Equation 1.46 allows
its calculation: it is written with dT=dt ¼ 0, which yields in the fully linear case (see
Equations 1.46 and 1.47):

Tss ¼ �A�1BUss ) ymo, ss ¼ �CA�1BUss (1:53)

1.5.2.4 Model Terminology and Structure

All the equations and necessary conditions for calculating the output of the model consti-
tute the structure of the model, which can be written as a functional relationship, for a
single output variable:

ymo ¼ h(t, x) (1:54a)

or

ymo ¼ h(t, x) (1:54b)

where x is either a list (1.54a) of explanatory quantities, including functions,
x ¼ {b,u(P, t),T0(P)} or its vector version x ¼ [bU T0]T (1.54b), built with functions para-
meterized in space and time (or in temperature, for nonlinear problem with thermal
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dependency of either input u or structural parameters bj s). For output variables, one deals
with an output vector (not a scalar ymo anymore), which requires the use of a vector
function h(:) whose arguments are time t and either the x list or its vector version x:

ymo ¼ h(t, x) (1:55a)

or

ymo ¼ h(t, x) (1:55b)

A wider meaning can be given for vector U in this last definition of parameter vector x: this
vector can represent, in a nonlinear case, a temperature-dependent stimulus u(T ) that has
been parameterized. Let us note that a temperature-dependent thermophysical property
bj(T), once parameterized, gives rise to constant coefficients of parameter vector b. Coef-
ficients of vector b can also stem from a space-dependent property bj(P) that has been
parameterized in the case of a heterogeneous medium.
The ‘‘direct problem’’ consists in finding model output ymo(t; x) at a given time t in the

[t0, tfinal] interval, for known data x ¼ {b, u(P, t),T0(P)}. Solution of this problem can allow
further numerical simulations of the output behavior.
A model relies on a given structure, that is, a functional relationship, noted h above,

between the output variable (or explained or dependent variable) ymo (an observed tem-
perature here) and the independent variable (time t for transient problems) and a param-
eter vector x, whose components are the parameterized explanatory quantities. It is
important to remind that aside the previous structure, parameters x of the model should
be defined accordingly (see Figure 1.18). They can either have a physical meaning if a state
modeling is performed or simply a mathematical meaning without clear physical inter-
pretation if an identified modelization is implemented.
One can notice that a model, in case of a single output, can provide not only a scalar

output ymo depending continuously on time t but also a vector output ymo. This output
column vector ymo is associated with the same output variable, a local temperature, for
example, sampled at different times t1, t2, . . . , tm, or can result from a sampling of the
explanatory variable that can be a space coordinate for a steady-state problem. It can

FIGURE 1.18
Parameter vector and structure of a model.
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also gather in a single column vector, of length qm, several output temperatures observed
at different points Pi (i¼ 1 to q), sampled for m different times tk.
Let us note here that a general introduction to inverse problems is proposed in Chapter 7,

and general methods and skills for their solution are discussed in Part II.

1.5.3 Direct and Inverse Problems

1.5.3.1 Direct Problem

We have seen above that when the studied problem allows it, the usual approach of the
thermal science scientist consists in constructing a knowledge-based model, such as
Equation 1.45, in order to be able to simulate the behavior of the physical system.
This leads to a numerical or analytical solution of a partial differential equation in the

case of a heat diffusion problem (or an integro-differential system of equations for radi-
ation heat transfer in semitransparent media, temperature, and radiative intensity being
the state variables) that represents the corresponding transfer of heat. The solution of these
equations also requires the knowledge of the conditions at the boundaries (Dirichlet,
Neumann, Fourier, etc.) or at the internal interfaces (for a medium composed of different
materials) as well as the initial condition in the system.
If an internal representation is adopted, several quantities of different nature have to be

introduced in the state (1.45) and output equations ymo(t) ¼ T(Pi, t) of the model, written for
a single temperature sensor located at point Pi. If the output is observed at q such points for
m times that constitute a time vector t ¼ [t1 t2 � � � tm]T, it becomes an output vector ymo(t; x)
that depends also on parameter vector x, where this vector is composed of

. The raw u(P, t) or parameterized U(t) excitation

. Vector bstruct of structural parameters, a and b in Example 1 or coefficients of
matrices A and B in the linear state equations (1.46) and (1.47)

. Vector bpos describing the position of the observation, xs in Example 1 and coeffi-
cients of matrix C in output equation (1.50)

. The initial temperature field T0(P) or its parameterized version T0

Input variables u(P, t) are controlled by the user: they are either power sources or imposed
temperature differences, inside or outside the system, that make temperature and output
depart from a zero value in case of zero initial temperature T0(P).
Structural parameters bstruct characterize the system. They can be

. Geometrical quantities (shape and dimensions of the system)

. Thermophysical properties: conductivities, volumetric heat capacities, heat trans-
fer coefficients, emissivities, contact or interface resistances, etc.

The relationship between output variables, generally a subset of the state, and state
variables, the temperature field, makes the previous position parameter vector bpos appear
in this output equation.
A functional scheme corresponding to linear state and output heat equations is shown in

the lower line of Figure 1.19.
This corresponds to the usual process of a model user: for a known initial state T(t0), a

known excitation U(t), and known structural parameters, the heat equation and the output
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equations are solved sequentially to calculate the theoretical response ymo of the sensors.
This output corresponds to a possible real temperature measurement at the same locations
(upper line in Figure 1.19). The direct problem can thus be solved.

1.5.3.2 Inverse Problem Approach

The preceding analysis shows that any variation in the data represented inside the x vector
(including structural and position parameters bstruct and bpos) will produce a variation of
the ymo output.
Conversely, any variation of this output ymo is necessarily caused by variation of some

data inside x.
The inverse approach is based on this principle. When knowledge of part of the variables

that are necessary to solve the direct problem is lacking, data vector x of this problem can
be split into two vectors the following way:

x ¼ xr
xc

� �
(1:56)

where
xr now represents the (column) vector gathering the unknown part of the data that are

sought (researched)
xc is its complementary part that contains known data

In that case, solving the direct problem constitutes an impossible task. Any process aimed
at finding xr requires some additional information.

Real physical system
with instrumentation

State (heat) equation Output equation
X=A X+B U
.

ymo =C X

Position of observations
βpos =C

x= (βstruct, βpos, U(t), T0)
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FIGURE 1.19
Linear model and material system with temperature measurement.
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Problems whose objective is to find a value for x, starting from additional information,
are called inverse problems.
Any inverse problem consists in making the model work in the « backwards » way: if

outputs y as well as model structure h are known, part xr of x will be sought, its
complementary part being known (see Figure 1.20).
A general introduction to inverse problems is proposed in Chapter 7, and general

methods and skills are discussed further in Sections 7.2 and 7.3 of the same chapter.

1.5.3.3 Inverse Problems in Heat Transfer

1.5.3.3.1 Different Types of Inverse Problems in Heat Transfer
The nature of additional information necessary for solving the inverse problem allows
bringing out three main types of problems:

1. Inverse measurement problems, where this information stems from output signal y of
sensors.

2. Control problems, where the previous measurements are replaced by desired
values of either the state T(P, t) or output variables y: data or y are the targets. In
this class of problem, the sought quantity is generally the stimulus u(P, t) or the
initial state T0(P), but it can also be a structural parameter (a velocity or a flow rate
in a forced convection cooling problem, for example). In this class of problems, it is
not always possible to reach the targets, for physical or mathematical reasons, and
it may be necessary to specify a certain number of constraints on the sought
solution.

