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About the Series

The Series in Medical Physics and Biomedical Engineering describes the applica-
tions of physical sciences, engineering, and mathematics in medicine and 
clinical research.

The series seeks (but is not restricted to) publications in the following topics:

• Artificial organs
• Assistive technology
• Bioinformatics
• Bioinstrumentation
• Biomaterials
• Biomechanics
• Biomedical engineering
• Clinical engineering
• Imaging
• Implants
• Medical computing and 

mathematics
• Medical/surgical devices

• Patient monitoring
• Physiological measurement
• Prosthetics
• Radiation protection, 

health physics, and 
dosimetry

• Regulatory issues
• Rehabilitation engineering
• Sports medicine
• Systems physiology
• Telemedicine
• Tissue engineering
• Treatment

The Series in Medical Physics and Biomedical Engineering is an international 
series that meets the need for up-to-date texts in this rapidly developing 
field. Books in the series range in level from introductory graduate textbooks  
and practical handbooks to more advanced expositions of current research.

The Series in Medical Physics and Biomedical Engineering is the official book 
series of The International Organization for Medical Physics.

The	International	Organization	for	Medical	Physics

The International Organization for Medical Physics (IOMP), founded in 
1963, is a scientific, educational, and professional organization of 76 national 
adhering organizations, more than 16,500 individual members, several cor-
porate members, and four international regional organizations.

IOMP is administered by a council, which includes delegates from each 
of the adhering national organizations. Regular meetings of the council are 
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held electronically as well as every 3 years at the World Congress on Medical 
Physics and Biomedical Engineering. The president and other officers form 
the executive committee and there are also committees covering the main 
areas of activity, including education and training, scientific, professional 
relations, and publications.

Objectives

• To contribute to the advancement of medical physics in all its aspects
• To organize international cooperation in medical physics, especially 

in developing countries
• To encourage and advise on the formation of national organizations 

of medical physics in those countries which lack such organizations

Activities

The official journals of the IOMP are Physics in Medicine and Biology, Medical 
Physics, and Physiological Measurement. The IOMP publishes a bulletin Medical 
Physics World twice a year, which is distributed to all members.

A World Congress on Medical Physics and Biomedical Engineering is held 
every 3 years in cooperation with IFMBE through the International Union 
for Physics and Engineering Sciences in Medicine (IUPESM). A regionally 
based International Conference on Medical Physics is held between World 
Congresses. IOMP also sponsors international conferences, workshops, and 
courses. IOMP representatives contribute to various international commit-
tees and working groups.

The IOMP has several programs to assist medical physicists in developing 
countries. The joint IOMP Library program supports 69 active libraries in 
42 developing countries and the Used Equipment Programme coordinates 
equipment donations. The Travel Assistance Programme provides a limited 
number of grants to enable physicists to attend the World Congresses.

The IOMP website is being developed to include a scientific database of 
international standards in medical physics and a virtual education and 
resource center.

Information on the activities of the IOMP can be found on its website at 
www.iomp.org.



ix

Preface

Monte Carlo methods have become an important tool for exploring com-
plicated systems and especially for investigation of imaging parameters in 
nuclear medicine. By using sampling methods based on probability distribu-
tion function in combination with methods that simulate the various particle 
interaction that can occur, a detailed radiation transport can be simulated 
from the patient into the imaging system. Monte Carlo simulation does not 
replace experimental measurements but offers a unique possibility to gain 
understanding in the underlying physics phenomena that form nuclear 
medicine images. It also provides a substantial help to researchers to develop 
methods for image improvement. When combining an accurate model of the 
imaging system and a realistic model of the patient’s geometry and activ-
ity distribution, the simulated images can be highly clinically realistic and 
almost undistinguishable from a real patient measurement.

The first edition of this book was published in 1998. It was one of the first 
books that combined a description of the Monte Carlo methods and prin-
ciples with relevant Monte Carlo programs and applications in the field of 
diagnostic nuclear medicine. It is now 14 years since that publication and we 
therefore felt that it was important to have a second edition since new and 
very powerful Monte Carlo programs and methods have become available.

