
Extreme value theory (EVT) deals with extreme (rare) events, which 
are sometimes reported as outliers. Certain textbooks encourage 
readers to remove outliers—in other words, to correct reality if it 
does not fit the model. Recognizing that any model is only an ap-
proximation of reality, statisticians are eager to extract information 
about unknown distribution making as few assumptions as possible. 

Extreme Value Methods with Applications to Finance concen-
trates on modern topics in EVT, such as processes of exceedances, 
compound Poisson approximation, Poisson cluster approximation, 
and nonparametric estimation methods. These topics have not been 
fully focused on in other books on extremes. In addition, the book 
covers:
•	 Extremes in samples of random size
•	 Methods of estimating extreme quantiles and tail probabilities
•	 Self-normalized sums of random variables
•	 Measures of market risk 

Along with examples from finance and insurance to illustrate the 
methods, Extreme Value Methods with Applications to Finance 
includes over 200 exercises, making it useful as a reference book, 
self-study tool, or comprehensive course text. 

A systematic background to a rapidly growing branch of modern 
Probability and Statistics: extreme value theory for stationary se-

quences of random variables.
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Preface

Extreme value theory (EVT) deals with extreme (rare) events. Such events/
variables are often reported as outliers. In some textbooks one can find rec-
ommendations to remove outliers (extremes) as they do not fit the model—in
other words, to correct reality if it does not fit the picture.

However, any model is only an approximation of reality. It is not data that
are wrong by exhibiting outliers, it is the model that does not fit the data. A
statistician would like to “let the data speak for itself”: we want to extract
information about the unknown distribution making as few assumptions as
possible.

Extreme value theory is a part of probability theory and statistics that recog-
nizes the importance of outliers (exceedances of a high threshold). The prob-
abilistic part of EVT describes the limiting distribution of sample extremes
and numbers of exceedances of high thresholds. In insurance applications
one might be interested in the joint limiting distribution of numbers of ex-
ceedances of separate levels. For instance, when a hurricane strikes, insurance
companies face a cluster of claims. Claim sizes depend on many factors. The
need to describe the features of multilevel clustering of extremes led to the
development of the theory of processes of exceedances.

A general process of exceedances takes into account locations of extremes as
well as their heights. Any question on the limiting distribution of sample ex-
tremes can be answered if a limit theorem for a general process of exceedances
is established. We describe the limiting distribution of sample extremes, num-
bers of exceedances, and processes of exceedances in Chapters 1–8.

The statistical part of EVT is concerned with extracting information re-
lated to extreme properties of an unknown distribution from a sample of
observations. Consider the situation a typical reinsurance company faces. Let
X1, . . . , Xn be consecutive claims. A reinsurance company pays Xk − x if the
kth claim, Xk, exceeds threshold x. Because x is typically high, the probabil-
ity of a rare event, IP(X ≥ x), is low. However, even if an event is rare, its
magnitude can be considerable. For instance, Fig. 0.1 presents the empirical
distribution function of Danish fire insurance claims for the period Jan. 1980–
Dec. 1990. There were 2156 claims in excess of 1 m Danish kroner (DK), 109
claims in excess of 10 m DK, and 7 claims in excess of 50 m DK; the largest
claim was over 263 m.

The important practical question is how to estimate the probability IP(X ≥
x). The empirical estimator of IP(X ≥ x) is obviously inapplicable, as it would
base the inference on very few sample elements. However, the question is of
vital importance to insurance companies. We present the method of estimating
the tail probability IP(X ≥ x) in Chapter 9.

xiii
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FIGURE 0.1
The empirical distribution function of Danish fire insurance claims.

In finance, an extreme quantile is a popular measure of market risk. A quan-
tile of level 0.05 (5%) or 0.01 (1%) is considered extreme as sample sizes are
typically not large and the empirical quantile estimator becomes unreliable.

Regulators require banks to routinely estimate the 1%–quantile of the
profit/loss distribution. Using the computed estimate, banks put aside a cer-
tain amount of capital to offset market risk. The extreme quantile, known in
financial risk management as value-at-risk (VaR), together with the related
measure of risk called expected shortfall (ES) or conditional VaR (CVaR), es-
timate the magnitude of a possible loss.

The 1% level means that a bank aims to offset a possible loss it can face
roughly once in 100 days (in the case of daily data). Taking a lower level, one
can speak about the magnitude of a worst market crash in decades.

The S&P500 index represents a portfolio of the 500 largest companies in the
world. It is a global stock index and is considered a good proxy to the market
portfolio.