3. System identification problems, that is, model construction for simulating the behav-
ior of a system (see Chapters 13 and 14). These can be classified into two categories:

a. Model reduction: y is the output of a detailed model hdet(t; xdet) completely
known, and the structural parameters (part of xred) of a reduced model
hred(t; xred) of given structure hred are sought, both models sharing either identi-
cal or close stimulations u(P, t) and initial state T0(P) that are parts of xdet and
xred. This can be written as follows:

hdet(t; xdet) 
 hred(t; xred) where xdet ¼ [bdet Udet T0 det]
T

and xred ¼ [bred Ured T0 red]
T (1:57)

with, for mathematical reduction:

ured(P, t) ¼ udet(P, t)) Ured ¼ Udet

T0 red(P, t) ¼ T0 det(P, t)) T0 det ¼ T0 red
(1:58)

FIGURE 1.20
Direct problem=inverse problem. The interroga-
tion mark (?) designates what is looked for in
each problem.

Direct problem: known x

Known y

ymo?

Model

Model

Inverse problem: part of x?
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or, for physical reduction:

ured(P, t) 
 udet(P, t)) Ured ¼ fU(Udet)

T0 red(P, t) 
 T0 det(P, t)) T0 red ¼ fT 0(T0 det)
(1:59)

In both cases, mathematical or physical model reduction, the structural parameters of
the reducedmodel dependon the correspondingparameters of thedetailedmodel:

bred ¼ fa(bdet) for a ¼ u or T0 (1:60)

but this relationship, function fa, is explicit for physical reduction (see Section
1.6), while it is not generally the case for mathematical reduction.

b. Experimental model identification: y, U, and T0 are measured, or supposed to be
known, and the structural parameters (part of x) of a model h(t; x) of given
structure h are known, U and T0 being their complementary part in x.

Let us note that system identification leads to models that can be of the white box type,
which means models based on first principles, for example, a model for a physical process
from the Newton’s equations. The previous state-space model (1.46), based on a heat
balance and on Fourier’s law defining heat flux, belongs to this category. The nature of
the parameters in this class of models is perfectly known, which explains why they are
used for thermophysical property estimation. Conversely, an identified model on an
experimental basis, without a priori information on its structure, is also called a black box
model: parameters of such a model have only a mathematical, but not physical, meaning.
Such black boxmodelsmay, for example, derive fromneural networkmodeling. In between,
one can find gray box or semi-physical models: the model, that is, the structure=parameter
couple, is chosen according to a certain physical insight on what is happening inside the
system, and these parameters are estimated on an experimental basis.

1.5.3.3.2 Inverse Measurement Problems in Heat Transfer
We will now focus on inverse measurement problems where model structure (the equations)
h is known and where measurements y(t) are available on the time interval [t0, tfinal].
According to the nature of the explanatory variables xr that are sought, solution finding

for inverse problems may differ. One can distinguish in particular

1. Inverse problems of structural parameters estimation: xr � br
System identification problems, of the black or gray box type, belong to this cat-
egory: structural parameters (part of x) of an ad hoc h(t; x) model are sought
through experimental characterization. Thermophysical property estimation belongs
to the white box category: intrinsic parameters, that is, parameters that can be used
for completely different simulation=experimental configurations are sought
through experimental characterization. In both types of problems, several experi-
ments on the same setup, for the same sample, can be repeated in order to estimate
the same unknown parameter(s).

2. Inverse input problems: xr � u(P, t)
In heat transfer, this type of problem consists in finding the locations and values of
the sources. Such a source, or excitation, is either a volumetric, surface, line, or
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point heat source or simply a temperature difference imposed inside or at the
boundaries of the system. It differs from the previous problem because the solu-
tions sought are specific to each experiment made.

3. Inverse initial state problem: xr � T0(P)
This problem is very close to the inverse input problem, since each sought solution
is relative to a single given experiment.

4. Inverse shape reconstruction problems
In the previous types of inverse problems, boundaries of the domain are usually
fixed and known. In certain cases (problems with change of phase, in welding or in
solidification applications, for example) shape of the domain (its boundary) or
location of an interface between sub-domains (a change of phase moving front, for
example) has to be taken into account in the variables defining the direct problem.
In the corresponding inverse problem, the shape of this boundary has to be first
parameterized in order to reconstruct it through inversion.

5. Inverse problems of optimal design=control
A usual process aimed at reducing estimation errors, in a characterization process
of type (1), consists in coupling it to an optimal conception=control problem for
the characterization experiment. This optimization allows the design and the
sizing of the experimental setup as well as the procedure for the trials that will
bring additional information necessary for this characterization. This approach
can provide a methodology for a pertinent choice of inputs, locations of meas-
urement points, time observation windows, etc. The choice of these design
quantities can be made in order to maximize a criterion based on the sensitivity
of the output observations to the parameters that are sought. In heat transfer,
characterization problems (that are structural parameter estimation or system
identification problems) are usually nonlinear, which means that optimization
of any design has to be implemented on the prior assumption that the sought
parameters are known, with an iterative approach, once a first estimation has
been found. This means that nominal values of these parameters are necessary for
such a design.

Remark

The use of any sensor that very often delivers an electrical output quantity (a tension V, for
example) requires the construction of a relationship between the quantity one wants to
measure, temperature T here, and this instrument output.
It is therefore necessary to find, on the basis of the physical principle the sensor and the

whole instrumental chain rely on, a model structure Vmo (T; bcalib) where temperature is
now the explanatory variable and where vector bcalib gathers all the parameters required
for calculating the theoretical output temperature signal (thermoelectric power and cold
junction temperature, in the case of a thermocouple sensor). Construction of the Vmo model
and estimation of parameters present in bcalib starting from simultaneous measurements of
both V and T (using a reference temperature sensor) constitute a calibration problem, that is,
by nature, a parameter estimation problem, that is a type (1) inverse problem (see section
above) that has to be dealt with this way.
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1.5.3.4 Measurement and Noise

In inverse measurements problems, the additional information is brought by the measured
output that differs from the model output ymo.
The difference e(t) between a sensor measurement y and the output of an ideal sensor y*

giving the true temperature at the sensor location can be introduced:

y(t) ¼ y*(t)þ e(t) (1:61)

The sensor giving y* is ideal for two reasons: (1) its presence does not affect the local
temperature of the medium (non-intrusive detector) and (2) it provides the true value of its
own temperature.
Equation 1.61 defines the measurement noise e(t) that can be considered as a random

variable caused by the imperfect character of both instrumentation and of digitization of
the signal. This noise is present, but its deterministic value can not be reached in practice.
This equation also shows that the measured signal is a random variable whose variance

is the same as noise e.
The assumption of a pertinent, that is, non-biased, model is made in practice:

y*(t) ¼ ymo(t, x*) (1:62)

where x* is the true value of the explanatory variables.
Verifying this assumption of consistency between model and measurements is crucial.

Corresponding tools exist (study of the residuals).

Remark

Form (1.61) should be defined for discrete values yi ¼ y(ti), ei ¼ e(ti), and yi* ¼ y*(ti)
corresponding to the sampling times ti of the measured signal, of the exact temperature,
and of the noise, respectively.