This new edition provides the background to, and a summary of, the cur-
rent Monte Carlo techniques that are in use today. The focus is still on the 
diagnostic imaging application but several programs that are described in 
the book also allow for charge-particle simulations applicable to dosimetry-
related applications. The physics and technology behind scintillation cam-
era imaging, SPECT/PET systems, and several MC simulation programs are 
described in detail. We have retained the aim from the first edition of the 
book, that is, to explain the Monte Carlo method and introduce the reader 
to some Monte Carlo software packages, developed and used by different 
research groups, and to give the reader a detailed idea of some possible 
applications of Monte Carlo in current research in SPECT and PET. Some of 
the chapters in the first edition of the book have been omitted to allow space 
for coverage of new programs and topics. Other chapters have been retained 
but updated. This does not mean that the chapters that we were not been 
able to include are unimportant; so thus a good suggestion is to have access 
to both editions.

Some chapters in this book describe in detail the physics and technology 
behind current simulated imaging detectors and systems in nuclear medicine 
and molecular imaging. The reason behind this is to let the reader be familiar 
with the imaging systems and to provide an understanding of the complexity 
of the systems that Monte Carlo programs are intended to simulate.



x Preface

The editors are very happy that so many excellent authors were able to 
contribute to the present book and share their knowledge and experience in 
the field of Monte Carlo simulation and application. We would therefore like 
to thank all of them for their hard work and willingness to contribute to this 
book.

The text is intended to be useful both for education on graduate and under-
graduate levels, and as a reference book on the Monte Carlo method in diag-
nostic nuclear medicine.
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Introduction to the Monte Carlo Method

Michael	Ljungberg

In the literature, we see today an increasing number of scientific papers 
which use Monte Carlo as the method of choice for the evaluation of a range 
of nuclear medicine topics such as the determination of scatter distributions, 
collimator design, and the effects of various parameters upon image quality. 
So what is the Monte Carlo method and why is it so commonly used as a tool 
for research and development?

A Monte Carlo method can be described as a statistical method that uses 
random numbers as a base to perform a simulation of specified situation. 
The name was chosen during the World War II Manhattan Project because 
of the close connection to games based on chance and because of the location 
of a very famous casino in Monte Carlo.
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In most Monte Carlo applications, the physical process can be simulated 
directly. It only requires that the system and the physical processes can be 
modeled from known probability density functions (pdfs). If these pdfs can 
be defined accurately, the simulation can be made by random sampling from 
the pdfs. To obtain reasonable statistical errors, a large number of simula-
tions of histories (e.g., photon or electron tracks) are necessary to get an accu-
rate estimate of the parameters to be calculated.

Generally, simulation studies have several advantages over experimental 
studies. For any given model, it is very easy to change different parameters 
and investigate the effect of these changes on the performance of the sys-
tem under investigation. Thus the optimization of an imaging system can 
be aided greatly by the use of simulations. A very early Monte Carlo study 
of the spectral distribution was made by Anger and Davis [1] that calculated 
the intrinsic efficiency and the intrinsic spatial resolution for NaI(Tl) crys-
tals of different thicknesses and for various photon energies. Also, one can 
study the effects of parameters that cannot be measured experimentally. For 
example, it is impossible to measure the scatter component of radiation emit-
ted from a distributed source independently of the unscattered component. 
By using a Monte Carlo technique incorporating the known physics of the 
scattering process, it is possible to simulate scatter events from the object and 
determine their effect on the final image. These studies have included mea-
surements of the scatter to primary ratios, the shape of the scatter response 
function, the shape of the energy spectrum, proportion of photons undergo-
ing various number of scattering events, and the effect attenuator shape and 
composition in addition to camera parameters such as energy resolution and 
window size. Hence, a simulation program can help the understanding of 
the underlying processes since all details of the simulation are accessible.

Overview papers of the Monte Carlo method and its applications in dif-
ferent fields of radiation physics have been given elsewhere by, for example, 
Raeside [2], Turner et al. [3], Andreo [4], and recently, Zaidi [5,6]. Here, we 
will outline only the basic methodology and how this may be applied to 
nuclear medicine problems.

