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“The authors have made a considerable effort to make this book useful and 
interesting to different kinds of readers: they provide a detailed treatment of the 
basic concepts of time and frequency measurements, carefully describe different 
kinds of lasers and some of the most advanced laser-based measurement techniques, 
and finally present the latest developments in the field, with a hint to the 
possible future trends in applications and fundamental science. Being among the 
many important actors in this long story, the authors of this book are privileged 
witnesses of the evolution of time and frequency measurements and can provide an 
informed and wide vision of this developing field from many different viewpoints.” 

         — From the Foreword by Professor T.W. Hänsch, Ludwig-Maximilians-
Universität München and co-recipient of the 2005 Nobel Prize in Physics 

Based on the authors’ experimental work over the last 25 years, this self-contained 
book presents basic concepts, state-of-the-art applications, and future trends in 
optical, atomic, and molecular physics. It provides all the background information 
on the main kinds of laser sources and techniques, offers a detailed account of the 
most recent results obtained for time- and frequency-domain applications of lasers, 
and develops the theoretical framework necessary for understanding the experimental 
applications. 

Features 
•	 Discusses laser-based time-frequency measurements not only in the 

context of frequency metrology and the science of timekeeping but also 
in light of contemporary and future trends of fundamental and applied 
research in physics

•	 Emphasizes the extension of optical frequency comb synthesizers (OFCSs) 
to the IR and UV parts of the spectrum

•	 Explores the up-and-coming field of quantum-enhanced time and 
frequency measurements, covering the link between OFCS-based 
frequency metrology and quantum optics 

•	 Describes applications of both ultra-fast and ultra-precise lasers
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Foreword

Since its first realization in 1960, the laser has quickly parted from its initial definition of
“a solution looking for a problem” to become the solution to many and incredibly differ-
ent problems, both in our everyday lives and in the most advanced fields of science and
technology.

Thanks to its unique properties, i.e., the capability to generate intense, highly direc-
tional, and highly monochromatic radiation in different regions of the electromagnetic spec-
trum, the laser has found applications in fields as diverse as communications, medicine,
fundamental physics, as well as supermarket counters. . . .

In particular, thanks to the possibility of producing either ultrashort laser pulses, lasting
just a few femtoseconds, or continuous beams with an extremely well-controlled frequency,
the two fields of accurate time and frequency measurements have literally boomed in the
last decades. Measuring times and delays with femtosecond accuracy has allowed us, for
example, to observe the real-time movement of atoms in molecules, and to follow and steer
chemical reactions. On the other hand, measuring frequencies with a very high precision has
given us unprecedented access to the most intimate structure of matter, is revolutionizing
precision metrology of time and space, and is providing new tools for many important
applied fields, like environmental monitoring.

These two intertwined subjects, time and frequency, have continued to evolve indepen-
dently for many years, with the impressive parallel evolution of ultrafast and ultra-stable
laser sources, until it was recently realized that they can be seen as two different faces of the
same medal. In fact, the frequency spectrum of the train of ultrashort pulses emitted by a
(properly phase-stabilized) mode-locked laser is remarkably simple. It is made of millions of
extremely narrow spectral lines whose frequencies are exactly spaced by the laser repetition
rate. Such a special laser source can thus combine the best of the two worlds: on one side,
by giving access to a huge number of ultra-stable laser lines, all with precisely controlled
frequencies, it serves as a perfect ruler in the spectral domain; on the other side, by making
it possible to control the absolute optical phase of ultrashort light pulses, it discloses new,
highly nonlinear phenomena to experimental investigation.

This experimentalist’s dream came true with the development of frequency combs around
the beginning of this century, and it was a strike of serendipity on the hill of Arcetri in
Florence, where the LENS and INO laboratories used to be, that started it. There, on a
lucky afternoon in 1997, Marco Bellini and I could surprisingly observe stable interference
fringes from the white-light supercontinua independently produced by two identical ultra-
short pulses. Since that moment, the evolution of comb-based measurements has seen no
sign of slowing down, and has made possible some of the most accurate measurements ever
performed by mankind, allowing to measure frequencies in the simplest atom in the uni-
verse, hydrogen, as well as to calibrate spectra coming from the borders of the universe,
itself.

Indeed, if a stable and precisely determined frequency reference is available, it can be
used as a clock to measure time intervals with high accuracy by just counting the number
of cycles in the interval. Furthermore, from the definition of the speed of light, any distance
measurement can be referred to a time or frequency measurement. Since the measure of
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many physical properties, beyond time and distance, can be often converted to a phase or
frequency measurement, the incredible precision made possible by frequency combs can be
readily exported to a number of different fields.

Laser-based precision measurements are now facing a new era, where the ever-growing
accuracy in the determination of times and frequencies will not only allow us to unveil some
of the best hidden secrets of nature, but also impact our everyday lives.

In this context, the publication of this book is particularly timely and welcome. The
authors have made a considerable effort to make this book useful and interesting to differ-
ent kinds of readers: they provide a detailed treatment of the basic concepts of time and
frequency measurements, carefully describe different kinds of lasers and some of the most
advanced laser-based measurement techniques, and, finally, present the latest developments
in the field, with a hint to the possible future trends in applications and fundamental science.

Being among the many important actors in this long story, the authors of this book are
privileged witnesses of the evolution of time and frequency measurements, and can provide
an informed and wide vision of this developing field from many different viewpoints.

Theodor W. Hänsch
Co-Recipient of the 2005 Nobel Prize in Physics



Preface

Time and light or, in other words, frequency and photons: two key ingredients that are mak-
ing possible the most accurate and sensitive measurements ever performed by mankind. This
was the flywheel to writing this book and the “leitmotiv” throughout it. However, dealing
with this subject is an impervious task both in a historical perspective and in the viewpoint
of contemporary developments. Indeed, on the one hand, the art of timekeeping has deep
roots, dating back to the origins of civilization, and light from the sky was soon recognized
as a vital element for measuring time. On the other hand, trying to describe the furious
activity and progress that have been characterizing this field for the last decades is a bit
like taking a picture of a very fast object that keeps moving at increasingly high speed.
In such a fascinating adventure, the laser-era undoubtedly represented a turning point,
marking the birth of optical frequency metrology. In this wake, a new metrological tool
emerged around 1999, when it was realized that the pattern of equally spaced pulses gen-
erated by a mode-locked laser in the time domain is equivalent to a precisely spaced comb
of frequencies in the frequency domain, and that the phase of light is the same throughout
the broad-covered spectrum. This eventually merged decades of independent technologies,
namely those of ultrastable and ultrafast laser sources, emitting, respectively, continuous-
wave radiation and trains of very short pulses. In parallel, another real breakthrough was
represented by the advent of laser-based optical clocks that, by progressively reducing the
fluctuations in the emitted frequency, have now reached impressive stability and accuracy
levels. But many other milestones have been achieved in the field of laser-based measure-
ments, since the introduction of the laser itself. Among the most remarkable, we should
mention guiding and delivering laser-light with optical fibers as well as accessing additional
portions of the electromagnetic spectrum with frequency-tunable coherent sources, based
on novel materials and operation principles, or nonlinear optical phenomena. Apart from
these spectacular technological achievements, the quantum nature of light and matter has
opened other new scenarios, like that of measurements based on entanglement of photons
and macroscopic objects. As a whole, such a scientific fervor has revolutionized the branch
of atomic, molecular, and optical physics allowing, as the first immediate consequence, to
devise increasingly ambitious experiments of fundamental character, but also engendering
tremendous progress in terms of high-tech, everyday-life applications, perhaps going so far
as to change even the way we think. This book is based on first-hand, laser-based measure-
ments and direct experimental work performed by the authors during the last 25 years. Such
activities are strictly related to the rise and development of the European Laboratory for
Nonlinear Spectroscopy-LENS in Florence and the Istituto Nazionale di Ottica-INO (now
part of the Italian National Research Council-CNR) in Florence and Naples, Italy. These
labs and activities have flourished on the hill of Arcetri (Florence), where Galileo Galilei
spent the last part of his life and Enrico Fermi conceived quantum statistics, but also in
front of the breathtaking gulf of Naples, where, in his quick passage, Ettore Majorana left
an indelible legacy. In fact, also thanks to their irresistible charm, these two cities have al-
ways attracted scientists from all over the world, so years of collaborations, discussions, and
joint work are somehow reflected in the text of this book. The purpose is to offer a detailed
account of the most recent results obtained for time- and frequency-domain applications
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of lasers, while providing all the background information on the main kinds of sources and
techniques developed thus far. Moreover, the theoretical framework necessary to understand
the experimental applications is fully developed throughout the book. Therefore, most of
the matter is intended to be accessible to final-year undergraduates, but also post-docs and
scientists actively working in the field can find a wide, fresh, and balanced overview of con-
quests in the field of laser-based measurements together with the main related references.
A detailed outline is given at the end of Chapter 1, as a natural outcome of the historical
introduction. Also preliminary in character, Chapter 2 provides the basic concepts and the
mathematical tools that are necessary to address the physics of oscillators, at the heart of
the whole treatment. Likewise relevant to the self-sufficiency of the book, microwave, and
particularly, optical resonators are extensively discussed in Chapter 3. Crucial aspects of
operation and fundamental properties of lasers are presented in Chapter 4, while precision
spectroscopy and absolute frequency metrology are dealt with in Chapters 5 and 6, respec-
tively. Then, Chapter 7 is devoted to microwave and optical frequency standards and their
dissemination. Finally, Chapter 8 dwells upon the variegated speculative landscape opened
by the field of laser-based frequency measurements, outlining the most exciting, current, and
forthcoming research directions. Due to the large amount of unfolded work, we apologize in
advance for any mistakes, inaccuracies, and inevitable limitations, hoping that the reader
may appreciate our approach and share our enthusiasm.

The authors wish to thank Luca Lorini for careful reading of Chapter 2; Simone Borri
and Gianluca Gagliardi for their contribution to two sections in Chapter 4 and Chapter 8,
respectively; Maurizio De Rosa for stimulating discussions; Gianluca Notariale for preparing
many of the figures; Elisabetta Baldanzi for editing part of the text and caring about per-
mission requests; and Rita Cuciniello for creating the cover. Also, the authors are immensely
grateful to Prof. Theodor W. Hänsch for writing the Foreword.

Pasquale Maddaloni
Marco Bellini

Paolo De Natale
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Shedding light on the art of timekeeping

He was the true Light,

which doth enlighten every

man, coming to the world.

John - 1,9

The Present contains nothing more than

the Past, and what is found in the effect

was already in the cause.

Henri L. Bergson - Creative Evolution

1.1 The great show of Time and Light, the curtain rises!

We have always lived in a world illuminated by Light and marked by the relentless flow of
Time. In spite of the difficulty of finding a universal definition for them, Light and Time
are essential elements of our existence. They govern countless aspects of our practical life
and accompany us in various cultural and sentimental experiences. The earliest people on
the planet naturally entrusted the organization of their activities in the light coming from
celestial bodies. The periodic character of the most basic astronomical motions was imme-
diately recognized: the Sun rise and set (Earth’s rotation around its axis), the appearance
of the highlighted portion of the Moon (Moon’s revolution around the Earth), and the
weather periodical behavior that seemed to be related to the movement of the Sun with
respect to the stars (Earth’s revolution around the Sun). The units of days, months, and
years accordingly followed. The main disadvantage of Nature’s clocks resided in that the
scale unit was too large for many practical purposes. Consequently, natural oscillators soon
began to be supplemented by those constructed by mankind. Around 3500 BC Egyptians
already divided the time of the day into shorter sections by observing the direction of the
shadow cast from obelisks or sundials by the Sun, depending on its position in the sky
[1]. It is amazing to note that the ancient and honored Earth-Sun clock met many of the
most demanding requirements that the scientific community today exacts from an accept-
able standard: first, it is universally available and recognized; second, it involves neither
responsibility nor operation expenses for anyone; third, it is pretty reliable and we cannot
foresee any possibility that it may stop or lose the time. In spite of all these nice features,
however, this clock does not represent an extremely stable timepiece. According to our cur-
rent knowledge in astronomy, first, Earth’s orbit around the Sun is elliptical rather than a
perfect circle, which means that Earth travels faster when it is closer to the Sun than when
it is farther away. In addition, Earth’s axis is tilted with respect to the plane containing its
orbit around the Sun. Finally, Earth spins at an irregular rate around its axis of rotation
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and even wobbles on it. The latter effect is due to the circumstance that, as Earth is neither
perfectly symmetrical in shape, nor homogeneous, nor ideally rigid (its mass distribution
constantly changes over time), its rotation axis does not coincide exactly with the figure
axis. For the same reason, even natural disasters of exceptional importance may perturb the
clock mechanism. For example, it has been calculated that the recent earthquake in Japan
(March 2011) has moved Earth’s figure axis by a few milliarcseconds or, in other words,
rearranged Earth’s mass bringing more of it a bit closer to the rotation axis. This should
have slightly increased Earth’s rate of spin, thus shortening the length of the day by less
than 2 microseconds [2]. Such a small variation has no practical effect in daily life, but it is
of interest for precision measurements of space and time.

Although the interaction between sunlight and Earth’s swinging is far from being consid-
ered a resonant phenomenon, Earth-Sun clocks constitute the first example of a timepiece in
which a light source interrogates a frequency reference. Quite surprisingly, however, in the
following five millennia, Light and Time travelled rather distinct roads in the advancement
of human thought and abilities.

1.2 Brief history of timekeeping: time-frequency equivalence

Clepsydrae based on controlled flows of water (either into or out of a vessel) were available
in Egypt, India, China, and Babylonia from about 1500 BC and represented the first non-
astronomical means of measuring time. Sand clepsydrae were introduced only in the late
fourteenth century AD. By using the integrated quantity of moved substance to provide
a measurement of the elapsed time, this type of timekeeper did not rely on counting the
number of cycles of an oscillatory event. The resort to light was abandoned too. In the last
part of the thirteenth century mechanical clocks began to appear in Europe [3]. The first
prototypes, representing the natural progression of wheel clocks driven by water (already
introduced in China after the 8th century), were just geared machines based on the fall of
a weight regulated by a verge-and-foliot escapement. Variations of this design reigned for
more than 300 years, but all had the same basic problem: the period of oscillation of the
escapement was heavily affected both by the amount of force and the extent of friction in
the drive. Like water flow, the rate was difficult to adjust.

A significant advance occurred in the 17th century when Galileo Galilei discovered that
the period T of a pendulum swing virtually does not depend on the excursion, provided
that the latter is not too large:

T ≃ 2π

√

l

g
(1.1)

Here l is the pendulum length, and g is the acceleration due to gravity. Galilei, in fact,
recognized the value of the pendulum as a time-keeping device and even sketched out a
design for a clock. However, it was Christiaan Huygens in 1656 to realize the first successful
operational pendulum clock. Reaching an error of less than 1 minute a day, such device
recovered and definitively consecrated the idea that the most accurate way of keeping the
time was to employ an oscillatory system operating at a specific resonance frequency ν0.
Hence, any time interval could be measured by counting the number N of elapsed cycles
and then multiplying N by the period T = 1/ν0. Light, however, was still excluded from
the time-keeping saga.
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From then onwards, time and frequency became the quantities that humanity could
measure with the highest precision. Indeed, during the next three centuries, continuous re-
finements improved considerably the accuracy of pendulum clocks. In 1671, William Clement
began building clocks with the new anchor escapement, a substantial improvement over the
verge because it interfered less with the motion of the pendulum. In 1721, George Graham
improved the pendulum clock accuracy to 1 second per day by compensating for changes in
the pendulum length due to temperature variations. John Harrison, a carpenter and self-
taught clockmaker, developed new methods for reducing friction. By 1761, he had built a
marine chronometer with a spring-and-balance-wheel escapement that kept time on board
a rolling ship to about one fifth of a second a day, nearly as well as a pendulum clock could
do on land. Over the next century, refinements led in 1889 to Siegmund Riefler’s clock with
a nearly free pendulum, which attained an accuracy of a hundredth of a second a day and
became the standard in many astronomical observatories. A true free-pendulum principle
was demonstrated by R.J. Rudd around 1898. This gave birth to a generation of superior
timepieces that culminated in 1920 with the realization by William H. Shortt of a clock con-
sisting of two synchronized pendulums. One pendulum, the master, swung as unperturbed
as possible in an evacuated housing. The slave pendulum driving the clockwork device was
synchronized via an electric linkage and in turn, every half a minute, initialized a gentle
push to the master pendulum to compensate for the dissipated energy. Keeping time better
than 2 milliseconds a day, Shortt clocks almost immediately replaced Riefler ones for time
distribution on local and eventually national scale.