1.6 Choice of a Model

1.6.1 Objectives, Structure, Consistency, Complexity, and Parsimony

Before constructing amodel, themodel-builder has to be clear about theway hismodelwill be
used, that is, about the objective of such amodeling. The objectives depend on the application
and can belong to one of the following categories that can be listed in a non-limitative way:

. Estimation of thermophysical properties

. Heat source=flux estimation

. Initial temperature field estimation

. Defect detection and nondestructive testing

. Simulation of the system behavior for better design or future state forecasting

. Model reduction for faster computation or use for heat source=flux estimation

. Conception of a model for closed-loop (feedback) control
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So the type of model will not be the same for each application, because the required model
precision will differ: defect detection in a composite slab using infrared thermography
(Maillet et al., 1993) does not require a model with the same temperature resolution as in
thermophysical property estimation, such as the flash method for liquid diffusivity esti-
mation (Rémy and Degiovanni, 2005).
The accuracy of a model is determined by its consistency with the physical situation

modelized, that is, its ability to simulate closely the behavior of the studied system.
Internal representation, with the use of state-space models, should be generally favored,
because it provides a mathematical structure linked to the physics of the modeled problem
« for free ». In addition, this type of representation allows highlighting the intrinsic
parameters of the system, that is, its thermophysical properties or thermal resistances
and impedances.
The purpose of the model that is used for inverting measurements is not to reproduce

or to mimic the whole temperature field: it should only provide an output that can be
compared to the sensor output signal at the location where this one is embedded.
Structure, that is, scalar or vector function h used above, is what defines a model. Its
complexity should be adapted to the uncertainties associated with any description of a
physical system: the use of a model that is too much simplified (simple structure with a
low number of structural parameters, such as a lumped parameter model see Section 1.6.2)
can introduce a systematic error, a bias, in its output variables, that could depart too
much from model predictions and from the experimental observations to be used the
inverse way. Conversely, the choice of a too-detailed model, with a high number of
parameters

. Tends to make implementation of the inversion algorithm involved or to make it
numerically impossible or very difficult.

. May lead to unstable solutions for the inverse problem, because of noise amplifi-
cation (in case of inversion of measurements): the inverse problem becomes
ill-posed.

This dilemma pleads in favor of the purpose of parsimoniousmodels for inverse use, that is,
models that provide a good balance between antagonist criteria of the use of a minimum
number of parameters on the one hand and maximum agreement with reality (fidelity to
measurements) on the other hand.
Up-to-date capacities of numerical simulation tools as well as structure of the optimization

and regularization algorithms allow solving inverse problems with more and more complex
models, using mathematical model reduction techniques. These allow a very significant
reduction of the size of the state vector (temperature at different nodes of the numerical
grid here). So reduction of a model, followed by its implementation in an inverse proced-
ure, can bring an efficient approach for the most difficult cases, such as 3D heat transfer
with change of phase or advecto-diffusive transfers within flowing fluids, for example
(Girault et al., 2008). We will now focus on a different type of reduction technique, physical
model reduction.

1.6.2 Example 2: Physical Model Reduction

In order to show that a thermal model can be reduced on a physical basis and that many
models of different complexity and resolution are available to simulate the same heat
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transfer situation (nonuniqueness of a model), we will consider heat transfer in a slab,
whose characteristics are defined as follows:

. Homogeneous rectangular slab, thickness e, lengths ‘x and ‘y in its plane

. Thermal diffusivity and conductivity a and k, respectively, volumetric heat
rc ¼ k=a

This slab is stimulated by a surface power (absorption of solar radiation, for example) on its
front face, and temperature is measured at q points by sensors either embedded in the
material or located on the front or rear face of the slab (see Figure 1.21). The slab is
supposed to be insulated on its four (lateral) sides and exchanges heat with the surround-
ing environment T1 only on its rear face through a uniform heat transfer coefficient h that
represents its losses (convection and linearized radiative losses). Its initial temperature T0,
at time t¼ 0, when heating starts, is supposed to be uniform.
A model allowing to find the temperature response ymo,i(t) of sensor number i (i¼ 1 to q)

at time t is sought.

1.6.2.1 3D Model

Heat source u(x, y, t) (W m�2) is supposed to be nonuniform at the front face. Evolution
with time of the temperature field can be described by a three-dimension transient model
(see Figure 1.22a):

q2T
qx2
þ q2T

qy2
þ q2T

qz2
¼ 1

a
qT
qt

(1:63)

T ¼ T0 for t ¼ 0 (1:64)

qT
qx
¼ 0 at x ¼ 0, ‘x;

qT
qy
¼ 0 at y ¼ 0, ‘y (1:65)

�k qT
qz
¼ u(x, y, t) at z ¼ 0; �k qT

qz
¼ h(T � T1) at z ¼ e (1:66)

FIGURE 1.21
Model for temperature response of a slab heated on
one of its faces.

Absorbed surface power
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This system of eight equations constitutes model Ma that will be called ‘‘detailed model’’,
whose solution, noted T ¼ Ta here, determines the response of each sensor:

ymo, i ¼ hi(t, x) ¼ Ta(xi, yi, zi, t;u(x, y, t),T0,T1, h, ‘x, ‘y, e,l, a) (1:67)

In this equation, u, T0, and T1 are input quantities of the model, independent from the
structure of the material system (if they are all equal to zero, temperature stays to a zero
level everywhere in the slab), while the other quantities are the structural parameters b,
either linked to geometry (‘x, ‘y, e), or to the thermophysical properties (k, a) of the slab
material and to its coupling with the outside environment (h), or linked to the location of
the sensors (xi, yi, zi, for i ¼ 1 to q).
List x¼ {b, u, T0, T1} can be introduced now. It gathers structural parameters b, inputs u

and T1, and initial state T0 of this dynamical system composed of (3qþ 9) quantities.

1.6.2.1.1 Dimensionless 3D Model
The number of quantities present in Equations 1.63 to 1.66 can be reduced if they are
written in a dimensionless form: dimensionless temperature T* ¼ (T � T1)=DT appears,
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FIGURE 1.22
‘‘Physical’’ model reduction. (a) 3D model, (b) 2D model, (c) 1D model, (d) 2D fin model, (e) 1D fin model, (f) 0D
lumped model: « small » body.
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with DT ¼ T0 � T1, and it is the same for dimensionless time, Fourier number t* ¼ t=tdiff ,
and dimensionless heat transfer coefficient, Biot number H ¼ he=k. In a similar way,
dimensionless observation locations xi* ¼ xi=e, yi* ¼ yi=e, zi* ¼ zi=e and dimensions
‘x* ¼ ‘x=e and ‘y* ¼ ‘y=e are introduced.
Here, tdiff ¼ e2=a is the characteristic time, related to the duration of thermal diffusion in

the thickness of the slab. The resistance of the slab in the thickness direction, related to a
unit area, R ¼ e=k, can be introduced.
This new model Ma* that corresponds to the same response of the sensors becomes

ymo, i ¼ h*(t, x*) ¼ DT � T* xi*, yi*, zi*, t=tdiff ,R,u(x, y, t)=DT,H, ‘x*, ‘y*
� �þ T1 (1:68)

where the new list x*, gathering the variables necessary for calculating the temperature
response at a given time t, comprises one less parameters than the original x list (1.67):

x* ¼ b*, u,DT,T1f g with b* ¼ xi*, yi*, zi*ð Þ for i ¼ 1 to qð Þ, tdiff ,R,H, ‘x*, ‘y*Þ (1:69)

