
K11932_cover.fhmx 12/21/11 11:07 AM Page 1 

C M Y CM MY CY CMY K



REAL-TIME
EMBEDDED
SYSTEMS
Open-Source Operating
Systems Perspective



Embedded Systems

Series Editor

Richard Zurawski
SA Corporation, San Francisco, California, USA 

Communication Architectures for Systems-on-Chip, edited by José L. Ayala

Real-Time Embedded Systems: Open-Source Operating Systems Perspective, Ivan 
Cibrario Bertolotti and Gabriele Manduchi

Time-Triggered Communication, edited by Roman Obermaisser

K11932_FM.indd   2 12/20/11   12:31 PM



CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton   London   New York

IVAN CIBRARIO BERTOLOTTI
GABRIELE MANDUCHI

REAL-TIME
EMBEDDED
SYSTEMS
Open-Source Operating
Systems Perspective



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20111207

International Standard Book Number-13: 978-1-4398-4161-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable 
efforts have been made to publish reliable data and information, but the author and publisher cannot 
assume responsibility for the validity of all materials or the consequences of their use. The authors and 
publishers have attempted to trace the copyright holders of all material reproduced in this publication 
and apologize to copyright holders if permission to publish in this form has not been obtained. If any 
copyright material has not been acknowledged please write and let us know so we may rectify in any 
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are 
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



Foreword

Real-time embedded systems have become an integral part of our technologi-
cal and social space. But is the engineering profession equipped with the right
knowledge to develop those systems in ways dictated by the economic and
safety aspects? Likely yes. But the knowledge is fragmented and scattered
among different engineering disciplines and computing sciences. Seldom any-
one of us has the clear picture of the whole. If so, then parts of it are at an
abstract level. That poses a question whether the academic system provides
education in a way holistic enough to prepare graduates to embark on the de-
velopment of real-time embedded systems, frequently complex and imposing
safety requirements. How many electrical and computer engineering depart-
ments offer subjects focusing on the application-dependent specialized com-
munication networks used to connect embedded nodes in distributed real-time
systems. If so, then the discussion is confined to the Controller Area Network
(CAN), or sometimes FlexRay, in the context of automotive applications—
usually a small unit of an embedded systems subject. (The impression might
be that specialized communication networks are mostly used in automotive ap-
plications.) The requirement for the underlying network technology to provide
real-time guarantees for message transmissions is central to proper functioning
of real-time systems. Most of computer engineering streams teach operating
systems. But real-time aspects are scantly covered. Computer science students,
on the other hand, have very little, if any, exposure to the “physicality” of the
real systems the real-time operating systems are intended to interact with.
Does this put computer science graduates in a disadvantaged position? In
the late 1990s and early 2000s, I was involved in the Sun Microsystems lead
initiative to develop real-time extensions for the Java language. The working
group comprised professionals mostly from industry with backgrounds largely
in computing sciences. I was taken aback by the slow pace of the process.
On reflection, the lack of exposure to the actual real-time systems in different
application areas and their physicality was likely to be behind difficulties to
identify generic functional requirements to be implemented by the intended
extensions.

In the second part of 1980s, I was teaching digital control to the final year
students of the electrical engineering course. The lab experiments to illustrate
different control algorithms were designed around the, at that time, already
antiquated Data General microNOVA MP/200 minicomputer, running one of
the few real-time operating systems commercially available at that time—
QNX, if I remember correctly. Showing things work was fun. But students’ in-
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sight into working of the whole system stopped at the system level commands
of the operating systems. The mystery had to be revealed by discussing hy-
pothetical implementations of the system level calls and interaction with the
operating system kernel—of course at the expense of the digital control sub-
ject. At that time, seldom any electrical engineering curriculum had a separate
subject dedicated to operating systems. Of frustration and to avoid the “black
box” approach to illustrating control systems in action, I have written in C
a simple multitasking real-time executive for MS-DOS-based platforms, to be
run on an IBM PC (Intel 8088). Students were provided with the implementa-
tion documentation in addition to theoretical background; quite a lot of pages
to study. But the reward was substantial: they were now in full “control.”
With the support of an enterprising post-graduate student, the executive was
intended to be grown into more robust RTOS with a view for commercializa-
tion. But it was never to be. Academic life has other priorities. Around 1992,
I decided to harness the MINIX operating system, which I then taught to the
final-year graduate students, to run my real-time control lab experiments to
illustrate control algorithms in their supporting real-time operating system
environment. But soon after that came the Linux kernel.

If you are one of those professionals with the compartmented knowledge,
particularly with the electrical and computer engineering or software engi-
neering background, with not much theoretical knowledge of and practical
exposure to real-time operating systems, this book is certainly an invaluable
help to “close the loop” in your knowledge, and to develop an insight into how
things work in the realm of real-time systems. Readers with a background in
computer science will benefit from the hands-on approach, and a comprehen-
sive overview of the aspects of control theory and signal processing relevant
to the real-time systems. The book also discusses a range of advanced topics
which will allow computer science professionals to stay up-to-date with the
recent developments and emerging trends.

The book was written by two Italian researchers from the Italian National
Research Council (CNR) actively working in the area of real-time (embedded)
operating systems, with a considerable background in control and communi-
cation systems, and a history of the development of actual real-time systems.
Both authors are also involved in teaching several courses related to these
topics at Politecnico di Torino and University of Padova.

The book has been written with a remarkable clarity, which is particularly
appreciated whilst reading the section on real-time scheduling analysis. The
presentation of real-time scheduling is probably the best in terms of clarity
I have ever read in the professional literature. Easy to understand, which is
important for busy professionals keen to acquire (or refresh) new knowledge
without being bogged down in a convoluted narrative and an excessive detail
overload. The authors managed to largely avoid theoretical only presentation
of the subject, which frequently affects books on operating systems. Selected
concepts are illustrated by practical programming examples developed for the
Linux and FreeRTOS operating systems. As the authors stated: Linux has a
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potential to evolve in a fully fledged real-time operating system; FreeRTOS,
on the other hand, gives a taste of an operating system for small footprint
applications typical of most of embedded systems. Irrespective of the rationale
for this choice, the availability of the programming examples allows the reader
to develop insight in to the generic implementation issues transferrable to
other real-time (embedded) operating systems.