The performance of such clocks was overtaken as soon as the technology of quartz crystal
oscillators became mature for the construction of the first timekeeper (W. Marrison and
J.W. Horton, 1927). Quartz clock operation hinges on piezoelectricity that is the capability
of some materials to generate electric potential when mechanically stressed or, conversely,
to strain when an electric potential is applied. Due to this interaction between mechanical
stress and electric field, when placed in a suitable oscillating electronic circuit, the quartz
will vibrate at a specific resonance frequency (basically depending on its size and shape)
and the frequency of the circuit will become the same as that of the crystal. Such a signal is
eventually used to operate an electronic clock display. As they had no escapements to disturb
their regular frequency, quartz crystal clocks soon proved their superiority with respect to
pendulum-based ones. A serious source of systematic error, namely the dependence of the
period on the strength of the local gravity vector (and hence on the pendulum location), was
overcome too. Although quartz oscillators had provided a major advance in timekeeping, so
as to become, in the late 1930s, the new timekeeping standards, it was apparent that there
were limitations to that technology. These devices could provide frequency with a precision
of about 10−10, but going beyond proved to be a real challenge. Operationally, fundamental
mode crystals could be made to provide frequencies up to 50 MHz. Higher frequencies
capable of providing more precise timekeeping were possible using overtones but were not
commonly used. Moreover, aging and changes in the environment, including temperature,
humidity, pressure, and vibration, affected the crystal frequency. In order to compensate for
these problems, different systems were designed, including temperature-compensated and
oven-controlled crystal oscillators.

To make a significant advance in precision timekeeping of laboratory standards, however,
a fundamental change was required [4, 5, 6]. Scientists had long realized that atoms (and
molecules) have resonances; each chemical element and compound absorbs and emits electro-
magnetic radiation at its own characteristic frequencies. An unperturbed atomic transition
is identical from atom to atom, so that, unlike a group of quartz oscillators, an ensemble
of atomic oscillators should all generate the same frequency. Also, unlike all electrical or
mechanical resonators, atoms do not wear out. Additionally, all experimental observations
in spectroscopy have proved compatible with the hypothesis that atomic properties are the
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same at all times and in all places, when they are assessed by an observer situated close to
the atom and accompanying it in the same motion. It is therefore possible to build instru-
ments, which, using a specified atomic transition, are all able to deliver a signal in real time
with the same frequency, anywhere and at any time, provided that relativistic effects due
to non-coincidence of atom and observer have been properly taken into account [7]. These
features were appreciated by Lord Kelvin who suggested using transitions in hydrogen as
a time-keeping oscillator. However, it wasn’t until the mid 20th century that technology
made these ideas possible. The first atomic clocks owe their genesis to the explosion of
advances in quantum mechanics and microwave electronics before and during the Second
World War. Indeed, the sudden development of the radar and very high frequency radio
communications made possible the generation of the kind of electromagnetic waves (mi-
crowaves) needed to interact with atoms. Atomic oscillators use the quantized energy levels
in atoms and molecules as the source of their resonance frequency. The laws of quantum
mechanics dictate that the energies of a bound system, such as an atom, have certain dis-
crete values. An electromagnetic field at a particular frequency can excite an atom from one
energy level to a higher one. Or, an atom at a high energy level can drop to a lower level by
emitting energy. The resonance frequency of an atomic oscillator is the difference between
the two energy levels, E1 and E2, divided by Planck’s constant, h:

ν0 =
E1 − E2

h
(1.2)

The basic idea of atomic clocks is the following. First, a suitable energy transition is
identified in some atomic species (microwave atomic frequency standards are commonly
based on hyperfine transitions of hydrogen-like atoms, such as rubidium, cesium, and hy-
drogen). These provide transition frequencies that can be used conveniently in electronic
circuitry (1.4 GHz for hydrogen, 6.8 GHz for rubidium, and 9.2 GHz for cesium). Then,
an ensemble of these atoms is created (either in an atomic beam, or in a storage device,
or in a fountain). Next, the atoms are illuminated with radiation from a tunable source
that operates near the transition frequency ν0. The frequency where the atoms maximally
absorb is sensed and controlled. When the absorption peak is achieved, the cycles of the
oscillator are counted: a certain number of elapsed cycles generates a standard interval of
time. Most of the basic concepts of atomic oscillators were developed by Isidor Rabi and his
colleagues at Columbia University in the 1930’s and 40’s. Although he may have suggested
using cesium as the reference for an atomic clock as early as 1945, research aimed at de-
veloping an atomic clock focused first on microwave resonances in the ammonia molecule.
In 1949, the National Bureau of Standards (NBS) built the first atomic clock, which was
based on ammonia (at 23.8 GHz). However, its performance wasn’t much better than the
existing standards, and attention shifted almost immediately to more promising atomic-
beam devices based on cesium. The first practical cesium atomic frequency standard was
built at the National Physical Laboratory (NPL) in England in 1955 by Dr. Louis Essen.
In collaboration with the U.S. Naval Observatory (USNO), it was immediately noted that
observations of the Moon over a period of several years would be required to determine
Ephemeris Time with the same precision as was achieved in a matter of minutes by the
first cesium clock. For the benefit of the reader, we recall here that the ephemeris second
is based on the period of revolution of the Earth around the Sun which is more predictable
than the rotation of Earth itself (for more details, refer to Chapter 7).

While NBS was the first to start working on a cesium standard, it wasn’t until several
years later that NBS completed its first cesium atomic beam device. By 1960, cesium stan-
dards had been refined enough to be incorporated into the official timekeeping system of
NBS. Standards of this sort were also developed at a number of other national standards
laboratories, leading to wide acceptance of this new timekeeping technology. Then, pres-
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sure mounted for an atom-based definition of time. This change occurred in 1967 when, by
international agreement,

the second was defined as the duration of 9,192,631,770 periods of the radia-
tion corresponding to the transition between two hyperfine levels |F = 4,mF =
0〉 ↔ |F = 3,mF = 0〉 in the ground state 2S1/2 of the 133Cs atom.

This definition made atomic time agree with the second based on Ephemeris Time, to
the extent that measurement allowed. As of 2011, the definition of the SI second remains
the same, except for a slight amendment made in 1997. Calculations made by Wayne Itano
of NBS in the early 1980s revealed that blackbody radiation can cause noticeable frequency
shifts in cesium standards [8], and his work eventually resulted in an addendum to the
definition: the Comité International des Poids et Mesures (CIPM) affirmed in 1997 that the
definition refers to a cesium atom at rest at a thermodynamic temperature of 0 K. Thus, a
perfect realization of the SI second would require the cesium atom to be in a zero magnetic
field in an environment where the temperature is absolute zero and where the atom has no
residual velocity.

Excluding the pendulum, quartz and microwave atomic clocks are far from being rel-
egated to history and their study will be resumed in Chapter 7. We close this section by
observing that the development of increasingly more accurate frequency standards was par-
alleled by an augmented frequency of the employed oscillator: from Earth’s rotation (∼
10 µHz), via pendulum clocks (∼ 1 Hz) and quartz oscillators (∼ 1 MHz), to microwave
atomic standards (∼ 1 GHz). More strictly, the accuracy performance of a frequency stan-
dard is characterized by the so-called quality factor (Q) which is defined, in general, as the
oscillator resistance to disturbances to its oscillation period. This notion can be grasped in
the case of a pendulum clock, where, in order to replace the energy lost by friction, pushes
must be applied by the escapement. These pushes are the main source of disturbance to the
pendulum motion. The smaller the fraction of the pendulum energy that is lost to friction,
the less energy needs to be added, the less the disturbance from the escapement, the more
the pendulum is independent of the clock mechanism, and the more constant its period is.
In other words, the Q factor is related to the ratio of the total energy in the system to the
energy lost per cycle or, equivalently, to how long it takes for the swings of the oscillator to
die out:

Q ≡ τ

T
=
ν0
Γ

(1.3)

where τ ≡ 1/Γ is the time constant describing the (exponential) decay of the swing
amplitude. Hence, the Q of pendulum clocks is increased by maximizing τ or, equivalently,
minimizing the overall frictional losses (Γ). As it will be shown in Chapter 2, for a damped
harmonic oscillator, Γ equals the full width at half maximum ∆ν of the system response
function (resonance curve) in the frequency domain. With this in mind, the above formula
can be generalized to all types of oscillators as

Q ≡ ν0
∆ν

(1.4)

Concerning quartz oscillators, here we just mention that, starting from the electric equiv-
alent of the crystal, ν0 and ∆ν are respectively calculated as the resonance frequency and
width of an oscillatory circuit. In the case of atoms, finally, ∆ν is calculated in the frame
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of quantum mechanics. Actually, as we will see in Chapter 4, atoms absorb or emit energy
over a small frequency range surrounding ν0: this spread of frequencies is referred to as the
linewidth and its ultimate limit is related to Heisenberg’s uncertainty principle. Since the
response of a high-Q system decays much more rapidly as the driving frequency moves away
from ν0, the oscillator with the highest Q would be desirable as a frequency standard, Q−1

being roughly proportional to its limiting accuracy. This can be achieved either by using an
atomic transition where ν0 is as high as possible, or by making ∆ν as narrow as possible.

1.3 The parallel story of the speed of light

In order to fully appreciate the significance of the modern physical measurements of the
speed of light, just think that even today we are usually not aware of any delay between the
occurrence of an event and its visual appearance in the eye of a distant observer. In fact,
a single visual snapshot is probably, for most people, the basis for the intuitive notion of
an instant. Therefore, it is of great interest to shortly trace the history of ideas concerning
the finiteness of the velocity of light [9, 10]. Among the ancient Greeks, there was a general
belief that this speed was infinite. An exception is represented by Empedocles from Acragas
(490-435 BC) who, according to Aristotle (384-322 BC), “was wrong in speaking of light as
travelling or being at a given moment between the earth and its envelope, its movement
being unobservable to us”. So powerful is Aristotele’s cosmology that it compels him to
declare that “...light is due to the presence of something, but it is not a movement”.

An interesting proof that the velocity of light must be infinite is given by Heron of
Alexandria (I century BC). According to him, you turn your head to the heaven at night,
keeping the eyes closed; then suddenly open them, at which time you see the stars. Since
no sensible time elapses between the instant of opening the eyes and the instant of sight of
the stars, light must travel instantaneously. Since the causal direction of an instantaneous
interaction is inherently ambiguous, it’s not surprising that ancient scholars considered two
competing models of vision, one based on the idea that every object is the source of images
of itself, emanating outwards to the eye of the observer, and the other claiming that the
observer’s eye is the source of visual rays emanating outwards to feel distant objects. Indeed,
at that time, the problem of the speed of light was secondary, whereas there was much more
interest in catoptrics and vision matter.

Amidst the Islamic scientists, Avicenna (980-1073) was perhaps the most famous: his
thought represents the climax of medieval philosophy. Avicenna observed that, if the per-
ception of light is due to the emission of some sort of particles by the luminous source (as
he believed), then the speed of light must be finite. Alhazen (965-1039), another Muslim
physicist and one of the greatest scholars of optics of all time, came to the same conclusion.
In his treatise on optics he states that light is a movement and, as such, is at one instant
in one place and at another instant in another place. Since light is not in both these places
at the same time, there must be a lapse of time between the two: hence the transmission
cannot be instantaneous.

Nevertheless, Aristotle’s point of view was echoed by many thinkers in western history:
John Peckam (1230-1292), Thomas Aquinas (1225-1274), and Witelo (1230-1275) to name a
few. It is curious to note that Roger Bacon (1214-1292), although in perfect agreement with
Alhazen’s conclusions on this subject, felt the need to show in "Opus Majus" that the sort
of reasoning used by Alhazen was identical to that of the scientists who attempted to prove
the opposite view. Bacon’s remarks afford a striking example of the confusion exhibited by
a first rate mind attempting to be reasonable with no genuine scientific or experimental
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basis as guide. The debate continued into the beginning of the scientific revolution of the
17th century. Such giants as Francis Bacon (1561-1626), Johannes Kepler (1571-1630), and
René Descartes (1596-1650) adhered to the idea of instantaneous propagation. Descartes
considered an eclipse of the moon, caused by the moon, earth, and sun being in a straight
line, with Earth interposed between the other two: “Now suppose that it requires an hour
for light to travel from the earth to the moon. Then the moon will not become dark until
exactly one hour after the instant of collinearity of the three bodies. Similarly, here on the
earth, we will not observe Moon’s darkening until the passage of another hour, or until two
hours after the moment of collinearity. But during this time, the moon will have moved in
its orbit and the three bodies will no longer be collinear. But clearly, this is contrary to
experience, for one always observes the eclipsed moon at the point of the ecliptic opposite
to the sun. Hence light does not travel in time, but in an instant”.

In the face of all this, the remarks by Galileo (1564-1642) seem like a breath of fresh air
in a stale room. In his great treatise on mechanics there is a conversation about the velocity
of light during which Salviati claims that the general inconclusiveness of observations on
this subject had led him to conceive an experiment. He says: “Let each of two persons
take a light contained in a lantern such that, by the interposition of the hand, the one can
shut off or admit the light to the vision of the other. Next, let them stand opposite each
other at a distance of a few cubits and practice until they acquire such skill (in uncovering
and occulting their lights) that the instant one sees the light of his companion, he will
uncover his own. After acquiring this skill, the two experimenters were to perform the same
operations at greater distances, ten miles if necessary (using telescopes). If the exposures
and occultations occur in the same manner as at short distances, we may safely conclude
that the propagation is instantaneous; but if time is required at a distance of three miles,
which, considering the going of one light and the coming of the other, really amounts to
six, then the delay ought to be easily observable”. This experiment was executed by the
Florentine Academy and their account of it is as follows: “We tried it at a mile’s distance
and could not observe any. Whether in a greater distance it is possible to perceive any
sensible delay, we have not yet had an opportunity to try”.

The first experimental evidence of the finite speed of light was due to Ole Christensen
Roemer in 1676 by observing the eclipses of the inner-most moon of Jupiter (Io) [11].
Discovered by Galileo in 1610, detailed tables of the movements of these moons had been
developed by Borelli (1665) and Cassini (1668). Io has a period of about 42.5 hours and,
if Earth were stationary, it would show an eclipse at regular intervals of 42.5 hours. But
Earth revolves about the sun and, in so doing, assumes positions 1 and 2 in Figure 1.1.
Roemer noticed that when the Earth was close to Jupiter (position 1), the eclipses occurred
8.5 minutes ahead of the time predicted on the basis of yearly averages. The eclipses were
late by the same amount when the Earth was opposite (position 2). Roemer concluded that
twice that difference was the time it took the light to traverse the diameter of Earth’s orbit
(∼ 3 · 108 km), which gave a figure of ∼ 227000 km/s.

Despite the force of Roemer’s analysis, and the early support of both Huygens and
Newton, most scientists remained skeptical of the idea of a finite speed of light. Alternative
explanations were provided by Cassini and later by his nephew Giacomo Filippo Maraldi.
They suggested that Jupiter’s orbit and the motion of its satellites might explain the ob-
served inequalities. It was not until 50 years later, when the speed of light was evaluated in
a completely different way, arriving at nearly the same value, that the idea became widely
accepted. Such measurement was performed in 1728 by James Bradley by observing stellar
aberration, that is the apparent displacement of stars due to the motion of the Earth around
the Sun. A useful analogy to help understand aberration is to imagine the effect of motion
on the angle at which rain falls. If you stand still in the rain (when there is no wind), it
comes down vertically on your head. If you run through the rain it appears to come to you
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FIGURE 1.1
Roemer’s evaluation of the speed of light.

from an angle and hit you on the front. It is worth pointing out that all stellar positions are
affected equally in the aberration phenomenon, which distinguishes this effect from paral-
lax where nearby stars are influenced more noticeably. By observing a star in Draco, and
recording its apparent position during the year, Bradley argued that stellar aberration is
approximately the ratio of the orbital speed of the Earth (around the Sun) to the speed of
light (see Figure 1.2). Based on the best measurement of the limiting starlight aberration
(20.5 arcseconds ≃ 0.0001 rad) by Otto Struve, and taking the speed of Earth to be about
30 km/s from Encke’s estimate, this implied a light speed of about 301000 km/s [9].