Random	Number	Generator

A fundamental part of any Monte Carlo calculation is the random number 
generator. Basing the number on the detection of true random events, such 
as radioactive decay, the random number can be calculated but is generally 
very cumbersome and time consuming. On the other hand, true random 
numbers cannot be calculated since they, by definition, are randomly dis-
tributed and, as a consequence of this, they are unpredictable. However, 
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for practical considerations, a computer algorithm can be used to generate 
uniformly distributed random numbers from calculated seed numbers. An 
example of such an algorithm is the linear congruential algorithm where 
series of random numbers In are calculated from a first seed value I0, accord-
ing to the relationship

 I aI bn n
k

+ = +1 mod 2( ) ( )  
(1.1)

a and b are constants and k is the integer word size of the computer. If b is 
equal to zero, then the random number generator is called a multiplicative 
congruential random number generator. The following FORTRAN statement 
describes the random number generator in Equation 1.1. SEED is the initial 
value and RAN is the real random number in the range [0,1].

REAL FUNCTION RAN(SEED)
PARAMETER (IA=7141, IC=54773, IM=259200)
SEED = MOD(INT(SEED)*IA+IC,IM)
RAN = SEED/IM
END

It is important to realize that using the same value of SEED will give the 
same sequence of random numbers. Thus, when comparing different simu-
lations, one needs to randomly change the initial value of SEED. This can be 
done, for example, by triggering a SEED value from a call to the system clock 
or by storing the value of the previous SEED immediately before exit of the 
previous simulation and then using this value as an initial value in the next 
simulation. This approach avoids obtaining the same results if a previous 
simulation is repeated. Repetition can in some cases be advantageous, for 
example, in a debugging procedure where small systematic errors can be 
difficult to spot if errors occur between simulations for statistical reasons.

An effect of this form of digital data representation in a computer is that 
there is a risk that the initial seed number can appear later in the random 
number sequence. If this occurs, then it is said that the random number 
generator has “looped.” Although the following numbers are still randomly 
distributed, they are copies of the values generated earlier in the sequence. 
The severity of this effect depends on the application. The length of the 
sequence for the linear congruential generator is 2k if b is odd. For the multi-
plicative congruential generator, the sequence length is 2k − 2. Other popular 
and high-quality random number generators are the RANMAR algorithm 
[7] and the RANLUX algorithm [8]. In the RANLUX algorithm, a user can 
define the level of accuracy (“luxury level”) depending on the need. The 
lowest level provides a fast algorithm but the numbers may not pass some 
tests of uniformity. Higher levels move toward a complete randomness of 
the sequence.
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Sampling	Techniques

In all Monte Carlo calculations, some a priori information about the process to 
be simulated is needed. This information is usually expressed as probability 
distribution functions, pdfs, for different processes. For example, when simu-
lating photon interactions, the differential cross-section data represent such 
information used to calculate the path length and interaction type. From this 
information, a random choice can be made on which type of interaction will 
occur or how far a photon will go before the next interaction. A probability 
distribution function is defined over the range of [a,b]. The function is ideally 
possible to integrate so that the function can be normalized by integration 
over its entire range. To obtain a stochastic variable that follows a particular 
probability distribution function, two different methods can be used.

Distribution Function Method

A cumulated cpdf(x) is constructed from the integral of pdf(x) over the inter-
val [a,x] according to

 

cpdf pdf d( ) ( ’) ’x x x
a

x

= ∫
 

(1.2)

A random sample x is then sampled by replacing cpdf(x) in Equation (1.2) 
with a uniform distributed random number in the range of [0,1] and solved for 
x. Two examples of pdf(x)s and corresponding cpdf(x)s are shown in Figure 1.1.
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Two exponential probability distribution functions and their related calculated cumulated dis-
tribution function.
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“Rejection” Method

Occasionally, the distribution function method is cumbersome to use due 
to mathematical difficulties in the calculation of the inverse of the cpdf. In 
these cases, one can use the rejection method that basically can be described 
by three steps.

Step	1: Let the probability distribution function, pdf(x), be bounded in 
the range [a,b]. Calculate a normalized function pdf*(x) = pdf(x)/max 
[pdf(x)] so the maximum value of pdf* is equal to unity.

Step	2: Sample a uniform distributed value of x within the range [a,b] 
from the relation x = a + R1 ⋅ (b − a) and where R1 is a random number.