1.6.2.2 2D Model in X- and Z-Directions

Model Ma can be simplified: if one knows that stimulus u does not vary much in direction
y, or if the sensor whose response has to be simulated is not a point sensor but integrates
the temperature signal in this direction, a y-direction average temperature field Tb can be
rebuilt, with the definition of a new model Mb (see Figure 1.22b):

Tb(x, z, t) ¼ 1
‘y

ð‘y
0

Ta(x, y, z, t) dy (1:70)

This 2D temperature field is produced by a source that varies in one single space direction,
instead of two previously. This new source um(x, t) does not depend on y and, as tempera-
ture, is the mean, in this direction, of the previous stimulus:

um(x, t) ¼ 1
‘y

ð‘y
0

u(x, y, t) dy (1:71)

This mean temperature field verifies the following equations:

q2T
qx2
þ q2T

qz2
¼ 1

a
qT
qt

(1:72)

T ¼ T0 at t ¼ 0,
qT
qx
¼ 0 in x ¼ 0, ‘x (1:73)

�k qT
qz
¼ um(x, t) at z ¼ 0; �k qT

qz
¼ h(T � T1) at z ¼ e (1:74)

Once put in a dimensionless form, thisMb model comprises (2qþ 7) independent variables:

x ¼ {b,um,DT,T1} with b ¼
�
xi*, zi* for i ¼ 1 to qð Þ, tdiff ,R,H, ‘*x

	
(1:75)
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Let us note now that in order for this model to show really no bias for sensor i, this detector
should not be a point sensor, but a line sensor.
This is possible if the rear face (zi* ¼ 1) temperature field is measured by infrared

thermography. In that case, output of model Mb at location (xi, yi) is

ymod, i(tk) ¼ Tb(xi, zi ¼ e, tk) (1:76)

Its experimental counterpart can be scrutinized: one notes now Texp
k (xm, yj) the temperature

signal at time tk, for pixel (xm, yj) of the infrared frame, where (m, j) designates a pixel
located in the mth line and jth column.
The output (y-averaged) temperatures of the model have to be compared with the

corresponding experimental response yi(tk) of the ith detector: this can be obtained through
simple addition:

yi(tk) ¼ 1
ni

Xni
j¼1

Texp
k (xm, yj ¼ yi) (1:77)

where ni is the number of pixels in the ith column (constant xm). The reader should not be
confused by the present notation in Equation 1.77: yi(tk) is the experimental temperature
signal of the ith detector, while yi is its coordinate, in the y-direction.
If the average temperature in the y-direction is really measured by a line sensor, there

will be no model error in the estimation of um(x, t). However, the information on the
variation of u in the y-direction is lost by this reduced modeling, which means that the
description of u will be made with no resolution in this direction: people in charge of this
estimation would have therefore to reduce also their initial objective, that is, estimation of
um(x, t) instead of u(x, y, t).

1.6.2.3 1D Model in Z-Direction

Such an averaging can be pursued if one considers now the averaged value of the source
over the whole front face area. The same type of averaging is made for the temperature
field. This leads to model Mc, shown in Figure 1.22c:

umm(t) ¼ 1
‘x

ð‘x
0

um(x, t) dx (1:78)

Tc(z, t) ¼ 1
‘x

ð‘x
0

Tb(x, z, t) dx (1:79)

q2T
qz2
¼ 1

a
qT
qt

(1:80)

T ¼ T0 for t ¼ 0 (1:81)

�k qT
qz
¼ umm(t) at z ¼ 0; �k qT

qz
¼ h(T � T1) at z ¼ e (1:82)
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Once model Mc is put in a dimensionless form, only (qþ 6) independent variables remain
in the x list:

x ¼ {b, umm,DT,T1} with b ¼ zi*, for i ¼ 1 to qð Þ, tdiff ,R,H
� �

(1:83)

This reduction in the number of variables is made at the expense of the space resolution for
u that is completely lost here since it is replaced by its space average umm.

1.6.2.4 2D Fin Model in X- and Y-Directions

If the Biot number H¼ he=k is much lower than unity, temperature variations in the
z-direction, corresponding to the slab thickness, can be considered as negligible and,
consequently, heat transfer in the slab becomes two-dimensional (2D). The resulting 2D
temperature field stems from an integration, with respect to z, of the 3D temperature field
(see Figure 1.22d):

Td(x, z, t) ¼ 1
e

ðe
0

Ta(x, y, z, t) dz (1:84)

This reduced model Md corresponds to a 2D fin whose temperature verifies the following
equations:

q2T
qx2
þ q2T

qy2
� h(T � T1)

ke
þ u(x, y, t)

ke
¼ 1

a
qT
qt

(1:85)

T ¼ T0 at t ¼ 0 (1:86)

qT
qx
¼ 0 in x ¼ 0, ‘x;

qT
qy
¼ 0 in y ¼ 0, ‘y (1:87)

List x is now composed of (2qþ 8) independent variables:

x ¼ {b,u,DT,T1} with b ¼ xi*, yi* for i ¼ 1 to qð Þ, tdiff ,R,H, ‘*x , ‘
*
y

� 	
(1:88)

This relatively high number of variables allows however to keep the initial spatial reso-
lution of stimulus u.

1.6.2.5 1D Fin Model in X-Direction

The 2D-reduced model Mb can be used now to construct a 1D fin model, noted Me, with
the same condition on the Biot number H, through an integration in the z-direction (the
same model Me can be obtained through integration of model Md in y-direction [see
Figure 1.22e]):

Te(x, t) ¼ 1
e

ðe
0

Tb(x, z, t) dz (1:89)
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q2T
qx2
� h(T � T1)

ke
þ u(x, y, t)

ke
¼ 1

a
qT
qt

(1:90)

T ¼ T0 at t ¼ 0 (1:91)

qT
qx
¼ 0 in x ¼ 0, ‘x (1:92)

List x of the independent variables of the model is composed of (qþ 7) quantities:

x ¼ {b,um,DT,T1} with b ¼ zi* for i ¼ 1 to q
� �

, tdiff ,R,H, ‘x*
� �

(1:93)

1.6.2.6 0D Lumped Model

If the source is nearly uniform in space, with a low Biot number in direction z, or if the
sensor provides the volume-averaged temperature of the slab, one obtains a 0D Mf model,
also called lumped model or « small body » model. It corresponds to integration of model
Me in x-direction (see Figure 1.22f):

Tf (t) ¼ 1
‘x

ðe
0

Te(x, t) dx (1:94)

This temperature field is produced by a point source whose intensity umm(t) varies with
time, with

umm(t) ¼ 1
‘x

ð‘x
0

um(x, t) dx (1:95)

The heat equation becomes

rce
dT
dt
þ h(T � T1) ¼ umm(t) (1:96)

The x list of this model is now composed of only five independent variables, includ-
ing a convective resistance (based on a unit area) G¼ 1=h and a time constant
t ¼ rce=h ¼ tdiff =H:

x ¼ {b, umm,DT,T1} with b ¼ (t,G) and DT ¼ T0 � T1 (1:97)

An analytical solution can easily be found:

T ¼ T1 þ DT exp
�t
t

� �
þ G

t

ðt
0

umm(t0) exp � t� t0

t

� �
dt0 (1:98)
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This model is a limit model, only valid if the Biot number, based on the largest of the three
dimensions ‘x, ‘y or e, is much lower than unity. If not, it is a biased model, but its output Tf

can always be compared to the average temperature of the q sensors. This averaged
experimental temperature brings an interesting information on the time variation of the
average absorbed power density on the front face, umm (t).