Figure 0.2 shows the S&P500 index on the eve of the famous “Black Monday”
crash in October 1987. On October 19, 1987, the index fell by 20.5%—its worst
daily fall from January 1960 until the end of the century. That day alone erased
all that the index had gained since March 1986. It took until January 1989 for
the index to recover the October 16, 1987 level.

Was it possible to predict the magnitude of the worst market crash in four
decades using data available on the eve of Black Monday [222]? The answer
is yes.
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FIGURE 0.2
S&P500 index from October 1984 to December 1987.

We present methods of estimating extreme quantiles, tail probabilities, and
measures of market risk in Chapters 9 and 10. The approach is nonparamet-
ric (meaning few assumptions on the unknown distribution) and involves
an algorithm for choosing a tuning parameter. Concerning the accuracy, the
estimate of the magnitude of a worst daily loss of S&P500 in 1960–2000 ob-
tained by the method appears remarkably close to the value of the actual
Black Monday fall.

Results in probability and statistics that form a background to Chapters 9
and 10 are collected in Chapters 12 and 13. They are of interest in their own
right and can be used in advanced statistical courses. Several miscellaneous
and auxiliary results are given in the Appendix.

The book concentrates on the univariate EVT for dependent random
variables—the area where the main progress seems to have been achieved
during the last two decades. Clustering of extremes was the main phenomenon
that fueled the development of the theory that was started by Fisher, Tippett,
von Mises, and Gnedenko in the first half of the twentieth century.

The book is intended for PhD and MSc students, data analysts, risk man-
agers, specialists in other branches of probability and statistics who employ
certain results from EVT, and all who are interested in EVT and its applica-
tions. Parts of the book can be used in lecture courses on extreme value theory,
advanced statistical methods, and financial risk management.
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Introduction

Extreme value theory (EVT) has important applications in insurance, finance,
hydrology, meteorology, and other fields (cf. [115]). For the case of independent
random variables (r.v.s) the theory has been fully developed up to the 1970s
and is now well presented in a number of textbooks and monographs [115,
132, 202]. These books also cover the situation where r.v.s are dependent
but additional restrictions ensure no influence on the asymptotic behavior of
extremes.

However, it is now widely accepted that in many applications data are
dependent (for instance, this is typical of daily returns of stocks and stock
indexes). Dependence causes features, which were not encountered in the
classical EVT (e.g., asymptotic clustering of extreme values). This inspired the
intensive development of EVT for stationary sequences of random variables.

Many efforts have been made to describe the phenomena of clustering
of extremes and develop a rigorous EVT for stationary sequences of r.v.s.
However, no book has yet presented a comprehensive theory, as important
gaps need to be filled.

This monograph gives a systematic background to a rapidly growing branch
of modern probability and statistics: EVT for stationary sequences of random
variables.

What You Will Find in This Book

The book is divided into two parts, roughly according to probabilistic and
statistical aspects of EVT. Theoretical results are illustrated by examples and
applications to particular problems of financial risk management.

Chapter 1 presents basic methods of EVT: Bernstein’s “blocks” method,
the “runs” approach, and the method of recurrent inequalities. One of those
methods is old; the other have evolved during the last two decades.

We investigate the distribution of the Erdös–Rényi maximum of partial
sums (MPS) in Chapter 2. MPS is a universal statistic that covers the whole
range of statistics from sums to maxima and thus links the limit theory of sums
of random variables (LTS) and EVT. Thus, MPS forms a basis of a universal
approach with the potential to grow into a general theory combining LTS and
EVT.

In Chapter 3 we investigate asymptotics of extreme values in samples of
random size. The important particular case is where the sample size is a
renewal process. Related problems are those of the length of the longest head
run and of the length of the longest match pattern. The problems considered
have applications in insurance and statistical analysis of DNA data.

xvii
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Chapter 4 deals with the number Nn of exceedances of a “high” level. Statis-
tic Nn is the cornerstone of the modern EVT. If data is independent, then Nn

has the binomial distribution. It can be well approximated by the Poisson law.
Many famous scientists worked on the problem of evaluating the accuracy
of Poisson approximation to the binomial distribution. Chapter 4 presents
classical as well as new results on the topic.

If data are dependent, then the only possible limiting distribution of the
number of exceedances is compound Poisson. Chapter 5 describes the limit
theory for Nn. We derive sharp estimates of the accuracy of compound Poisson
approximation to L(Nn).