This book is an indispensable addition to the professional library of anyone
who wishes to gain a thorough understanding of the real-time systems from the
operating systems perspective, and to stay up to date with the recent trends
and actual developments of the open-source real-time operating systems.

Richard Zurawski
ISA Group, San Francisco, California
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1

Introduction

This book addresses three different topics: Embedded Systems, Real-Time Sys-
tems, and Open Source Operating Systems. Even if every single topic can well
represent the argument of a whole book, they are normally intermixed in prac-
tical applications. This is in particular true for the first two topics: very of-
ten industrial or automotive applications, implemented as embedded systems,
must provide timely responses in order to perform the required operation.
Further, in general, real-time requirements typically refer to applications that
are expected to react to the events of some kind of controlled process.

Often in the literature, real-time embedded systems are presented and an-
alyzed in terms of abstract concepts such as tasks, priorities, and concurrence.
However, in order to be of practical usage, such concepts must be then even-
tually implemented in real programs, interacting with real operating systems,
to be executed for the control of real applications.

Traditionally, textbooks concentrate on specific topics using different ap-
proaches. Scheduling theory is often presented using a formal approach based
on a set of assumptions for describing a computer system in a mathemati-
cal framework. This is fine, provided that the reader has enough experience
and skills to understand how well real systems fit into the presented mod-
els, and this may not be the case when the textbook is used in a course or,
more in general, when the reader is entering this area as a primer. Operating
system textbooks traditionally make a much more limited usage of mathemat-
ical formalism and take a more practical approach, but often lack practical
programming examples in the main text (some provide specific examples in
appendices), as the presented concepts apply to a variety of real world systems.

A different approach is taken here: after a general presentation of the ba-
sic concepts in the first chapters, the remaining ones make explicit reference
to two specific operating systems: Linux and FreeRTOS. Linux represents a
full-fledged operating system with a steadily growing user base and, what is
more important from the perspective of this book, is moving toward real-time
responsiveness and is becoming a feasible choice for the development of real-
time applications. FreeRTOS represents somewhat the opposite extreme in
complexity. FreeRTOS is a minimal system with a very limited footprint in
system resources and which can therefore be used in very small applications
such as microcontrollers. At the same time, FreeRTOS supports a multithread-
ing programming model with primitives for thread synchronization that are
not far from what larger systems offer. If, on the one side, the choice of two
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specific case studies may leave specific details of other widespread operat-
ing systems uncovered, on the other one it presents to the reader a complete
conceptual path from general concepts of concurrence and synchronization
down to their specific implementation, including dealing with the unavoidable
idiosyncrasies of specific application programming interfaces. Here, code ex-
amples are not collected in appendices, but presented in the book chapters to
stress the fact that concepts cannot be fully grasped unless undertaking the
“dirty job” of writing, debugging, and running programs.

The same philosophy has been adopted in the chapters dealing with
scheduling theory. It is not possible, of course, to get rid of some mathe-
matical formalism, nor to avoid mathematical proofs (which can, however, be
skipped without losing the main conceptual flow). However, thanks to the fact
that such chapters follow the presentation of concurrence-related issues in op-
erating systems, it has been possible to provide a more practical perspective
to the presented results and to better describe how the used formalism maps
onto real-world applications.

This book differs from other textbooks in two further aspects:

• The presentation of a case study at the beginning of the book, rather than
at its end. This choice may sound bizarre as case studies are normally used
to summarize presented concepts and results. However, the purpose of the
case study here is different: rather than providing a final example, it is
used to summarize prerequisite concepts on computer architectures that
are assumed to be known by the reader afterwards. Readers may in fact
have different backgrounds: less experienced ones may find the informal
description of computer architecture details useful to understand more in-
depth concepts that are presented later in the book such as task context
switch and virtual memory issues. The more experienced will likely skip
details on computer input/output or memory management, but may nev-
ertheless have some interest in the presented application, handling online
image processing over a stream of frames acquired by a digital camera.

• The presentation of the basic concepts of control theory and Digital Signal
Processing in a nutshell. Traditionally, control theory and Digital Signal
Processing are not presented in textbooks dealing with concurrency and
schedulability, as this kind of knowledge is not strictly related to operating
systems issues. However, the practical development of embedded systems
is often not restricted to the choice of the optimal operating system archi-
tecture and task organization, but requires also analyzing the system from
different perspectives, finding proper solutions, and finally implementing
them. Different engineering disciplines cover the various facets of embed-
ded systems: control engineers develop the optimal control strategies in
the case the embedded system is devoted to process control; electronic
engineers will develop the front-end electronics, such as sensor and ac-
tuator circuitry, and finally software engineers will define the computing
architecture and implement the control and supervision algorithms. Ac-



Introduction 3

tive involvement of different competencies in the development of a control
or monitoring system is important in order to reduce the risk of missing
major functional requirements or, on the opposite end, of an overkill, that
is ending in a system which is more expensive than what is necessary. Not
unusual is the situation in which the system proves both incomplete in
some requirements and redundant in other aspects.