Unfortunately, measurements of the speed made in this way depended on the astronomi-
cal theory and observations used. Better determinations of the speed might be made if both
source and observer were terrestrial. The first measurement of c on Earth was by Armand
Fizeau in 1849 [12]. His method measured the time needed for light to travel to a flat mirror

Source
Apparent

source

FIGURE 1.2
Bradley’s determination of the light speed.
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at a known distance and return. For that purpose he designed a set-up where a collimated
beam emitted by a limelight passed through a half-mirror and a rotating cogwheel was then
reflected back by a mirror situated some 8.633 kilometers away, passed (or not) through the
cogwheel again, and was eventually reflected by the half-mirror into a monocular (see Figure
1.3). At a low rotation rate, the light passes through the same blank of the wheel on the way
out and on the way back. But with increasing rotation rate, a higher and higher percentage
of the transmitted light is cut on its way back by the incoming tooth of the wheel, resulting
in a decreasing light intensity collected in the monocular. Total extinction of the returning
light is reached when the time duration of the open gate corresponds exactly to the duration
of the round-trip, such that the light that has gone through finds the gate closed when it
returns. Knowing the precise distance d between the wheel and the mirror, the number of
teeth Nt of the wheel, and its rotation rate ω (expressed in radians per second), the speed
of light in air can be deduced to be

c = (2d)(2Nt)fc (1.5)

where fc = Ntω/2π is the frequency at which the beam is effectively stopped. Obviously,
if one increases further the rotating speed of the wheel, light will appear again as the
returning light will start passing through the gap situated right after the one it has passed
on its way out. Using this method with the cogwheel placed in Montmartre and the reflector
in Suresnes, Fizeau obtained a value of c = 315300 km/s, limited by the precision of his
measurement of ω, but yet better than any measurement realized before. Such a method was
subsequently taken up first by Marie Alfred Cornu in 1874 and then by Joseph Perrotin in
1902. Some experimental tricks allowed them to provide the following more accurate results
for the speed of light in vacuum: 299990 ± 200 km/s and 299901± 84 km/s, respectively
(their results already included correction for the refractive index of air) [13].

In 1855, Kirchhoff realized that 1/
√
ε0µ0 has the dimension of a speed, where µ0 (ε0)

is the magnetic permeability (electric permittivity) of free space entering the laws of mag-
netism (electricity). In 1856 Weber and Kohlrausch measured this constant using only elec-
trostatic and magnetostatic experiments [14]. Incidentally, they were the first to adopt the
symbol c (from Latin celeritas) for the speed of light. Within experimental accuracy, the
value found by them agreed with the speed of light. This remained a coincidence until
Maxwell formulated his theory of electromagnetism in 1865 and concluded that “...light is
an electromagnetic disturbance propagated through the field according to electromagnetic
laws” [15]. Maxwell’s equations established that the velocity of any electromagnetic wave
(and thus of light) in a vacuum is c, where

FIGURE 1.3
First terrestrial measurement of c, performed by Fizeau.
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c2 =
1

ε0µ0
(1.6)

At this stage, the status of c increased tremendously because it became a characteristic
of all electromagnetic phenomena.

The method demonstrated by Leon Foucault (1862) relies on the same principle adopted
by Fizeau (time of flight technique), but replaces the cogwheel by a revolving mirror (Figure
1.4). Light rays from the source S that strike the revolving mirror R and proceed through
the lens will strike the stationary mirror M and return to the source. If, after the light beam
first strikes R outbound from S, R can be rotated before it is struck again by the beam
returning from M , then the returning beam will no longer return exactly to the source S
but will instead be deflected away from S in the direction of the rotation. By rotating the
mirror at a constant speed, the amount of deflection will be the same for all light beams
which go through the lens, strike M and return. Then, for a continuous beam of light from
S and a constant high speed of rotation of R, an image of the source will appear beside
S instead of coincident upon it. The faster R rotates or the longer is RS, the farther the
returned image I will be displaced from the source S and the easier it will be to measure
the deflection. By carefully measuring the amount of displacement from S to I, and the
distance from S to R, the angle of deflection can be determined. Together with the known,
fixed speed of rotation, this angle can be used to determine the time it took light to travel
the distance from R to M and back. Let θ = arctan(IS/IR) denote the angle of deflection
(this means that the angle through which the mirror has rotated is θ/2). If the speed of
rotation is measured in number of cycles (nc) per second, then the speed of light is given
by

c =
2 ·RM
θ

2

1

2π

1

nc

(1.7)

In this arrangement, the distances IS and SR should be as large as possible to reduce
the error in measuring θ. The distance IS is maximized by maximizing the speed of rotation
of R and the distance RM . In Foucault’s setup, M was spherical with center at R. The
greatest distance RM achieved by Foucault was 20 m, which produced a displacement IS
of only about 1 mm. The result was 298000± 500 km/s [13].

Going back to the approach by Weber and Kohlrausch, in 1907 Rosa and Dorsey ob-
tained a much more accurate determination of c. As the value of µ0 is fixed at exactly
4π · 10−7 N·A−2 through the definition of the ampere, only ε0 had to be measured in their
experiments. This can be accomplished by determining the ratio of the capacitance of a
condenser as measured in electrostatic and electromagnetic units. Rosa and Dorsey used
the Maxwell bridge method (employing carefully standardized resistances) to determine the
electromagnetic capacitance and standards of length and mass to determine the electrostatic
capacitance [16]. They used a variety of shapes (spherical, cylindrical, and plane) and sizes
of condensers [17]. Both the calculations and experiments were beset with difficulties, but
their result was probably the most reliable up to that time. The final value, c = 299710
km/s, was the mean of about 900 individual determinations with an estimated maximum
error of 30 km/s, apart from uncertainties in the value taken for the international ohm. In
1941 a more accurate knowledge of the latter standard allowed Birge to apply a correction
to their result yielding the value c = 299784 km/s [18].

Foucalt’s apparatus was perfected by Michelson in several versions till the famous ex-
periment in 1927 [19]. As shown in Figure 1.5, the apparatus involved a rotating octagonal
glass prism. When the prism is stationary the light follows the path shown and an image
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FIGURE 1.4
Focault’s apparatus for measuring c.

of the source can be seen through the telescope. If the prism is rotated slowly, the image
disappears because either face X is not in a suitable position to direct the outgoing beam
to the concave reflector C, or face Y is unable to send the incoming beam to the telescope.
However, if the rotation speed of the prism is increased so that it turns exactly one-eighth
of a revolution in the same time that it takes light to travel from X to Y , then an image
of the source is seen through the telescope. Michelson adjusted the speed of rotation until
he was able to observe a stationary image of the source. This occurred when the prism was
rotating at frot ≃ 530 Hz (this rate was measured by comparison with a free pendulum
furnished by the United States Coast and Geodetic Survey). The experiment was carried
out on Mt. Wilson (USA) and the concave reflector C was on Mt. San Antonio d = 35 km
away. The result was c = (2d)/[(1/8)(1/frot)] = 299796± 4 km/s.

Source

M1 C

22.5 miles

Mt. Wilson

Mt. San
Antonio

Telescope

1

2

3
4

5

6

7
8 X

Y

FIGURE 1.5
Michelson’s famous experiment for the measurement of c.
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An ingenious modification of the toothed-wheel method was used by Karolus and Mit-
telstaedt in 1928. In their apparatus, a Kerr cell, at the terminals of which an alternating
difference of potential was applied, was used to periodically interrupt the passage of a lu-
minous beam. The main advantage of this method is that the frequency of such periodic
interruption can be accurately determined, which was not the case when the toothed wheel
was used; moreover, a much higher frequency can be used with this method (around 10
MHz), so that a correspondingly short base (in this case 41.4 meters) can be utilized [13].
This approach gave the value 299778± 20 km/s.

The completion of this excursus on the measurements of c necessitates now the discussion
of experiments whose understanding requires knowledge beyond basic physics, many of the
involved concepts being precisely the subject of this book. For the moment, may the reader
be satisfied with an intuitive comprehension; a full appreciation will result from revisiting
each experiment as the pertinent notions are gradually acquired.

As we will learn in Chapter 3, another valuable option to determine c is to measure the
resonance frequencies of a cavity resonator whose dimensions are precisely known. In 1946,
Louis Essen and A.C. Gordon-Smith pursued this approach, by establishing the frequency
for a variety of normal modes of an evacuated microwave cavity [20, 18]. The latter consisted
of a copper cylinder constructed with great uniformity. The resonant frequency νn of an
evacuated right circular hollow cylinder closed at both ends is given by

c =
νn

√

( r

πD

)2

+
( n

2L

)2

(

1 +
1

2Qcav

)

(1.8)

where r is a constant for a particular mode of resonance, n is the number of half-
wavelengths in the guide, D is the diameter and L the length of the cylinder, and Qcav is
the quality factor of the resonator accounting for the finite conductivity of the cavity walls.
The quantities νn, D, L, and Qcav could all be measured with a precision of a few parts in
106. In particular, the dimensions of the resonator were measured in the Metrology Division
of the National Physical Laboratory using gauges calibrated by interferometry. The final
result (using the E010 and E011 modes) was c = 299792 ± 9 km/s, where the estimated
maximum error was the sum of different contributions including setting of the frequency to
resonance and measurement of the frequency by the spectrum analyzer, uncertainty of the
resonator temperature, dimensional measurements, residual effects of coupling holes and
probes, non-uniformity of the resonator, and uncertainty of Qcav. Almost simultaneously,
a very similar value (299789.3± 0.4 km/s) obtained by the same measurement scheme was
published by Bol in a short note [21].

In those years, radar systems also began to be used to measure the speed of light. Again,
the time-of-flight principle was exploited: twice the known distance to a target was divided
by the time it took a radio-wave pulse to return to the radar antenna after being reflected
by the target. This was done by Aslakson in 1949 with the result 299792.4 ± 2.4 km/s
[22]. Incidentally we mention here (see Chapter 7 for further details) that, today, a Global
Positioning System (GPS) receiver measures its distance to GPS satellites based on how
long it takes for a radio signal to arrive from each satellite: from these distances the receiver
position is calculated.

Then came the geodimeters. Originally intended for use in geodesic surveying,
Bergstrand demonstrated their use in accurate measurement of the light speed [23]. With
reference to Figure 1.6, the principle can be described as follows: a light beam is emitted
through a Kerr cell to a distant mirror and reflected back to a receiving photocell close
to the emitter. The two cells are supplied by the same crystal-controlled high frequency
voltage (about 10 MHz in the original work). The difference in phase of the emitted and
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FIGURE 1.6
Bergstrand’s method for evaluating c.

received light is compared. If the mirror distance is known, the speed of light can be mea-
sured [24]. Bergstrand repeated this kind of measurement several times with the final value
299793.1± 0.2 km/s [25]. Such phase-shift method was pushed to the limit of its accuracy
by Grosse in 1967: 299792.50± 0.05 [26].

Another way to get the speed of light is to independently measure the frequency ν and
wavelength λ of an electromagnetic wave in vacuum. The value of c can then be found by
using the relation c = λν (see Figure 1.7).

This approach was followed first in the microwave domain at NPL by Froome in 1958
[27]. The basis of the determination consisted of the simultaneous measurement of the
free-space wavelength and frequency of an electromagnetic wave generated by a microwave
source. The latter was a frequency-stabilized klystron oscillator operating at 36 GHz (in
short, the klystron is a specialized linear-beam electron vacuum tube which converts, via
velocity modulation, the kinetic energy of the electron beam into a radio-frequency/micro-
wave signal). The greater part of the output from this oscillator was fed by means of
a waveguide switch into one of the two silicon crystal distorter units tuned for maximum
harmonic output at 72 GHz (about 0.4 cm wavelength). One harmonic generator was used to
supply the interferometer itself, the other for operating the cavity resonator refractometer
by means of which the refractive index of the air in the neighborhood of the equipment
could be measured. The measurement of the microwave frequency was accomplished by
comparing a portion of the klystron output against a high harmonic of a 5-MHz quartz
crystal standard. The 5-MHz was multiplied in stages of two to five times up to 600 MHz
and then fed into a silicon crystal harmonic generator mounted in waveguide, so that the
harmonic at exactly 36 GHz could be mixed with a small fraction of the klystron output.
The beat frequency between the two was detected by means of a calibrated communications
receiver. The accuracy of frequency determination was at least as good as 1 part in 108. The
estimated accuracy of the refractive index measurement was 1.1 parts in 107. The value of
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FIGURE 1.7
Determination of c = λ · ν by independent measurements of the free-space wavelength λ
and frequency ν of an electromagnetic wave.
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microwave wavelength obtained by means of the interferometer, when multiplied by the air
refractive index and the microwave frequency, gave a vacuum phase velocity which had still
to be corrected for the effect of diffraction before the true free-space value could be derived.
Basic concepts of interferometry for wavelength measurements will be given in Chapter 5.
Here we just recall that the diffraction limit is proportional to λ. It is interesting to note
that the greatest single uncertainty in the whole measurement arose from the use of the
length standards. At that time, interferometry-based length measurements were ultimately
referenced to the cadmium red line (falling at λ ≃ 644 nm) as emitted by the international
specified form of the Michelson lamp. The result was 299792.50± 0.10 km/s.

Later, it was discovered that the cadmium line was actually a cluster of closely separated
lines, and that this was due to the presence of different isotopes in natural cadmium. Thus,
in order to get the most precisely defined line, it was necessary to use a mono-isotopic
source. Allowing for easier isotopic enrichment and lower operating temperatures for the
lamp (which reduces broadening of the line due to the Doppler effect), the pretty bright
orange line of krypton-86 (at λ ≃ 606 nm) was then selected as the new standard. Krypton-
86 offered the additional advantages of having zero nuclear spin.

In the same years, a quite different, spectroscopy-based approach was also pursued to
measure c [28]. That was the so-called band spectrum method, involving the simultaneous
measurement of the rotational constant B′′ of the ground state of a diatomic (or linear)
molecule in pure frequency units by means of microwave spectroscopy and in cm−1 units
by means of infrared (rotation-vibration) spectroscopy. Then, the ratio

B′′ microwave
B′′ infrared

= c (1.9)

yields the speed of light. The most precise result obtained by such method was c =
299792.8± 0.4 km/s, the main limitation being dictated by the accuracy of the theory of
band spectra of molecules.

1.3.1 The laser arrives: length-frequency equivalence and the birth of
optical frequency metrology

Up to this point in both stories, that of timekeeping and c, only microwave radiation made
its entrance. The future of metrology was changed fundamentally on 12 December 1960
when a small team at Bell Labs, led by Ali Javan, eventually found the right conditions for
their Optical Maser to generate the self-sustained optical oscillation that was anticipated
by Charles Townes and Arthur Schawlow in a classic paper of 1958 [29]. The emergence of
the laser promised to open new scenarios in the field of metrology. Indeed, very soon the
wavelength of visible radiation could be measured fairly well by Michelson or Fabry-Perot
interferometers. This possibility enabled the development of laser frequency measurement
programs at various national standards laboratories such as NBS at Boulder, NPL at Ted-
dington, and National Research Council at Ottawa. In spite of the fact that lasers provided
coherent frequency sources in the infrared and visible, optical frequencies could not imme-
diately be measured with the required degree of accuracy. Specifically, two fundamental
drawbacks had to be overcome. First, laser frequency stability had to be greatly improved.
Indeed, in the case of the gas laser, although its short term linewidth was a few hundred
Hz, over a long period, its frequency could vary within the Doppler and pressure broad-
ened gain curve of the laser. By the late 1960s, lasers stabilized in frequency to atomic
and molecular resonances were becoming reliable research tools and the development of
the technique of saturated absorption had produced lasers with one-second fractional fre-
quency instabilities as small as 5 · 10−13 [26]. Second, the laser optical frequency was much
too high for conventional frequency measurement methods. To remove this limitation, the
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approach taken was to synthesize signals at progressively higher and higher frequency us-
ing harmonic-generation-and-mixing (heterodyne) methods and to lock the frequency of a
nearby oscillator or laser to the frequency of this synthesized signal. Photodiodes, as well as
metal-insulator-metal (MIM) diodes, fabricated by adjusting a finely tipped tungsten wire
against a naturally oxidized nickel plate, were used for harmonic generation and mixing [30].
With this approach, a frequency synthesis chain was constructed linking the microwave out-
put of the cesium frequency standard to the optical region [31], so that the Boulder group
could directly measure the frequency of a helium-neon laser stabilized against the 3.39-µm
(88 THz) transition of methane [32] (note that the frequency of the methane stabilized
helium-neon laser is over 1000 times higher in frequency than that of the oscillator used in
Froome’s measurement). At the same time, the wavelength of the 3.39-µm line of methane
was measured with respect to the Kr-86 6057-Angstrom standard by using a frequency-
controlled Fabry-Perot interferometer [33]. In this way, the laser eventually permitted to
preserve the small interferometric errors associated with the short optical wavelength, while
utilizing microwave frequencies which were still readily manipulated and measured. The
extension of frequency measurements into the infrared portion of the electromagnetic spec-
trum had in a sense solved the dilemma raised raised by Froome’s experiment: to measure
the frequency, it is best to do the experiment not too far removed from the primary Cs fre-
quency where extremely stable oscillators can be made and frequencies are easily measured
with great accuracy. However, to measure the wavelength it is best to do the experiment
close to the visible 86-krypton wavelength standard where wavelengths can be more easily
compared and where diffraction problems are not severe. Table 1.1 summarizes the most
significant milestones in the story of c measurements.