In insurance/reinsurance applications Nn is the number of claims exceed-
ing a certain level. Over a period of time an insurance company faces a
number Nn(x1) of claims exceeding level x1, a number Nn(x2) of claims ex-
ceeding level x2, and so on. Knowing the distribution of the vector Nn =
(Nn(x1), . . . , Nn(xm)) can help deciding on the level of premiums. Chapter 6
is devoted to this topic. We describe the limiting distribution of the vector Nn

and evaluate the accuracy of compound Poisson approximation to L(Nn).
At the heart of modern EVT lies the notion of the empirical point process

of exceedances (EPPE). The key results on the distribution of an EPPE were
established by Mori [232], Hsing et al. [167, 169], and the author [257, 262].
A one-dimensional EPPE either counts locations of extremes or their heights.
We present results for one-dimensional EPPEs in Chapter 7.

Chapter 8 deals with a general empirical point process of exceedances N∗
n

that counts both locations of extremes as well as their heights. We describe
the class of possible limiting laws for N∗

n and present necessary and sufficient
conditions for the so-called “complete convergence” of N∗

n to a limiting point
process. The result can be regarded as an invariance principle for EPPEs. We
discuss separately the “central” case where the limiting process is compound
Poisson.

The fact that financial/insurance data often exhibit heavy tails is currently
the subject of textbooks (see, e.g., [115], p. 404). This is especially common for
“frequent” data (e.g., daily log-returns of stock prices). Chapter 9 is devoted
to the theory of statistical inference on heavy tails from a sample of dependent
data. The main characteristic describing the heavy tail is the so-called “tail
index.” The chapter deals with the problems of nonparametric estimation of
the tail index, extreme quantiles, tail probabilities, and second-order indices.

Evaluating financial risks is a problem of particular importance to finan-
cial risk management. Popular measures of risk are Value-at-Risk (VaR) and
Expected Shortfall (ES), also known as conditional VaR (CVaR). In statisti-
cal terminology VaR is an extreme quantile and ES is a corresponding mean
excess function. Chapter 10 presents methods of VaR and ES estimation.

We discuss the notion of the extremal index in relation to the distribution
of extremes in Chapter 11.

Chapters 12 and 13 provide a background to the Statistics of Extremes. A
number of estimators in the Statistics of Extremes belong to the class of self-
normalized sums (SNS) of random variables. For instance, Student’s statistic
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and the ratio estimator of the tail index are members of the SNS family. Self-
normalized sums are also needed to construct subasymptotic confidence in-
tervals (confidence intervals that take into account estimates of the accuracy of
normal approximation). In Chapter 12 we present results on the asymptotics
of SNS and evaluate the accuracy of normal approximation to the distribution
of SNS.

Lower bounds to the accuracy of estimation may allow one to decide on the
efficiency of a particular estimator as well as to compare different estimators.
We present nonparametric lower bounds as well as the classical Fréchet–Rao–
Cramér inequality in Chapter 13. The bounds are illustrated on particular
estimation problems. The results of this chapter are of interest on their own;
they can be used in courses on advanced statistical methods.

Useful auxiliary facts are collected in the Appendix, including the results
on sums of dependent random variables. An extensive list of references con-
cludes the monograph.

A number of charts have been created using data from Datastream, Inter-
active Data, Yahoo!, and the R-project.

The author is grateful to N. Bingham and A. Kukush, who read several
chapters and made helpful comments and to I.S. Borisov, who read the brief
book proposal and gave a positive reply. I’m very grateful to Richard Jones, my
colleague at Middlesex University Business School, for his support. I thank
everybody who helped me during my work on this book.

S.Y. Novak
London 2010
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List of Conventions

The operation of multiplication is superior to the division.

Ac complement to set A
an <

∼ bn an ≤ bn(1 + o(1))
an >

∼ bn an ≥ bn(1 + o(1))
B(·) Borel σ–field
∂ B boundary of the set B
Fc 1 − F
L(X) distribution of a random variable X
� rate function
R(t̄) the class of sequences (14.72)
x(m) x(x − 1)...(x − m + 1)
sum over ∅ zero
⇒ weak convergence
B( p) Bernoulli distribution
B(n, p) Binomial distribution
E(a ) Exponential distribution
Γ( p) Geometric distribution
K(0; 1) Cauchy distribution
Π(λ, ζ ) Compound Poisson distribution
E(a ) Exponential distribution
N (µ; σ 2) Normal (gaussian) distribution
Π(λ) Poisson distribution

xxi
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List of Abbreviations

The operation of multiplication is superior to the division.

