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Preface

Drug development, aimed at improving people’s health, becomes more
costly every year. The pharmaceutical industry must join its efforts with
government and the health professions to seek new, innovative, and cost-
effective approaches in the development process. During this evolutionary
process over the next decades, computer simulations will no doubt play a
critical role. Computer simulation or Monte Carlo simulation is the tech-
nique of simulating a dynamic system or process using a computer program.
Computer simulations, as an efficient and effective research tool, have been
used in virtually every area of engineering, science, mathematics, etc.

In this book, I present concepts, theories, algorithms, and cases studies
of Monte Carlo simulation in the pharmaceutical and health industries. The
concepts refer not only to simulation in general, but also to various types
of simulations in drug development. The theory will include virtual data
sampling, game theory, deterministic and stochastic decision theories, adap-
tive design methods, Petri net, genetic programming, resampling methods,
and other strategies. These theories and methods are necessary either to
carry out the simulations or to make the simulations more efficient, even
though there are many practical problems that can be simulated directly
in an ad hoc fashion without any theory about their efficiency or conver-
gence considerations. The algorithms, which can be descriptive, computer
pseudocode, or a combination of both, provide the basis for implementation
of simulation methods. The case studies or applications are simplified ver-
sions of real-world problems. These simplifications are necessary because
a single case could otherwise occupy the whole book, preventing readers
from exploring broad issues. There are also examples of how simulation can
be formulated to address interesting questions that have not been stud-
ied before. In my view, building simulation models is, to a large extent, a
creative process; it is an innovation in application, which can impact our
lives more positively than other innovations or creations. Simulation often

xix
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requires knowledge in several disciplines, including mathematics/statistics,
programming, and the subject field.

The overarching goals of this book are not limited just to the scope
of simulation methodologies and computer algorithms, but also include
sharing personal thoughts, experiences, and views about how to become
a visionary, to be creative, a logical thinker and, a skillful “simulator.”
Being visionary can be helpful in formulating the questions and building
simulation models; on the other hand, using simulations we can answer vi-
sionary questions. Being visionary requires having a big-picture view and
understanding the issues profoundly. Being visionary is helpful in facili-
tating communications and getting one’s ideas across to key stockholders
in a company. This belief is reflected in the chapters on meta-simulation
and macro-simulation, and throughout the book. Being creative requires
wide knowledge in the field and cross-disciplines and skill in identifying the
similarities among different things and making analogies. For this reason, I
decided to cover a broad range of problems in drug development and to pro-
vide introductory examples from many different fields. Being logical implies
being capable of abstract thought. Simulation processes often appear to be
intuitive and concrete. However, to build the model or convert a practical
problem into a simulation problem and develop an algorithm require a high
degree of abstract thinking and the ability to visualize all the steps in the
simulation process. After the algorithm is developed, implementation using
any computer language or software is a relatively straightforward task if
one knows the programming language well.

Many academic and industry professionals, myself included, share the
view that, despite our great efforts, there is still a gap between what stu-
dents learn in school and what they actually need in their work. To narrow
this gap, teaching materials or books that can bridge the gap between
academia and industry are necessary. This book is an attempt in this direc-
tion. The style of the book is unique in the sense that it is a mix of textbook
and monograph. Having said that, industry statisticians, scientists, and
software engineers/programmers are intended to be its primary readers.

The second unique characteristic of this book is the broad coverage of
subject fields from drug discovery (molecular design, disease modeling, and
biological pathway simulation), preclinical aspects (pharmacokinetics, phar-
macodynamics), clinical development (adaptive clinical trials, trial manage-
ment, and execution), and prescription drug commercialization. In contrast,
most monographs deal with only a very specific field.

Before discussing specific Monte Carlo techniques, background informa-
tion, and the issues and/or trends in the field are covered. This is partic-
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ularly important for Monte Carlo model building and for communicating
simulation results back to the team or any concerned parties. You will
be amazed when you find out, in a successful Monte Carlo project, how
much more time and effort are expended on team communication than on
actual simulations. Most simulation books are either completely mathemat-
ical/statistical oriented or resemble a software user manual, and neglect the
background topics altogether.

The third unique feature is in the exercises. Typically, exercises in a
textbook are provided with all the information for students to answer the
questions. However, in the real world, especially in drug development, vir-
tually every challenging problem requires that we make judgments on what
information is needed and where to get it in order to solve the problem at
hand, and most times appropriate assumptions are also required. Because
of the assumptions and uncertainties of source information, how to inter-
pret the results also becomes an essential part of the task, which, from my
experience, is often overlooked in the classroom and by students. In light
of this, for many exercises in this book, readers are expected to make a
judgment as to whether the information provided is sufficient or not; if not,
they must identify and use other sources or make appropriate assumptions,
and then finally use the methods/tools discussed to solve the problem.

Road Map
The book studies a broad category of computer simulations, virtually

covering the whole spectrum of drug development in the thirteen chapters.
Chapter 1, Simulation, Simulation Everywhere, covers the general con-

cepts of simulations, emphasizing the importance of analogy and simulation
using various examples from daily life, art, music, bilingualism, strategies
for commuting, economics, math, science, finance, optimization, and others.

Chapter 2, Virtual Sampling Techniques, discusses general methods for
the generation of random numbers, methods for variance reduction, and
methods for generating random numbers from specific distributions. The
discussions are brief, especially on methods for specific distributions.

Chapter 3, Overview of Drug Development, provides basic knowledge
about different stages of drug development, from discovery through pre-
clinical and clinical development. This knowledge is important to readers
who have little knowledge about drug development and want to develop the
ability to confidently model a practical problem as a Monte Carlo problem.

Simulations are divided into meta, macro, and micro simulations. Chap-
ter 4, Meta-Simulation for the Pharmaceutical Industry, investigates the
characteristics of competition and collaboration between independent busi-
ness entities or pharmaceutical companies using simulations, including
pharmaceutical gaming and prescription drug global pricing. Those sim-
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ulation methods are constructed on the basis of game theory; therefore, the
chapter also serves as an introduction to game theory.

Chapter 5, Meta-Simulation for Pharmaceutical Research and Develop-
ment, studies meta-simulation, in which different stages of drug develop-
ment and different drug candidates are considered simultaneously in sim-
ulation models. The simulation approaches are constructed based on the
Markov decision process. The chapter provides materials to smoothly trans-
fer from a deterministic sequential decision process, to a Markov decision
process, to a pharmaceutical decision process, and to extensions of Markov
decision processes.

Chapter 6, Clinical Trial Simulations (CTS), deals with simulations in
classical and adaptive trials, which is of the most interest to the pharmaceu-
tical industry and where simulation finds most of its applications in drug
development. Unified adaptive design methods are also introduced.

Chapter 7, Clinical Trial Management and Execution, focuses on the
various challenges in clinical trial management and execution (e.g., trial
management, patient recruitment, adaptive randomization, dynamic drug
supply, and adaptive trial monitoring) and the reformulation of the prob-
lems into Monte Carlo simulation in conjunction with other theoretical
methods such as critical path analysis.

Chapter 8, Prescription Drug Commercialization, covers the dynamics
of prescription drug marketing, the stock-flow dynamic model for brand
planning, and a competitive drug marketing strategy. Different models such
as a stochastic market game are discussed in the simulations.

Chapter 9, Molecular Design and Simulation, comprises various top-
ics including why molecular design and simulation, molecular similarity
search, overview of molecular docking, small molecule conformation analy-
sis, ligand–receptor interaction, docking algorithms, and scoring functions.

Chapter 10, Disease Modeling and Biological Pathway Simulation, dis-
cusses computational system biology, petri nets, and biological pathway
simulation with PN.