When the measurements were completed, the uncertainty limitation was found to be
the asymmetry of the krypton line on which the definition of the meter was then based
[34]. The experiment thus showed that the realization of the meter could be substantially
improved through redefinition. This careful measurement resulted in a reduction of the
uncertainty of the speed of light by a factor of nearly 100. The methods developed at NIST
were replicated in a number of other laboratories [35, 36, 37], and the experiments were
repeated and improved to the point where it was generally agreed that this technology
could form the basis for a new definition of the meter. An important remaining task was
the accurate measurement of still higher (visible) frequencies which could then serve as
more practical realizations of the proposed new definition. The Boulder group again took
the lead and provided the first direct measurement of the frequency of the 633 nm line of
the iodine-stabilized helium-neon laser [38], as well as a measurement of the frequency of
the 576 nm line in iodine [39].

These and similar measurements around the world (frequency and wavelength measure-
ments were refined to the accuracy of few parts in 1010 and in 109, respectively) were the
last ingredients needed to take up the redefinition of the meter. The product of the mea-
sured frequency and the wavelength yields a new, definitive value for the speed of light. The
new (and current) definition of the meter, accepted by the 17th Conference Generale des
Poids et Mesures in 1983, was quite simple and elegant:

the meter is the length of the path traveled by light in vacuum during a time
interval of 1/299,792,458 of a second

A consequence of this definition is that the speed of light is now a defined constant, not
to be measured again. In subsequent years, measurement of other stabilized-laser systems
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added to the ways in which the meter could be realized. Furthermore, these experiments
definitely demonstrated that, in order to obtain highly precise results, it is necessary to
measure the frequency of light rather than its wavelength, marking the birth of optical
frequency metrology.

Time-frequency and length-frequency equivalence principles are only two aspects of a
more general trend in contemporary metrology, that of establishing measurement units
based, rather than on artifacts, on atomic (quantum) standards or on fundamental constants
[40]. These are invariant both on a practical scale and as far as can be measured in the
laboratory. Let’s deepen the significance of this process starting with the second and the
meter.

Although the cesium frequency cannot presently be explicitly written in terms of funda-
mental constants because of the complexity of the atomic theory required, it is a quantum
system that will have the stability associated with fundamental constants. The uncertainty
in calculating this frequency is many orders of magnitude away from its measurement uncer-
tainty. The Rydberg constant could be considered the natural fundamental constant-based
unit of frequency. It is determined with a relative uncertainty of 6.6·10−12, which is currently
the limit at which an atomic frequency can be calculated from fundamental constants. The
choice of the cesium definition was a good one in the sense that the technology, although
superior to the alternative clocks of the day, still had much room for improvement, and the
definition has endured to this day, during which time its practical realization has improved
by five orders of magnitude. A clear example of the link between fundamental constants
and the units is the adoption of the speed-of-light definition of the meter. The meter was
originally defined as the length of a prototype meter bar intended to be 1/10, 000, 000 of
the length of a quadrant of Earth. By 1960, the development of interferometry allowed an
atomic redefinition of the meter in terms of the wavelength of light from a specific source, the
krypton lamp (the meter was defined as 1650763.73 wavelengths of the orange-red emission
line in the spectrum of krypton-86 atom in vacuum). With the invention of the laser, length
measurement by interferometry was radically improved and the krypton standard was not
accurate enough. The meter definition could then have been revised using the wavelength of
a specified stabilized laser. However, the progress in understanding the metrological impor-
tance of the speed of light, along with the progress in its accurate measurements, led to the
change from defining the meter in terms of the wavelength of light from a specific source,
to a fundamental constant-based definition in which the speed of light is a defined quan-
tity. The choice of the speed-of-light definition over the use of a particular stabilized laser
should ensure that this definition will endure, whereas the krypton definition lasted only 23
years. In practice, a number of recommended radiations, that is, frequencies of particular
stabilized lasers, are published accompanying the definition. This means that to realize the
meter there is no need to measure the distance that light travels in 1/299, 792, 458 of a
second by literally timing a light beam. One can, for example, continue to use a laser in-
terferometer and measure the frequency of the laser used, or use a recommended stabilized
laser and then use the relationship c = λν (as well as corrections for refractive index, if the
measurement is not done in a vacuum). In other words, the realization is a method that
implements the definition by using the known laws of physics; it allows the experimental
production of a known quantity of the same kind as the one defined, but the method used
may be dissimilar to the one in the definition. We close this discussion by mentioning an-
other clarifying example, namely the definition of the volt. Electrical quantum metrology
started in 1962 when Josephson predicted that in the presence of an applied microwave field,
a direct superconducting tunnelling current could pass between superconductors separated
by an insulating barrier. This current can only pass when the voltage V across the barrier
satisfies the relationship
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TABLE 1.1
List of the most significant terrestrial measurements of c.

Year Investigator Method Value (km/s)

1849 Fizeau Toothed wheel 315, 300 [12]
1862 Foucault Revolving mirror 298, 000± 500 [13]
1906 Rosa and Dorsey EM constants 299, 710 ± 30[18]
1927 Michelson Revolving mirror 299, 796± 4[13]
1928 Karolus and Mittelstaedt Kerr cell 299, 778 ± 20[13]
1948 Essen and Gordon-Smith Cavity resonator 299, 792± 9[18]
1949 Aslakson Radar 299, 792.3± 2.4 [22]
1952 Bergstrand Geodimeter 299, 793.1± 0.2 [25]
1958 Froome Millimiter-wave interferometry 299, 792.50± 0.10 [27]
1965 Rank Spectroscopy 299, 792.8± 0.4 [28]
1972 Evenson Direct frequency and wavelength 299, 792.4562(11)

measurement of a laser 299, 792.4587(11)[34]

Note: The two values in Evenson’s measurement were due to the asymmetry in the krypton 6057-
Angstrom line defining the meter. Except for the first two (in air), all the listed results refer to
the value in vacuum.

2eV = nhν (1.10)

where e is the electron charge, h the Planck constant, ν the applied frequency, and
n an integer. It was recognized that voltage standards could be based on this effect. A
number of experiments found no corrections to expression 1.10 or dependence on material
or experimental conditions at a level of up to parts in 1016. In 1972, a number of countries
used the Josephson effect to maintain the volt and agreed on an assigned value for 2e/h so
that their voltages were in agreement. They are not necessarily the correct SI value; hence,
the agreed-upon value is referred to as a representation of the volt. Again a frequency
measurement played a crucial role.

1.3.2 Role of c in fundamental physics

Besides representing an essential pillar of frequency metrology, the parameter c is ubiquitous
in contemporary physics, entering many contexts that are apparently disconnected from the
notion of light itself. Our thoughts soon turn to the very famous second postulate of Special
Relativity: “The velocity c of light in vacuum is the same in all inertial frames of reference
in all directions and depend neither on the velocity of the source nor on the velocity of
the observer”. The theory of Special Relativity explores the consequences of this invariance
of c with the assumption that the laws of physics can be written in the same form in all
inertial frames (first postulate). Declared by Einstein in 1905, after being motivated by
Maxwell’s theory of electromagnetism and the lack of evidence for the luminiferous ether,
the invariance of the speed of light and its isotropy has been consistently confirmed by
many experiments over the years. Other experimentally verified implications of Special
Relativity include length contraction (moving objects shorten), and time dilation (moving
clocks run slower). The factor γ by which lengths contract and times dilate is known as

the Lorentz factor and is given by γ = 1/

√

1−
(

v
c

)2
, where v is the speed of the object.

Special Relativity also establishes that the energy of an object with rest mass m and speed
v is given by E = γmc2. Since the γ factor approaches infinity as v approaches c, it
would take an infinite amount of energy to accelerate an object with mass to the speed of
light. The speed of light is therefore the upper limit for the speeds of objects with positive
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rest mass. Experimental Tests of General Relativity for the most part also verify Special
Relativity, since the laws of the latter are included as part of the former via the principle of
consistency. For a tutorial introduction to Special and General Relativity the reader may
refer to [41], while an updated list of experimental verifications inferred from advanced
frequency measurements will be given in Chapter 8.

As a clarification of what was just discussed, it is worth adding that, in principle, we
should distinguish between the electromagnetism constant cEM = 1/

√
ε0µ0, and the space-

time constant cST appearing in the Lorentz transformation that is at the basis of the formu-
lation of Special Relativity [42]. In general, for example, the celebrated equation unifying
the concepts of energy and mass should be written in the form E = mc2ST . cEM agrees with
cST insofar as the mass of the photon is zero. If we were to show experimentally that the
photon has non-zero mass, then the standard derivation of relativity from electromagnetism
would have to be abandoned. Incidentally, extensions of quantum electrodynamics (QED)
in which the photon has a mass have been considered [43]. In such a theory, the photon
speed would depend on its frequency. No variation of the speed of light with frequency has
been observed in rigorous testing, putting stringent limits on the mass of the photon [44].
The same is true for gravitational waves: their speed in vacuum cGW , is equal to cST as long
as we assume that general relativity is valid. Again, if we were able to formulate a theory
with light massive gravitons, then the speed of propagation of gravity might be different
from cST . Finally, the space-time-matter constant cE , introduced by Einstein to describe
coupling of gravity to matter, coincides by definition with cST only in the context of general
relativity.

As mentioned, Einstein’s relativity treats space and time as a unified structure known
as space-time (with c relating the units of space and time) and requires that physical theo-
ries satisfy a special symmetry called Lorentz invariance, whose mathematical formulation
contains precisely the parameter c. Lorentz invariance is an almost universal assumption
for modern physical theories, such as quantum electrodynamics, quantum chromodynamics,
and the Standard Model of particle physics. One consequence is that c is the speed at which
all massless particles and waves, not only light, must travel. This result is constantly put to
the test in different areas of experimental physics. In this respect, great emphasis was given
to a high-energy physics experiment according to which beams of neutrinos, fired through
the ground from Cern near Geneva to the Gran Sasso lab in Italy 450 miles (720 km) away,
seemed to arrive sixty billionths of a second earlier than they should if travelling at the
speed of light in a vacuum [45]. Subsequently, however, a discrepancy between the clocks
at Cern and Gran Sasso was discovered to be at the root of the observed faster-than-light
results. In the future, use of an optical fiber, as opposed to the GPS system used at the
moment, should ensure a more accurate synchronization of the two clocks. This gives even
more prominence, if any were needed, to the scope of time and frequency measurements.

The most striking feature of Einstein’s relativity is undoubtedly the upper limit to
velocity of any physical object set by c, albeit there are situations in which it may seem
that matter, energy, or information travels at speeds greater than c. A first amazing example
is the following. Think about how fast a shadow can move. If you project the shadow of your
finger using a nearby lamp onto a distant wall and then wag your finger, the shadow will
move much faster than your finger. If your finger moves parallel to the wall, the shadow’s
speed will be multiplied by a factorD/d where d is the distance from the lamp to your finger,
and D is the distance from the lamp to the wall. If the wall is very far away, the movement of
the shadow will be delayed because of the time it takes light to get there, but the shadow’s
speed is still increased by the same ratio. The speed of a shadow is therefore not restricted
to be less than the speed of light. Unfortunately, the shadow is not a physical object and
it is not possible to send information on a shadow. Also, certain quantum effects appear to
be transmitted instantaneously and therefore faster than c. Among these we mention the
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celebrated Einstein-Podolsky-Rosen (EPR) paradox [46], the Hartman effect [47], and the
Casimir effect [48]. It has been pointed out, however, that none of these effects can be used
to send information.

Other examples come from the astrophysical/cosmological context. According to Hub-
ble’s law, two galaxies that are a distance D apart are moving away from each other at
a speed HD, where H is Hubble’s constant. This interpretation implies that two galaxies
separated by a distance greater than c/H must be moving away from each other faster
than the speed of light. Actually, the modern viewpoint describes this situation differently:
general relativity considers the galaxies as being at rest relative to one another, while the
space between them is expanding. In that sense, the galaxies are not moving away from each
other faster than the speed of light; they are not moving away from each other at all! This
change of viewpoint is not arbitrary; rather, it agrees with the different but very fruitful
view of the universe that general relativity provides. So the distance between two objects
can be increasing faster than light because of the expansion of the universe, but this does
not mean, in fact, that their relative speed is faster than light.

It is worth stressing that all the experiments performed to date have confirmed that it
is impossible for information or energy to travel faster than c. One simple general argument
for this follows from the counter-intuitive implication of special relativity known as the
relativity of simultaneity. If the spatial distance between two events A and B is larger than
the time interval between them multiplied by c, then there are frames of reference in which
A precedes B, others in which B precedes A, and others in which they are simultaneous. As
a result, if something were travelling faster than c relative to an inertial frame of reference,
it would be travelling backwards in time relative to another frame, and causality would be
violated. In such a frame of reference, an effect could be observed before its cause. Such a
violation of causality has never been recorded.

In a medium, light usually does not propagate at a speed equal to c; furthermore, different
types of light wave will travel at different speeds. The speed at which the individual crests
and troughs of a plane wave (a wave filling the whole space, with only one frequency)
propagate is called the phase velocity vp. So, while in vacuum we have c = vp = λν, in
a medium we have c/n(ν) = vp = λν where n(ν) is the refractive index of the medium
(in general it also depends on the intensity, polarization direction of propagation,...). In
actual circumstances such idealized solutions do not arise. Even in the most monochromatic
light source or the most sharply tuned radio transmitter or receiver, one deals with a finite
spread of frequencies or wavelengths. Since the basic equations are linear, it is in principle an
elementary matter to make the appropriate linear superposition of solutions with different
frequencies where each monochromatic component has its own phase velocity. Consequently,
there is a tendency for the original coherence to be lost and for the pulse to become distorted
in shape. At the very least, we might expect it to propagate with a rather different velocity
from, say, the average phase velocity of its component waves. The general case of a highly
dispersive medium or a very sharp pulse with a wide spread of wave numbers is difficult to
treat. But the propagation of a pulse which is not too broad in its wave-number spectrum,
or a pulse in a medium for which the frequency depends weakly on wave number, can be
handled in an approximate way. In this case, it can be shown that the transport of energy
occurs with the group velocity

vg =
dω

dk

∣

∣

∣

∣

k=k0

(1.11)

where ω (k)=ck/n (k) describes the dispersion of the material and k0 is the center
wavenumber of the packet. In general, however, the behavior of the wave packet is much
more complicated and the group velocity above defined does not identify with the infor-
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mation velocity. In transparent materials, the refractive index generally is greater than 1,
meaning that the phase velocity is less than c. In other materials, it is possible for the
refractive index to become smaller than 1 for some frequencies; in some exotic materials
it is even possible for the index of refraction to become negative. This reflects in turn on
the value of the group velocity. Even in those cases where group velocities exceeding c are
observed, it is still valid, according to causality, that it is impossible to transmit informa-
tion faster than the speed of light in vacuum. Indeed, when the notion of front velocity is
introduced and the principle of causality is accounted for, it can be rigorously shown in
the frame of classical electrodynamics that information travels at the front velocity that is
actually limited to c [49].

The finiteness of the speed of light has implications for the whole realm of sciences and
technologies. In some cases, it is considered as a hindrance. For instance, being the upper
limit of the speed with which signals can be sent, c provides a theoretical upper limit for the
operating speed of microprocessors. In supercomputers, the speed of light imposes a limit on
how quickly data can be distributed among processors. If a processor operates at 1 GHz, a
signal can only travel a maximum of about 30 centimeters in a single cycle. Processors must
therefore be placed close to each other to minimize communication latencies; this represents
a trade-off with cooling needs. If clock frequencies continue to increase, the speed of light
will eventually become a limiting factor for the internal design of single chips. In other cases,
the finiteness of c turns out to be useful. For instance, the finite speed of light is important
in astronomy. Due to the vast distances involved, it can take a very long time for light to
travel from its source to Earth. For example, photographs taken today in the Hubble Ultra
Deep Field capture images of the galaxies as they appeared 13 billion years ago, when the
universe was less than a billion years old. The fact that more distant objects appear to be
younger, due to the finite speed of light, allows astronomer to infer the evolution of stars,
galaxies, and of the universe itself. Moreover, position measurements by GPS systems rely
on the finiteness of c.