Even if several competencies may be required in the development of em-
bedded systems, involving specialists for every system aspect is not always
affordable. This may be true with small companies or research groups, and
in this case different competencies may be requested by the same devel-
oper. Even when this is not the case (e.g., in large companies), a basic
knowledge of control engineering and electronics is desirable for those soft-
ware engineers involved in the development of embedded systems. Com-
munication in the team can in fact be greatly improved if there is some
overlap in competencies, and this may reduce the risk of flaws in the sys-
tem due to the lack of communication within the development team. In
large projects, different components are developed by different teams, pos-
sibly in different companies, and clear interfaces must be defined in the
system’s architecture to allow the proper component integration, but it
is always possible that some misunderstanding could occur even with the
most accurate interface definition. If there is no competence overlap among
development teams, this risk may become a reality, as it happened in the
development of the trajectory control system of the NASA Mars Climate
Orbiter, where a software component developed by an external company
was working in pounds force, while the spacecraft expected values in new-
tons. As a result, the $125 million Mars probe miserably crashed when it
reached the Mars atmosphere [69].

As a final remark, in the title an explicit reference is made to open source
systems, and two open source systems are taken as example through the
book. This choice should not mislead the reader in assuming that open source
systems are the common solution in industrial or automotive applications.
Rather, the usage of these systems is yet limited in practice, but it is the
authors’ opinion that open source solutions are going to share a larger and
larger portion of applications in the near future.

The book is divided into three parts: Concurrent Programming Concepts,
Real-Time Scheduling Analysis, and Advanced Topics. The first part presents
the basic concepts about processes and synchronization, and it is introduced
by a case study represented by a nontrivial application for vision-based con-
trol. Along the example, the basic concepts of computer architectures and in
particular of input/output management are introduced, as well as the termi-
nology used in the rest of the book.

After the case study presentation, the basic concepts of concurrent pro-
gramming are introduced. This is done in two steps: first, the main concepts
are presented in a generic context without referring to any specific platform
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and therefore without detailed code examples. Afterwards, the same concepts
are described, with the aid of several code examples, in the context of the two
reference systems: Linux and FreeRTOS.

Part I includes a chapter on network communication; even if not explicitly
addressing network communication, a topic which deserves by itself a whole
book, some basic concepts about network concepts and network programming
are very often required when developing embedded applications.

The chapters of this part are the following:

• Chapter 2: A Case Study: Vision Control. Here, an application is presented
that acquires a stream of images from a Web camera and detects online the
center of a circular shape in the acquired images. This represents a com-
plete example of an embedded application. Both theoretical and practical
concepts are introduced here, such as the input/output architecture in op-
erating systems and the video capture application programming interface
for Linux.

• Chapter 3: Real-Time Concurrent Programming Principles. From this
chapter onwards, an organic presentation of concurrent programming con-
cepts is provided. Here, the concept of parallelism and its consequences,
such as race conditions and deadlocks, are presented. Some general imple-
mentation issues of multiprocessing, such as process context and states,
are discussed.

• Chapter 4: Deadlock. This chapter focuses on deadlock, arguably one of
the most important issues that may affect a concurrent application. After
defining the problem in formal terms, several solutions of practical interest
are presented, each characterized by a different trade-off between ease of
application, execution overhead, and conceptual complexity.

• Chapter 5: Interprocess Communication Based on Shared Variables. The
chapter introduces the notions of Interprocess Communication (IPC), and
it concentrates on the shared memory approach, introducing the concepts
of lock variable, mutual exclusion, semaphore and monitors, which repre-
sent the basic mechanisms for process coordination and synchronization
in concurrent programming.

• Chapter 6: Interprocess Communication Based on Message Passing. An
alternate way for achieving interprocess communication, based on the ex-
change of messages, is discussed in this chapter. As in the previous two
chapters, the general concepts are presented and discussed without any
explicit reference to any specific operating system.

• Chapter 7: Interprocess Communication Primitives in POSIX/Linux. This
chapter introduces several examples showing how the general concurrent
programming concepts presented before are then mapped into Linux and
POSIX. The presented information lies somewhere between a user guide
and a reference for Linux/POSIX IPC primitives.
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• Chapter 8: Interprocess Communication Primitives in FreeRTOS. The
chapter presents the implementation of the above concurrent program-
ming concepts in FreeRTOS, the other reference operating system for this
book. The same examples of the previous chapter are used, showing how
the general concepts presented in Chapters 3–6 can be implemented both
on a full-fledged system and a minimal one.

• Chapter 9: Network Communication. Although not covering concepts
strictly related to concurrent programming, this chapter provides impor-
tant practical concepts for programming network communication using
the socket abstraction. Network communication also represents a possible
implementation of the message-passing synchronization method presented
in Chapter 6. Several examples are provided in the chapter: although they
refer to Linux applications, they can be easily ported to other systems
that support the socket programming layer, such as FreeRTOS.

• Chapter 10: Lock and Wait-Free Communication. The last chapter of Part
I outlines an alternative approach in the development of concurrent pro-
grams. Unlike the more classic methods discussed in Chapters 5 and 6,
lock and wait-free communication never forces any participating process
to wait for another. In this way, it implicitly addresses most of the prob-
lems lock-based process interaction causes to real-time scheduling—to be
discussed in Chapter 15—at the expense of a greater design and imple-
mentation complexity. This chapter is based on more formal grounds than
the other chapters of Part I, but it is completely self-contained. Readers
not mathematically inclined can safely skip it and go directly to Part II.

The second part, Real-Time Scheduling Analysis, presents several theoretical
results that are useful in practice for building systems which are guaranteed
to respond within a maximum, given delay. It is worth noting now that “real-
time” does not always mean “fast.” Rather, a real-time system is a system
whose timely response can be trusted, even if this may imply a reduced overall
throughput. This part introduces the terminology and the main results in
scheduling theory. They are initially presented using a simplified model which,
if on the one side it allows the formal derivation of many useful properties, on
the other it is still too far from real-world applications to use the above results
as they are. The last two chapters of this part will progressively extend the
model to include facts occurring in real applications, so that the final results
can be used in practical applications.