Chapter 11, Pharmacokinetic Simulation, gives an overview of abor-
tion, distribution, metabolism, and excretion (ADEM) and their modeling,
especially physiologically based pharmacokinetic modeling.

Chapter 12, Pharmacodynamic Simulation, provides an overview of
pharmacodynamics, enzyme kinetics, pharmacodynamic models, drug–drug
interactions, and case studies.

Chapter 13, Monte Carlo for Inference and Beyond, includes several
important topics, including sorting algorithms, resampling methods, and
genetic programming.

In the appendices, implementations of three algorithms, representing
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easy, moderate, and difficult levels of coding, are presented as examples,
in Javascript language. The code is embedded in an html file; thus only
Internet Explorer is needed to run the programs. More algorithms are im-
plemented and made available at www.statisticians.org.

The book deals with multiple disciplines employing different syntax con-
ventions. There is a balance between being syntax consistent throughout
the book and respecting syntax/conventions in the individual subject fields.
Since the levels of Monte Carlo development in different areas of the phar-
maceutical industry are very different, I try to not overstress consistency
in the complexity level of the mathematical models or in the simulation
technologies actually used. For example, clinical trial simulations are more
developed, but simulation in prescription drug commercialization is rela-
tively naive from a mathematical perspective. As a second example, the
subject of molecular design and simulation is usually accomplished using
commercial software, not because of the mathematical complexity but be-
cause of the necessarily lengthy coding for ligand-protein 3D geometry,
molecular or quantum mechanics, and the software user interface. Thus, I
spend less time in discussing the algorithms, but focus instead on the issues
concerned when conducting these kinds of simulations.

I candidly admit that my goals are ambitiously high, and my approach
in this book needs to be tested. Therefore, any comments or criticisms are
encouraged. I can be reached at www.statisticians.org.

Finally, thanks to Dr. Robert Pierce; his valuable comments have greatly
improved the manuscript. Thanks also to Acquisitions Editor David Grubbs
from Taylor & Francis for providing me the opportunity to work on this
project.

Mark Chang

Lexington, MA, USA
www.statisticians.org



August 12, 2010 9:20 WSPC/Book Trim Size for 9in x 6in ModelingAndSimulationInDrugDevelopment



August 12, 2010 9:20 WSPC/Book Trim Size for 9in x 6in ModelingAndSimulationInDrugDevelopment

Chapter 1

Simulation, Simulation Everywhere

This chapter will cover the following topics:

• Modeling and Simulation
• Introductory Monte Carlo Examples
• Simulations in Drug Development

1.1 Modeling and Simulation

1.1.1 The Art of Simulations

Simulation is the imitation of a physical or conceptual system (process) in
order to gain insight into its functioning and to optimize its performance.
The act of simulating generally entails representing certain key character-
istics or behaviors of a selected physical or abstract system. Key issues in
simulation include acquisition of valid source of information about the ref-
erent, selection of key characteristics and behaviors, the use of simplifying
approximations and assumptions within the simulation, and fidelity and
validity of the simulation outcomes.

A Monte Carlo method, also called Monte Carlo, Monte Carlo simu-
lation, or computer simulation, is a technique that usually involves using
computer-generated random numbers and theory of probability to solve
problems. The term Monte Carlo method was coined by S. Ulam and
Nicholas Metropolis in reference to games of chance, a popular attraction
in Monte Carlo, Monaco (Hoffman, 1998; Metropolis and Ulam, 1949).

The term simulation is often associated with the term modeling. Mod-
eling can be mechanical modeling, mathematical or statistical modeling, or
analogy. Mathematical or statistical modeling of phenomena can have an-
alytical closed form solutions or more often numerical solutions. For many
complicated situations the solutions have to be obtained with the assistance

1
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of computer simulation.
The terms modeling and simulation are often used interchangeably be-

cause they both use analogy. However, there are some fine differences —
simulations often involve repetitions of virtual random data sets, whereas
modeling often applies to an observed data set. In practice, modeling and
simulation are often combined to effectively solve problems. In engineering,
modeling can mimic behavior using a different scale from the original object
being modeled. As an example, before constructing a large dam for a reser-
voir, engineers usually use a physical model (prototype) in 1:100 to 1:1000
scale in the laboratory and evaluate the safety of the dam as it undergoes
various forces. They use the results to infer the performance of the actual
dam to be built. This is reasonable because there are underlying relation-
ships between the model and the original object. The theory of the study of
the relationships is called dimensional analysis in mechanics (Szirtes, 2007).
Spaceship launching is another example: before the launch, numerous tests
or simulations have to be carried out.

Like many other fields, computer simulation can also be an art — there
are many ways to achieve the goal, and some are better than others. In ad-
dition to the necessary mathematical/statistical and computer knowledge,
the keys to a successful simulation are the ability to make analogies and
a reasonably good knowledge of the subject field. If you can use logic and
analogy to transfer the problem into a sensible Monte Carlo simulation, you
are halfway to solving the problem. Given the importance of basic subject
knowledge, I have included as a chapter in this book background materials
for drug development, so that the reader can fully understand the Monte
Carlo methods without frequently referring to other texts. Simulation in
drug development often requires strong interaction among people from dif-
ferent disciplines, and this subject knowledge will help facilitate your com-
munications. You will be amazed how much time and effort you need to put
into collaboration — getting input for your model and convincing others
of your proposal.

Before we discuss simulation techniques in the pharmaceutical and
health industries, it is helpful to take a glance at some entertaining exam-
ples. These examples are selected because they are simple, but also because
they demonstrate the amazing power of simulations.

1.1.2 Genetic Programming in Art Simulation

Simulation can be used in many fields (with or without mathematical mod-
eling): science, engineering, finance, art, and music (Romero & Machdo,
2008; Cope, 2001). The portrait of Lisa Gherardini (the Mona Lisa) in the



August 12, 2010 9:20 WSPC/Book Trim Size for 9in x 6in ModelingAndSimulationInDrugDevelopment

Simulation, Simulation Everywhere 3

Louvre in Paris, painted by Leonardo da Vinci during the Italian Renais-
sance, is perhaps the most famous and iconic painting in the world. Roger
Alsing used a special Monte Carlo method called genetic programming (GP)
to successfully reproduce the portrait with only 50 semi-transparent poly-
gons (see Figure 1.1). The result is astonishing! One implication of this
successful simulation using GP is that GP can be used to compress/zip the
picture with truly tiny computer storage — only information containing 50
semi-transparent polygons in this case! We will return to GP later in this
section.

Figure 1.1: The Mona Lisa Generated Using GP

1.1.3 Artificial Neural Network in Music Machinery

Virtual music represents a broad category of machine-created composition
which attempts to replicate the style but not the actual notes of existing
music (Cope, 1993). One of the first formal types of algorithms in music
theory, and another good example of virtual music, is the eighteenth cen-
tury Musikalisches Wurfelspiel, or musical dice game. The idea behind this
musically sophisticated game involved composing a series of measures of
music that could be recombined in many different ways and still be stylis-
tically viable — virtual music. Following this process, even a very simple
piece becomes a source of innumerable new works (Cope, 2001).
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Figure 1.2: Music Scores and Structure Process for Monte Carlo
(Source: Adapted from Rowe, 2001)

Rowe (2001) used an artificial neural network to simulate the subsym-
bolic process (Figure 1.2). Neural networks are a class of algorithms that
learn relations between inputs and outputs. Their structure is derived from
a schematic model of the neurons of the brain. A typical artificial neural
network (ANN) consists of layers of connected nodes. A weight is placed on
each connection in a neural network. Activation travels from one node to
another across a connection. The weighted sum of activations from nodes
at a previous layer is compared to a threshold to determine the activation
of the current node.