We close this section by observing that it is generally assumed that fundamental con-
stants such as c have the same value throughout space-time, meaning that they do not
depend on location and do not vary with time. However, it has been suggested in various
theories that the speed of light may have changed over time. No conclusive evidence for
such changes has been found, but this remains a crucial subject of ongoing metrological
research [50].

As we will see during this book, and in particular in Chapter 8, advanced laser-based
measurements in the frequency and time domains promise to give a new insight into many
of the aforementioned issues.

1.4 In the end, time and light met up again: optical atomic clocks
and outline of the book

As we have seen, the advent of the laser played a central role in the statement of the meter
definition marking, in fact, the beginning of optical frequency metrology. In the following
years, the laser became an invaluable source in many research fields. Today, it is the true
light which enlightens every advanced frequency metrology experiment. Additionally, from
the sixties to the present, three major developments were triggered by the laser in the field
of fundamental research: ultra-high-resolution spectroscopy, the field of trapping/cooling
of atoms, and the realization of optical frequency comb synthesizers based on femtosecond
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(fs) mode-locked lasers. In turn, these three discoveries have played a crucial role in the
timekeeping story leading to the realization of the current optical atomic clocks. Although
present-day cesium microwave frequency standards perform at an already remarkable level
(fractional uncertainty below 1 part in 1015), a new approach to timekeeping based on optical
atomic transitions promises still greater improvements. According to the given definition of
Q, by using optical (ν0 ∼ 1015 Hz) rather than microwave (ν0 ∼ 1010 Hz) frequencies,
optical standards should be considerably more accurate. Also several key frequency shifts
are fractionally much smaller in the optical domain and their investigation will be greatly
accelerated by the much smaller instability of the optical standards. A projection of the
fractional uncertainty achievable in the new era of optical atomic clocks is made in Figure
1.8 which displays some of the major milestones in the improvement of clocks over the past
400 years.

The potential advantages of optical atomic clocks were recognized in the early days of
frequency standards. However, optical standards did not truly begin to experience these
potential gains until the past decade, when the above three fields enjoyed an extraordinary
growth. First, huge advances in laser cooling techniques made it possible to cool a variety of
atoms and ions (including those with narrow clock transitions) to millikelvin temperatures
and below. The use of laser-cooled atomic samples enabled, in turn, the extended interaction
times required to observe a narrow transition linewidth. To resolve such narrow linewidths,
probe lasers need to be spectrally pure. Recent improvements in laser stabilization based
on environmentally isolated optical reference cavities have enabled laser linewidths at the
subhertz level to be achieved [51]. Finally, and perhaps most critically, compact and reliable
optical frequency comb synthesizers (OFCSs) for counting optical frequencies (linking them,

FIGURE 1.8
Major milestones in the improvement of clocks over the past 400 years, including the pro-
jected fractional uncertainty of next-generation optical atomic clocks. (Adapted from [5].)
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phase coherently and in a single step, to other frequencies in the microwave and optical
domains) became available replacing the old and cumbersome frequency chains [52, 53].

Being the most recent and sophisticated objects presented in this book, optical atomic
clocks will be our guiding star along the whole treatment. Thus, just to point out all the
relevant ingredients, a paradigmatic scheme is given in Figure 1.9 [5].

Schematically, the probe laser, whose frequency is pre-stabilized against an optical cavity,
is used to excite transitions in a laser-cooled, trapped sample of atoms (either neutral or
ions). A servo system uses the signal from the quantum absorbers to keep the probe laser
frequency centered on resonance. Light is sent to the OFCS, which enables counting of the
clock cycles. In this picture, as 5000 years ago, a light source (the laser plays here the role
of Sun) interrogates an oscillatory phenomenon (the atomic resonance is now the equivalent
of Earth’s rotation). The abysmal difference lies in the much higher operation frequency
(and in the much greater stability compared to Earth’s motion), as well as in the resonant
character of light-matter interaction. So, optical atomic clocks represent the happy end of
the history of Light and Time.

Now, the time is approaching when optical frequency standards will have accuracies
and stabilities superior to the best microwave cesium standards. Then it will be necessary
to revisit the definition of the second. There are a number of candidate optical frequency
standards, but at present no particular standard is clearly superior to the others. The time
lag in adopting a new atomic standard mainly reflects the work that is necessary to ensure
that one specifically selected system is indeed superior.

As illustrated in these first sections, the history of physics shows that, when the accuracy
of measurements is improved, new physics may be discovered and explored. Throughout
history, at several moments, the discovery or development of a new type of oscillator with
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FIGURE 1.9
Schematic layout of an optical atomic clock.
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improved performance has meant a huge step forward in our knowledge of physics or even
coincided with a scientific revolution. For example, the advent of pendulum clocks provided
experimental verification of Galilean laws of mechanics, while, more recently, observation of
astronomical oscillators like binary pulsars confirmed many of the predictions of the General
Relativity. In the same way, optical atomic clocks are expected to improve our knowledge
in fundamental physics.

The emergence of the laser, moreover, made it essential to distinguish its special light
from the more incoherent radiation emitted by hot bodies. This induced Roy Glauber to
utilize the quantum theory to describe the properties of light and how these can be ob-
served. His work laid the foundations for the field of research today called Quantum Optics,
and earned him the Nobel Prize awarded in 2005 [54]. Quantum Optics is a very wide field
and only those aspects that will intersect the main path of our book will be dealt with.
In technical applications, the quantum effects are often very small. The field state is cho-
sen so that it can be assigned well-defined phase and amplitude properties. In laboratory
measurements, too, the uncertainty of quantum physics seldom sets the limit. But the un-
certainty that nevertheless exists appears as a random variation in the observations. This
quantum noise sets the ultimate limit for the precision of optical observations. In high-
resolution frequency measurements, quantum amplifiers, and frequency standards, it is in
the end only the quantum nature of light that sets a limit for how precise our apparatuses
can be. Such ultimate limits have been explored in recent years by two main protagonists,
John L. Hall and Theodor W. Hänsch. For their unceasing and illuminating research within
the field of laser-based precision spectroscopy culminating with the realization of OFCSs,
they received the other half of the Nobel Prize in Physics in 2005. It now seems possible,
with the frequency comb technique, to make frequency measurements in the future with a
precision approaching one part in 1018. This will soon lead to actualize the introduction of
a new, optical standard clock. What phenomena and measuring problems can take advan-
tage of this extreme precision? Just to mention a few examples, more exact satellite-based
navigation systems will become available and novel applications in telecommunication may
emerge. Enormous benefits will also come out for navigation on long space journeys and for
space-based telescope arrays that are looking for gravitational waves or making precision
tests of the theory of relativity. Besides technological applications, this improved measure-
ment precision may also be used in fundamental physical studies like those related to the
antimatter-ordinary matter connection (spectroscopic studies of anti-hydrogen), to parity
violation in chiral molecules, as well as to the search for possible changes in the constants
of Nature over time. These and other fascinating issues will be discussed in Chapter 8.

At the end of this introductory chapter, we hope that, by grasping the concepts here
proposed, the reader is in tune with the authors to better appreciate the logical organization
of the book. In a sense, we are going to give, chapter by chapter, a detailed description of all
the key elements on which the operation of optical atomic clock hinges. Here is the outline:

In Chapter 2 we shall discuss the general basic features of harmonic oscillators and
introduce the mathematical background for their characterization. An introductory overview
of the most commonly used techniques for measuring and suppressing the phase noise in
oscillators will be also given, together with a few elementary notions on feedback systems.
The issue of accurate optical frequency synthesis will be also addressed in the last sections.

Chapter 3 is entirely devoted to passive resonators working both in the microwave and
optical domain. Greater emphasis is given to the latter: besides traditional bulk resonators
and their most updated developments, guided cavities based on optical fibers as well as
micro-resonators relying on whispering gallery modes will be treated into a certain detail.

In Chapter 4 we shall deal with continuous-wave (cw) coherent radiation sources.
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After a short introduction on masers, we will focus on lasers by illustrating, firstly, some
key aspects of their operation and a number of fundamental properties in their output.
Then, a wide range of laser-based systems will be presented. A few clarifying examples of
intensity and frequency stabilized laser sources will close the chapter.

In Chapter 5 we shall provide a comprehensive treatment of high-resolution and high-
sensitivity spectroscopic techniques for ultraprecise frequency measurements. Then, optical
frequency standards utilizing either absorption cells or atomic/molecular beams will be
described.

In Chapter 6 the issue of time and frequency measurements with pulsed laser systems
will be addressed. Starting with general mode-locking theory and mechanisms, advanced
schemes for optical frequency comb synthesis (from mode-locked lasers) and relative sta-
bilization will be presented. The extension of OFCSs into novel spectral regions, from the
extreme ultraviolet (XUV) to the far-infrared (FIR), will be also discussed.

Chapter 7 is mainly devoted to microwave frequency standards. This category
comprises high-quality crystal-based oscillators, high-performance hydrogen masers, and
cutting-edge fountains based on cold alkali atoms. Being fundamental to the understanding
of atomic standards, a propaedeutic review on trapping/cooling techniques for atoms, ions,
and molecules is also provided. In the last part, a brief account on time and frequency
dissemination (including optical frequency transfer) is given.

Chapter 8 starts with optical atomic clocks, ranging from the more established ones,
based on single laser-cooled trapped ions, to the newest systems relying on neutral atoms
trapped in an optical lattice. Then, based on the wide phenomenology explored thus far,
possible research prospects in the field of time and frequency measurements are drawn for
the next future.



2

Characterization and control of harmonic oscillators

Human time does not rotate in a circle,

but moves fast in a straight line. That is

why man can not be happy, because

happiness is the desire for repetition.

Milan Kundera - The Unbearable

Lightness of Being

The fish in the water is silent, the animals

on the earth are noisy, the bird in the air

is singing. But man has in himself the

silence of the sea, the noise of the earth

and the music of the air.

Rabindranath Tagore

2.1 The ideal harmonic oscillator

The purpose of this chapter is to acquaint the reader with the basic concepts and the
mathematical tools that are necessary to address and better understand the contents which
are at the heart of this book. From the previous chapter we learnt that oscillators are
ubiquitous in the field of frequency metrology. We start by reviewing the most relevant
features of harmonic (sinusoidal) oscillators which, although known from General Physics,
deserve here a discussion devoted to our specific context. We focus on two archetypes: the
pendulum and the RLC-series circuit. The former is the paradigm of mechanical oscillators,
while the latter embodies the electrical ones. According to the specific property we are
interested in, from time to time we will resort to one or the other system, but the conclusions
will always be general.

For a point pendulum supported by a massless and inextensible cord of length l, the
equation of motion is given by

ml2θ̈ = −mglsin θ − βθ̇ (2.1)

where m is the bob mass, g the local acceleration of gravity, θ the angle between the
cord and the vertical, and β accounts for the overall friction (basically the resistance by the
air and the escapement). For infinitesimal displacements, we replace sin θ by θ and get the
following second-order linear differential equation

θ̈ +
β

ml2
θ̇ +

g

l
θ = 0 (2.2)

25
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In the case of the RLC series circuit, it is the mesh current I obey an equation of the
same form

Ï +
R

L
İ +

1

LC
I = 0 (2.3)

with the obvious meaning of symbols. Here, the resistor R provides dissipation and is
thus responsible for damping, whereas the LC tank sets the oscillation frequency.

Another celebrated example, which actually falls into the category of mechanical oscil-
lators, is offered by the Lorenz model of the atom. Predating the emergence of quantum
mechanics, such a classical picture was the first attempt to explain atomic spectra. It rests
on the idea that an electron of massm and charge−e is bound to the nucleus (charge +e) by
a restoring force that is proportional to the displacement (Hooke’s law). To account for the
fact that an excited atom loses its energy by emitting electromagnetic radiation, a damping
mechanism for the oscillation is also considered by including a viscous term (proportional
to velocity) into the equation of motion. Therefore, the electron position turns out to be
governed by the law

ẍ+
k

m
x+

α

m
ẋ = 0 (2.4)

It is easily recognized (see Figure 2.1) that, with the appropriate identifications, Equa-
tions 2.2, 2.3, 2.4 are all of the form

ÿ + 2Γẏ + ω2
0y = 0 (2.5)

A little more general equation of motion is obtained when a driving term is added to
compensate for the slowing down of the oscillation

ÿ + 2Γẏ + ω2
0y = Dcos (ωDt) (2.6)

The driving term may arise from the interaction with an electromagnetic monochromatic
plane wave in the case of the Lorentz oscillator, or simply be the periodic push in a pendulum
as well as the AC generator in the RLC circuit. Apart from the examples just mentioned,
Equation 2.6 appears in a number of different systems ranging from solid-state turbulence
to soliton dynamics, from Josephson junctions to phase-locked loops [55]. In order to find a

Fixed
location
(nucleus)

Electron

Bob

x
q C

R

L

+

-
I

Pendulum RLC-series Lorentz model

FIGURE 2.1
Pendulum, RLC-series circuit, and Lorentz oscillator as paradigmatic examples of harmonic
oscillators. The following identifications return Equation 2.5 for each of the three cases.
Pendulum case: y ≡ θ, ω2

0 ≡ g/l, 2Γ ≡ β/(ml2); RLC circuit: y ≡ I, ω2
0 ≡ 1/(LC),

2Γ ≡ R/L; Lorentz oscillator: y ≡ x, ω2
0 ≡ k/m, 2Γ ≡ α/m.
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solution for it, first consider the homogeneous Equation 2.5. In the case ω2
0 > Γ2, from the

associated characteristic equation one finds the solution

y(t) = e−Γt
(

Eeiω
′

0t + Fe−iω
′

0t
)

(2.7)

where ω′
0 =

√

ω2
0 − Γ2 and the constants E and F are found by imposing the initial

conditions y (t = 0) = ξ and ẏ (t = 0) = η. By defining the quantities A1 = Asinϕ and
A2 = Acosϕ , Equation 2.7 can be re-written in the more convenient form

y(t) = Ae−Γt sin (ω′
0t+ ϕ) ≡ Ae−ω0g·t sin

(

ω0

√

1− g2 · t+ ϕ
)

(2.8)

where y (t = 0) = Asinϕ = ξ, ẏ (t = 0) = A [−Γsinϕ+ ω′
0cosϕ] = η, and g ≡ Γ/ω0.

Equation 2.8 describes the well-known case of a damped harmonic oscillator (see upper of
Figure 2.2) which, in the limit Γ→ 0, reduces to

y (t) = Asin (ω0t+ ϕ) (2.9)

To illustrate some interesting properties in the frequency domain, let us take the Fourier
transform of Equation 2.8 with ξ = 0

ŷ (ω) =

∫ ∞

0

Ae−Γtsinω′
0t e

−iωtdt =

A

2i

∫ ∞

0

{

e[i(ω
′

0−ω)−Γ]t − e[−i(ω′

0+ω)−Γ]t
}

dt =

A

2i

[

1

Γ− i (ω′
0 − ω)

− 1

Γ + i (ω′
0 + ω)

]

≃
A
2i

Γ− i (ω′
0 − ω)

(2.10)

where the lower integration limit has been changed from −∞ to 0 since y (t) = 0 for
t ≤ 0, and the last equality is valid close to the resonance, that is for ω − ω′

0 ≪ ω′
0. The

response function of the oscillator is thus a Lorentzian profile

|ŷ (ω)|2 =
A2/4

Γ2 + (ω′
0 − ω)

2 (2.11)

with a full width at half maximum FWHM = 2Γ. If y is interpreted as the electron position
in an atom emitting or absorbing radiation, it can be convenient to find the constant A by
normalizing the spectrum 2.11 such that

∫ +∞
−∞ |ŷ (ω)|

2
dω = 1. This returns

S(ω) ≡ |ŷ (ω)|2 =
1

π

Γ

Γ2 + (ω′
0 − ω)

2 ≡
1/(πω0)

g + (1/g)(
√

1− g2 − ζ)2
(2.12)

where ζ ≡ ω/ω0. Equation 2.12 is plotted in the lower frame of Figure 2.2 for two
different values of g.

Note that, in the limit Γ → 0+, corresponding to the response curve of the ideal un-
damped harmonic oscillator (Equation 2.9), Equation 2.12 is one of the representations of
the Dirac delta function δ (ω0). Now, the general solution of Equation 2.6 is found by simply
adding Equation 2.8 to a particular solution which we will seek in the form of

y (t) = a · cos (ωDt+ ψ) (2.13)
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FIGURE 2.2
Representation of a damped harmonic oscillator (with ω0 = 10 Hz, A = 1, and ϕ = 0) in
time and frequency domain for two different values of g ≡ Γ/ω0 (0.1 and 0.03), according
to Equation 2.8 and Equation 2.12.