Step	3: Let a second random number R2 decide whether the sampled 
x should be accepted. This choice is made by calculating the func-
tion value of pdf*(x) from the sampled x value and then checked if 
R2 < pdf*(x). If this relation is fulfilled, then x is accepted as a proper 
distributed stochastic value. Otherwise, a new x value needs to be 
sampled, according to the procedure in Step 2.

“Mixed” Methods

A combination between the two methods, described so far, can be used to 
overcome potential problems in developing algorithms, based on either of the 
two methods alone. Here, the pdf(x) is the product of two probability distri-
bution functions pdfA(x) ⋅ pdfB(x). The different steps in using this method are

Step	1: Let pdfA(x) be normalized so that the integral of pdfA(x) over the 
range [a,b] is unity.

Step	2: Let pdfB(x) be normalized so that the maximum value of pdfB(x) 
is equal to unity.

Step	 3: Choose an x from pdfA(x) by using the distribution function 
method.

Step	4: Apply the rejection method on pdfB(x) using the sampled value 
x from Step 3 and check whether or not a random number R is less 
than pdfB(x). If not, then return to Step 3.

Sampling	of	Photon	Interactions

Since this book will mainly focus on Monte Carlo applications for photon 
transport, describing the basic parts in simulating a photon path can be 
educative.
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Cross-Section Data

Data on the scattering and absorption of photons are fundamental for all 
Monte Carlo calculations since the accuracy of the simulation depends on 
the accuracy in the probability functions, that is, the cross-section tables 
[9–11]. Photon cross sections for compounds can be obtained rather accu-
rately (except at energies close to absorption edges) as a weighted sum of the 
cross sections for the different atomic constituents.

A convenient computer program developed to generate cross sections and 
attenuation coefficients for single elements as well as compounds and mix-
tures as needed is the XCOM [12]. This program calculates data for any ele-
ment, compound, or mixture, at energies between 1 keV and 100 GeV. The 
program includes a database of cross sections for the elements. The total 
cross sections, attenuation coefficients, partial cross sections for incoherent 
scattering, coherent scattering, photoelectric absorption, and pair produc-
tion in the field of the atomic nucleus and in the field of the atomic elec-
trons are calculated. For compounds, the quantities tabulated are partial 
and total mass interaction coefficients, which are equal to the product of the 
corresponding cross sections and the number of target molecules per unit 
mass of the material. The sum of the interaction coefficients for the individ-
ual processes is equal to the total attenuation coefficient. A comprehensive 
database for all elements over a wide range of energies has been constructed 
by combining incoherent and coherent scattering cross sections from [13] 
and [14], photoelectric absorption from [15], and pair production cross sec-
tions from [16]. Figure 1.2a and 1.2b shows differential and total attenuation 
coefficients for H2O and NaI, respectively. Note the discontinuity around 
30 keV for NaI.

An aspect which deserves further attention is the fact that there exists a 
variation in the physical cross-section tables included in available Monte 
Carlo codes. This is of special importance when comparing results from dif-
ferent codes. The use of different cross-section data and approximations will 
usually yield different results and the accuracy of such results is not always 
obvious.

Photon Path Length

The path length of a photon must be calculated to decide if the photon 
escapes the volume of interest. Generally, this distance depends upon the 
photon energy and the material density and composition. The distribution 
function method can be used to sample the distributed photon path length x. 
If the probability function is given by

 p x x x x( ) ( )d exp d= −μ μ  (1.3)

Then the probability that a photon will travel the distance d or less is given by
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To sample the path length, a uniform random number R is substituted for 
P(d) and the problem solved for d.
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(1.5)

Since (1 − R) is also a random number and has the same distribution as R, 
one can simplify the calculation, according to (1.5).

Coordinate Calculations

After the sample of a new photon path length and direction, the Cartesian 
coordinate for the end point often is needed to be calculated to check if the 
photon has escaped the volume of interest. This can be made by a geometri-
cal consideration where the new coordinate (x′,y′,z′) in the Cartesian coordi-
nate system is calculated from the photon path length and direction cosines, 
according to

 

x x d u

y y d v

z z d w
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= + ⋅
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(1.6)

where d is the distance between the previous point (x,y,z) and the new point 
of interest (x′,y′,z′). Assuming θ and ϕ are the polar and azimuthal angles in 
the Cartesian coordinate system and Θ and Φ is the polar and azimuthal 
angle defining the direction change, relative to the initial path of the photon, 
then the new direction cosines (u′,v′,w′), necessary to calculate the (x′,y′,z′), are 
calculated from
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Selecting Type of Photon Interaction