The initial connection weights can be set arbitrarily. One of the great
attractions of ANNs is that they are able to learn: the weights can be
adjusted automatically from data. To accomplish this, a training set of input
data with known answers attached is presented to the network. Over the
course of a training session, the connection weights are gradually adjusted
by the neural network itself until they reach convergence. If the training
set captures the regularities of a wider class of inputs, the trained network
will then be able to correctly classify inputs not found in the training set as
well. Such a process is an example of supervised learning, in which a teacher
(the training set) is used to guide the network in acquiring the necessary
knowledge (connection weights).
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After the ANN is well trained, it can be used as a music teacher to
classify musical works in teaching and can even become a virtual musician,
producing music pieces of various kinds. As far as the applications of ANN
in drug development, we will discuss the topic in detail in later chapters of
this book.

1.1.4 Bilingual Bootstrapping in Word Translation

Li and Li (2004) developed an effective machine learning technique (bilin-
gual bootstrapping) for word translation disambiguation. It makes use of
a small amount of classified data and a large amount of unclassified data
in both the source and the target languages. It repeatedly constructs clas-
sifiers in the two languages in parallel and boosts the performance of the
classifiers by classifying unclassified data in the two languages and by ex-
changing information regarding classified data between the two languages
(Figure 1.3).

Figure 1.3: Bilingual Bootstrapping

(Source: Li and Li, 2004)

Bootstrapping is a statistical method for estimating the sampling dis-
tribution of an estimator by sampling with replacement from the original
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sample, most often with the purpose of deriving robust estimates of stan-
dard errors and confidence intervals of a population parameter such as a
mean, median, proportion, odds ratio, correlation coefficient, or regression
coefficient. It can also be used for constructing hypothesis tests. It is often
used as a robust alternative to an inference based on parametric assump-
tions when those assumptions are in doubt, or where parametric inference
is impossible or requires very complicated formulas for the calculation of
standard errors. When large data sets are available, we can use random sam-
pling with or without replacement to validate the neural network method.
We will discuss more about bootstrapping methods in Chapter 13.

1.2 Introductory Monte Carlo Examples

The best way to describe Monte Carlo simulation may be through exam-
ples. In the next section, we give some simple examples, walking through
the steps taken to solve the problems using Monte Carlo simulation. Keep
in mind that to solve problems effectively, Monte Carlo simulations are of-
ten combined with other modeling methods or theories, such as game and
decision theories. In addition, basic knowledge of the subject field of the
underlying problem is critical to the success of the simulation.

1.2.1 USA Territory

Suppose we are asked to find the size of the USA’s territory. The only thing
we have is a map (Figure 1.4), in 1:20000 scale, on a rectangular piece of
paper of 24 in × 36 in. Can we accomplish the mission?

Let’s analyze the situation: The map has an irregular shape and there
seems no simple and direct way to calculate the size (area). However, if
we can find the ratio of map size to rectangle size, the size of the USA’s
territory can be calculated using the following equation:

Ausa = RAregSmap = 20000RAreg (1.1)

where R is the ratio of the areas (USA over the rectangle) Ausa
Areg

; Smap is
the scale of the map; Areg is the area of the rectangle, which is easy to
measure.

It is clear that the key to the problem is to find the ratio

R =
Ausa
Areg

. (1.2)

Among other alternatives, we can use mechanical simulation to estimate
the ratio through the following steps: (1) Cut the map into many small
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Figure 1.4: Map of the US

pieces randomly. Based on the dominant color on the piece, some of the
pieces will be considered white and some gray (the map part). (2) Fully
mix all the pieces. (3) Randomly draw a piece N times with replacement
and record the number of gray pieces (Nusa). A simple probabilistic fact
tells us that when n→ ∞, the following equation holds with a probability
of 1:

R =
Ausa
Areg

=
Nusa
N

. (1.3)

But what if we don’t want to destroy the map? Well, that is easy too.
Get a small object, e.g., a needle; throw it randomly toward the map many
times; record the number of times (Nusa) the needle tip falls on the USA
map and the number of times (N) the needle tip falls on the entire rectangle;
(1.3) and (1.1) are still valid. Note that the paper used to draw the map
does not have to be a rectangle, but can be any shape. For convenience, we
call the paper or area that covers the map the “majorization space.”

1.2.2 π Simulation

We now consider how we can use computer simulation to perform this type
of simulation more efficiently. To make it more interesting, let’s estimate
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the constant π. To this end, we change the USA map to a disk with a known
radius (for simplicity let the radius r = 1 and the majorization space be a
square with side length of 2r = 2). See Figure 1.5. From (1.2), the ratio of
the areas can be expressed as

R =
πr2

(2r)2
=
π

4
. (1.4)

Figure 1.5: Pi by Simulation

From (1.4), we have the equality π = 4R for the π simulation specified
below:

(1) Generate two random numbers independently from U (0, 1), the uni-
form distribution over range [0, 1], representing a point (x, y) in an XY
plane.

(2) Check if the point falls in the circle (i.e., if (x−0.5)2+(y−0.5)2 < 0.25).
(3) If the point falls in the circle, increase the count n by 1.
(4) Repeat steps (1)–(3) m times.
(5) Calculate the final ratio R = n

m and the estimate π = 4R.

Let’s write the steps using computer pseudocode or an algorithm:

Algorithm 1.1: Pi Simulation
Objective: return an estimate for the constant π
input number of simulation nRuns
m := 0
For iRun := 1 To nRuns

Generate x from U(0, 1)
Generate y from U(0, 1)
d := (x− 0.5)2 + (y − 0.5)2
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If d < 0.25 Then m := m+ 1
Endfor
Pi := 4 m

nRuns

Return Pi

§

There are other simulation algorithms for calculating π up to 2398 digits
(e.g., Press, et al. 2007, p. 1194). The most famous example of π simulation
is the Buffon Needle experiment.

1.2.3 Definite Integrals

Suppose we want to calculate the integral

I =
∫ b

a

f(x)dx, (c ≥ f(x) ≥ 0, b > a). (1.5)

The interpretation of the integral is the area under curve f(x) (Figure 1.6),
which naturally links to the previous simulations. Indeed, we can develop
a simulation algorithm similar to Algorithm 1.1 to calculate the integral.
Note that the area of the majorization space is c × (b − a) in the current
case.

Algorithm 1.2 Monte Carlo for a Definite Integral
Objective: return the numerical value of integral I defined by (1.5)
Input number of simulation nRuns
m := 0
For iRun := 1 To nRuns

generate x from U(a, b)
generate y from U(0, c)
If y < f (x) Then m := m+ 1

Endfor
I := c(b− a) m

nRuns

Return I

§

A better simulation approach is to calculate the mean value f̄ of f(x)
over (a, b) and then obtain I = (b− a) f̄ . The mean f̄ can be estimated
using simulation as f̄ ≈ 1

mmax

∑mmax
i=1 f (xi), where xi is a random num-

ber from the uniform distribution U (a, b). We formalize this approach in
Algorithm 1.3.
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Figure 1.6: Area Under Curve (AUC)

Algorithm 1.3 Improved Monte Carlo for a Definite Integral
Objective: return the numerical value of integral I defined by (1.5)
input number of simulation nRuns
sum := 0
For iRun := 1 To nRuns

generate x from U(a, b)
sum := sum+ f(x)

Endfor
I := (b− a) sum

nRuns

Return I

§

We can see that only one random number is needed for each simulation
run using Algorithm 1.3, whereas two random numbers are required for
each simulation run in Algorithm 1.2.