1.6.2.7 1D Local Model

A last model, noted Mg here, can be used. It is a 1D « local » temperature defined by

ymo, i ¼ Tg(xi, yi, t) ¼ Tc(zi, t;u(xi, yi, t),DT,T1,b) (1:99)

with

bi ¼ (zi*, tdiff i,Ri,Hi) (1:100)

It corresponds to the previous 1D model Mc, applied locally for each sensor. Its response
depends on the sole excitation u(xi, yi, t) that prevails on the front face at the same (x, y)
location (see Figure 1.23).
This allows considering a 3D problem as a set of independent 1D problems, each

individual problem being associated to a specific sensor. Structural parameters belonging
to vector bi differ for each sensor. This vector is composed of a diffusion characteristic time
tdiff i, a resistance Ri, and a Biot number Hi that have all local values corresponding to
location of sensor i. These structural parameters are related to local thickness ei, local heat
transfer coefficient hi, and local conductivity ki and diffusivity ai.
For the whole set of sensors, this model is composed of (qþ 6) independent variables if

these sensors are embedded at the same depth in the slab and if the thermophysical
parameters, h, and the slab thickness do not vary in the x–y plane.
This model is valid only if heat transfer is negligible in the directions of this same plane,

that is, if the slab is made of a composite material that is homogenized but anisotropic: the
principal directions of conductivity tensor k should be those of the slab, with principal

0

y

u(x, y, t)

u(xi, yi, t)

ymo, i (t)

h
z

∂T
∂x

(xi, yi, zi, t) ≈ (xi, yi, zi, t) ≈ 0

zi

xi ℓx x

ymo, i (t)

ymo, i (t) = Tc (zi, t; u (xi, yi, t))

h
e

0

T∞
T∞

e

ℓx

ℓy

x

∂T
∂y

FIGURE 1.23
1D local model Mg.
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components kx ¼ ky ¼ 0, kz ¼ k. However, it is possible to use it with a reasonable bias for
sensors facing front face locations where stimulus u does not vary much (low gradient in
the plane of this face) and for low thickness and thermophysical local variations. This
model is also very interesting in nondestructive testing of composite slabs by infrared
thermography (see Benítez et al. [2008]).

Remarks

. The six reduced models Mb to Mg are all derived from the detailed model Ma and
have lower order dimensions than this original 3D model. They are also charac-
terized by a lower number of structural parameters (see Chapters 13 and 14 for
more details concerning the model reduction).

. Structural parameters of the slab and of the sensors either disappear or are
transferred from one model to a more reduced one along this progressive physical
reduction process. So, passing from model Me to model Mf makes parameter ‘*x , R,
and x*i disappear while parameters H and tdiff merge into a single parameter
t ¼ tdiff =H. This reduction of the parameters number is an irreversible one,
which means that it is not possible to rebuild values of H and tdiff starting from
the knowledge of t only.

. One can also note that during this reduction process, relationships between former
and new parameters are linear if the logarithms of these parameters are consid-
ered: ln (t) ¼ ln (tdiff )� ln (H). This gives an interesting relationship between
reduced sensitivities (see the corresponding course in this series).

. In parallel with the reduction in the number of parameters, a reduction of the space
dimension necessary for reproducing the sensor behavior appears: from an initial
u(x, y, t) stimulus for modelsMa andMd, one gets a um(x, t) stimulus for modelsMb

and Me to finally umm(t) for models Mc and Mf and ui(t) ¼ u(xi, yi, t) for model Mg.
. All these models rely on specific physical assumptions, and none of them corres-

ponds to the absolute reality, even model Ma: this one neglects convecto-radiative
losses on the front face and on the four sides of the slab, coefficient h is supposed to
be uniform in the rear face plane, and the same is true for the initial temperature
inside the slab.

This example shows that the user has to make his or her own choice for the model, since
several representations are generally possible. Accordingly, a more reduced model con-
veys less information about the spatial distribution of the heat source. However, this
inconvenience in direct modeling can become an asset when inversion to reconstruct the
source takes place.

1.6.3 Linear Input–Output Systems and Heat Sources

This section is devoted to the definition of what can be considered as a thermal power
stimulus u. It can be later used for the purpose of estimating u, in an inversion procedure.
It has been shown above, for two geometries, semi-infinite medium (Example 1), and

plane wall (Example 2), that the system-forced response u, to a surface heat flux stimulus,
can be written, for any point P inside the medium, as a convolution product in time (see
Equations 1.39 and 1.96), with a degenerate lumped body model in the second case.
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In a very similar way, a continuous stimulus, that is, a power volumetric density, u(P, t),
once discretized in space (or, more generally parameterized, using any basis of functions in
3D) as an input vector U(t), yields a forced response, in any point of the system, that
corresponds to a convolution product in time, if the heat equation as well as its associated
conditions are linear, with coefficients that can vary in space (nonhomogeneous system), but
not in time (time invariant system). Let us notice that we consider only, in this section, linear
heat sources, that is, sources that do not depend on state, here temperature, in the system.
This very general result can be applied to such a system in the specific case of a stimulus

u whose time dependency can be separated from its space dependency:

u(P, t) ¼ f (t)g(P) (1:101)

We assume here that the source intensity (W m�3) is associated to its time component f (t),
while its distribution in space g(P) is its characteristic function (no unit): its value is 1, if
point P belongs to the source and zero otherwise.
If the model is linear (in terms of the input=output relationship) and if its coefficients do

not vary with time, model response ymo, i(t) at time t, in any point Pi in the system, can be
written as a convolution product (Ozisik, 1980), for a zero initial temperature:

ymo, i(t) ¼
ðt
0

ð
V

Z(t� t, Pi; g(P),b) f (t) dV(P) dt (1:102)

In this equation, Z is a transfer function (impedance or space Green’s function) that
depends on location of the observed point Pi, on the model structural quantities, as well
as on the space distribution g(P) of the source, P being any point inside the system. The
convolution product is implemented between this impedance and the intensity f (t) of the
source.
If stimulus u(P, t) cannot be separated into a product of space and time distributions, this

means that several different sources coexist in the system. Each of them can be ‘‘separated’’
and is noted uk(P, t) ¼ fk(t)gk(P), where k is the number of the individual source. One can
think, for example, of two heating electrical resistances, embedded in a solid, and that are
not turned on at the same time. So, a superposition of solutions of the previous form (1.102)
can be implemented to get the global response in point Pi:

u(P, t) ¼
X
k

fk(t)gk(P) (1:103)

ymo, i(t) ¼
X
k

ðt
0

ð
V

Zk(t� t, Pi; gk(P),b) fk(t) dtdV(P) (1:104)