The probability for a certain interaction type to occur is given by the dif-
ferential attenuation coefficients. These are tabulated for different ener-
gies and materials. The sum of the differential attenuation coefficients 
for photoelectric effect (τ), Compton interaction (σinc), coherent interaction 
(σcoh), and pair production (κ) is called the linear attenuation coefficient 
μ = τ + σinc + σcoh + κ, or mass-attenuation coefficient if normalized by the 
density. To select a particular interaction type during the simulation, the 
distribution function method can be used. A uniform random number R 
is sampled and if the condition R < τ/μ is true, then a photoelectric interac-
tion will be simulated. If this condition is false, then the same value of R is 
used to test whether R < (τ + σinc)/μ. If this is true, then one continues with a 
Compton interaction. If not, then the test R < (τ + σinc + σcoh)/μ will determine 
if a coherent interaction has taken place. If all conditions are false, then a 
pair production is to be simulated. Obviously, this will only occur if the 
photon energy is >1.022 MeV.

Photo Absorption

In this process, the photon energy is completely absorbed by an orbital 
electron. In the simplest way, the photon history is terminated and the 
energy (and other parameters) is scored. However, it is possible that sec-
ondary characteristic x-rays and Auger electrons can be emitted. The rela-
tive probability for the two emissions is given by the fluorescence yield. If 
a characteristic x-ray is selected, then a new photon energy and an isotropic 
direction are sampled. The new photon is then followed until absorption 
or escape. Note the discontinuity in Figure 1.2. There are relatively large 
differences in attenuation coefficients close to these energies. Therefore, 
care should be taken so that the characteristic x-ray energy is properly set 
when sampling subsequent cross-section data. The deposit energy will be 
the incoming photon energy minus the binding energy for the rejected 
electron.

Incoherent Photon Scattering

Incoherent scattering, commonly denoted Compton scattering, means an 
interaction between an incoming photon and an atomic electron where the 
photon loses energy and changes direction. The energy of the scattered pho-
ton depends upon the initial photon energy, hν, and the scattering angle θ 
(relative to the incident path), according to

 
h

h
h m co

ν
ν

ν θ
ʹ =

+ −1 12( )( cos )/  
(1.8)
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where hν′ is the energy of the Compton scattered photon, mo is the elec-
tron mass, and c is the speed of light in vacuum. One very commonly used 
method to sample the energy and direction of a Compton-scattered photon 
uses the algorithm developed by Kahn [17]. This algorithm is based on the 
Klein–Nishina cross-section equation:

 
d dσ

ν
ν
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(1.9)

The sampling method is based on a mixed method and is shown in the 
following Fortran statement:

ALPHA = HV / 511
TEST = (2*ALPHA+1)/(2*ALPHA + 9)
 RANDOM = 2*RAN(SEED)
IF(RAN(SEED).LT.TEST) THEN
 UU = 1+ALPHA*RANDOM
 IF(RAN(SEED).GT.4*(UU-1)/(UU*UU))GOTO 1
 COSTET = 1-RANDOM
ELSE
 UU = (2*ALPHA + 1)/(ALPHA*RANDOM+1)
 COSTET = 1-(UU-1)/ALPHA
 IF(RAN(SEED).GT.0.5*(COSTET*COSTET + (1/UU))) GOTO 1
ENDIF

The mathematical proof for the algorithm has been described by Raeside 
[2]. The rejection method, described earlier, is derived assuming scattering 
from a free electron at rest using the Klein–Nishina cross section. For situ-
ations where the incoming photon energy is the same order as the binding 
energy of the electron, the assumption of a free electron at rest becomes less 
justified. The cross section for this occurrence is given by

 

d
d

d
d

incohσ σ
Ω Ω

= ⋅KN S x Z( , )
 

(1.10)

where S(x,Z) is the incoherent scattering function [13], Z is the atomic num-
ber, and x = (sin(θ)/2)/λ is the momentum transfer parameter that varies with 
the photon energy and scatter angle. It can be shown [18] that

 

d
d

d
d

incohσ σ
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Ω Ω
= ⋅ ⋅KN S x Z

S x Z
K h Z

( , )
( , )

( , )
max  

(1.11)

where K(hν,Z) is constant for a fixed Z and energy. A scattering angle is sam-
pled from Equation 1.8 using, for example, the Kahn’s method. A momentum 
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transfer parameter, x, is then calculated and θ (obtained from the sampled x) 
is accepted only if a random number R < [S(x,Z)/Smax(x,Z)]. Otherwise, a new 
scattering angle is sampled.