The chapters of this part are the following:

• Chapter 11: Real-Time Scheduling Based on Cyclic Executive. This chap-
ter introduces the basic concepts and the terminology used thorough the
second part of the book. In this part, the concepts are presented in a more
general way, assuming that the reader, after reading the first part of the
book, is now able to use the generic concepts presented here in practi-
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cal systems. A first and simple approach to real-time scheduling, cyclic
executive, is presented here and its implications discussed.

• Chapter 12: Real-Time, Task-Based Scheduling. After introducing the gen-
eral concepts and terminology, this chapter addresses real-time issues in
the concurrent multitask model, widely described in the first part. The
chapter presents two important results with immediate practical conse-
quences: Rate Monotonic (RM) and Earliest Deadline First (EDF), which
represent the optimal scheduling for fixed and variable task priority sys-
tems, respectively.

• Chapter 13: Schedulability Analysis Based on Utilization. While the pre-
vious chapter presented the optimal policies for real-time scheduling, this
chapter addresses the problem of stating whether a given set of tasks can
be schedulable under real-time constraints. The outcome of this chapter
is readily usable in practice for the development of real-time systems.

• Chapter 14: Schedulability Analysis Based on Response Time Analysis.
This chapter provides a refinement of the results presented in the previous
one. Although readily usable in practice, the results of Chapter 13 pro-
vide a conservative approach, which can be relaxed with the procedures
presented in this chapter, at the cost of a more complex schedulability
analysis. The chapter also takes into account sporadic tasks, whose be-
havior cannot be directly described in the general model used so far, but
which nevertheless describe important facts, such as the occurrence of ex-
ceptions that happen in practice.

• Chapter 15: Process Interactions and Blocking. This chapter and the next
provide the concepts that are required to map the theoretical results
on scheduling analysis presented up to now onto real-world applications,
where the tasks cannot anymore be described as independent processes,
but interact with each other. In particular, this chapter addresses the in-
terference among tasks due to the sharing of system resources, and intro-
duces the priority inheritance and priority ceiling procedures, which are of
fundamental importance in the implementation of real-world applications.

• Chapter 16: Self-Suspension and Schedulability Analysis. This chapter ad-
dresses another fact which differentiates real systems from the model used
to derive the theoretical results in schedulability analysis, that is, the sus-
pension of tasks due, for instance, to I/O operations. The implications of
this fact, and the quantification of its effects, are discussed here.

The last part will cover other aspects of embedded systems. Unlike the first two
parts, where concepts are introduced step by step to provide a comprehensive
understanding of concurrent programming and real-time systems, the chapters
of the last part cover separate, self-consistent arguments. The chapters of this
part are the following:
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• Chapter 17: Internal Structure of FreeRTOS. This chapter gives a descrip-
tion of the internals of FreeRTOS. Thanks to its simplicity, it has been
possible to provide a sufficiently detailed example showing how the con-
current programming primitives are implemented in practice. The chapter
provides also practical indications on how the system can be ported to
new architectures.

• Chapter 18: Internal Structures and Operating Principles of Linux Real-
Time Extensions. It is of course not possible to provide in a single chapter
a detailed description of the internals of a complex system, such as Linux.
Nevertheless, this chapter will illustrate the main ideas and concepts in
the evolution of a general purpose operating system, and in particular of
Linux, towards real-time responsiveness.

• Chapter 19: OS Abstraction Layer. This chapter addresses issues that
are related to software engineering, and presents an object-oriented ap-
proach in the development of multiplatform applications. Throughout the
book general concepts have been presented, and practical examples have
been provided, showing that the same concepts are valid on different sys-
tems, albeit using a different programming interface. If an application has
to be implemented for different platforms, it is convenient, therefore, to
split the code in two parts, moving the semantics of the program in the
platform-independent part, and implementing a common abstraction of
the underlying operating system in the other system-dependent one.

• Chapter 20: Basics of Control Theory and Digital Signal Processing. This
chapter provides a quick tour of the most important mathematical con-
cepts for control theory and digital signal processing, using two case stud-
ies: the control of a pump and the development of a digital low-pass filter.
The only mathematical background required of the reader corresponds to
what is taught in a base math course for engineering, and no specific pre-
vious knowledge in control theory and digital signal processing is assumed.

The short bibliography at the end of the book has been compiled with less
experienced readers in mind. For this reason, we did not provide an exhaus-
tive list of references, aimed at acknowledging each and every author who
contributed to the rather vast field of real-time systems.

Rather, the bibliography is meant to point to a limited number of addi-
tional sources of information, which readers can and should actually use as a
starting point to seek further information, without getting lost. There, readers
will also find more, and more detailed, references to continue their quest.
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This chapter describes a case study consisting of an embedded application per-
forming online image processing. Both theoretical and practical concepts are
introduced here: after an overview of basic concepts in computer input/output,
some important facts on operating systems (OS) and software complexity will
be presented here. Moreover, some techniques for software optimization and
parallelization will be presented and discussed in the framework of the pre-
sented case study. The theory and techniques that are going to be introduced
do not represent the main topic of this book. They are necessary, nevertheless,
to fully understand the remaining chapters, which will concentrate on more
specific aspects such as multithreading and process scheduling.

The presented case study consists of a Linux application that acquires a se-
quence of images (frames) from a video camera device. The data acquisition
program will then perform some elaboration on the acquired images in order
to detect the coordinates of the center of a circular shape in the acquired
images.

This chapter is divided into four main sections. In the first section general
concepts in computer input/output (I/O) are presented. The second section
will discuss how I/O is managed by operating systems, in particular Linux,

11
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while in the third one the implementation of the frame acquisition is pre-
sented. The fourth section will concentrate on the analysis of the acquired
frames to retrieve the desired information; after presenting two widespread
algorithms for image analysis, the main concepts about software complexity
will be presented, and it will be shown how the execution time for those al-
gorithms can be reduced, sometimes drastically, using a few optimization and
parallelization techniques.