Forms (1.102) and (1.104) remain valid in the quite general case where thermophysical
properties of the constitutive materials, as well as the heat transfer coefficients and
interface resistances used in the model, vary in space (system composed of heterogeneous
materials).
However, if these parameters vary with time, the heat equation and its associated

conditions may be still linear, but convolution products or transfer functions cannot be
used for calculating the sensor responses anymore.
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Nomenclature

a thermal diffusivity (m2 s�1)
~a acceleration (m s�2)
A state matrix
b thermal effusivity (J s1=2 m�2 K�1)
B input matrix
c, cp specific heat (J kg�1 K�1)
C output matrix
D diameter (m)
e thickness (m)
E energy (J)
E( . . . ) vector function
exp(.) exponential of a matrix
f(.) function (for time variable)
~F force (N)
g(.) function (for space variable)
G coupling factor for the two-temperature model (W m�3 K�1) or convective

thermal resistance for a unit area of 0D lumped model (m2 K W�1)
G(.) Green’s function
grad(.) gradient vector
h heat transfer coefficient (W m�2 K�1)
�h Planck’s constant (J s)
H Biot number, or enthalpy by unit volume ( J m�3)
k thermal conductivity (W m�1 K�1)
kB Boltzmann’s constant ( J K�1)
~k wave vector (m�1)
k conductivity tensor, or thermal dispersion tensor (W m�1 K�1)
K thermal conductance for a unit area (W m�2 K�1)
K macroscopic conductivity tensor of the two-temperature model (W m�1 K�1)
‘, L length (m)
m number of data samples, or mass (kg)
M model
n number of parameterized input function components
N size of the state vector
Nq distribution function for mode q
Nj square of the function fj norm
p dim(B), or Laplace parameter (s�1)
P¼ (x, y, z) point coordinates
q number of measurement points
qvol distributed volumic heat source (W m�3)
~r position vector
R thermal resistance per unit area (m2 K W�1)
t time (s)
tc characteristic time (s)
t0 dumb integration variable (s)
T temperature (K)
T0 initial temperature (K)
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T1 temperature of the fluid environment (K)
T(t) column-vector of the discretized state (temperature)
TP(t) state (temperature) of the system, continuous version
u(.) single input function (W m�2 or W m�3)
uparam single input parameterized vector
U(t) inputs column-vector (dim p)
~v, v velocity vector (m s�1)
x list of data of direct problem
x data list for the direct problem
y measured signal (output of a single sensor)
ymo theoretical signal, output of a model
y experimental output column-vector (dim m)
ymo simulated column-vector (dim m)
Z thermal impedance (m2 K J�1)

Greek Variables

b parameter vector
x characteristic function
DT temperature difference (K)
e volume fraction or porosity, or measurement noise
ei noise at time ti (K)
h(:) function, output model structure
h(:) multiple-output model structure
l wavelength (m)
L mean free path (m)
r nabla operator (gradient)
f heat flux (W)
~w heat flux density (W m�2)
r mass density (kg m�3)
t time constant or relaxation time (s)
tdiff characteristic diffusion time (s)
QD Debye’s temperature (K)

Subscripts

c complementary (known)
calib calibration
det relative to a detailed model
e electron
H enthalpic
l lattice
m space average
mm double space average
mo model
n normal
0 initial
param parameterized
pos position
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P relative to point P
q mode number
r researched
red relative to a reduced model
s sensor
ss steady state
struct structural
t total
th thermal
x direction x
y direction y
z direction z
b b-phase
l relative to wavelength l
s s-phase

Superscripts

� time Laplace transform
¼ tensor
* exact value, or dimensionless quantity of a dimensionless model
T transposed matrix
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2.1 Introduction

The purpose of this chapter is twofold: first we present, in a didactic form, the main ideas
underlying the method of homogenization (also called homogenization theory) and, sec-
ond, we use the method as a tool to develop a multiscale modeling approach, able to
analyze a wide spectrum of transport phenomena in random heterogeneous media (media
whose microstructures may be described appropriately by non-trivial joint probability
density functions [JPDFs]). The approach is also based on variational calculus and the
finite element method and leads to the prediction of macroscopic effective properties of
heterogeneous media. Here, the multiscale approach is exposed in the context of the heat
conduction problem in composite materials, whose components are all thermally conduct-
ing. An expression for the tensorial effective thermal conductivity of such materials is
derived, and some properties of the effective conductivity are shown.
In this chapter, we present in detail the continuous formulations of the heat conduc-

tion problems, which are part of the multiscale approach. On the other hand, we only
summarize the main steps for numerical solution of these problems via the finite
element method. Sample numerical results for the effective thermal conductivity of
the 2D square array of circular cylindrical fibers and of the 3D simple cubic array of
spheres are presented up to maximum packing. The reader is referred to the works by
Cruz and Patera (1995), Cruz et al. (1995), Cruz (1997, 1998), Machado and Cruz (1999),
Matt (1999, 2003), Rocha (1999), Machado (2000), Rocha and Cruz (2001), Matt and Cruz
(2001, 2002a, 2002b, 2004, 2006, 2008), and Pereira et al. (2006) for more details of the
numerical solutions and for the presentations and analyses of numerical results for the
effective thermal conductivities of 2D and 3D, ordered and random composites. Various
computational techniques developed to address the heat conduction problem in com-
posite materials are reviewed by Pereira et al. (2006), Matt and Cruz (2006, 2008), and
Cruz (2001).
It should be remarked that there are several other approaches to analyze transport

phenomena in heterogeneous and multiphase systems. Phenomenological effective med-
ium approaches (see Torquato 2002) do not tackle the underlying physics at the micro-
structural level, such that they attempt to establish the macroscopic properties by
proposing ad hoc assumptions. Another much employed technique is volume averaging,
as discussed in Chapter 1 and in the monograph by Whitaker (1999). The main objective of
volume averaging is to formulate the spatially smoothed governing equations that are
valid everywhere in the heterogeneous medium of interest. The development of closure
problems is then necessary to permit the prediction of the medium’s effective transport
properties, which relate macroscopic fluxes to intensity gradients. Regarding both volume
averaging and homogenization approaches, it appears that much more research effort has
been devoted to formulating several different classes of transport problems in heteroge-
neous media than to computing the associated macroscopic properties. Therefore, a com-
parative analysis of effective property results arising from these alternative methods is
beyond the scope of the present work.
The outline of this chapter is as follows. In Section 2.2, the method of homogenization is

introduced didactically. We first offer a formal definition and then illustrate with physical
examples the mathematical problems involved in the definition. Next, we give a brief
overview of the analytical techniques that may be employed in the homogenization proced-
ure. Finally, we apply the method to a general elliptic model problem in strong form.
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In Section 2.3, we apply the method of homogenization to the heat conduction problem of
interest, adopting a variational approach and exploiting the analysis of Section 2.2.
Although some of our results are also shown, in a different form, in Auriault (1983), we
not only present a more detailed derivation here, but also the variational treatment makes
the final expressions directly suitable for subsequent numerical treatment using the finite
element method. In Sections 2.4 through 2.7, we describe the multiscale modeling approach,
which decomposes the original multiscale problem into the macroscale, mesoscale, and
microscale (sub)problems. In Section 2.8, we briefly discuss the numerical treatment of the
pertinent problems, and in Section 2.9 we present some representative results stemming
from solutions to the mesoscale and microscale problems. Finally, in Section 2.10, we state
the conclusions.

