
K11497 Cover 12/20/11 4:22 PM Page 1

C M Y CM MY CY CMY K

Theory and Applications

NUMBER
SYSTEM

MULTIPLE-BASE

Vassil Dimitrov • Graham Jullien
Roberto Muscedere

Theory and Applications

NUMBER
SYSTEM

MULTIPLE-BASE

Vassil Dimitrov • Graham Jullien • Roberto Muscedere

D
im

itrov
Jullien

M
usced

ere
M

U
LTIPLE-BA

SE N
U

M
BER SYSTEM

Vassil Dimitrov • Graham Jullien
Roberto Muscedere

Computer arithmetic has become so fundamentally embedded into
digital design that many engineers are unaware of the many research
advances in the area. As a result, they are losing out on emerging
opportunities to optimize its use in targeted applications and technologies.
In many cases, easily available standard arithmetic hardware might not
necessarily be the most efficient implementation strategy.

Multiple-Base Number System: Theory and Applications stands apart
from the usual books on computer arithmetic with its concentration on
the uses and the mathematical operations associated with the recently
introduced multiple-base number system (MBNS). The book identifies
and explores several diverse and never-before-considered MBNS
applications (and their implementation issues) to enhance computation
efficiency, specifically in digital signal processing (DSP) and public key
cryptography.

Despite the recent development and increasing popularity of MBNS as
a specialized tool for high-performance calculations in electronic
hardware and other fields, no single text has compiled all the crucial,
cutting-edge information engineers need to optimize its use. The authors’
main goal was to disseminate the results of extensive design research—
including much of their own—to help the widest possible audience of
engineers, computer scientists, and mathematicians.

Dedicated to helping readers apply discoveries in advanced integrated
circuit technologies, this single reference is packed with a wealth of
vital content previously scattered throughout limited-circulation technical
and mathematical journals and papers—resources generally accessible
only to researchers and designers working in highly specialized fields.
Leveling the informational playing field, this resource guides readers
through an in-depth analysis of theory, architectural techniques, and
the latest research on the subject, subsequently laying
the groundwork users require to begin applying MBNS. K11497

Electrical Engineering

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

Theory and Applications

NUMBER
SYSTEM

MULTIPLE-BASE

Circuits and Electrical Engineering Series
Series Editor
Wai-Kai Chen

MicroCMOS Design
Bang-Sup Song

Multiple-Base Number System: Theory and Applications
Vassil Dimitrov, Graham Jullien, and Roberto Muscedere

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Theory and Applications

NUMBER
SYSTEM

MULTIPLE-BASE

Vassil Dimitrov • Graham Jullien
Roberto Muscedere

Boca Raton London New York

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120104

International Standard Book Number-13: 978-1-4398-3047-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface ... xiii
About the Authors ..xv

 1. Technology, Applications, and Computation ...1
1.1 Introduction ...1
1.2 Ancient Roots...1

1.2.1 An Ancient Binary A/D Converter1
1.2.2 Ancient Computational Aids ...2

1.3 Analog or Digital? ...3
1.3.1 An Analog Computer Fourier Analysis Tide Predictor4
1.3.2 Babbage’s Difference Engine ..5
1.3.3 Pros and Cons ...5
1.3.4 The Slide Rule: An Analog Logarithmic Processor6

1.4 Where Are We Now? ..8
1.4.1 Moore’s Law ..9
1.4.2 The Microprocessor and Microcontroller9
1.4.3 Advances in Integrated Circuit Technology 10

1.5 Arithmetic and DSP .. 11
1.5.1 Data Stream Processing .. 11
1.5.2 Sampling and Conversion .. 12
1.5.3 Digital Filtering .. 14

1.6 Discrete Fourier Transform (DFT) .. 15
1.6.1 Fast Fourier Transform (FFT) ... 17

1.7 Arithmetic Considerations .. 19
1.7.1 Arithmetic Errors in DSP .. 19

1.8 Convolution Filtering with Exact Arithmetic23
1.8.1 Number Theoretic Transforms (NTTs)23
1.8.2 An NTT Example ... 24
1.8.3 Connections to Binary Arithmetic25

1.9 Summary .. 27
References ...28

 2. The Double-Base Number System (DBNS) ... 31
2.1 Introduction ... 31
2.2 Motivation .. 32
2.3 The Double-Base Number System .. 32