ACI asymptotic confidence interval
AMSE asymptotic mean–squared error
AR autoregressive model
a.s. almost surely
CLT central limit theorem
CP compound Poisson
CPS common probability space
CVaR conditional Value-at-Risk
c.f. characteristic function
ID variance
� standard normal d.f.
d.f. distribution function
ES Expected Shortfall
EVT Extreme Value Theory
IE mathematical expectation
EMA exponential moving average
EMH efficient market hypothesis
EPPE empirical point process of exceedances
i.i.d. independent and identically distributed
i.o. infinitely often
K∗, K ∗ left and right end-points of a distribution
LLN law of large numbers
LLHR length of the longest head run
LLMP length of the longest match pattern
LTS Limit Theory of Sums of random variables
MA moving average
MACD moving average convergence/divergence
MPS maximum of partial sums
MSE mean–squared error
NDA domain of attraction of a normal law
OHLC Open-High-Low-Close
POT peak-over-threshold
RE ratio estimator
RSI relative strength index
r.v. random variable
SACI subasymptotic confidence interval
SLLN strong law of large numbers
SNS self-normalized sum

xxiii
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xxiv List of Abbreviations

TVD total variation distance
UOS upper order statistics
VaR Value-at-Risk
w.p. 1 with probability one
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Distribution of Extremes
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1
Methods of Extreme Value Theory

There are three kinds of lies: lies,
damned lies, and statistics.

Mark Twain
on official statistics

CONTENTS

1.1 Order Statistics
1.2 “Blocks” and “Runs” Approaches
1.3 Method of Recurrent Inequalities
1.4 Proofs

This chapter overviews the methods of extreme value theory (EVT).
Section 1.1 presents a number of results on upper-order statistics. Sections 1.2
and 1.3 are devoted to the “blocks” approach and the method of recurrent
inequalities.

1.1 Order Statistics

Let X, X1, X2, . . . be a sequence of i.i.d. random variables. Rewrite the sample
X1, . . . , Xn in nonincreasing order:

X1,n ≥ · · · ≥ Xn,n. (1.1)

Random variables (1.1) are called order statistics.

Mn = X1,n

is the sample maximum, and Xk,n is called the kth maximum.
Denote

Nn(x) =
n∑

i=1

1I{Xi > x}.

3
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The random variable Nn(x) is called the number of exceedances over the threshold
x. It is easy to see that (1 ≤ m ≤ n)

{Xm,n ≤ x} = {Nn(x) < m}. (1.2)

This entails the representation

Xm,n = min{x : Nn(x) < m}.
From (1.2),

IP(Xm,n ≤ x) =
m−1∑
k=0

(
n
k

)
IPk(X > x)IPn−k(X ≤ x).

Choosing x = x(n) in such a way that

y := nIP(X > x)

is bounded away from 0 and ∞, we derive the asymptotic representation

IP(Xm,n ≤ x) ≈ e−y
m−1∑
k=0

yk/k!

The following inequality hints that the tail of L(Xi,n) is lighter than that of
L(Xj,n) as i > j : if X, X1, X2, . . . are i.i.d.r.v.s, then

IP(Xm,n > x) ≤ (nIP(X > x))m/m! (1.3)

Denote

M+
n = max

1≤i≤n
|Xi | , Sn = X1 + · · · + Xn.

The following proposition compares the tails of M+
n and |Sn|.

Proposition 1.1 If r.v.s {Xi } are symmetric, then for any x > 0, n ≥ 1,

IP
(
M+

n > x
) ≤ 2IP(|Sn| > x). (1.4)

By the Khintchin–Kolmogorov strong law of large numbers (SLLN),

Sn/n → const (a .s.)

if and only if IE|X| < ∞. A similar result holds for M+
n .

Lemma 1.2 For any r > 0,

M+
n /n1/r → 0

a.s. if and only if IE|X|r < ∞;

M+
n /n1/r →p 0

if and only if xr IP(|X| > x) → 0 as x → ∞.
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Lemma 1.2 follows from the following fact.

Proposition 1.3 If {xn} is a nondecreasing sequence of numbers, then

IP(Mn > xn i.o.) = IP(Xn > xn i.o.) = 0 or 1

depending on whether
∑

n IP(X > xn) < ∞ or
∑

n IP(X > xn) = ∞.

If IE|X| < ∞, then
∑

n≥1 IP(|X| > n) < ∞, and hence

lim
n→∞ M+

n /n = 0 (a .s.).

Denote

Rn(t) = max
1≤i≤n

|Xi |t/
n∑

i=1

|Xi |t. (1.5)

Proposition 1.4 As n → ∞,

Rn(t) → 0 a .s. ⇔ IE|X|t < ∞, (1.6)

Rn(t) →p 0 ⇔ IE|X|t1I{|X| ≤ x} is slowly varying, (1.7)

Rn(t) →p 1 ⇔ IP(|X| > x) is slowly varying. (1.8)

Thus, M+
n /|Sn| is asymptotically “small” if IE|X| < ∞, whereas M+

n is com-
parable to |Sn| if IP(|X| > x) is slowly varying (see also (1.17)).