2.2 Method of Homogenization

The method of homogenization can be applied to analyze a variety of periodic hetero-
geneous systems—those composed of several macroscopic phases and=or dissimilar
constituents and characterized by a repetitive elementary structure. A comprehensive
treatment of the subject is given in Bensoussan et al. (1978), and a survey of applications
of homogenization theory to a wide spectrum of problems can be found in Babuška
(1975). The method has been applied to study neutron and radiative transport (Larsen
1975, Bensoussan et al. 1979), to tackle the problem of dynamic fluid–structure inter-
actions in large rod bundles (Schumann 1981) and to develop a procedure for shape
optimization of structures (Bendsøe and Kikuchi 1988). In Mei and Auriault (1989), the
method is the essence of the formulation of the creeping flow problem through periodic
porous media with several spatial scales, and in Mei and Auriault (1991) the approach is
extended to include the effect of weak inertia. Kami�nski and Kleiber (2000) have also
employed homogenization to investigate the behavior of random elastic composites
with stochastic interface defects.
In the heat transfer (or rather conduction) context, the objective is to determine the

effective thermal conductivity of an equivalent homogeneous medium, which will ther-
mally behave, in a macroscopic sense, as the original heterogeneous medium (Milton 2002).
Auriault (1983) and Auriault and Ene (1994) have used homogenization to determine the
effective conductivity of certain types of laminated composites. More recently, homogen-
ization theory has been applied in Cruz (1998) to derive an expression for the effective
conductivity of particulate composites whose continuous (the matrix) and dispersed (the
particles) components are thermally conducting. The dependence of the thermal conduct-
ivity of composite materials on temperature has been considered in Chung et al. (2001) by
applying homogenization.

2.2.1 Definition

In short, the method of homogenization employs volume averaging (see Chapter 1) to yield
a mathematically rigorous mixture-type model for a heterogeneous medium with periodic
microstructure and separated length scales. A formal definition may be offered by first
introducing three types of boundary value problems (BVPs).
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1. BVP-1

Aeue ¼ f in V, (2:1)

ue subject to boundary conditions on qV: (2:2)

The domain V is an open bounded set of Rn, qV is the bounding surface of V in
R
n�1, Ae is a general partial differential operator with periodically varying and

continuous coefficients, f : V ! R
m, m � n, is the source term, and ue is subject to

Dirichlet, Neumann, and=or mixed boundary conditions in (2.2).
The characteristic length scales of the domain V and of the periods of the

coefficients are, respectively, L and l; the positive parameter e is the ratio of
such scales, and it is assumed here that the scales are well separated, that is,

e � l

L
� 1, (2:3)

implying statistical homogeneity. BVP-1 is said to have rapidly oscillating coeffi-
cients.

2. BVP-2

AHuH ¼ f in V, (2:4)

uH subject to boundary conditions on qV: (2:5)

The partial differential operator AH has constant coefficients, that is, AH is a
homogeneous operator; thus, this BVP is said to be homogenized.

3. BVP-3

ACuC ¼ fC in VC, (2:6)

uC subject to boundary conditions on qVC: (2:7)

The domain VC, an open bounded set of Rn, is a periodic cell of characteristic size
l, that is, with dimensions proportional to l in all n coordinate directions. The
partial differential operator AC may have constant or variable coefficients within
VC, and uC and f C are l-periodic functions (functions that admit period Cjl, Cj¼O
(1) 2 R, in the direction xj, j¼ 1, . . . ,n). This BVP is called a cell problem.

We are now in a position to offer a formal definition of the method of homogenization:
the method is a rigorous mathematical technique whereby one can replace, in the limit
e! 0, a BVP with rapidly varying coefficients (type BVP-1) with a homogenized problem
(type BVP-2), whose coefficients must be determined through the solution of a cell problem
(type BVP-3). Although all three problems are, in general, hard to solve analytically, the
method of homogenization has the distinct advantage that problems of the types BVP-2
and BVP-3 are much easier to solve numerically than those of the type BVP-1, since the
latter not only require O(1=en) more degrees of freedom but are also much stiffer.
From the point of view of physics, problem BVP-1 may describe heat transfer, creeping

flow, or a neutron transport process in a heterogeneous medium of typical macroscale L
with a spatially periodic microstructure of period l. Problems BVP-2 and BVP-3 may
describe the same aforementioned phenomena, respectively, in a homogeneous, effective
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medium (in general anisotropic) of typical macroscale L and in a periodic cell of size l.
Note that the coefficients of AH in BVP-2 correspond, by definition, to the effective
macroscopic properties of the original heterogeneous medium considered in BVP-1.
Because the determination of such coefficients demands that a solution be found to a cell
problem defined in the periodic microstructure of the medium, of size l� L, it is said that
the method of homogenization allows one to describe macroscopically the behavior of a
heterogeneous medium through the analysis of the behavior of its underlying microscopic
structure; Figure 2.1 illustrates this process.
The lack of a unique precise definition of effective property of a heterogeneous medium

led to many reports in the past with discrepant results (Babuška 1975). The method of
homogenization not only provides a consistent way of computing effective properties for
heterogeneous materials with periodic microstructures, but it also relates global quantities
(e.g., bulk heat flow) defined for the original medium to those computed for the equivalent
homogeneous medium. It should be pointed out that, typically, real random heteroge-
neous media possess no period l, in which case homogenization theory does not directly
apply. The concept of the correlation length (Cruz and Patera 1995, Cruz 2005), developed
in Section 2.6.4, may be used to bridge the transition periodic ! random, provided such
length is small compared to the macroscale L.

2.2.2 Additional Considerations

As previously discussed in Chapter 1, the elaboration of a mathematical model to describe
a given physical phenomenon is relative to the desired scale of observation, and is a typical
product of scientific investigation. Frequently, the model leads to a problem of the type
BVP-1, particularly when one is dealing with heterogeneous systems; homogenization
theory can thus be employed to solve such model. In order to replace the operator Ae of
BVP-1 with the operator AH of BVP-2, several mathematical techniques can be used, based
on (see, e.g., Bensoussan et al. 1978) the following:

1. Asymptotic expansions using multiple scales, the fast scale proportional to l, and
the slow scale proportional to L

2. Energy estimates

3. Probabilistic arguments

4. Spectral decomposition of Ae

L
as
= +

L 0

BVP-1 BVP-2 BVP-3

Periodic multicomponent
medium

λ
λε

λ
Homogeneous (effective)

medium
Periodic

cell

L

FIGURE 2.1
Diagrammatic representation of the method of homogenization.
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The method of asymptotic expansions is attractive when dealing with problems of the type
BVP-1 because of the presence of a natural separation of scales, as evidenced by Equation 2.3;
note that such clear separation of scales is not present in turbulence. The procedure is then
to look for the solution ue¼ ue(x), x 2 R

n, of BVP-1 in the form of an asymptotic expansion
in terms of the small positive parameter e:

ue ¼ u0 þ eu1 þ e2u2 þ � � � , (2:8)

where the functions uj, j¼ 0,1, . . . , are now the new unknowns, having all the same order of
magnitude. Next, by inserting (2.8) into (2.1) and (2.2) and collecting equal powers of e, a
problem of the type BVP-2 is obtained for u0, with boundary conditions dependent on
those prescribed for the original problem. The main result of the method, shown by
Bensoussan et al. (1978), is that ue converges weakly to u0 as e ! 0 (weak convergence
means convergence of suitable averages). The explicit analytical construction of the homo-
geneous operator AH is crucial for the actual solution of the problem and involves solving a
l-periodic cell problem (type BVP-3), which yields the correct constant coefficients of AH.
In general, the homogenized and cell problems have to be solved numerically. In the
following section, we apply the asymptotic expansion technique to a typical elliptic
model problem.