The validity of the algorithm is based on the law of large numbers in
statistics, which ensures:

1
b− a

∫ b

a

f (x) dx ≈ f̄ . (1.6)

Theorem 1.1 Weak Law of Large Numbers: Suppose that the expec-
tation E (X) of X is finite. Then the sample mean X̄m converges in prob-
ability to E (X); thus limm→∞P

(∣∣X̄m − E (X)
∣∣ > ε

)
= 0 for every ε > 0,

where X̄m = 1
m

∑m
i=1Xi.

Theorem 1.2 Strong Law of Large Numbers: Suppose that the ex-
pectation E (X) of X is finite and then converges almost surely to E (X).
Thus limm→∞P

(
X̄m = E (X)

)
= 1.
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Theorem 1.3 Central Limit Theory: For any λα > 0,

P

(∣∣X̄m − I
∣∣ < λασ√

m

)
≈ 2√

2π

∫ λα

0

exp
(
− t

2

2

)
dt = 1− α. (1.7)

In other words,

√
m
(
Îm − I

)
→ N

(
0, σ2

)
, in distribution,

where σ2 = var {g (x)}, g (·) = real function.

Therefore the error of this Monte Carlo approximation for an integral is
O (
√
m) regardless of the dimension of the integral. This a major advantage

of using simulation for a high-dimensional definite integral in comparison
to numerical integration.

An interesting question is: how does the size of the majorization space
affect the efficiency of the program? Will the simulation reach its maximum
efficiency when the ratio of areas is close to 0.5? We leave the reader to find
the answer (Exercise 1.2). In Chapter 2, we will discuss how to improve the
efficiency of the sampling procedure.

1.2.4 Fastest Route

Industry and technology revolution do not always make life easier. Traffic
jams often make one think: I am better off riding a bicycle. Using backward
induction (see Chapter 5 for details) in decision theory, we can easily find
the shortest route back home from the office. However, finding the fastest
route is a quite different story, and much more challenging because there
is random traffic involved. You may use Yahoo or Google Map to search
for the shortcut, but whether this “shortcut” is real or not is dependent
on how many other drivers utilize the same information. If every driver
uses the same information and takes the same “shortcut,” it will not be the
fastest path at all. In real life, people often try different roads and record (by
heart) the driving time taken each time. If they find a trip is faster than
a previous trip on a different path, they may increase the probability of
taking this road. By doing this, they hope to find the best path or strategy
in the long run or on average. Can we prove this strategy works (and how
well it works) using Monte Carlo? Many practical problems involve this
type of competition and are well studied in game theory (see Chapter 4).
In fact, this commuting problem is similar to the random-play-the-winner
strategy in Casino and the response-adaptive randomization in clinical trial
design (Chang, 2007b, 2008 and Chapter 9 of this book). But for now, let’s
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develop an algorithm (Algorithm 1.4) to find the fastest path before we
leave home today.

Figure 1.7: Finding the Fastest Route

To fit the scope of this introductory chapter, we need to make some
necessary assumptions to simplify the problem so that we have a concise
algorithm. The assumptions in Algorithm 1.4 are: all paths have the same
distance, driver k may (but not necessarily) switch his/her path with the
probability of switching = nij

ni−1,j+nij
, where nij = number of cars on the

jth road on the ith day. U (M) is the probability mass function or random
number generator that generates integers 1 to M with equal probability. For
a typical day i, on a typical path j, we need to determine whether a typical
car k will switch paths based on the probability of switching nij

ni−1,j+nij
.

If yes, the path he/she is switching to is based on the probability U (M).
Note that even if a driver intends to switch, there is still a 1/M probability
that he will turn out to be a nonswitcher. Therefore the actual switching
probability is M−1

M
nij

ni−1,j+nij
. When a switch does occur, the number of cars

on the two paths involved in the switching need to be updated (reduced
or increased by 1) for the next day. Here is the algorithm in computer
pseudocode.

Algorithm 1.4: The Fastest Route
Objective: return {nij} the number of cars on the jth path on day i.
Input nRuns (days of drive), M (number of paths available).
Assign any initial n1j cars on each path j on day 1
For i := 1 To nRuns

For j := 1 To M

For k := 1 To nij
Generate x from U(0, 1)
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If x ≤ nij
ni−1,j+nij

Then
generate m from U (M)
ni+1,m := nim + 1
ni+1,k := nik − 1

Endif
Endfor

Endfor
Endfor
Return {nij}
§

We always make decisions based on previous experiences when we are
facing a set of options; therefore this kind of Monte Carlo can be used in
many situations within and outside drug development (see Chapters 4 and
5). One can build very interesting scenarios to study how the drug industry
and even the global economy works.

1.2.5 Economic Globalization

Globalization in its literal sense is the transformation of local or regional
phenomena into global ones. It can be described as a process by which the
people of the world are unified into a single society and function together.
This process is a combination of economic, technological, sociocultural, and
political forces. Globalization is often used to refer to economic globaliza-
tion, that is, integration of national economies into the international econ-
omy through trade, foreign direct investment, capital flows, migration, and
the spread of technology (Wikipedia, 2009). Advances in communication
and transportation technology, combined with free-market ideology, have
given goods, services, and capital unprecedented mobility.

Despite the complicated reasons behind individual cases, there is a very
general statistical or mathematical model for such globalization processes,
i.e., random (Brownian) motion at the microscopic level or the diffusion
equation at the macroscopic level.

At the macroscopic level, diffusion can be modeled by the differential
equation:

du

dt
= −ku, (1.8)

where u is the quantity of interest, e.g., electrical voltage or the level of
technology or knowledge in different regions. The solution for (1.8) is the
exponential function
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u = u0e
−kt,

where u0 is determined by the initial condition.
Equation (1.8) states that when there is no external force, there is a

general tendency that quantity u moves from an area with a higher value
to another with a lower value. The speed of this homogenization process
(diffusion) is characterized by a constant, k. In the globalization process,
government policies of a country play a critical role in determining the value
of k.

Diffusions are everywhere — we can say that if there is a difference, there
will be a diffusion: water flow from higher to lower, technology diffusion from
first world countries to third world countries, diffusion due to the difference
in labor costs between the US and China. The difference in the percentage of
English speakers in the US and China will also create diffusion; even overall
cultural differences in two countries can lead to diffusion. These multi-
channel diffusion processes from one region to another are not isolated or
statistically dependent, but are governed by the following multi-dimension
diffusion equation:

dui
dt

= −kijuj , (1.9)

where the diffusion coefficients kij are usually a function of uij , which means
(1.9) is a nonlinear differential equation system. Such a system is virtually
impossible to solve analytically, but can be easily solved using Monte Carlo
simulation. Many commercial and noncommercial software tools (e.g., Ex-
tendSim) are available for Monte Carlo simulations. Algorithm 1.7 later in
this chapter can be used to find the steady state solution for this problem.

In Chapter 11 (Pharmacokinetic Simulation), we will discuss how micro-
scopic Brownian motion turns out mathematically to be a diffusion equa-
tion at the macroscopic level and we present Monte Carlo algorithms for
multi-channel diffusion of drug substances.

The diffusion model is a deterministic approach, which models the mean
or overall behavior without variability considerations. In contrast, Monte
Carlo simulations at the microscopic level provide both mean and variability
evaluations for random phenomena.

1.2.6 Percolation and Chaos

In physics, chemistry, materials science, and geography, percolation con-
cerns the movement of fluids through porous materials or random media.
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Examples include the movement of solvents through filter paper and the
seepage or movement of liquids (e.g., water or petroleum) through soil. Elec-
trical analogs include the flow of electricity through random networks. An-
other interesting application is coffee percolation, where the solvent is water,
the permeable substance is the coffee grounds, and the soluble constituents
are the chemical compounds that give coffee its color, taste, and aroma.