By substitution of Equation 2.13 into Equation 2.6 we obtain the following system of
equations

{

−aω2
Dcosψ − 2aΓωDsinψ + aω2

0cosψ −D = 0
aω2

Dsinψ − 2aΓωDcosψ − aω2
0sinψ = 0

(2.14)
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whose solution yields

ψ = arctan

(

2ΓωD
ω2
D − ω2

0

)

(2.15)

a =
−D

√

4Γ2ω2
D + (ω2

D − ω2
0)

2
(2.16)

Therefore, by introducing the phase ψ = ϑ+ π
2 , the general solution of Equation 2.6 is

finally obtained as

y (t) = Ae−Γtsin

(

√

ω2
0 − Γ2 · t+ ϕ

)

+
D

√

4Γ2ω2
D + (ω2

D − ω2
0)

2
sin (ωDt+ ϑ) (2.17)

Under steady-state conditions (t → ∞), the oscillator output, no more damped, is
described by



































y (ωD) = Y0 (ωD) sin [ωDt+Φ(ωD)]

Y0 (ωD) =
D

√

4Γ2ω2
D + (ω2

D − ω2
0)

2
≡ D0
√

4g2ι2 + (ι2 − 1)2

Φ (ωD) = arctan

(

2ΓωD
ω2
D − ω2

0

)

− π

2
≡ arctan

(

2gι

ι2 − 1

)

− π

2

(2.18)

where ι ≡ ωD/ω0 and D0 ≡ D/ω2
0 . The oscillation amplitude Y0 (ωD) is maximum for

ωD = ω0; the corresponding phase is Φ (ωD = ω0) = 0 (see Figure 2.3). This example makes
clear the character of the so-called resonance phenomenon between an external driving
source and an oscillator with its own characteristic frequency. An expression for the FWHM
of such resonance curve can be given by finding an approximate solution for the equation
[

Y 2
0 (ωD = ω0)

]

/2 = Y 2
0 (ωD). This provides

4Γ2ω2
D +

(

ω2
D − ω2

0

)2
= 8Γ2ω2

0 (2.19)

which, putting s = ω2
D − ω2

0 , is equivalent to a quadratic algebraic equation in s

s2 + 4Γ2s− 4Γ2ω2
0 = 0 (2.20)

which returns

ω2
D,± = ω2

0 − 2Γ2 ± 2Γ
√

ω2
0 + Γ2 ≃ ω2

0 ± 2Γω0 (2.21)

where the last approximate equality holds for high-quality oscillators (ω2
0 ≫ Γ2). Then,

we can write

ωD,± = ω0

√

1± 2Γ

ω0
≃ ω0

(

1± Γ

ω0
±O

[

Γ2

ω2
0

])

(2.22)

from which the FWHM is calculated as

FWHM ≡ ωD,+ − ωD,− = 2Γ (2.23)
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FIGURE 2.3
Amplitude and phase of a driven oscillator for two different values of g (0.1 and 0.01)
according to Equation 2.18.

In order to gain more physical insight, in agreement with the intuitive vision introduced
for the pendulum in the previous chapter, we now define the Q factor of the resonance as

Q = 2π
max. energy stored in the oscillator at ω0

energy lost per cycle at ω0
≡ 2π

E (ω0)

W (ω0)
(2.24)
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In order to evaluate this formula, let us first observe that, at resonance, Equation 2.18
gives

y2 (t, ωD = ω0) =

(

D

2Γω0

)2

sin2 (ω0t) (2.25)

Next, let us exploit the analogy with the RLC circuit. By identification of y with I, we
get

E (ω0) =
1

2
LI2max =

1

2
L

(

D

2Γω0

)2

(2.26)

and

W (ω0) =

∫ 2π/ω0

0

RI2 (t)dt = R

(

D

2Γω0

)2 ∫ 2π/ω0

0

sin2 (ω0t)dt

=
πR

ω0

(

D

2Γω0

)2

(2.27)

Combining Equations 2.24, 2.26, and 2.27 we finally obtain

Q =
ω0

R/L
=
ω0

2Γ
≃ ω0

FWHM
(2.28)

This derivation relates the two directly observable quantities ω0 and FWHM to the
inner physical meaning of the Q factor. Moreover, from the third of Equations 2.18 and the
formula arctan (x) = π

2 − arctan
(

1
x

)

(valid for x > 0) we get

Φ (ωD) = − arctan

(

ω2
D − ω2

0

2ΓωD

)

(2.29)

that, for very high Q (which is equivalent to say close to the resonance), can be expanded
as follows

Φ (ωD) ≃
ω2
0 − ω2

D

2ΓωD
+

1

3

(

ω2
D − ω2

0

2ΓωD

)3

+ . . . (2.30)

Retaining only the first term in the Taylor expansion, we have

dΦ (ωD)

dωD

∣

∣

∣

∣

ωD=ω0

≃ − 1

Γ
= −2Q

ω0
(2.31)

which suggests that a very rapid phase change is attainable in the vicinity of the reso-
nance frequency of high-Q oscillators. It is left as an exercise to show that, for very high Q,
the inflection points of [Y0 (ωD) /D]2 are given by ωipD= ω0± Γ√

3
and that, in the vicinity of

them, we can write

[Y0 (ωD)]
2 ≃ D2

{

S

(

ω0 ±
Γ√
3

)

∓ 3
√
3

4

Q3

ω5
0

[

ωD −
(

ω0 ±
Γ√
3

)]

}

(2.32)

This means that, close to the inflection points, the response function of the oscillator
acts as an extremely sensitive frequency-to-amplitude converter (see also Section 2.7.2).
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2.1.1 Synchronization in coupled oscillators

Many physical situations can create coupling between two or more oscillatory systems. A
classical example in electronics is represented by a pair of LC resonant circuits coupled
by a mutual inductance, while a paradigmatic mechanical system is that consisting of two
spring-and-mass oscillators coupled by a third spring. In all such situations, the frequency
of one or both oscillators will be shifted and energy can be transferred from one to the
other. In order to introduce the notion of synchronization between two coupled oscillators,
we exploit here the analogy with the pendulum. As a matter of fact, the earliest accounts on
synchronization are by the Dutch researcher Christiaan Huygens [56]. He studied the motion
of two identical clocks (two pendulums of almost same time period) suspended from the same
wooden beam. He observed that the motion of the two pendulums in opposite directions
was very much in agreement and that the rhythm was maintained without getting spoilt.
Even when this rhythmic motion was disturbed by some external means, the pendulums
readjusted in a short time. This is credited to the phenomenon of synchronization. He
attributed this synchronous motion to the interaction of the two pendulums through the
wooden beam supporting them. For a long time, synchronization has also been known to
occur in living systems. Examples of such systems abound. Synchronous flashing of fireflies,
singing crickets, cardiac pacemakers, and firing neurons are some of them. In recent years,
the idea of synchronization has also been extended to systems which are not oscillatory.
Synchronization of systems showing aperiodic behavior, such as chaotic systems, is one of
the new fields of study. In order to derive some general basic properties of the synchronized
behavior of two oscillators, in the following we discuss precisely the phenomenon discovered
by Huygens. Let us start with two identical pendulums which interact mutually. Physically,
the interaction is introduced by suspending them from a common support. Mathematically,
this corresponds to the two coupled equations

{

ẍ+ ω2
0x = Γ (ẏ − ẋ)

ÿ + ω2
0y = Γ (ẋ− ẏ) (2.33)

By defining the error variable e (t) = x (t)−y (t) and subtracting the two equations from
each other, we get

ë+ ω2
0e+ 2Γė = 0 (2.34)

Being identical to Equation 2.5, we already have a solution for the above equation. It is
given by

e (t) = e0e
−Γtsin

(

√

ω2
0 − Γ2 · t+ φe

)

(2.35)

where e0 and φe are determined by the initial conditions on e (t) (and hence on x (t) and
y (t)). Therefore, for positive Γ, the error must go to zero asymptotically regardless of the
initial conditions. This means that, for sufficiently long times, Equation 2.33 reduces to

{

ẍ+ ω2
0x = 0

x (t) = y (t)
(2.36)

which yields x (t) = y (t) = Bsin (ω0t+ ψ) . The outputs from the two oscillators are
coincident in amplitude, frequency and phase. A similar behavior may also arise for two
non-identical oscillators

{

ẍ+ ω2
xx = Γ (ẏ − ẋ)

ÿ + ω2
yy = Γ (ẋ− ẏ) (2.37)
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provided that the detuning δω = ωx − ωy is small in comparison to the coupling Γ.
Defining two new variables u = ẋ and w = ẏ, from Equation 2.37 we obtain the first-order
system















ẋ = u
ẏ = w
u̇ = −ω2

xx− Γu+ Γw
ẇ = −ω2

yx+ Γu− Γw

(2.38)

which can be expressed in the following matrix form








ẋ
ẏ
u̇
ẇ









=









0 0 1 0
0 0 0 1
ω2
x 0 −Γ Γ
0 −ω2

y Γ −Γ

















x
y
u
w









≡ A









x
y
u
w









(2.39)

The secular equation det (A− λI) = 0 provides the eigenvalues (λ1, λ2, λ3, λ4) and the
corresponding eigenvectors (z1, z2, z3, z4), so that the general solution is given by









x
y
u
w









= c1z1e
λ1t + c2z2e

λ2t + c3z3e
λ3t + c4z4e

λ4t (2.40)

where the constants ci are determined by the initial conditions x (t = 0), y (0), u (0),
and w (0). The general analytical expression of Equation 2.40 is rather involved, but a
numerical solution can be found for any given choice of the initial conditions and of the
system parameters. Just as an example, for ωx = 10 Hz, ωy = 10.1 Hz, and Γ = 0.5 Hz, we
obtain solutions of the form























x (t) = 2 |A1| e−α1tcos [ω1t+ arg (A1)]
+2 |A2| e−α2tcos [ω2t+ arg (A2)]

y (t) = 2 |B1| e−α1tcos [ω1t+ arg (B1)]
+2 |B2| e−α2tcos [ω2t+ arg (B2)]

(2.41)

with ω1 = 10.037 Hz, ω2 = 10.050 Hz, α1 = 0.495 Hz, and α2 = 0.005 Hz. As usual, A1,
A2, B1, and B2 are determined by the initial conditions. For instance, the set of conditions
x (0) = −0.5, y (0) = 1, u (0) = 0.5, and w (0) = 1 yields |A1| = 0.383, |A2| = 0.136,
|B1| = 0.380, |B2| = 0.136, arg (A1) = 0.115, arg (A2) = 0.282, arg (B1) = −0.084, and
arg (B2) = 0.480. Such numerical results are summarized in Figure 2.4, where Equations
2.41 are plotted over two consecutive timescales.

Since α1 ≫ α2, after a short transient, Equations 2.41 reduce to
{

x (t) = 2 |A2| e−α2tcos [ω2t− arg (A2)]
y (t) = 2 |B2| e−α2tcos [ω2t− arg (B2)]

(2.42)

The phenomenon of two coupled oscillators with different natural frequencies beginning
to oscillate at a common frequency owing to coupling is called frequency locking, and this
common frequency of oscillation is called locking frequency. In our example, this frequency
turns out to be ω2=10.050 Hz, that is the average of ωx and ωy, correct to three decimal
places. Secondly, the phase difference of the two oscillators settles to a constant value dif-
ferent from zero. This phenomenon is termed as phase locking. The described effect can be
understood on the basis of the following argument. Coupling between the two oscillators
tries to make their phases equal while detuning tries to drag the phases apart. Hence, the
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FIGURE 2.4
Oscillation amplitudes for the two coupled oscillators discussed in the text according to
Equation 2.41. Two consecutive timescales are displayed.

effects of coupling and detuning are counteractive. So, we get two qualitatively different
situations based on the relative strengths of coupling and detuning. When the detuning is
small in comparison to the coupling strength, the oscillators settle into a common frequency
and a stable relationship between the phases of the two oscillators is established. We then
call the two oscillators synchronized. For relatively larger values of detuning, the effect of
the coupling is not good enough to force a relation between the phases of the two oscillators.
This leads to loss of synchrony.
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2.1.2 Beating two oscillators

Suppose now that the outputs (here written for convenience in complex notation) from two
independent oscillators E1 = E01e

i(ω1t+ϕ1) and E2 = E02e
i(ω2t+ϕ2) superimpose at some

point P in the space. Then we have

E (P ) = E1 + E2 = ei(Ωt+Φ)
[

Aei(∆Ω·t+∆Φ) +Be−i(∆Ω·t+∆Φ)
]

(2.43)

where Ω = (ω1+ω2)/2, Φ = (ϕ1+ϕ2)/2, ∆Ω = (ω1−ω2)/2, and ∆Φ = (ϕ1−ϕ2)/2. An
interesting situation arises when ∆Ω≪ Ω. In that case the total amplitude is characterized
by a fast oscillation at Ω whose amplitude is modulated at the slow frequency ∆Ω. Such
effect is well known in acoustics, where the term beat is used to describe an interference
between two sounds of slightly different frequencies, perceived as periodic variations in
volume whose rate is the difference between the two frequencies (see Figure 2.5). This can
be analytically seen in the particular case A = B, when Equation 2.43 simplifies to

ℜ [E] = 2Acos (∆Ω · t+∆Φ)cos (Ωt+Φ) (2.44)

If we are measuring the intensity rather than the amplitude, from Equation 2.43 we
obtain

I(P ) = |E|2 = A2 +B2 + 2ABcos [(ω1 − ω2) t+ (ϕ1 − ϕ2)] (2.45)

Dropping the DC term, as already shown, the square modulus of the Fourier transform of
the signal 2.45 is the Dirac delta function δ (ω1 − ω2). However, for real oscillators perturbed
by noise processes, the difference ϕ1−ϕ2 fluctuates in time causing a spread over a frequency
range around ω1 − ω2. This aspect will be taken up later.

Later, we will discover that an important application of such beat-note phenomenon is
in frequency metrology, where, for example, one can measure the frequency of some laser
by recording its beat note with a close-by optical signal of known frequency. In this scheme,
the two light beams with different optical frequencies are superimposed on a photodetector

FIGURE 2.5
Beat-note phenomenon between two oscillators obtained by taking the real part of Equation
2.43. The following values are used in the simulation: ω1 = 10 Hz, ω2 = 11 Hz, ϕ1 = 0,
ϕ2 = 0.2, A = 1, and B = 0.5.
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measuring the optical intensity. As a fast photodetector can have a bandwidth of tens of
gigahertz (or even higher), optical frequency differences of this order of magnitude can be
measured, e.g., by analyzing the photodetector output with an electronic frequency counter
or a spectrum analyzer.