2.2.3 Application to a Model Problem

Let us apply the method of homogenization to the following model problem in strong
form: in BVP-1, let

Ae ¼ � q
qxi

aij(y)
q
qxj

� �
þ a0(y), (2:9)

where x 2 R
3, y � x=e, and aij(y), i, j¼ 1, 2, 3, and a0(y) are continuous l-triply periodic

functions; we remark that the summation convention is adopted throughout this chapter.
Formally, a function is said to be l-triply periodic if it admits periods proportional to l in
all three coordinate directions. The second-order elliptic operator Ae in (2.9) models many
physical phenomena (e.g., heat or electrical conduction) in composite materials with
periodic microstructure. We are now interested in determining the behavior of the solution
ue of BVP-1, with Ae given in (2.9), as e ! 0.
The presence of the two disparate scales L and l in BVP-1, and the l-periodicity of Ae

motivate the application of the method of asymptotic expansions using multiple scales
(Bensoussan et al. 1978, Mei and Auriault 1989), whereby we look for the solution ue(x) in
the form

ue(x) ¼ u0 x,
x
e

� 	
þ eu1 x,

x
e

� 	
þ e2u2 x,

x
e

� 	
þ � � � , (2:10)

where uj(x,y), y � x=e, j¼ 0, 1, 2, . . . , are l-triply periodic in y. The ‘‘fast’’ variable y scales
(magnifies) the period l to L and is introduced here to separate the periodic and nonper-
iodic parts of ue, which vary, respectively, rapidly over l and slowly over L. The new BVPs
for the unknown functions uj are determined by first inserting (2.10) into (2.1), with Ae

given in (2.9), and then by collecting the terms with equal powers of e. Note that care is
necessary with the operator q=qxj: when operating on a function G¼ Ĝ(x)¼ �G(x,y), we
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must first treat x and y as independent variables, and subsequently replace y with x=e to
obtain

q
qxj

(G) ¼ qĜ
qxj
¼ q�G

qxj
þ 1

e
q�G
qyj

: (2:11)

If, furthermore, G can be expanded as G¼G0þ eG1þ e2G2þO(e3), then from (2.11)

q
qxj

(G) ¼ q�G0

qxj
þ 1

e
q�G0

qyj
þ e

q�G1

qxj
þ q�G1

qyj
þ e2

q�G2

qxj
þ e

q�G2

qyj
þO(e2): (2:12)

Inserting Equation 2.9 into 2.1, and using Equation 2.12, one obtains

Aeue ¼ (e�2A2 þ e�1A1 þ e0A0)ue ¼ f , (2:13)

where

A2 ¼ � q
qyi

aij(y)
q
qyj

� �
, (2:14)

A1 ¼ � q
qyi

aij(y)
q
qxj

� �
� q
qxi

aij(y)
q
qyj

� �
, (2:15)

A0 ¼ � q
qxi

aij(y)
q
qxj

� �
þ a0: (2:16)

Now inserting Equation 2.10 into 2.13, and collecting the powers e�2, e�1, and e0, the
following equations involving A0, A1, A2 and u0, u1, u2 result:

A2u0 ¼ 0, (2:17)

A2u1 þ A1u0 ¼ 0, (2:18)

A2u2 þ A1u1 þ A0u0 ¼ f : (2:19)

Before proceeding further, we state a result to be used in the development to follow. The
solvability condition (i.e., uniqueness up to an additive constant) for the problem

A2f ¼ F in Y,

f periodic in Y,

(
(2:20)

where A2 is given in (2.14) and Y is a region in R
3, is (see Bensoussan et al. 1978)ð

Y

F(y) dy ¼ 0: (2:21)

To arrive at (2.21), we integrate (2.20) over Y, apply the first form of Green’s theorem
(Hildebrand 1976), and then use the periodicity of f.
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Noting that the operator A2 involves y only, and considering the solvability condition
(2.21), we conclude that Equation 2.17 implies that u0 is a function of x only, that is,

u0 ¼ u0(x): (2:22)

Inserting Equations 2.15 and 2.22 into 2.18, we obtain

A2u1 ¼ q
qyi

aij(y)
� �

qu0(x)
qxj

; (2:23)

the separation of the variables x and y on the right-hand side (RHS) of (2.23) allows one to
represent u1 in the following simple form: if xj¼ xj(y) is defined as the l-triply periodic
solution (up to an additive constant) of

A2x
j ¼ � q

qyi
aij(y), (2:24)

then the general solution of (2.23) is given by

u1(x, y) ¼ �xj(y) qu0qxj
þ ~u1(x): (2:25)

The problem for u1 then reduces to finding xj(y); since A2 involves y only and both aij(y)
and xj(y) are l-triply periodic, Equation 2.24 (with proper boundary conditions) constitutes
the cell problem BVP-3.
From the condition (2.21), it is easily seen that one can solve (2.19) for u2, treating x as a

parameter, if ð
Y

(A1u1 þ A0u0) dy ¼
ð
Y

f dy (2:26)

(note that, here, Y has dimensions proportional to l in all coordinate directions); using
(2.15), (2.16), and (2.25) and the fact that f¼ f(x), (2.26) becomesð

Y

� q
qyi

aij(y)
qu1(x, y)

qxj

� �
� q
qxi

aik(y)
q
qyk

�xj(y) qu0
qxj
þ ~u1(x)

� �� �


� q
qxi

aij(y)
qu0
qxj

� �
þ a0u0

�
dy ¼ f

ð
Y

dy, (2:27)

or, since x is a parameter,

� 1
jYj

ð
Y

aij � aik
qxj

qyk

� �
dy

8<:
9=; q2u0

qxiqxj
þ 1
jYj

ð
Y

a0(y)dy

8<:
9=;u0 ¼ f , (2:28)
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where jYj is the measure of the entire region Y,

jYj �
ð
Y

dy: (2:29)

Clearly, the coefficients

Ceffij � �
1
jYj
ð
Y

aij � aik
qxj

qyk

� �
dy, (2:30)

and

C0 � 1
jYj
ð
Y

a0(y)dy (2:31)

are constants (y is integrated out); therefore, Equation 2.28 (with proper boundary condi-
tions) constitutes the homogenized problem BVP-2. We can thus write the homogenized
operator AH explicitly as

AH ¼ Ceffij
q2

qxiqxj
þ C0; (2:32)

defining, in general, the average

m(f) � 1
jYj
ð
Y

f(y)dy, (2:33)

then

Ceffij ¼ �m(aij)þm aik
qxj

qyk

� �
(2:34)

and

C0 ¼ m(a0): (2:35)

Mathematically, Ceffij and C0 are the effective coefficients of the operator Ae; physically, they
are the effective bulk properties of the heterogeneous medium, associated with the physical
process for which BVP-1 is the appropriate model.
It is worthwhile to conclude this section by stating the following results, which are

proved by Babuška (1975) and Bensoussan et al. (1978).

1. Symmetry. If Ae is symmetric (aij¼ aji), then AH is also symmetric.

2. Ellipticity. For our model problem, the operator AH, which does not depend on V,
is elliptic.
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