Percolation is recognized as important in studying random media be-
cause when it happens the system will degenerate into chaos. A simple
question to ask is: what is the average proportion of void-ratio (void vol-
ume to solid volume) that will cause percolation? Let’s develop a Monte
Carlo algorithm to answer the question.

Figure 1.8: Simulation of Percolation

The basic idea of percolation simulation is, in a bounded space (e.g., a
square, representing a piece of solid material), continually generate small
disks (holes) at random locations in each other until the piece of material
is percolated (Figure 1.8). The void ratio at percolation is then calculated.
The occurrence of percolation can be either visually identified or computed
in the simulation. To compute the percolation condition, a simple way is to
use a “laser-beam” to scan the area, e.g., from left (top) to right (bottom),
whenever a new disk is generated. Every time the laser beam moves right a
very small unit it checks if it hits or intersects any disk; if no intersection,
no percolation; if the laser beam always intersects some disk(s) during the
scanning, it is percolated. Algorithm 1.5 is developed from this idea.
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Algorithm 1.5: Simulation of Percolation
Objective: return average number of random holes at percolation.
Input: nRuns, small disk radius r
nAve := 0
For iRun := 1 To nRuns

i := 0
percolation := False
While Not percolation:

Generate x from U (0, 1)
Generate y from U (0, 1)
Draw a circle centered at (x, y) with radius r
i := i+ 1
Check percolation
If percolation Then nAve := nAve+ i/nRuns

Endwhile
Endfor
Return nAve

§

Note that we have ignored the disk overlapping in Algorithm 1.5 for
simplicity. The line Check percolation is brief. The analytic solution is found
to be 1/3 when the defects are completely random or uniformly distributed
over the 3D space.

1.2.7 Fish Pond

If you want to measure the volume of water (Vw) in a pond, an easy way
is to pour a cup (volume v) of a (colored) testing liquid into a pond and
let it sufficiently mix (diffuse). Then take a cup of water from the pond
and measure the concentration (c) of the test liquid. We now can calculate
the volume of water in the pond: V = v

c − v because the concentration is
c = v/ (v + V ).

Suppose we want to estimate the number of fish in a pond without
pumping out the water (Figure 1.9). We can use a similar approach. Get a
certain number (n1) of fish (not from the pond), mark them, and put them
into the pond. On the next day, we catch some (n2) of the fish, and find r

out of n2 have been marked (r/n2 equivalent to c). We now can estimate
the total number of fish in the pond: n = n1n2

r − n1.
However, a commonly used method for solving this kind of problem is

the so-called mark-recapture method (MRM). The simplest version of this
method is the two-sample method: Capture some fish (n1), mark them, and
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put them back into the pond. On the next day you capture some fish (n2).
Of these, r were marked the day before. Then the estimated population size
(N) is given by

N =
n1n2

r
. (1.10)

An approximately unbiased variance of N , or var(N), can be estimated
as:

var(N) =
(n1 + 1)(n2 + 1) (n1 − r) (n2 − r)

(r + 1)2 (r + 2)
. (1.11)

Figure 1.9: Capture-Recapture Method

(Source: www.figurethis.org)

This method is called the Lincoln–Petersen method. It can be used to
estimate population size if (1) only two independent samples are taken, (2)
each individual has an equal probability of being selected (or captured),
and (3) the study population is closed, meaning no deaths or births and no
migration between visits.

MRM is a method commonly used in ecology to estimate population
size, population vital rates (i.e., survival, movement, and growth), and the
number of people needing particular services (e.g., people infected with
HIV). MRM can also be used to study the error rate in software source
code, in clinical trials, databases, etc. This approach is useful when the
total population size is unknown.
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1.2.8 Competing Risks

Medical science and health technology have been improved dramatically in
the past decades. The resulting health status and life-expectancy changes
are particularly interesting to us. According to National Vital Statistics
Reports (Vol. 56, No. 10, April 24, 2008), the five leading causes of death
in the USA for 2005 were heart disease (652,091), cancer (559,312), stroke
(143,579), chronic lower respiratory diseases (130,933), and accidents (un-
intentional injuries, 117,809). Among the fifteen leading causes of death,
age-adjusted death rates decreased significantly from 2004 to 2005 for the
top three leading causes, heart disease, cancer, and stroke, as long-term
decreasing trends for these causes continued. Significant increases occurred
for chronic lower respiratory diseases, unintentional injuries, Alzheimer’s
disease, influenza and pneumonia, hypertension, Parkinson’s disease, and
homicide. Despite the disease spectrum shifts, the life expectancy of the US
population was 77.8 years, the same as that in 2004. What does it mean
that life expectancies remained unchanged for the total population? Are our
great efforts in medicine and health being balanced out by increasing neg-
ative causes (war, pollution, epidemiological disease)? Is it a phenomenon
of simultaneous age-adjusted life expectancy? Is it because we allocate our
health resources inefficiently? In what follows we will study how to allo-
cate health resources appropriately and see the impact of inappropriate
allocations.

We all face potential multiple causes of death. A cancer patient’s re-
sponse to cancer treatment effectively may fail due to other diseases such
as stroke. To study the mechanism of life expectancy in disease complica-
tion is an interesting topic to governments for resource allocation. Algo-
rithm 1.6 can be used to study the effect of single-cause life expectancy
change on overall life expectancy (aveLife). This algorithm can be easily
used for resource allocation purposes as described in the following: Suppose
we just consider two causes of death, cancer and heart disease. Assume life
expectancy will be T1 without heart disease and T2 without cancer. The
cost for an increase of 1% in T1 is C1 (cancer treatment cost) and the cost
for an increase of 1% in T2 is C2 (treatment cost for heart disease). How
should we allocate resource C, where C1 +C2 = C, so that life expectancy
is maximized? Readers should be able to solve this problem using Monte
Carlo techniques after reading Chapter 2.

Algorithm 1.6: Life Expectancy under Competing Risks
Objective: average life expectancy under two potential causes of death.
Input: population size N , single cause life expectancies T1 and T2.
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aveLife := 0
For i := 1 To N

Generate t1 from exponential distribution with hazard rate 1/T1.
Generate t2 from exponential distribution with hazard rate 1/T2.
Li := min(t1, t2)
aveLife := aveLife+ Li/N

Endfor
Return aveLife

§

1.2.9 Pandemic Disease Modeling

Endemic disease is a disease that exists permanently in a particular region
or population. Malaria is a constant worry in parts of Africa. Epidemic dis-
ease refers to an outbreak of disease that attacks many people at about the
same time and may spread through one or several communities. Pandemic
disease occurs when an epidemic spreads throughout the world. SARS and
swine flu (H1N1) are two examples of pandemic diseases.

To model a pandemic disease (e.g., swine flu), let’s assume the rate of
disease infection is proportional to the number of infected and the number
of potentially infected, i.e.,

dn (t)
dt

= kn (t) (N − n (t)− rt) , (1.12)

where k is a constant to be determined,N is the overall population size, n (t)
is the infected population at time t, and the constant r is the spreading rate
of H1N1 vaccine (number of patients who get the vaccine per unit time). In
general, (1.12) can be solved using Monte Carlo (Exercise 1.10). However, if
the term rt is neglected because no vaccine is available, we can solve (1.12)
analytically as follows.