Assume that {Xi } are i.i.d.r.v.s. Then (X1,n, . . . , Xn,n) admit the representa-
tion

(X1,n, . . . , Xn,n) d= (
F −1

c (T1/Tn+1), . . . , F −1
c (Tn/Tn+1)

)
, (1.9)

where

Fc = 1 − F,

Tm = η1 + · · · + ηm and {ηi } are i.i.d.r.v.s with an exponential E(1) distribu-
tion. Applying (1.9) to the uniform U(0; 1) distribution, we get the following
representation for the corresponding order statistics U1,n ≥ · · · ≥ Un,n:

(U1,n, . . . , Un,n) d= (Tn/Tn+1, . . . , T1/Tn+1). (1.10)

Example 1.1 If L(X) = E(1), then (1.9) entails

(Xi,n − Xk+1,n)1≤i≤k
d= (X1,k , . . . , Xk,k). (1.11)

If X has a Pareto distribution, that is,

Fc(x) = Cx−α (x > C1/α),
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where α ∈ (0; ∞) and C > 0, then

(X1,n/Xk+1,n, . . . , Xk,n/Xk+1,n) d= (X1,k , . . . , Xk,k) (1 ≤ k < n). (1.12)

�

Because

Nn(Xk+1,n) = k,

the order statistic Xk+1,n is the empirical quantile of level 1 − k/n. We will call
Xk+1,n the empirical upper quantile of level k/n.

Let k = k(n) depend on n. The following cases have been intensively studied
(see, e.g., [315, 352]):

(a) k/n → const ∈ (0; 1),
(b) k → ∞, k/n → 0.

Theorem 1.5 is a consequence of (1.9). It shows that the empirical quantile is
a proper tool when estimating nonextreme quantiles.

Theorem 1.5 Suppose that k/n → q ∈ (0; 1). If F is continuously differentiable
at xq = F −1

c (q ) and f := F ′, then

(Xk,n − xq ) f (xq )
√

n/q (1 − q ) ⇒ N (0; 1). (1.13)

According to Theorem 1.5,

Xk,n = xq +
√

q (1 − q )
f (xq )

√
n

ξn ,

where ξn ⇒ N (0; 1).

Example 1.2 Let Fc(x) = 1/x, x > 1, and let q = 0.01. Then xq = 100 is
the 1%-upper quantile and Xk+1,n with k = [n/100] is the empirical upper
quantile of level 0.01. Theorem 1.5 states that

Xk,n = xq + 1000ξn

√
0.99/n ,

where ξn ⇒ N (0; 1). Obviously, the sample size n must be very large in order
to compensate the factor 1000. Thus, the empirical quantile does not appear
to be a proper estimate of extreme quantiles. �

We now describe the limiting distribution of Xk,n in situation (b) assuming
that L(X) has a heavy right tail:

IP(X > x) = L(x)x−α , (1.14)

where α > 0 and L is a slowly varying function.
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Theorem 1.6 Let X, X1, X2, . . . be i.i.d.r.v.s with the heavy-tailed distribution
(1.14). If k = k(n) → ∞, k/n → 0 and Fc is strictly monotone, then

√
k
(
Xk,n/F −1

c (k/n) − 1
) ⇒ N (0; α−2). (1.15)

Supplements

1. Let X, X1, X2, . . . be i.i.d.r.v.s with a d.f. F . If IE max{X; 0} ∈ (0; ∞),
then for any positive constant b

M := sup
n≥1

{Xn − (n − 1)b} < ∞ (a .s.). (1.16)

If limx→∞ Fc(x + 1)/Fc(x) = 1, then

IP(M > x) ∼ 1
b

∫ ∞

x
Fc(y)dy (x → ∞).

This relation remains valid if (n − 1)b in (1.16) is replaced with ξ1 +
· · ·+ ξn−1, where (X, ξ ), (X1, ξ1), . . . are i.i.d. pairs of r.v.s, IEξ = b [10,
164, 294, 329].