Embedded systems carrying out online analysis of acquired images are be-
coming widespread in industrial control and surveillance. In order to acquire
the sequence of the frames, the video capture application programming inter-
face for Linux (V4L2) will be used. This interface supports most commercial
USB webcams, which are now ubiquitous in laptops and other PCs. There-
fore this sample application can be easily reproduced by the reader, using for
example his/her laptop with an integrated webcam.

2.1 Input Output on Computers

Every computer does input/output (I/O); a computer composed only of a
processor and the memory would do barely anything useful, even if contain-
ing all the basic components for running programs. I/O represents the way
computers interact with the outside environment. There is a great variety of
I/O devices: A personal computer will input data from the keyboard and the
mouse, and output data to the screen and the speakers while using the disk,
the network connection, and the USB ports for both input and output. An
embedded system typically uses different I/O devices for reading data from
sensors and writing data to actuators, leaving user interaction be handled by
remote clients connected through the local area network (LAN).

2.1.1 Accessing the I/O Registers

In order to communicate with I/O devices, computer designers have followed
two different approaches: dedicated I/O bus and memory-mapped I/O. Ev-
ery device defines a set of registers for I/O management. Input registers will
contain data to be read by the processor; output registers will contain data
to be outputted by the device and will be written by the processor; status
registers will contain information about the current status of the device; and
finally control registers will be written by the processor to initiate or terminate
device activities.

When a dedicated bus is defined for the communication between the pro-
cessor and the device registers, it is also necessary that specific instructions for
reading or writing device register are defined in the set of machine instructions.
In order to interact with the device, a program will read and write appropriate
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FIGURE 2.1
Bus architecture with a separate I/O bus.

values onto the I/O bus locations (i.e., at the addresses corresponding to the
device registers) via specific I/O Read and Write instructions.
In memory-mapped I/O, devices are seen by the processor as a set of reg-
isters, but no specific bus for I/O is defined. Rather, the same bus used to
exchange data between the processor and the memory is used to access I/O
devices. Clearly, the address range used for addressing device registers must
be disjoint from the set of addresses for the memory locations. Figure 2.1 and
Figure 2.2 show the bus organization for computers using a dedicated I/O
bus and memory-mapped I/O, respectively. Memory-mapped architectures
are more common nowadays, but connecting all the external I/O devices di-
rectly to the memory bus represents a somewhat simplified solution with sev-
eral potential drawbacks in reliability and performance. In fact, since speed
in memory access represents one of the major bottlenecks in computer per-
formance, the memory bus is intended to operate at a very high speed, and
therefore it has very strict constraints on the electrical characteristics of the
bus lines, such as capacity, and in their dimension. Letting external devices
be directly connected to the memory bus would increase the likelihood that
possible malfunctions of the connected devices would seriously affect the func-
tion of the whole system and, even if that were not the case, there would be
the concrete risk of lowering the data throughput over the memory bus.
In practice, one or more separate buses are present in the computer for I/O,
even with memory-mapped architectures. This is achieved by letting a bridge
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Bus architecture for Memory Mapped I/O.

component connect the memory bus with the I/O bus. The bridge presents
itself to the processor as a device, defining a set of registers for programming
the way the I/O bus is mapped onto the memory bus. Basically, a bridge
can be programmed to define one or more address mapping windows. Every
address mapping window is characterized by the following parameters:

1. Start and end address of the window in the memory bus

2. Mapping address offset

Once the bridge has been programmed, for every further memory access per-
formed by the processor whose address falls in the selected address range, the
bridge responds in the bus access protocol and translates the read or write
operation performed in the memory bus into an equivalent read or write opera-
tion in the I/O bus. The address used in the I/O bus is obtained by adding the
preprogrammed address offset for that mapping window. This simple mecha-
nism allows to decouple the addresses used by I/O devices over the I/O bus
from the addresses used by the processor.

A common I/O bus in computer architectures is the Peripheral Component
Interconnect (PCI) bus, widely used in personal computers for connecting I/O
devices. Normally, more than one PCI segment is defined in the same computer
board. The PCI protocol, in fact, poses a limit in the number of connected
devices and, therefore, in order to handle a larger number of devices, it is nec-
essary to use PCI to PCI bridges, which connect different segments of the PCI
bus. The bridge will be programmed in order to define map address windows
in the primary PCI bus (which sees the bridge as a device connected to the



A Case Study: Vision Control 15

bus) that are mapped onto the corresponding address range in the secondary
PCI bus (for which the bridge is the master, i.e., leads bus operations). Follow-
ing the same approach, new I/O buses, such as the Small Computer System
Interface (SCSI) bus for high-speed disk I/O, can be integrated into the com-
puter board by means of bridges connecting the I/O bus to the memory bus
or, more commonly, to the PCI bus. Figure 2.3 shows an example of bus con-
figuration defining a memory to PCI bridge, a PCI to PCI bridge, and a PCI
to SCSI bridge.

One of the first actions performed when a computer boots is the configuration
of the bridges in the system. Firstly, the bridges directly connected to the
memory bus are configured, so that the devices over the connected buses can
be accessed, including the registers of the bridges connecting these to new I/O
buses. Then the bridges over these buses are configured, and so on. When all
the bridges have been properly configured, the registers of all the devices in
the system are directly accessible by the processor at given addresses over the
memory bus. Properly setting all the bridges in the system may be tricky, and
a wrong setting may make the system totally unusable. Suppose, for example,
what could happen if an address map window for a bridge on the memory bus
were programmed with an overlap with the address range used by the RAM
memory. At this point the processor would be unable to access portions of
memory and therefore would not anymore be able to execute programs.

Bridge setting, as well as other very low-level configurations are normally
performed before the operating system starts, and are carried out by the Basic
Input/Output System (BIOS), a code which is normally stored on ROM and
executed as soon as the computer is powered. So, when the operating system
starts, all the device registers are available at proper memory addresses. This
is, however, not the end of the story: in fact, even if device registers are seen
by the processor as if they were memory locations, there is a fundamental
difference between devices and RAM blocks. While RAM memory chips are
expected to respond in a time frame on the order of nanoseconds, the response
time of devices largely varies and in general can be much longer. It is therefore
necessary to synchronize the processor and the I/O devices.