Equation (1.12) can be written as

1
N − rt

(
1

n (t)
+

1
N − n (t)

)
dn (t) = k dt. (1.13)

Assume at time t = 0 there is only one person who carries the disease,
i.e., n (0) = 1 and define the proportion of the infected population p(t) =
n (t) /N . Then from (1.13), after integrating, we can obtain the logistic
model.

p (t) =
ekNt

1 + ekNt
. (1.14)
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Suppose you now have the opportunity to have a swine flu vaccine that
virtually guarantees you will not get the disease. However, there is a slim
chance (probability p0) of having a side effect that is as serious as swine
flu. What should you do? You may want to get the vaccine shot right away
if you can. But if you can’t you may want to compare the probability p0

and p (t) at time t and decide to get the shot (if p (t) > p0) or not (if
p (t) ≤ p0).

Practically, k is unknown; thus (1.14) can be used to assess k, where
p(t) = n (t) /N is calculated based on the observed number of infections
n (t) at time t.

Considering that p (t) is the overall measure of the infection rate at time
t, we may, for our decision making, want to use the instantaneous proba-
bility within the unit time interval at time t, i.e., dn(t)

Ndt , or the conditional
probability (given no disease at time t) of having the infection during the
time interval t to Lexp (life expectancy):

Pc (t) =
∫ Lexp

t

[
dn (x)
Ndx

]
dx. (1.15)

Substituting (1.12) and p(t) = n (t) /N into (1.15), we have

Pc (t) = kN

∫ Lexp

t

p (x) (1− p (x)) dx. (1.16)

Further substituting (1.16) and carrying out the integral, we obtain the
conditional probability of having the infection at time t and beyond:

Pc (t) =
1

1 + ekNt
− 1

1 + ekNLexp
. (1.17)

Equation (1.17) can be compared with side-effect probability p0 to help
you decide whether you should get the flu vaccine or not. Clearly, when t

gets larger or close to the life expectancy Lexp, Pc (t) gets smaller than p0.
In such a case, there is no point in having the flu shot.

However, this is a simple case; if you want to consider regional differences
in k and other complications, then Monte Carlo simulation is a simple way
to go.

1.2.10 Random Walk and Integral Equation

The Laplace partial differential equation has been used to describe many
phenomena in physics. It is a basic law governing any potential field u (x, y).
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Mathematically, it is written as{
∆u (x, y) = ∂2u

∂x2 + ∂2u
∂y2 , (x, y) ∈ Ω,

u|S = g (S) ,
(1.18)

where Ω is a domain in 2D real space and S is the boundary of Ω. The
function g (·) is given. The goal is to solve for the unknown function u (Q) =
u (x, y) numerically. There are several ways to find u (Q), such as finite
difference, finite element, or boundary element methods. But here we are
going to use the Monte Carlo method to solve the problem. Monte Carlo is
efficient here if we are only interested in the potential u (Q) at a small set
of points Q.

The mathematical basis for the Monte Carlo simulation is described as
follows:

Draw a circle C centered at Q ∈ Ω with C ⊂ Ω. Thus we have

{S|Q} = {S|Q} ∪
ϕ
{Q→ C (ϕ)} (1.19)

= ∪
ϕ
{{S|Q} {Q→ C (ϕ)}}

= ∪
ϕ
{{S|C (ϕ)} {Q→ C (ϕ)}} ,

where C (ϕ) is the point on the circle with the parameter angle ϕ and →
implies the direction of the random walk.

Therefore,

P {S|Q} =
∑
ϕ

P {Q→ C (ϕ)}P {S|C (ϕ)} (1.20)

u (Q) =
∫
S

g (S)P {S|Q} (1.21)

=
∑
ϕ

P {Q→ C (ϕ)}
∫
S

g (S)P {S|C (ϕ)}

=
1

2π

∫ 2π

0

u (C (ϕ)) dϕ

=
1
m

m∑
i=1

u (C (ϕi)) = ũc

where ϕi is randomly sampled from uniform distribution U (0, 2π). If ϕi /∈
S, we can use the average u from another circle C2 centered at C (ϕi) · · ·
until the boundary is reached or close enough (Figure 1.10).
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Based on the result (1.21), we now can construct a random walk algo-
rithm to solve the Laplace problem (Muller, 1956):

Algorithm 1.7: Random Walk-Solving Integral Equation
Objective: return a numerical solution u (Q) for the Laplace problem

(1) Draw the maximum circle C that is centered at Q without crossing the
boundary S, i.e., C ∩ S = φ.

(2) Generate a random point Q1 = 2πξ1, ξ1 from U(0, 1); draw the maxi-
mum circle C1 centered at Q1 such that C1 ∩ S = φ.

(3) Generate a random point Q2 = 2πξ2, ξ2 from U(0, 1). The process con-
tinues until the radius of the maximum circle is smaller than constant
δ > 0. Record g (Γ1), where Γ1 is the closest point on the boundary to
the final point of the random walk (in Figure 1.10, Γ1 = Q3).

(4) This finishes a simulation run. Repeat the random walk process n times.
The solution at point Q is given by

u (Q) ≈ 1
n

n∑
i=1

g (Γi) (1.22)

§

Figure 1.10: Monte Carlo for the Laplace Problem

For a three or higher dimensional Laplace problem, the Monte Carlo
method is similar. There are many other random walk methods (RWM),
e.g., RWM based finite difference.
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1.2.11 Financial Index and α Stable Distribution

Market risks are the prospect of financial losses or gains due to unexpected
changes in market prices and rates. Evaluating exposure to such risks is the
primary concern of risk management in financial and nonfinancial institu-
tions alike. Until the late 1980s market risks were estimated through gap
and duration analysis (interest rates), portfolio theory (securities), sensitiv-
ity analysis (derivatives), or “what-if” scenarios. These traditional methods
are only applicable to very specific assets and/or based on subjective rea-
soning (Weron, 2004).

Since the early 1990s a commonly used market risk estimation method-
ology has been the Value at Risk (VaR). VaR is the percentile defined by

Pr (L > VaR) ≤ 1− c (1.23)

where L = −∆X (τ) with ∆X (τ) being the relative change (return) in
portfolio value over the time horizon τ . Hence, large values of L correspond
to large losses (or large negative returns).

The VaR provides a common consistent measure of risk across differ-
ent positions and risk factors and takes into account the correlations or
dependencies between different risk factors. Artzner et al. (1999) proposed
a coherent measure, the Expected Shortfall (ES), also called Expected Tail
Loss or Conditional VaR, as the expected value of the losses in excess of
VaR:

ES = E (L|L > VaR) . (1.24)

The calculations were based on the normality assumption. However,
it has long been known that asset returns are not normally distributed.
Rather, empirical observations exhibit excess kurtosis (fat tails). The Dow
Jones Industrial Average (DJIA) index is a prominent example, where the
contrast with the Gaussian law is striking.

An appropriate model is the so-called Stable Distribution (α-stable). It
is often argued that financial asset returns are the cumulative outcome of
a vast number of pieces of information and individual decisions arriving
almost continuously in time (McCulloch, 1996; Rachev and Mittnik, 2000).
It seems that the Gaussian distribution should be fine, thanks to the Central
Limit Theorem, which states that the sum of a large number of independent,
identically distributed variables from a finite-variance distribution will tend
to be normally distributed. However, financial asset returns usually have
heavier tails. As indicated by Laha and Rohatgi (1979), there are at least
two reasons to use α-stable: (1) it is supported by the generalized Central
Limit Theorem, which states that stable laws are the only possible limit
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distributions for properly normalized and centered sums of independent,
identically distributed random variables, and (2) α-stable distributions are
leptokurtic: since they can accommodate the fat tails and asymmetry, they
fit empirical distributions much better.