2.2 Self-sustained oscillators

In this section we adopt the language of electronics to show that an effective way of introduc-
ing a forcing term in a damped oscillator is to derive the driving source from the oscillator
output itself in a positive (regenerative) feedback scheme. We anticipate that this is exactly
the working principle of the laser. The basic LC oscillator tank circuit is shown in the left
frame of Figure 2.6. The capacitor is charged up to the DC supply voltage V by putting the
switch in position A. When the capacitor is fully charged, the switch changes to position
B. The charged capacitor is now connected in parallel across the inductive coil L through
which it begins to discharge itself. The voltage across C starts falling as the current through
the coil begins to rise. This rising current sets up an electromagnetic field around the coil
which resists this flow of current. When the capacitor is completely discharged, the energy
that was originally stored in it as an electrostatic field is now stored in the inductive coil as
an electromagnetic field around the windings. As there is no external voltage in the circuit
to maintain the current within the coil, it starts to fall as the electromagnetic field begins
to collapse. A back electromotive force is induced in the coil keeping the current flowing in
the original direction. This current now charges up the capacitor with the opposite polarity
to its original charge. C continues to charge up until the current reduces to zero and the
electromagnetic field of the coil has collapsed completely. The energy originally introduced
into the circuit through the switch has been returned to the capacitor which again has an
electrostatic voltage potential across it, although it is now of the opposite polarity. The
capacitor now starts to discharge again back through the coil and the whole process is re-
peated. The polarity of the voltage changes as the energy is passed back and forth between
the capacitor and inductor producing an AC type sinusoidal voltage and current waveform.
This forms the basis of an LC oscillator tank circuit and, theoretically, the oscillatory action
(at frequency ω0 = 1/

√
LC) would continue indefinitely. However, in a practical LC circuit,

every time energy is transferred from C to L or from L to C, losses occur basically due to
the resistance of the inductor coils and in the dielectric of the capacitor. All the loss sources
can be lumped into a resistor R, which brings us back to the RLC-series circuit studied
above. As a consequence, the oscillation in the circuit steadily decreases until it dies away
completely and the process stops. To keep the oscillations going, we have to replace exactly
the amount of energy lost during each cycle. The simplest way of doing this is to take part
of the output from the LC tank circuit, amplify it, and then feed it back into the LC circuit
again. This process can be achieved using a voltage amplifier like an operational amplifier,
FET, or bipolar transistor as its active device. To produce a constant-amplitude oscillation,
the level of the energy fed back to the LC network must be accurately controlled. In other
words, there must be some form of automatic amplitude or gain control when the amplitude
tries to vary from a reference voltage either up or down. Intuitively, a stable oscillation is
maintained if the overall gain of the circuit is equal to one. Any less, the oscillations will
not start or die away to zero; any more, the oscillations will occur but the amplitude will
become clipped by the supply rails causing distortion. Consider the circuit in the right frame
of Figure 2.6, where a bipolar transistor is used as the amplifier with the tuned LC tank
circuit acting as the collector load. Another coil L2, whose electromagnetic field is mutually
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FIGURE 2.6
LC-tank circuit without and with positive (regenerative) feedback.

coupled with that of coil L, is connected between the base and the emitter of the transistor.
The changing current flowing in one coil circuit generates, by electromagnetic induction, a
potential voltage in the other. In this way, as the oscillations occur in the tuned circuit, elec-
tromagnetic energy is transferred from coil L to coil L2 and a voltage of the same frequency
as that in the tuned circuit is applied between the base and emitter of the transistor. This
provides the necessary automatic feedback voltage to the amplifying transistor. Also, the
amount of feedback can be increased or decreased by altering the coupling between the two
coils L and L2. It is worth pointing out that, when the circuit is oscillating at ω0 = 1/

√
LC,

its impedance is resistive and the collector and base voltages are 180◦ out of phase. On the
other hand, as dictated by Equation 2.18, at resonance, the voltage applied to the tuned
circuit must be in-phase with the oscillations occurring in it. Therefore, we must introduce
an additional 180◦ phase shift into the feedback path between the collector and the base.
This is achieved by winding the coil of L2 in the correct direction relative to coil L or by
connecting a phase shift network between the output and input of the amplifier.

The instructive LC example has been used to introduce the general theory of oscillators
with positive feedback [57]. The basic scheme (Figure 2.7) is a loop in which the gain A of
the sustaining amplifier compensates for the loss β (ω) of the resonator at a given angular
frequency ω0. The condition for the oscillation to be stationary is calculated considering
first the open loop (i.e., in the absence of feedback). In this case we have

FIGURE 2.7
General scheme of oscillator with positive feedback: if ω = ω0, a period is reproduced after
a round trip, when ω 6= ω0 each round trip attenuates the signal.
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Vout = A · Vin (2.46)

Then, feedback is allowed and the output voltage re-calculated as

Vout = A · (Vin − βVout) (2.47)

The closed-loop gain is thus given by

G =
Vout
Vin

=
A

1 +Aβ
(2.48)

which tells us that G = ∞ if −Aβ = 1. This means that we have a finite output
voltage with zero input, that is a sinusoidal oscillator. The condition −Aβ = 1, known as
Barkhausen condition, is equivalent to

{

|Aβ (ω)| = 1
arg [−Aβ (ω)] = 0

(2.49)

The unused input (0 V) in Figure 2.7 serves to set the initial condition that triggers
the oscillation, and to introduce noise in the loop. It is often convenient to use a constant-
gain amplifier (A is independent of frequency), and a bandpass filter as β = β (ω) in the
feedback path. Some small frequency dependence of the amplifier gain, which is always
present in real-world amplifier, can be moved from A to β = β (ω). The model of Figure 2.7
is quite general and applies to a variety of systems (electrical, mechanical, lasers...), albeit a
little effort may be necessary to identify A and β. Oscillation starts from noise or from the
switch-on transient. In the spectrum of such random signal, only a small energy is initially
contained at ω0. For the oscillation to grow up to a desired amplitude, it is necessary that
|Aβ (ω)| > 1 at ω = ω0 for small signals. In such a condition, oscillation at the frequency
ω0 that derives from arg [−Aβ (ω)] = 0 rises exponentially. As the oscillation amplitude
approaches the desired value, an amplitude control (not shown in the figure) reduces the
loop gain, so that it reaches the stationary condition Aβ (ω) = 1. The amplitude can be
stabilized by an external automatic gain control, or by the large signal saturation of the
amplifier. The latter effect is shown in Figure 2.8: when the input amplitude exceeds the
saturation level, the output signal is clipped. In summary, we stress that in real-world
oscillators

1. it is necessary that |Aβ (ω)| > 1 for small signals,

2. the condition |Aβ (ω)| = 1 results from large-signal gain saturation,

3. the oscillation frequency is determined only by the phase condition arg [−Aβ (ω)] =
0.
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FIGURE 2.8
Some features in the onset of oscillation are illustrated for real-world oscillators with positive
feedback. (Adapted from [57].)

We have now all the ingredients needed to analyze into more detail one of the most
effective realizations of the LC oscillator, namely the Colpitts oscillator [58]. Such a scheme
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is shown in Figure 2.9 together with the linear model of the circuit making use of an inverting
amplifier with large-signal voltage gain Av and output impedance R0. The open loop gain
is

A ≡ Vout
Vin

=
V23
V13

= Av
Z

Z +R0
(2.50)

where

1

Z
=

1

Z2
+

1

Z1 + Z3
(2.51)

while the feedback fraction is given by

β ≡ Vf
Vout

=
Vf
V23

=
Z1

Z1 + Z3
(2.52)

Combining Equations 2.50, 2.51, 2.52, we get

Aβ =
AvZ1Z2

Z2 (Z1 + Z3) +R0 (Z1 + Z2 + Z3)
(2.53)

Then, the resonance frequency is found by imposing the condition Z1 + Z2 + Z3 = 0,
which provides

ω0 =

√

1

L

C1 + C2

C1C2
(2.54)

that, in turn, implies

Aβ =
AvZ1Z2

Z2 (Z1 + Z3)
=
−AvZ1

Z2
(2.55)

Finally, we express the Barkhausen criterion

−Aβ = Av
C2

C1
= 1 (2.56)

which, for a given value of Av, suggests the sizing of C1 and C2.
Other useful schemes of electrical oscillators will be mentioned in Chapter 7 when the

quartz frequency reference will be extensively studied.
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FIGURE 2.9
Scheme of Colpitts oscillator.
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2.3 The noisy oscillator

Now let us come to non-ideal oscillators. The frequency and amplitude of even the most ad-
vanced oscillators are not really constant in time, but fluctuate due to several factors. These
unwanted fluctuations are often referred to as noise or jitter. The noise term, originated in
acoustics, is used to name any physical variable that fluctuates over time in an irregular
and unpredictable way, as opposed to periodic oscillatory behaviors (sounds in acoustics)
for which the initial conditions can be utilized to predict in deterministic manner the future
state and which are generically referred to as signals. In most cases, noise is generated by
spontaneous fluctuations of microscopic quantities, often related to thermal agitation in
the system. For frequency standards one deals in general with the best available oscillators
where the quasi-perfect sinusoidal signal is modelled as

V (t) = V0 [1 + α (t)] cos [2πν0t+ ϕ (t)] (2.57)

where ν0 = ω0/ (2π) is the carrier frequency; the random variables α (t) (dimensionless)
and ϕ (t) (having the units of radians) are the fractional amplitude noise and phase noise,
respectively. Obviously, we assume α≪ 1 and ϕ≪ 1, and that the expectation value of the
amplitude and frequency are V0 and ν0, respectively. In the above equation it is assumed that
phase and amplitude fluctuations are orthogonal meaning that no amplitude fluctuations are
transferred to phase fluctuations and vice versa. Since, of necessity, all practical oscillators
inherently possess an amplitude-limiting mechanism of some kind, amplitude fluctuations
are greatly attenuated and phase noise generally dominates. In addition, affecting timing,
phase noise is far more important and is first analyzed. Then, a brief treatment of amplitude
noise is also given.

2.4 Phase noise

The output-phase performance of real-world oscillators can be characterized by three main
gauges: accuracy, stability, and reproducibility (see also Figure 2.10):

• In general, accuracy is the extent to which a given measurement, or the average of a set of
measurements for one sample, agrees with the definition of the quantity being measured:
it is the degree of correctness of a quantity. Thus, in the specific context of frequency
standards, the accuracy is the capability of an oscillator to provide a frequency that is
known in terms of the accepted definition of the second. In short, the frequency accuracy
of an oscillator is the offset from the specified target frequency.

• Stability is a measure of how much the frequency of the oscillator fluctuates over some
period of time and, as we shall see in a short while, is usually characterized in terms of the
two-sample Allan variance. In practice, stability is the property of an oscillator to resist,
over time, changes in its rate as a function of parameters such as temperature, vibration,
and the like. A high-stability oscillator may not necessarily be an accurate one. In a sense,
stability can be considered a particular case of precision that is the extent to which a
given set of measurements of one sample agrees with the mean of the set.

• Reproducibility is the ability of a single frequency standard to produce the same fre-
quency, without adjustment, each time it is put into operation.
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FIGURE 2.10
Accuracy and stability in the classical analogy between the shot of the marksman and the
performance of an oscillator. (Adapted from [59].)

The discussion that follows relates to frequency stability [60, 61, 62, 63, 64]. Before
getting involved in the analysis of phase and amplitude noise in oscillators, a small digression
is needed to introduce some mathematical tools that are useful for statistical analysis. Then,
in accordance with these tools, fundamental types of noise will be described.

2.4.1 Review of mathematical tools

Any fluctuating signal B(t) can be decomposed into a purely fluctuating contribution b(t)
and a mean (or expectation) value defined as the time average

B (t) = lim
T→∞

1

2T

∫ T

−T
B (t) dt (2.58)

Since in the following we are going to consider only stationary ergodic processes, time
averages coincide with ensemble averages (denoted by 〈〉), so that we can write

B (t) = b (t) +B (t) = b (t) + 〈B〉 (2.59)

Now consider the autocorrelation function defined as

Rb (τ) ≡ b (t+ τ) b∗ (t) = lim
T→∞

1

2T

∫ T

−T
b (t+ τ) b∗ (t)dt

= 〈b (t+ τ) b∗ (t)〉 (2.60)

Since b (t) represents a physical signal, the complex conjugate in the above definition
seems unnecessary at first sight. Nevertheless, complex notation is very often adopted to
simplify calculations and Definition 2.60 must be used. Note that, if the fluctuations were
uncorrelated, then Rb (τ) would cancel for any τ . Also, by definition, Rb (τ) = Rb (−τ).
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Another important property is that for a zero-mean (B (t) = 0) signal, Rb (0) coincides
with the classical variance of the signal

Rb (0) = lim
T→∞

1

2T

∫ T

−T
|b (t)|2dt = |b (t)|2 ≡ σ2

b = V AR (b) (2.61)

Starting from the autocorrelation function, an extremely important observable quantity
can be defined. For this purpose, we introduce the quantity b̂ (ω) defined as

b̂ (ω) =

∫ ∞

−∞
bT (t) e−iωtdt (2.62)

where the signal bT (t) given by

bT (t) =

{

b (t) |t| < T
0 otherwise (2.63)

has finite energy and is thus Fourier integrable. Then we can write

∣

∣

∣b̂ (ω)
∣

∣

∣

2

=

∣

∣

∣

∣

∣

∫ T

−T
b (t) e−iωtdt

∣

∣

∣

∣

∣

2

=

∫ T

−T

∫ T

−T
b (t) b∗ (τ)e−iω(t−τ)dtdτ (2.64)

and, taking the ensemble average,

〈

∣

∣

∣
b̂ (ω)

∣

∣

∣

2
〉

=

∫ T

−T

∫ T

−T
〈b (t) b∗ (τ)〉e−iω(t−τ)dtdτ =

∫ T

−T

∫ T

−T
Rb (t− τ)e−iω(t−τ)dtdτ =

∫ 2T

−2T

(2T − |τ |)Rb (τ) e−iωτdτ (2.65)

where the integral property

∫ T

−T

∫ T

−T
g (t− τ)dtdτ =

∫ 2T

−2T

(2T − |τ |) g (τ) dτ (2.66)

has been exploited for the last step. Next we consider the quantity

〈

∣

∣

∣b̂ (ω)
∣

∣

∣

2
〉

2T
=

∫ 2T

−2T

(

1− |τ |
2T

)

Rb (τ) e
−iωτdτ

=

∫ ∞

−∞
Rb,T (τ) e−iωτdτ (2.67)

where

Rb,T (τ) =

{ (

1− |τ |
2T

)

Rb (τ) |τ | < T

0 |τ | ≥ T
(2.68)

has been defined. Finally, we define the 2-sided spectral density as

S2−sided
b (f)

def
= lim

T→∞

〈

∣

∣

∣b̂ (ω)
∣

∣

∣

2
〉

2T

=

∫ ∞

−∞
lim
T→∞

Rb,T (τ) e−iωτ dτ =

∫ ∞

−∞
Rb (τ) e

−i2πfτdτ (2.69)
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from which the inverse relationship also holds

Rb (τ) =

∫ ∞

−∞
S2−sided
b (f) · ei2πfτdf (2.70)

Therefore, the autocorrelation function Rb (τ) and the spectral density function
S2-sided
b (f) form a Fourier transform pair. This is the content of the Wiener-Khintchine

(WK) theorem [65, 66]. From Rb (τ) = Rb (−τ) it follows that S2-sided
b (f) is a real, non-

negative, and even function. In experimental work, however, only positive frequencies are
of interest. Hence, a one-sided power spectral density is often introduced for non-negative
Fourier frequencies

S1−sided
b (f) = 2S2−sided

b (f) (2.71)

Finally, it is immediately recognized that

V AR (b) = Rb (0) =

∫ +∞

−∞
S2−sided
b (f) df (2.72)

We anticipate here that, in spite of its rigorous formulation, the power spectral density
defined by the first equality of Equation 2.69 is a quantity directly observable by a spectrum
analyzer.

2.4.2 Fundamental noise mechanisms

Now we are in a position to give a quantitative description of fundamental types of noise.
Though the fundamental noisiness of electrical conductors had been known for some time, it
was not until 1918 that German physicist Walter Schottky identified and formulated a theory
of tube noise - a fluctuation in the current caused by the granularity of the discrete charges
composing it [67]. Ten years later, Johnson and Nyquist similarly analyzed a different type
of noise - one caused by the thermal fluctuations of stationary charge carriers. These are now
known as shot noise and Johnson noise, respectively, and it is a startling fact that neither of
them depends on the material or the configuration of the electrical circuit in which they are
observed. However, Johnson also measured an unexpected flicker noise at low frequency and
shortly thereafter W. Schottky tried to provide a theoretical explanation. In the following
we present summaries of the theories of shot [68, 69], Johnson-Nyquist [70, 71], flicker [72],
and thermodynamic [73, 74] noise.

Shot noise is due to the corpuscular nature of transport (quantization of the charge
carried by electrons). It is always associated with direct current flow. Indeed, the latter is not
continuous, but results from the motion of charged particles (i.e., electrons and/or holes)
which are discrete and independent. At some (supposedly small, presumed microscopic)
level, currents vary in an unpredictable way. If you could observe carriers passing a point
in a conductor for some time interval, you would find that a few more or less carriers would
pass in one time interval versus the next. It is impossible to predict the motion of individual
electrons, but it is possible to calculate the average net velocity of an ensemble of electrons,
or the average number of electrons drifting past a particular point per time interval. The
variation around the mean value (or average) of these quantities is the noise. In order to see
shot noise, the carriers must be constrained to flow past in one direction only. The carrier
entering the observation point must do so as a purely random event and independent of
any other carrier crossing this point. If the carriers are not constrained in this manner, then
the resultant thermal noise will dominate and the shot noise will not be seen. A physical
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system where this constraint holds is a pn junction. The passage of each carrier across the
depletion region of the junction is a random event, and, due to the energy barrier, the
carrier may travel in only one direction. Since the events are random and independent,
Poisson statistics describe this process. Consider the quantized contribution to the current
by any given electron. Its current pulse can be approximated as a delta function centered at
some time tk: I (t) =

∑

k qδ (t− tk), where q is the elementary charge. The corresponding
Fourier transform is given by

I (ω) =
∑

k

qe−iωtk (2.73)

which provides

|I (ω)|2 = q2
∑

k

∑

h

eiω(th−tk) = q2



NT +
∑

k 6=h

∑

h

eiω(th−tk)



 (2.74)

where NT is the total number of events occurring in the interval 2T . Since the times tk
are random, if we take the average of the above equation over an ensemble of a very large
number of physically identical systems, the second term on the right side can be neglected
in comparison to NT

〈

|I (ω)|2
〉

≃ q2 〈NT 〉 = q2 〈N〉 2T = qI2T (2.75)

where 〈N〉 = 〈NT 〉 /2T is the average rate at which the events occur and I = q 〈N〉 is the
corresponding average current. Finally, by definition of power spectral density, we obtain

S1−sided
I = 2S2−sided

I = 2 lim
T→∞

〈

|I (ω)|2
〉

2T
= 2qI (2.76)

The counterpart of shot noise in radiation sources, namely intensity noise due to granular
character of light (photons), is often referred to as photonic noise. As for electrons in a
conductor, Poisson statistics also applies in this case. Here, the random arrival times of the
photons (at a detector) cause fluctuations in the average number of the detected (per unit
time) photons and hence in the detected power. The spectral density associated with such
quantum power noise is obtained as

S1−sided
P = 2(hν)P (2.77)

where the elementary charge and the average current in Equation 2.76 have been replaced
by the energy hν carried by a single photon and the average detected optical power P .