2. Let X, X1, X2, . . .be i.i.d. nonnegative heavy-tailed r.v.s obeying (1.14).
Darling [86] has shown that if α ∈ (0; 1), then

IESn/Mn → 1/(1 − α) (n → ∞). (1.17)

Exercises

1. Prove (1.3).
2. Check (1.9) in the case n = 1.
3. Prove (1.11) and (1.12). Derive (1.13).
4. Let {Ui } be uniform U(0; 1) i.i.d.r.v.s. Prove that

max
1≤i≤n

Ui
d=

n∑
j=1

η j

/ n+1∑
j=1

η j ,

where {η j } are exponential E(1) i.i.d.r.v.s.
5. Assume conditions of Theorem 1.6. Show

ân = (ln Xk,n)/ ln(n/k)

is a consistent estimator of index a . What can you say about the
accuracy of approximation ân ≈ a?

6. Let X ∈ U(0; 1) and y ≡ yn = o(1/n). Show that

IP(X1,n > 1 − y) ∼ ny, IP(X2,n > 1 − y) ∼ (ny)2/2.
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7. Assume that L(X) has a continuous d.f.. Show that

IP(Xn = Mn) = IP(Xn ≥ Mn−1) = 1/n.

8. Check that

IP(Xn ∈ dx|Mn = y) = n − 1
n

d F (x)
F (y)

1I{x < y} + 1
n
δy(dx), (1.18)

where δy(·) is the unit measure concentrated at point y.
9. Derive from (1.18) that

IE{X1|Mn = y} = (1 − 1/n)IE{X|X < y} + y/n.

As a consequence, if L(X) = U(0; 1), then

2IE{X1|Mn} = (1 + 1/n)Mn.

10. Let Fc(x) = Cx−α as x > C1/α , where α ∈ (0; ∞), C > 0. Show that
Hill’s estimator of the tail index is consistent: if n > k = k(n) → ∞,
then

k
/ k∑

i=1

ln(Xi,n/Xk+1,n) →p α. (1.19)

11. LetL(X) have a continuous d.f. F . Check that F (Xk,n) has beta B(k, n−
k + 1) distribution.

12. Suppose that Xi = max{ξi ; ξi+1}, where ξi is a sequence of i.i.d.r.v.s
{ξi } with a continuous distribution function. Check that IP(X1,n =
X2,n) = 1 − 2/(n + 1).

13. Show that

IEMn/Sn ≥ 1 − α + o(1) (n → ∞) (1.20)

in the assumptions of supplement 2.

1.2 “Blocks” and “Runs” Approaches

Bernstein’s “blocks” method is probably the most universal tool in EVT. It was
originally developed for proving limit theorems for sums of dependent r.v.s.

In this chapter we apply the approach to the sample maximum and the num-
ber of exceedances. The asymptotics of empirical point processes in Chapter 5
is also studied using the blocks method.

The idea of the approach is simple: split the sample of size n into blocks of
lengths r = r (n), 1 
 r 
 n, and subtract subblocks of lengths l = l(n) 
 r.
Then the “reduced” blocks are almost independent.



P1: BINAYA KUMAR DASH

November 22, 2011 10:24 C3436 K11611˙Book

Methods of Extreme Value Theory 9

The weak point of the method is its poor accuracy of approximation (cf.
Remark 1.1 below).

In Theorem 1.7 and Corollaries 1.8 and 1.9, we assume mixing condition
(D{un}) (see the Appendix). Recall that [x] denotes the integer part of x and
{x} is the fractional part of x. Denote

u = un , p = IP(X > u),

and let αn(·) be the α-mixing coefficient of the sequence {1I{Xi > u}, i ≥ 1}.

Theorem 1.7 If 1 ≤ l < r ≤ n, then
∣∣IP(Mn ≤ u) − IPn/r (Mr ≤ u)

∣∣ ≤ IP(Mr{n/r} > u)+(αn(l)+2lp)n/r +(e[n/r ])−1.

(1.21)
If 1 ≤ l ≤ n/k ≤ n, then

∣∣IP(Mn ≤ u) − IPk(M[n/k] ≤ u)
∣∣ ≤ kp + (αn(l) + 2lp)k. (1.21∗)

Let {u = un} be a sequence of numbers such that

p = IP(X > un) → 0 (n → ∞).

According to Theorem 1.7,
∣∣IP(M[n/k] ≤ u) − IP1/k(Mn ≤ u)

∣∣ ≤ Ckαn(l) + o(1) (∀k, l ∈ IN)

as n → ∞. Taking into account mixing condition (D{un}), we obtain

lim sup
n→∞

∣∣IP(M[n/m] ≤ u) − IPk/m(M[n/k] ≤ u)
∣∣ = 0 (∀k, m ∈ IN). (1.22)

If

lim sup
n→∞

nIP(X > un) < ∞, (1.23)

then there exist l = l(n), r = r (n) such that 1 
 l 
 r 
 n and

lim
n→∞

∣∣IP(Mn ≤ u) − IPn/r (Mr ≤ u)
∣∣ = 0.