2.1.2 Synchronization in I/O

Consider, for example, a serial port with a baud rate of 9600 bit/s, and suppose
that an incoming data stream is being received; even if ignoring the protocol
overhead, the maximum incoming byte rate is 1200 byte/s. This means that
the computer has to wait 0.83 milliseconds between two subsequent incoming
bytes. Therefore, a sort of synchronization mechanism is needed to let the
computer know when a new byte is available to be read in a data register for
readout. The simplest method is polling, that is, repeatedly reading a status
register that indicates whether new data is available in the data register. In
this way, the computer can synchronize itself with the actual data rate of the
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device. This comes, however, at a cost: no useful operation can be carried out
by the processor when synchronizing to devices in polling. If we assume that
100 ns are required on average for memory access, and assuming that access
to device registers takes the same time as a memory access (a somewhat
simplified scenario since we ignore here the effects of the memory cache),
acquiring a data stream from the serial port would require more than 8000
read operations of the status register for every incoming byte of the stream
– that is, wasting 99.99% of the processor power in useless accesses to the
status register. This situation becomes even worse for slower devices; imagine
the percentage of processor power for doing anything useful if polling were
used to acquire data from the keyboard!

Observe that the operations carried out by I/O devices, once programmed
by a proper configuration of the device registers, can normally proceed in par-
allel with the execution of programs. It is only required that the device should
notify the processor when an I/O operation has been completed, and new data
can be read or written by the processor. This is achieved using Interrupts, a
mechanism supported by most I/O buses. When a device has been started,
typically by writing an appropriate value in a command register, it proceeds
on its own. When new data is available, or the device is ready to accept new
data, the device raises an interrupt request to the processor (in most buses,
some lines are dedicated to interrupt notification) which, as soon as it finishes
executing the current machine instruction, will serve the interrupt request by
executing a specific routine, called Interrupt Service Routine (ISR), for the
management of the condition for which the interrupt has been generated.

Several facts must be taken into account when interrupts are used to syn-
chronize the processor and the I/O operations. First of all, more than one
device could issue an interrupt at the same time. For this reason, in most sys-
tems, a priority is associated with interrupts. Devices can in fact be ranked
based on their importance, where important devices require a faster response.
As an example, consider a system controlling a nuclear plant: An interrupt
generated by a device monitoring the temperature of a nuclear reactor core is
for sure more important than the interrupt generated by a printer device for
printing daily reports. When a processor receives an interrupt request with
a given associated priority level N , it will soon respond to the request only
if it is not executing any service routine for a previous interrupt of priority
M , M ≥ N . In this case, the interrupt request will be served as soon as the
previous Interrupt Service Routine has terminated and there are no pending
interrupts with priority greater or equal to the current one.

When a processor starts serving an interrupt, it is necessary that it does
not lose information about the program currently in execution. A program is
fully described by the associated memory contents (the program itself and the
associated data items), and by the content of the processor registers, including
the Program Counter (PC), which records the address of the current machine
instruction, and the Status Register (SR), which contains information on the
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current processor status. Assuming that memory locations used to store the
program and the associated data are not overwritten during the execution of
the interrupt service routine, it is only necessary to preserve the content of
the processor registers. Normally, the first actions of the routine are to save
in the stack the content of the registers that are going to be used, and such
registers will be restored just before its termination. Not all the registers can
be saved in this way; in particular, the PC and the SR are changed just before
starting the execution of the interrupt service routine. The PC will be set to
the address of the first instruction of the routine, and the SR will be updated
to reflect the fact that the process is starting to service an interrupt of a given
priority. So it is necessary that these two register are saved by the processor
itself and restored when the interrupt service routine has finished (a specific
instruction to return from ISR is defined in most computer architectures). In
most architectures the SR and PC registers are saved on the stack, but oth-
ers, such as the ARM architecture, define specific registers to hold the saved
values.

A specific interrupt service routine has to be associated with every possi-
ble source of interrupt, so that the processor can take the appropriate actions
when an I/O device generates an interrupt request. Typically, computer ar-
chitectures define a vector of addresses in memory, called a Vector Table,
containing the start addresses of the interrupt service routines for all the I/O
devices able to generate interrupt requests. The offset of a given ISR within
the vector table is called the Interrupt Vector Number. So, if the interrupt vec-
tor number were communicated by the device issuing the interrupt request,
the right service routine could then be called by the processor. This is ex-
actly what happens; when the processor starts serving a given interrupt, it
performs a cycle on the bus called the Interrupt Acknowledge Cycle (IACK)
where the processor communicates the priority of the interrupt being served,
and the device which issued the interrupt request at the specified priority
returns the interrupt vector number. In case two different devices issued an
interrupt request at the same time with the same priority, the device closest
to the processor in the bus will be served. This is achieved in many buses by
defining a bus line in Daisy Chain configuration, that is, which is propagated
from every device to the next one along the bus, only in cases where it did not
answer to an IACK cycle. Therefore, a device will answer to an IACK cycle
only if both conditions are met:

1. It has generated a request for interrupt at the specified priority

2. It has received a signal over the daisy chain line

Note that in this case it will not propagate the daisy chain signal to the next
device.

The offset returned by the device in an IACK cycle depends on the cur-
rent organization of the vector table and therefore must be a programmable
parameter in the device. Typically, all the devices which are able to issue an
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interrupt request have two registers for the definition of the interrupt prior-
ity and the interrupt vector number, respectively. The sequence of actions is
shown in Figure 2.4, highlighting the main steps of the sequence:

1. The device issues an interrupt request;

2. The processor saves the context, i.e., puts the current values of the
PC and of the SR on the stack;

3. The processor issues an interrupt acknowledge cycle (IACK) on the
bus;

4. The device responds by putting the interrupt vector number (IVN)
over the data lines of the bus;

5. The processor uses the IVN as an offset in the vector table and
loads the interrupt service routine address in the PC.