Johnson-Nyquist noise (thermal noise) is the electronic noise generated by the thermal
agitation of the charge carriers (usually the electrons) inside an electrical conductor at equi-
librium, which happens regardless of any applied voltage. Thermal noise is approximately
white, meaning that the power spectral density is nearly equal throughout the frequency
spectrum. Additionally, the amplitude of the signal has very nearly a Gaussian probability
density function. Here, we give a microscopic derivation for it. Consider a conductor of
resistance R, length l, and cross-sectional area A. The voltage across it is

V = IR = RAj = RANe 〈u〉 (2.78)

where I is the current, j the current density, e the charge on an electron, N the charge
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carrier density, and 〈u〉 the drift speed along the conductor. Noting that NAl is the total
number of electrons in the conductor, the following relationships hold















〈u〉 = 1

NAl

∑

i ui

〈

u2
〉

=
1

NAl

∑

i u
2
i

(2.79)

By substitution of Equation 2.79 into Equation 2.78, one gets

V = RANe
1

NAl

∑

i

ui =
Re

l

∑

i

ui =
∑

i

Vi (2.80)

which allows to define the random variables Vi as

Vi =
Re

l
ui (2.81)

The power spectral density associated with Vi is given by

S1−sided
i,V = 4

∫ ∞

0

〈Vi (t)Vi (t+ τ)〉cos (2πfτ)dτ

= 4

∫ ∞

0

〈

V 2
i (t)

〉

e
− τ
τc cos (2πfτ)dτ

= 4

(

Re

l

)2
〈

u2i
〉

∫ ∞

0

e
− τ
τc cos (2πfτ)dτ

= 4

(
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l

)2
〈

u2i
〉 τc

1 + (2πfτc)
2 ≃ 4

(
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l

)2

τc
〈

u2i
〉

(2.82)

from which the total power spectral density is calculated as

S1−sided
V =

∑

i

S1−sided
i,V = 4

(

Re

l

)2

τc
∑

i

〈

u2i
〉

= 4NAl

(

Re

l

)2

τc
〈

u2
〉

= 4NAl

(

Re

l

)2

τc
kBT

m

= 4kBTR
Ne2τc
m

RA

l
= 4kBTR (2.83)

where the equipartition theorem
〈

u2
〉

= kBT/m, and the identities σ = Ne2τc/m and
RA/l = 1/σ, known from solid state physics, have been exploited. Also note that for metals
at room temperature we have τc < 10−13, hence from the DC through the microwave range
2πfτc ≪ 1 is satisfied.

Flicker noise is a type of electronic noise with a 1/f spectrum. Its origins are somewhat
less understood compared to thermal (Johnson) noise and shot noise. It occurs in almost all
electronic devices, and results from a variety of effects, such as impurities in a conductive
channel, generation and recombination noise in a transistor due to base current, and so
on. In electronic devices, it is a low-frequency phenomenon, as the higher frequencies are
overshadowed by white noise from other sources. In oscillators, however, the low-frequency
noise is mixed up to frequencies close to the carrier which results in oscillator phase noise.
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Since flicker noise is related to the level of DC, if the current is kept low, thermal noise will
be the predominant effect.

A simple explanation of the appearance of 1/f noise can be stated by considering a
single exponential relaxation process

N (t, tk) =

{

N0e
−λ(t−tk) t ≥ tk
0 t < tk

(2.84)

In that case we have

F (ω) =

∫ +∞

−∞

∑

k

N (t, tk)e
−iωtdt =

N0

λ+ iω

∑

k

eiωtk (2.85)

so that

S2−sided
N (ω) = lim

T→∞

〈

|F (ω)|2
〉

2T

=
N2

0

λ2 + ω2
lim
T→∞

1

2T

〈

∑

k

eiωtk
∑

h

e−iωth

〉

=
N2

0

λ2 + ω2
〈N〉 (2.86)

If the relaxation rates are instead distributed according to

dP (λ) =
A

λβ
dλ (2.87)

one obtains

S2−sided
N (ω) ∝

∫ λ2

λ1

1

λ2 + ω2

dλ

λβ
=

1

ω1+β

∫ λ2

λ1

1

1 + λ2

ω2

d (λ/ω)

(λ/ω)
β

=
1

ω1+β

∫ λ2/ω

λ1/ω

1

1 + x2
dx

xβ
≃ 1

ω1+β

∫ ∞

0

1

1 + x2
dx

xβ
≃ 1

ω1+β
(2.88)

where the approximate equality holds in the limit λ1 ≪ λ≪ λ2. Thus we obtain a whole
class of flicker noise with different exponents.

Finally, it is interesting to note that flicker noise frequently appears in physical nature.
For example, a 1/f spectral density is found for the fluctuations in the earth’s rate of
rotation and undersea currents. A study of a common hourglass demonstrated that the flow
of sand fluctuates as 1/f [75].

Thermodynamic noise The vast majority of electronic components have temperature-
dependent parameters. This means that electronic circuits are strongly affected by unavoid-
able temperature instabilities. As we have just seen, long-term temperature variations (re-
laxation processes) generate 1/f noise. Likewise prominent are relatively fast variations,
due to quantization of thermal energy in phonons. The higher the temperature and the
lower the heat capacity of the system, the more important these fluctuations are. It is well
known from thermodynamics that the total variance of fluctuations of temperature for heat
capacity C is described by the following formula

〈

∆T
2
〉

=
kBT

2

C
(2.89)
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In order to derive the power spectral density, we consider the equation describing the
system temperature

C
dT (t)

dt
+G [T (t)− T0] =W (t) (2.90)

where G denotes the thermal conductivity and W (t) is the (possible) power supplied to
the system. Note that, if we identify T (t) with the velocity v(t) and C with the mass m,
the above equation also describes the Brownian motion of a particle subject to a frictional
force −Gv(t) plus the random (white spectral density) force W (t). This means that the
notion of thermodynamic fluctuations in volume coincides with that of Brownian noise
(or random walk). Since we are dealing with spontaneous temperature fluctuations, we
allow for a fluctuating W (t), positive and negative (added to and subtracted from the
system) and completely random (hence with a white noise spectrum). We shall callH(t) this
power (Langevin method) and write the following equation for the consequent temperature
fluctuations ∆T (t) = T (t)− T0

C
d∆T (t)

dt
+G ·∆T (t) = H (t) (2.91)

Taking the Fourier transform of the above equation, we get

∆T (f) =
H (f)

G+ i2πCf
(2.92)

which translates into the following relationship

S1−sided
∆T (f) =

S1−sided
H

G2 + (2πCf)
2 (2.93)

To find the value of S1−sided
H , we use the fact

kBT
2

C
=
〈

∆T
2
〉

=

∫ +∞

0

S1−sided
∆T (f) df =

S1−sided
H

4CG
(2.94)

so that

S1−sided
∆T (f) =

4GkBT
2

G2 + (2πCf)
2 (2.95)

which suggests, in particular, that the only way to reduce this kind of fluctuation is to
cool the system.

2.4.2.1 Fluctuation-dissipation theorem (FDT)

We close this digression with another very important consideration concerning fluctuations,
that is the so-called fluctuation-dissipation theorem (FDT) [76]. It states that the linear
response of a given system to an external perturbation is expressed in terms of fluctuation
properties of the system in thermal equilibrium. Onsager proposed a simple derivation of
FDT for time-dependent perturbations. This derivation bypasses the more cumbersome an-
alytical developments using linear response theory formalism, the Fokker-Planck equation,
or the generalized master equation approach. Onsager derivation is based on the following
regression principle: if a system initially in an equilibrium state 1 is driven by an external
perturbation to a different equilibrium state 2, then the evolution of the system from state 1
towards state 2 in the presence of the perturbation can be treated as a spontaneous equilib-
rium fluctuation (in the presence of the perturbation) from the (now) non-equilibrium state
1 to the (now) equilibrium state 2. Suppose that the system is initially in equilibrium with
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a thermal bath at temperature T, then the probability distribution of system configuration
C in state 1 is given by the canonical ensemble:

P0 (C) =
e−βE(C)

∑

C e
−βE(C) (2.96)

where β = kBT and the subscript 0 indicates that the system is unperturbed. At time
t = 0 a constant perturbation coupled to the observable B (C) is applied to the system
changing its energy into

Eǫ (C) = E (C)− ǫ (t)B (C) (2.97)

where ǫ (t) = ǫ if t > 0, and zero otherwise. The effect of the perturbation can be
monitored by looking at the evolution of the expectation value 〈A (t)〉ǫ of an observableA(C),
not necessarily equal to B (C), from the equilibrium value in state 1 〈A (t = 0)〉ǫ = 〈A〉0
towards the new equilibrium value in state 2. The expectation value of 〈A (t)〉ǫ is given by
the average over all possible dynamical paths originating from initial configurations weighted
with the probability distribution Equation 2.96

〈A (t)〉ǫ =
∑

C,C0

A(C)Pǫ (C, t |C0, 0)P0 (C0) (2.98)

where Pǫ (C, t |C0, 0) is the conditional probability for the evolution from the configu-
ration C0 at time t = 0 to the configuration C at time t. The Onsager regression principle
asserts that the conditional probabilities after having applied the perturbation are equal
to those of spontaneous equilibrium fluctuations in state 2. Hence since the state 2 is still
described by the canonical ensemble, but with the energy now including the perturbation
term, then

Pǫ (C, t |C0, 0) = P0 (C, t |C0, 0) eβǫ[B(C)−B(C0)] (2.99)

Inserting Equation 2.99 into Equation 2.98 and expanding the exponential up to linear
order we get

〈A (t)〉ǫ =
∑

C,C0

A(C)P0 (C, t |C0, 0)P0 (C0) +

+βǫ
∑

C,C0

A(C)P0 (C, t |C0, 0) [B (C)−B (C0)]P0 (C0) =

= 〈A〉0 + βǫ [〈A (t)B (t)〉0 − 〈A (t)B (0)〉0] (2.100)

If we define the correlation function, the time-dependent susceptibilty and the response
function as

CA,B (t, s) = 〈A (t)B (s)〉0 (2.101)

χA,B (t) = lim
ǫ→0

〈A (t)〉ǫ − 〈A〉0
ǫ

(2.102)

∫ t

0

JA,B (t, s) ds =χA,B (t) (2.103)
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from Equation 2.100 we get
∫ t

0

JA,B (t, s) ds =β [CA,B (0)− CA,B (t)] = β

∫ t

0

∂

∂s
CA,B (t, s) ds (2.104)

which, defining t− s = y, becomes

JA,B (y, 0) = −β
[

∂

∂y
CA,B (y, 0)

]

θ (y) =

= −β
2

[

∂

∂y
CA,B (y, 0) + sign(y)

∂

∂y
CA,B (y, 0)

]

(2.105)

Taking the Fourier transform of Equation 2.105 one obtains

ℑ [JA,B (ω)] = − ω

2kBT
CA,B (ω) (2.106)

For a system described by X (ω) = α (ω)F (ω), X being the position, F the external
forcing term, and α the response function, Equation 2.106 can be cast in a more familiar
form. Indeed, with the identifications JA,B(ω) ≡ α(ω) and CA,B(ω) ≡ RX(τ), and using
the WK theorem, the power spectral density associated with X can be written as

S1−sided
X (f) = 2 · F [RX (τ)] = −4kBT

ω
ℑ [α (ω)] (2.107)

where F denotes here the Fourier transform. Similarly, one has

S1−sided
F (f) = −4kBT

ω

ℑ [α (ω)]

|α (ω)|2
= −4kBT

ω
ℑ
[

1

α∗ (ω)

]

(2.108)

The two above formulas represent the most commonly encountered statements of the
fluctuation-dissipation theorem.

Finally, it is worth noting that Johnson noise is a particular case of the FDT. To see this,
consider an open circuit consisting of an impedence Z (ω). Ohm’s law is Q (ω) = α (ω)V (ω)
where α (ω) = 1/[iωZ (ω)]. Thus we have

S1−sided
V (f) = −4kBT

ω
ℑ
[

1

α∗ (ω)

]

= −4kBT

ω
ℑ [−iωZ∗ (ω)]

= 4kBT · ℜ [Z (ω)] = 4kBTR (2.109)

This example also allows one to establish another useful form of FDT. Indeed, one can
define the admittance Y (ω), the conductance σ (ω), and the resistance R (ω) as



















Y (ω) =
1

Z (ω)
= iω · α (ω)

σ (ω) = ℜ [Y (ω)]

R (ω) = ℜ [Z (ω)] = ℜ
[

1

Y (ω)

]

(2.110)

In this way, Equation 2.107 can be thus re-written as

S1−sided
X (f) = −4kBT

ω
ℑ [α (ω)] =

kBT

π2f2
ℜ [Y (ω)] =

kBT

π2f2
σ (ω) (2.111)
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Now, when the applied force is periodic F (ω) = F0cos (ωt) , we can write

S1−sided
X (f) =

kBT

π2f2
σ (ω) =

2kBT

π2f2

Wdiss

F 2
0

=
8kBT

ω2

Wdiss

F 2
0

(2.112)

where the real part of the admittance (i.e., the conductance) has been related to the
average power dissipated by the system, Wdiss, through the relationship

σ (ω) = 2
Wdiss

F 2
0

(2.113)

In order to justify the above relationship, again the analogy with the circuit is useful.
Indeed, in this case we have Wdiss = V 2 · σ ⇒ Wdiss = F 2 · σ = F 2

0 /2. Equation 2.112 will
prove very useful in the application of FDT for the treatment of thermal noise in optical
cavities (see next Chapter).

2.5 Phase noise modelling

In previous section we have learnt that fundamental types of noise exhibit power spectral
densities with a power-law behavior. The next step is to model an oscillator as a system
with n inputs (each associated with one noise source) and two outputs represented by α (t)
and ϕ (t) of Equation 2.57 [77]. In the electrical equivalent of the oscillator, noise inputs are
in the form of current sources injecting into circuit nodes and voltage sources in series with
circuit branches (frame a of Figure 2.11). In this way, circuit noise evolves into amplitude
and phase noise of the oscillator output voltage. To better understand this, consider the
specific example of an ideal parallel LC oscillator shown in frame b of Figure 2.11. If we inject
a current impulse as shown, the amplitude and phase of the oscillator will have responses
similar to that shown in the lower frame of Figure 2.11. The instantaneous voltage change
∆V is given by

∆V =
∆q

Ctot
(2.114)

where ∆q is the total injected charge due to the current impulse and is the total capac-
itance at that node. Note that the current impulse will change only the voltage across the
capacitor and will not affect the current through the inductor. It can be seen (frame c of
Figure 2.11) that the resultant change in α (t) and ϕ (t) is time dependent. In particular, if
the impulse is applied at the peak of the voltage across the capacitor, there will be no phase
shift and only an amplitude change will result. On the other hand, if this impulse is applied
at the zero crossing, it has the maximum effect on the excess phase and the minimum effect
on the amplitude. An impulse applied sometime between these two extremes will result in
both amplitude and phase changes.

Focusing our attention on the phase, in the light of the above considerations, one can
assume the unit impulse response for excess phase as

hϕ (t, τ) =
Γ (ω0τ)

qmax
u (t− τ) (2.115)

where u (t) is the unit step function and Γ is the impulse sensitivity function (ISF) (divid-
ing by qmax, the maximum charge displacement across the capacitor, makes Γ independent
of signal amplitude). It is a dimensionless, frequency- and amplitude-independent periodic
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FIGURE 2.11
Generic model for a self-sustained noisy LC oscillator. (Adapted from [77].)