Let {un} be a nondecreasing normalizing sequence in a limit theorem for
L(Mn), that is,

lim
n→∞ IP(Mn ≤ un) = e−λ (∃λ > 0). (1.24)

Denote un(t) = u[nλ/t]. If (1.23), (1.24), and mixing condition �{un} hold, then

lim
n→∞ IP(Mn ≤ un(t)) = e−t (∀t > 0). (1.25)

Denote by M̂n the maximum of n independent copies of X. A well-known
theorem by Gnedenko [147] describes the class of possible limit laws for
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bn(M̂n − an) for properly chosen sequences of constants {an} and {bn}.
Gnedenko’s theorem is valid in the case of weakly dependent r.v.s as well.

Corollary 1.8 If constants an, bn > 0 are chosen so that bn(M̂n − an) converges
weakly to a nondegenerate distribution P, then P belongs to one of the three types of
extreme value distributions:

Fréchet: FF (x) = exp(−x−α) (x > 0, α > 0)
Weibull: FW (x) = exp(−|x|α) (x < 0, α > 0)
Gumbel: FG (x) = exp(−e−x) (x ∈ IR)

Index α is called sometimes the extreme value index.

Corollary 1.9 If (1.23) holds and

lim
k→∞

lim sup
n→∞

[n/k]∑
i=1

IP(Xi+1 > un|X1 > un) = 0, (D′)

then

lim
n→∞

∣∣IP(Mn ≤ u) − IPn(X > u)
∣∣ = 0.

Condition (D′) means that a cluster can asymptotically contain only one
element. In other words, clustering of extremes is prohibited, and asymptotic
behavior of Mn is similar to that of the maximum of n independent copies of X.

The blocks method competes with the “runs” approach initiated by Newell
(see also O’Brien [245, 282, 285]). The idea of the runs approach is to consider
a new cluster of exceedances starting at a point i if

Xi > u, Xi−1 ≤ u, . . . , Xi−r ≤ un.

Intuitively, the runs approach must provide a better accuracy of approxima-
tion. Indeed, we count only those blocks that contain at least one extreme value
(exceedance over the level u), whereas with the blocks approach we count all
blocks of length r (including those without any “extreme” value at all).

Another powerful tool is the method of generating functions. The functions

gX(t) = IE exp(tX), hX(t) = IEtX

are called the moment generating functions. Properties of gX and hX are similar
to those of characteristic functions. We call∑

k≥0

IP(Mn ≤ k)tk ,
∑
n≥1

IP(Mn ≤ k)tn

the generating functions (provided the series converge). In some particular
situations they can be found explicitly (e.g., [149, 248]). Further analysis can
yield asymptotic expansions in a limit theorem for Mn, as it is done in the
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case of the length of the longest head run (Chapter 7). The Stein method is
presented in Chapters 2 and 10.

Open Problem

1.1. The “runs” method has been worked out for a sample maximum
only. The open problem is to apply this method to sample extremes,
numbers of exceedances, and processes of exceedances. In order to do
this, one would require a renewal theory for dependent r.v.s, which
is not well developed yet.

Exercises

14. Prove (1.25).
15. Assuming mixing condition (D{un}), show that (1.24) entails

IP(X > un) → 0.

16. Assume that the sequence {Xi } is ϕ–mixing. Prove that (1.23) follows
from (1.24).

17. Assume (D{un}). Prove that (1.24) and (1.23) yield

lim inf
n→∞ nIP(Xn > un) > 0. (1.26)

1.3 Method of Recurrent Inequalities

Close to the runs approach is the the method of recurrent inequalities. It suggests
composing and solving recurrent inequalities for IP(Mn ≤ x) and other quan-
tities of interest. Applied to particular problems of EVT, it yields correct rates
of convergence in the corresponding limit theorems.

To demonstrate the idea of the method, assume that

p := IP(X > u) > 0

and denote

b ≡ b(r, u) = IP(Br ),

where

Bn = {Xn > u, Xn−1 ≤ u, . . . , Xn−r+1 ≤ u}
if r > 1, Bn = {Xn > u} if r = 1. Observe that

{Mn ≤ u} = {Mn−1 ≤ u} \ {Mn−r ≤ u, Bn}.
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Thus,

Pn := IP(Mn ≤ u) = IP(Mn−1 ≤ u) − IP(Mn−r ≤ u, Bn). (1.27)

Events {Mn−r ≤ u} and Bn are usually “almost independent.” Therefore,

Pn ≈ Pn−1 − b Pn−r ≈ (1 − b) Pn−1 = · · · = (1 − b)n−r Pr .