Coherent Photon Scattering

Coherent scattering is an interaction between an incoming photon and an elec-
tron where the direction of the photon is changed but without energy loss. 
This type of interaction leads to photons that are scattering mostly in the for-
ward direction. The sampling technique for a coherent scattering is based on 
the Thomson cross section multiplied by the atomic form factor [13] F(x, Z):

 

d
d

d d
σ

θ θ ϕ
Ω

= +
r

F x Zo
2

2 2

2
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(1.12)

It can be shown [18] that the probability of a photon being scattered into the 
interval dθ around θ is given by

 P K h Z G f x Z( ) ( , ) ( ) ( , )θ θ θd = ⋅ ⋅ν 2

 (1.13)

where K(hν,Z) is constant for a fixed energy and atomic number, G(θ) has a 
fixed range and
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(1.14)

A value of x2 is sampled from a precalculated distribution function of 
f(x2,Z). From this value, a scattering angle, θ, can be calculated provided that 
the relation R < G(θ) is fulfilled.

Pair Production

Simulating pair production is mainly a book-keeping procedure. An initial 
photon is assigned 511 keV and emitted in an isotropic direction. The loca-
tion (x,y,z) and direction cosines (u,v,w) are stored and the photon is followed 
until absorption or escape. The current position is set to the annihilation 
location and a second 511 keV photon is emitted but in a direction oppo-
site to the first and followed until absorption or escape. In some cases, there 
might be a need to simulate the effect of annihilation in flight—an effect that 
results in a non-180° emission between the two photons—and also account 
for the path length of the positrons.
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Example	of	a	Calculation	Scheme

Figure 1.3 shows a flowchart of a photon simulation in a volume including 
photo absorption, incoherent, coherent scattering, pair production, and sim-
ulation of characteristic x-ray emission at the site of photo absorption.

Sampling	of	Electron	Interactions

In many cases in Monte Carlo simulation of nuclear medicine applications 
and especially for imaging, the energy released by secondary electrons 
can be regarded as locally absorbed at the interaction site. However, there 
are some applications that this assumption does not hold. One example is 
absorbed dose calculations in small regions such as preclinical dosimetry 
[19]. Another example is the simulation of bremsstrahlung imaging where 
interacting electrons can produce photons required to be used for imaging 
[20–22]. In these applications, access to Monte Carlo codes that include a 
detailed charged particle simulation can be necessary.

A Monte Carlo simulation of charged particles, such as electrons and posi-
trons, differs from a photon simulation in that most electrons interact by 
the weak Coulomb force which means that for each electron, history typi-
cally in the order of millions of interactions may occur before termination as 
compared to photons that undergo relatively few interactions (order of up to 
10) before absorption. Most of the electron interactions will be inelastic scat-
terings with atomic electrons, which results in small angular deflections at 
each interaction site with a very small energy loss. Only a few of the electron 
interactions occur by elastic scattering with the atomic nuclei, production of 
secondary large-energy electrons, and bremsstrahlung photon generation. 
Inelastic electron interactions that result in a large change in kinetic energies 
and directions are sometimes called “catastrophic” events, whereas interac-
tions resulting in only small changes in direction and energy are categorized 
as “noncatastrophic” events. Since noncatastrophic events will be in a vast 
majority, it becomes very time consuming to simulate the radiation trans-
port in a detailed mode, that is, simulating each particle interaction explicit. 
Therefore, in order to reduce the calculation time, it is common to implement 
the so-called multiple-scattering methods where many electron interactions 
are condensed into larger steps (Figure 1.4).

The condensed history of electron transport was first suggested by 
Berger in 1963 [23] where he proposed simulation of the diffusion of elec-
trons by a number of “snapshots” taken at different time or range intervals. 
The interactions between these snapshots were thus combined into “large” 
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