Programming a device using interrupts is not a trivial task, and it consists of
the following steps:

1. The interrupt service routine has to be written. The routine can
assume that the device is ready at the time it is called, and therefore
no synchronization (e.g., polling) needs to be implemented;

2. During system boot, that is when the computer and the connected
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I/O devices are configured, the code of the interrupt service routine
has to be loaded in memory, and its start address written in the
vector table at, say, offset N ;

3. The value N has to be communicated to the device, usually written
in the interrupt vector number register;

4. When an I/O operation is requested by the program, the device
is started, usually by writing appropriate values in one or more
command registers. At this point the processor can continue with
the program execution, while the device operates. As soon as the
device is ready, it will generate an interrupt request, which will
be eventually served by the processor by running the associated
interrupt service routine.

In this case it is necessary to handle the fact that data reception is asyn-
chronous. A commonly used techniques is to let the program continue after
issuing an I/O request until the data received by the device is required. At
this point the program has to suspend its execution waiting for data, unless
not already available, that is, waiting until the corresponding interrupt service
routine has been executed. For this purpose the interprocess communication
mechanisms described in Chapter 5 will be used.

2.1.3 Direct Memory Access (DMA)

The use of interrupts for synchronizing the processor and the connected I/O
devices is ubiquitous, and we will see in the next chapters how interrupts
represent the basic mechanism over which operating systems are built. Using
interrupts clearly spares processor cycles when compared with polling; how-
ever, there are situations in which even interrupt-driven I/O would require
too much computing resources. To better understand this fact, let’s consider
a mouse which communicates its current position by interrupting the proces-
sor 30 times per second. Let’s assume that 400 processor cycles are required
for the dispatching of the interrupt and the execution of the interrupt ser-
vice routine. Therefore, the number of processor cycles which are dedicated
to the mouse management per second is 400 ∗ 30 = 12000. For a 1 GHz clock,
the fraction of processor time dedicated to the management of the mouse
is 12000/109, that is, 0.0012% of the processor load. Managing the mouse
requires, therefore, a negligible fraction of processor power.

Consider now a hard disk that is able to read data with a transfer rate of
4 MByte/s, and assume that the device interrupts the processor every time
16 bytes of data are available. Let’s also assume that 400 clock cycles are still
required to dispatch the interrupt and execute the associated service routine.
The device will therefore interrupt the processor 250000 times per second, and
108 processor cycles will be dedicated to handle data transfer every second.
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For a 1 GHz processor this means that 10% of the processor time is dedicated
to data transfer, a percentage clearly no more acceptable.

Very often data exchanged with I/O devices are transferred from or to
memory. For example, when a disk block is read it is first transferred to mem-
ory so that it is later available to the processor. If the processor itself were in
charge of transferring the block, say, after receiving an interrupt request from
the disk device to signal the block availability, the processor would repeat-
edly read data items from the device’s data register into an internal processor
register and write it back into memory. The net effect is that a block of data
has been transferred from the disk into memory, but it has been obtained
at the expense of a number of processor cycles that could have been used to
do other jobs if the device were allowed to write the disk block into memory
by itself. This is exactly the basic concept of Direct Memory Access (DMA),
which is letting the devices read and write memory by themselves so that the
processor will handle I/O data directly in memory. In order to put this simple
concept in practice it is, however, necessary to consider a set of facts. First
of all, it is necessary that the processor can “program” the device so that it
will perform the correct actions, that is, reading/writing a number N of data
items in memory, starting from a given memory address A. For this purpose,
every device able to perform DMA provides at least the following registers:

• A Memory Address Register (MAR) initially containing the start address
in memory of the block to be transferred;

• A Word Count register (WC) containing the number of data items to be
transferred.

So, in order to program a block read or write operation, it is necessary that the
processor, after allocating a block in memory and, in case of a write operation,
filling it with the data to be output to the device, writes the start address
and the number of data items in the MAR and WC registers, respectively.
Afterwards the device will be started by writing an appropriate value in (one
of) the command register(s). When the device has been started, it will operate
in parallel with the processor, which can proceed in the execution of the
program. However, as soon as the device is ready to transfer a data item,
it will require the memory bus used by the processor to exchange data with
memory, and therefore some sort of bus arbitration is needed since it is not
possible that two devices read or write the memory at the same time on
the same bus (note however that nowadays memories often provide multiport
access, that is, allow simultaneous access to different memory addresses). At
any time one, and only one, device (including the processor) connected to the
bus is the master, i.e., can initiate a read or write operation. All the other
connected devices at that time are slaves and can only answer to a read/write
bus cycle when they are addressed. The memory will be always a slave in the
bus, as well as the DMA-enabled devices when they are not performing DMA.
At the time such a device needs to exchange data with the memory, it will
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ask the current master (normally the processor, but it may be another device
performing DMA) the ownership of the bus. For this purpose the protocol
of every bus able to support ownership transfer is to define a cycle for the
bus ownership transfer. In this cycle, the potential master raises a request line
and the current master, in response, relinquishes the mastership, signaling this
over another bus line, and possibly waiting for the termination of a read/write
operation in progress. When a device has taken the bus ownership, it can then
perform the transfer of the data item and will remain the current master until
the processor or another device asks to become the new master. It is worth
noting that the bus ownership transfers are handled by the bus controller
components and are carried out entirely in hardware. They are, therefore,
totally transparent to the programs being executed by the processor, except
for a possible (normally very small) delay in their execution.
Every time a data item has been transferred, the MAR is incremented and
the WC is decremented. When the content of the WC becomes zero, all the
data have been transferred, and it is necessary to inform the processor of
this fact by issuing an interrupt request. The associated Interrupt Service
Routine will handle the block transfer termination by notifying the system of
the availability of new data. This is normally achieved using the interprocess
communication mechanisms described in Chapter 5.