As Pr is typically close to 1,

IP(Mn ≤ u) ≈ e−nb . (1.28)

The following theorem makes (1.28) more precise in the case of m-dependent
r.v.s.

Theorem 1.10 If the random variables {Xi , i ≥ 1} are (m−1)-dependent, 8mb ≤ 1
and n > 4m, then

(1 − b)n−4m − 2m(b + 2p) ≤ IP(Mn ≤ u)

≤ e−(n−4m)b + (e−1 + 4mb)mp/(1 − mp). (1.29)

Remark 1.1 Relation (1.29) is established by the method of recurrent inequal-
ities. It implies that the rate of approximation (1.28) is O(n−1 + p). Concerning
the approximation by the blocks method, it is natural to put l = m in (1.21) in
the case of m-dependent r.v.s. Then r = √

2mn minimizes the right-hand side
of (1.21), and the rate of approximation is O(n−1/2 + n1/2 p). Thus, the method
of recurrent inequalities appears more accurate.

Remark 1.2 Condition 0 < IP(X > un) → 0 as n → ∞ seems to be nat-
ural. If IP(X > un) = 0, then IP(Mn ≤ un) = 1. On the other hand, if
lim infn→∞ IP(X > un) > 0 and liml→∞ ϕ(l) = 0, where ϕ is the mixing coeffi-
cient, then Lemma 1.14 entails limn→∞ IP(Mn ≤ un) = 0.

Comparing (1.28) with (1.21), one can conclude that

b(r, u) ≈ IP(Mr > u)/r.

The following lemma makes this observation more precise.

Lemma 1.11 If 1 ≤ i ≤ r and 0 ≤ l < m, then

IP(Mi > u)
i

≥ b(r, u) ≥ IP(Mr+m > u) − IP(Mr+l > u)
m − l

. (1.30)

In particular, this inequality with i = m = r and l = 0 yields

IP(Mr > u)/r ≥ b(r, u) ≥ (IP(M2r > u) − IP(Mr > u))/r. (1.31)

The following theorem describes the asymptotics of the sample maximum
in the case of a stationary ϕ-mixing sequence of r.v.s.
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Let µ ≡ µ(r, u) = (1 + √
1 − 4(r + l)b )/2, Rn = 0 if 4(r + l)b > 1,

Rn ≡ Rn(r, u, l) = µ[ n
r+l ](µ − (r + l) p) − ϕ(l) if 4(r + l)b ≤ 1,

Qn ≡ Qn(r, u, l) = (1 − b)n−2r−l(1 − (2r + l) p) − (r + l)b − ϕ(l),
Vn ≡ Vn(r, u, l) = (1 − rb)[n/(r+l)] + ϕ(l).

Quantities Rn, Qn, Vn approximate e−nb .

Theorem 1.12 If r, l ∈ IN, r > 1, r + l ≤ n and n > 3r + 2l, then

max{Rn; Qn} ≤ IP(Mn ≤ u) ≤ Vn. (1.32)

Theorem 1.12 justifies (1.28) and provides a basis for further results on the
distribution of the sample maximum in ϕ-mixing sequences.

More general than (D′) is Watson’s [392] condition

lim
n→∞ IP(Xi+1 > un|X1 > un) = 0 (∀i ∈ IN). (1.33)

Example 1.3 of a stationary sequence {Xi } that obeys (1.33) but not (D′).
Let τ, τ1, τ2, . . . and {Yi } be independent sequences of i.i.d.r.v.s, τ takes val-
ues in IN, Y takes values in [1; ∞), and IP(τ = 1) < 1. We put T0 = 0,
Tj = ∑ j

l=1 τl , and let Xi = ∑
j≥1 Yj 1I{Tj−1 < i ≤ Tj } = Yν(i) , where ν(i) =

min{k : Tk ≥ i}. �

Theorem 1.13 Assume that liml→∞ ϕ(l) = 0 and

0 < lim inf
n→∞ nIP(X > un) ≤ lim sup

n→∞
nIP(X > un) < ∞. (1.34)

Then

IP(Mn ≤ un) − exp(−nIP(X > un)) → 0 (1.35)

if and only if (1.33) holds.

According to Theorem 1.13, if Watson’s condition holds, then the limiting
distribution of the sample maximum of a stationary ϕ-mixing sequence of
r.v.s is the same as if the sample elements were independent.

Exercise

18. Check that IP(X2 > un|X1 > un) > 0 in Example 1.3. Thus, Watson’s
condition holds, while (D′) does not.