An α-stable distribution requires four parameters for complete descrip-
tion: an index of stability α ∈ (0, 2], also called the tail index, tail exponent,
or characteristic exponent, a skewness parameter β ∈ [−1, 1], a scale pa-
rameter σ > 0, and a location parameter µ ∈ R. The Paretian-Lévy stable
or α-stable distributions (Lévy, 1925) don’t require a closed form. How-
ever, the most popular parameterization of the characteristic function of
X ∼ Sα (σ, β, µ), i.e., an α-stable random variable with parameters α, σ,
β, and µ, is given by

lnφ (t) =
{
−σα|t|α

(
1− iβsign (t) tan πα

2

)
+ iµt, α 6= 1,

−σ|t|
(
1 + iβsign (t) 2

π ln (t)
)

+ iµt, α = 1.
(1.25)

The following efficient algorithm for sampling from Sα (1, β, 0) was pro-
posed by Chambers, Mallows and Stuck (1976).

Algorithm 1.8: α-Stable (Chambers, Mallows, and Stuck, 1976)

(1) Generate a random variable U uniformly distributed on (−π2 ,−
π
2 ) and

an independent exponential random variable w with mean 1;
(2) If α 6= 1, return

X =
[
1 +

(
β tan

πα

2

)2
] 1

2α sin (α (U + ξ))

(cosu)1/α

[
cos (U − α (U + ξ))

w

] 1−α
α

,

(1.26)

otherwise, return

X =
2
π

{(π
2

+ βU
)

tanU − β ln
( π

2W cosU
π
2 + βU

)}
. (1.27)

§

For sampling from the general α-stable distribution Sα (σ, β, µ), we can
use the following property: if X ∼ Sα (1, β, 0), then Y ∼ Sα (σ, β, µ) can be
obtained by variable transform:

Y =
{

σX + µ, α 6= 1,
σX + 2

πβσ lnσ + µ, α = 1.
(1.28)

The random numbers generated from Sα (σ, β, µ) can be used to study
the strategies to maximize gain in stock trading.
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1.2.12 Nonlinear Equation System Solver

Many problems lead to nonlinear equation systems, which are often impos-
sible to solve analytically. Local linearization approaches are often used,
but the methods are not always effective. A Monte Carlo method provides
an alternative.

Suppose we have the following system of equations to be solved:

fi (x1, x2, ..., xn) = 0, i = 1, 2, ..., n, (1.29)

where xi are real and fi are nonlinear functions.
To find a solution x = {x1, x2, ..., xn} to the equation system (1.23), we

define an objective function or loss function:

L (x) =
n∑
i=1

f2
i (x) . (1.30)

The vector x will be considered as an approximate solution to (1.23) or
(1.24) if it satisfies the following inequality:

L (x) < ε, (1.31)

where ε > 0 is a predefined small positive value. This is a typical classic
optimization problem without constraints.

The classic unconstrained optimization problem can formally be pre-
sented as finding the set:

Θ∗ = arg min
θ∈Θ

L (θ) = {θ∗ ∈ Θ : L (θ∗) ≤ L (θ) for all θ ∈ Θ} , (1.32)

where L (θ) is called the loss function, θ is the p-dimensional vector of
parameters that are being adjusted, and Θ ∈ Rp. Note that θ∗ may not be
unique, i.e., Θ∗ may have more than one element.

For classic optimization (1.32), many algorithms can be used, e.g., Blind
Random Search (Algorithm 1.9).

Algorithm 1.9: Blind Random Search
Objective: return an optimal value θ ∈ Θ∗ in (1.32)
rejection := True
While rejection:

Generate θ ∈ Θ based on a probability distribution.
If L (θ) < ε Then rejection := False

Endwhile
Return θ
§
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The blind search algorithm is the simplest one, but not very efficient.
The next method is to mimic the way a blind man climbs a mountain. He
detects the heights nearby using a stick; if he finds a place higher than
where he is standing, he steps up to that location. The process continues
until he can’t find a higher point. In this way, he hopes he can find the peak
of the mountain.

Algorithm 1.10: Blind-Man Search for Optima
Objective: return optima

(1) Randomly select a starting point X0, neighboring length L0

(2) Randomly search m neighboring points (X0i, i = 1, ...,m),

If θ (X0i) > θ (X0) , then
select X0i as a new starting point and go to Step 1.

If θ (X0i) ≤ θ (X0) , then continue to search the neighboring points.
If i = m and θ (X0i) ≤ θ (X0) , ∀i ∈ {1, 2, ...,m}, then

change (randomly or not) L0 and return to Step 1.

(3) If the search criteria have been met, then

return the final X0i and θ (X0i) .
§

This randomized search method allows for searching for global optima,
where many deterministic approaches can only find the local optima.

1.2.13 Stochastic Optimization

In stochastic optimization, we are dealing with optimization with random
noise ε (θ) in the objective function

y (θ) = L (θ) + ε (θ) . (1.33)

The noise ε (θ) is a function of θ. Because of this noise, it fundamentally
alters the search or optimization process as illustrated in Figure 1.11.

Stochastic approximation (SA) is a basis for stochastic optimization.
Robbins and Monro (1951) introduced SA as a general root-finding method
when measurements of the underlying function involve random noise.

If the objective function L (θ) is known and differentiable, then the
optimization can be equivalent to solving the equation

∂L (θ)
∂θ

= 0 (1.34)
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Figure 1.11: Classic versus Stochastic Optimization

for θ.
The gradient method is based on the formula to obtain the value θ̂k+1

for the (k + 1)th iteration from the value θ̂k at the kth iteration:

θ̂k+1 = θ̂k − akg
(
θ̂k

)
, (1.35)

where constant ak > 0 is the step size, and g (θ) = ∂L(θ)
∂θ .

However, because g (θ) is unknown in SA, we use an estimate ĝ (θ) to
replace g (θ) in (1.35), which leads to

θ̂k+1 = θ̂k − akĝ
(
θ̂k

)
, (1.36)

where ĝ is estimated using the so-called simultaneous perturbation (SP).
For two-sided SP gradient approximation, this leads to

ĝk

(
θ̂k

)
=


y(θ̂k+ck∆k)−y(θ̂k−ck∆k)

2ck∆k1
...

y(θ̂k+ck∆k)−y(θ̂k−ck∆k)
2ck∆kp

 . (1.37)

Equation (1.37) provides an optimization algorithm, called SPSA. Be-
cause the numerator is the same in all p components of ĝk

(
θ̂k

)
, the number

of loss measurements needed to estimate the gradient in SPSA is two, re-
gardless of the dimension p.

Applications of SPSA include queuing systems, pattern recognition, in-
dustrial quality improvement, aircraft design, simulation-based optimiza-
tion, bioprocess control, neural network training, chemical process control,
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fault detection, human-machine interaction, sensor placement and configu-
ration, and vehicle traffic management.

The choice of the distribution for generating the ∆k is important to
the performance of the algorithm. One simple and popular distribution
that satisfies the inverse moments condition is the symmetric Bernoulli ±1
distribution. Two common mean-zero distributions that do not satisfy the
inverse moments condition are symmetric uniform and normal with mean
zero. The failure of both of these distributions is a consequence of the
amount of probability mass near zero (Gentle and Härdle, 2004, p. 170–195)

1.2.14 Symbolic Regression

Genetic programming (GP), inspired by biological evolution, is an evolu-
tionary computation (EC) technique that automatically solves problems
without requiring the user to know or specify the form or structure of the
solution in advance. At the most abstract level GP is a systematic, domain-
independent method for getting computers to solve problems automatically
starting from a high-level statement of what needs to be done (Oli, Lang-
don, and McPhee, 2008). The idea of genetic programming is to evolve a
population of computer programs. Hopefully, generation by generation, GP
stochastically transforms populations of programs into new populations of
programs that will effectively solve the problem under consideration. Like
evolution in nature, GP has been very successful at developing novel and
unexpected ways of solving problems.