2.2 Input/Output Operations and the Operating System

After having seen the techniques for handling I/O in computers, the reader will
be convinced that it is highly desirable that the complexity of I/O should be
handled by the operating system and not by user programs. Not surprisingly,
this is the case for most operating systems, which offer a unified interface for
I/O operations despite the large number of different devices, each one defin-
ing a specific set of registers and requiring a specific I/O protocol. Of course,
it is not possible that operating systems could include the code for handling
I/O in every available device. Even if it were the case, and the developers
of the operating system succeed in the titanic effort of providing the device
specific code for every known device, the day after the system release there
will be tens of new devices not supported by such an operating system. For
this reason, operating systems implement the generic I/O functionality, but
leave the details to a device-specific code, called the Device Driver. In order to
be integrated into the system, every device requires its software driver, which
depends not only on the kind of hardware device but also on the operating
system. In fact, every operating system defines its specific set of interfaces
and rules a driver must adhere to in order to be integrated. Once installed,
the driver becomes a component of the operating system. This means that a
failure in the device driver code execution becomes a failure of the operating
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system, which may lead to the crash of the whole system. (At least in mono-
lithic operating systems such as Linux and Windows; this may be not true
for other systems, such as microkernel-based ones.) User programs will never
interact directly with the driver as the device is accessible only via the Ap-
plication Programming Interface (API) provided by the operating system. In
the following we shall refer to the Linux operating systems and shall see how
a uniform interface can be adapted to the variety of available devices. The
other operating systems adopt a similar architecture for I/O, which typically
differ only by the name and the arguments of the I/O systems routines, but
not on their functionality.

2.2.1 User and Kernel Modes

We have seen how interacting with I/O devices means reading and writing
into device registers, mapped at given memory addresses. It is easy to guess
what could happen if user programs were allowed to read and write at the
memory locations corresponding to device registers. The same consideration
holds also for the memory structures used by the operating system itself. If
user programs were allowed to freely access the whole addressing range of the
computer, an error in a program causing a memory access to a wrong address
(something every C programmer experiences often) may lead to the corrup-
tion of the operating system data structures, or to an interference with the
device operation, leading to a system crash.
For this reason most processors define at least two levels of execution: user
mode and kernel (or supervisor) mode. When operating in user mode, a pro-
gram is not allowed to execute some machine instructions (called Privileged
Instructions) or to access sets of memory addresses. Conversely, when operat-
ing in kernel mode, a program has full access to the processor instructions and
to the full addressing range. Clearly, most of the operating system code will
be executed in kernel mode, while user programs are kept away from danger-
ous operations and are intended to be executed in user mode. Imagine what
would happen if the HALT machine instruction for stopping the processor
were available in user mode, possibly on a server with tens of connected users.

A first problem arises when considering how a program can switch from
user to kernel mode. If this were carried out by a specific machine instruction,
would such an instruction be accessible in user mode? If not, it would be
useless, but if it were, the barrier between kernel mode and user mode would
be easily circumvented, and malicious programs could easily take the whole
system down.

So, how to solve the dilemma? The solution lies in a new mechanism for
the invocation of software routines. In the normal routine invocation, the call-
ing program copies the arguments of the called routine over the stack and
then puts the address of the first instruction of the routine into the Program
Counter register, after having copied on the stack the return address, that is,
the address of the next instruction in the calling program. Once the called
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routine terminates, it will pick the saved return address from the stack and
put it into the Program Counter, so that the execution of the calling program
is resumed. We have already seen, however, how the interrupt mechanism can
be used to “invoke” an interrupt service routine. In this case the sequence
is different, and is triggered not by the calling program but by an external
hardware device. It is exactly when the processor starts executing an Inter-
rupt Service routine that the current execution mode is switched to kernel
mode. When the interrupt service routine returns and the interrupted pro-
gram resumes its execution, unless not switching to a new interrupt service
routine, the execution mode is switched to user mode. It is worth noting that
the mode switch is not controlled by the software, but it is the processor which
only switches to kernel mode when servicing an interrupt.

This mechanism makes sense because interrupt service routines interact
with devices and are part of the device driver, that is, of a software compo-
nent that is integrated in the operating system. However, it may happen that
user programs have to do I/O operations, and therefore they need to execute
some code in kernel mode. We have claimed that all the code handling I/O
is part of the operating system and therefore the user program will call some
system routine for doing I/O. However, how do we switch to kernel mode in
this case where the trigger does not come from an hardware device? The so-
lution is given by Software Interrupts. Software interrupts are not triggered
by an external hardware signal, but by the execution of a specific machine
instruction. The interrupt mechanism is quite the same: The processor saves
the current context, picks the address of the associated interrupt service rou-
tine from the vector table and switches to kernel mode, but in this case the
Interrupt Vector number is not obtained by a bus IACK cycle; rather, it is
given as an argument to the machine instruction for the generation of the
software interrupt.

The net effect of software interrupts is very similar to that of a function
call, but the underlying mechanism is completely different. This is the typical
way the operating system is invoked by user programs when requesting system
services, and it represents an effective barrier protecting the integrity of the
system. In fact, in order to let any code to be executed via software interrupts,
it is necessary to write in the vector table the initial address of such code but,
not surprisingly, the vector table is not accessible in user mode, as it belongs to
the set of data structures whose integrity is essential for the correct operation
of the computer. The vector table is typically initialized during the system
boot (executed in kernel mode) when the operating system initializes all its
data structures.

To summarize the above concepts, let’s consider the execution story of one
of the most used C library function: printf(), which takes as parameter the
(possibly formatted) string to be printed on the screen. Its execution consists
of the following steps:

1. The program calls routine printf(), provided by the C run time