Representation: Syntax Tree
To study GP, it is convenient to express programs using syntax trees

in GP rather than as lines of code. For example, the programs (x+ y) + 3,
(y + 1)× (x/2), and (x/2) + 3 can be represented by the three syntax trees
in Figure 1.12, respectively. The variables and constants in the program (x,
y, 1, 2, and 3) are leaves of the tree, called terminals, while the arithmetic
operations (+, ×, and max) are internal nodes called functions. The sets
of allowed functions and terminals together form the primitive set of a GP
system.

Reproduction Mechanism
For the program to evaluate, GP must have the reproduction mecha-

nism to generate new programs or offspring. There are two common ways
to generate offspring: crossover and mutation. Crossover is the primary way
(about 90% of new generations evolve by crossover, and 10% by mutation)
to reduce the chance of chaos because the crossover leads to much similarity
between parent and child. Crossover is a selection of a subtree for crossover,
whereas mutation randomly generates a subtree to replace a randomly se-
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lected subtree from a randomly selected individual. Crossover and mutation
are illustrated in Figure 1.12, where the trees on the left are actually copies
of the parents; their genetic material can freely be used without altering
the original individuals.

Figure 1.12: Crossover in GP

(Source: Oli et al., 2008)

Survival Fitness
The second mechanism required for program evolution is survival fitness.

There are many possible ways to define the fitness measure. As an exam-
ple, for the problem of finding a function g (x) to approximate the target
function f (x), it is the mean square error between the two functions.

Algorithm 1.11: Genetic Programming
Objective: return best-fit-individual based GP.
Input generation size M , population size N , and target fitness Vt.
Create an initial population of programs and assess their fitness.
For i := 1 To M

For j := 1 To N

Determine crossover or mutation operation probabilistically.
If crossover Then randomly select two trees and cross nodes.
If mutation Then randomly select one tree and a node.
Produce an offspring and evaluate its fitness.

Endfor
If fitness ≥ Vt Then Exitfor.
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Endfor
Return the best-so-far individual
§

An algorithm for genetic programming is presented in Algorithm 1.11
and elaborated as follows.

M is the number of generations, N is the population size for each gen-
eration, and Vt is the target fitness. To create an initial population of pro-
grams, we use so-called primitives that include a terminal set (leaves) and
a function set (nodes). The terminal set typically consists of variables and
constants. The function set is driven by the nature of the problem’s domain.
In a simple numeric problem, for example, the function set may consist of
merely the arithmetic functions (+,−,×, /), but other functions can also
be used.

There are two iterative loops: one for generation, and the other for
individuals within the generation. Each individual, whether generated by
crossover or mutation, will have his fitness assessed. Individuals with lower
fitness may be removed from the population. Individuals with higher fitness
may have higher probabilities to be selected for generating their offspring
for the next generation. The crossover usually operates within the same
generation, but theoretically it can be performed between two generations.
Fitness (function) can be measured in many ways, for example, in terms of
(1) the amount of error between its output and the desired output, (2) the
amount of time required to bring a system to a desired target state, (3) the
accuracy of the program in recognizing patterns or classifying objects, or
(4) the compliance of a structure with user-specified design criteria.

The usual termination criterion is that an individual’s fitness should
exceed a target value, but could instead be a problem-specific success pred-
icate, or some other criterion. Typically, the single best-so-far individual is
then harvested and designated as the result of the run.

Koza (Banzhaf et al., 1998) studied the symbolic regression

y = f (x) =
x2

2
, x ∈ [0, 1].

Using the terminal set: x ∈ [−5, 5], function set: +,−, ×, and protected
division %, and 500 individuals in each generation, Koza was able to obtain
the best individual (function) fi in generation i, where f0 = x

3 , f1 = x
6−3x ,

f2 = x
x(x−4)−1+4/x−(9(x+1)/(5x)+x)/(6−3x) , and f3 = x2

2 . Therefore, at gen-
eration 3, the correct solution is found. However, as the generation number
increases, the best fit function starts to expand again. We will return to
this topic in Chapter 13.
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1.3 Simulations in Drug Development

1.3.1 Challenges in the Pharmaceutical Industry

It is of great concern that the pharmaceutical industry may be undergoing
a productivity crisis caused in part by the pragmatic definition of the num-
ber of new drugs or new molecular entities (NMEs) approved each year.
The number of NMEs and priority review drug approvals have remained
relatively flat in the past decades (Figure 1.13). However, the amount of
spending in Research and Development has consistently increased yearly
from approximately 4B in 1976 to 36B in 2004 based on a 9% inflation
adjusted rate for 2002.

Moreover, from 1990 to 1994, 11 new drugs had reached the “top 100
drugs” category in terms of global sales. From 1995 to 1999, ten new ap-
proved drugs made it into the “top 100 drugs” category. However, during
the period from 2000–2004, only two new approvals broke into the group
of top 100 revenue generators. During 2005 to 2007, the FDA approved
only half the number of new compounds as it had only a decade before.
And fewer than 10% of these newly approved compounds are expected to
ultimately generate sales of even $350 million annually (Simon and Pecker,
2003). Five different blockbuster drugs went off-patent in 2006 and more
such transitions loom large on the horizon. Price pressures from the public
and private sectors have made headlines nationwide. These situations have
made the pharmaceutical industry as a whole seem vulnerable in the face of
new challenges, new realities regarding drug development, new competition
from biotechnology and the emerging world of genomics, and new expecta-
tions on the part of consumers and managed care providers (Paich et al.,
2009). There are many reasons why this is happening (Woodcock, 2004,
Chang, 2007b). Among them is insufficient technology innovation, such as
adaptive design and computer simulation.

Traditional drug development is subjective to a large extent, and intu-
itive decision-making processes are primarily based on individual experi-
ences. Therefore, optimal design is often not achieved. Monte Carlo (MC)
is a powerful evaluation tool for development plans in all stages and study
designs to support strategic decision making. MC is intuitive and easy to
implement with minimal cost and can be done in a short time. The utilities
of MC include, but are not limited to (1) sensitivity analysis and risk assess-
ment, (2) estimation of probability of success (power), (3) design evaluation
and optimization, (4) cost, time, and risk reduction, (5) clinical development
program evaluation and prioritization, (6) trial monitoring and interim pre-
diction of future outcomes, (7) prediction of long-term benefits using short-
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Figure 1.13: Research and Development Spending and NMEs approved by the FDA

(Data source: Pammolli and Riccaboni, 2007)

term outcomes, (8) validation of trial design and statistical methods, and
(9) streamlining communication among different parties. Within regulatory
bodies, MC can be and has been used for assessing the robustness of re-
sults, validating statistical methodology, and predicting long-term benefits
in accelerated approvals. Monte Carlo is often used for power simulation in
hypothesis tests and for selection of the best statistical test method among
several alternatives, but these are just mostly basic applications of Monte
Carlo. Simulation should go well beyond this limited scope, as outlined in
this book.

1.3.2 Classification of Simulations in Drug Development

Based on the scope of studies, Monte Carlo simulations can be classi-
fied into meta-simulation, macro-simulation, and micro-simulation (Figure
1.14). Meta-simulations target multiple sectors or drug companies. Because
of the nature of competition and collaboration, Monte Carlo can combine
with game and decision theory to solve many problems. The examples of
interest are impact analysis of a technology platform, drug development
globalization, and drug industry partnerships. Macro-simulations deal with
problems involving a single business entity or company. Thus, decision the-