2.3.1 The Original Unsigned Digit DBNS.................................... 32
2.3.2 Unsigned Digit DBNS Tabular Form33
2.3.3 The General Signed Digit DBNS ..34
2.3.4 Some Numerical Facts ...34

vi Contents

2.4 The Greedy Algorithm ...35
2.4.1 Details of the Greedy Algorithm ...36
2.4.2 Features of the Greedy Algorithm38

2.5 Reduction Rules in the DBNS .. 39
2.5.1 Basic Reduction Rules ... 39
2.5.2 Applying the Basic Reduction Rules40
2.5.3 Generalized Reduction ...42

2.6 A Two-Dimensional Index Calculus ..44
2.6.1 Logarithmic Number Systems ...44
2.6.2 A Filter Design Study ..45
2.6.3 A Double-Base Index Calculus .. 47

2.7 Summary .. 49
References ...50

 3. Implementing DBNS Arithmetic ..53
3.1 Introduction ...53

3.1.1 A Low-Noise Motivation ..54
3.2 Arithmetic Operations in the DBNS ..55

3.2.1 DBNR Addition ..55
3.2.2 DBNS Multiplication ...58
3.2.3 Constant Multipliers ..60

3.3 Conversion between Binary and DBNS Using Symbolic
Substitution ..60

3.4 Analog Implementation Using Cellular Neural Networks 62
3.4.1 Why CNNs? .. 62
3.4.2 The Systolic Array Approach ...64
3.4.3 System Level Issues ...64
3.4.4 CNN Basics ...65
3.4.5 CNN Operation ..66
3.4.6 Block and Circuit Level Descriptions of the CNN Cell 67
3.4.7 DBNS Addition CNN Templates Using Overlay and

Row Reduction Rules .. 69
3.4.8 Designing the Templates .. 70
3.4.9 Handling Interference between Cells72
3.4.10 CMOS Implementation of DBNS CNN

Reduction Rules ..74
3.4.11 A Complete CNN Adder Cell ..77
3.4.12 Avoiding Feedback Races ... 79

3.5 Summary .. 81
References ... 82

 4. Multiplier Design Based on DBNS ...85
4.1 Introduction ...85

4.1.1 A Brief Background ...85
4.1.2 Extremely Large Numbers ...86

viiContents

4.2 Multiplication by a Constant Multiplier ..86
4.3 Using the DBNS ... 87
4.4 DBNS Multiplication with Subquadratic Complexity90
4.5 General Multiplier Structure ... 92
4.6 Results and Comparisons .. 100
4.7 Some Multiplier Designs .. 101

4.7.1 180 nm CMOS Technology ... 101
4.7.2 FPGA Implementation .. 103

4.8 Example Applications ... 104
4.9 Summary .. 105
References ... 105

 5. The Multidimensional Logarithmic Number System
(MDLNS) .. 109
5.1 Introduction ... 109
5.2 The Multidimensional Logarithmic Number System

(MDLNS) ..109
5.3 Arithmetic Implementation in the MDLNS 110

5.3.1 Multiplication and Division ... 111
5.3.2 Addition and Subtraction ... 111
5.3.4 Approximations to Unity .. 112

5.4 Multiple-Digit MDLNS ... 116
5.4.1 Error-Free Integer Representations 116
5.4.2 Non-Error-Free Integer Representations 120

5.5 Half-Domain MDLNS Filter .. 121
5.5.1 Inner Product Step Processor ... 121
5.5.2 Single-Digit 2DLNS Computational Unit 123
5.5.3 Extending to Multiple Bases ... 128
5.5.4 Extending to Multiple Digits .. 129
5.5.5 General Binary-to-MDLNS Conversion 130

5.6 Summary .. 131
References ... 132

 6. Binary-to-Multidigit Multidimensional Logarithmic Number
System Conversion ... 135
6.1 Introduction ... 135
6.2 Single-Digit 2DLNS Conversion ... 136

6.2.1 Single-Digit 2DLNS-to-Binary Conversion 136
6.2.2 Binary-to-Single-Digit 2DLNS Conversion 138

6.3 Range-Addressable Lookup Table (RALUT) 141
6.3.1 RALUT Architecture ... 141

6.3.1.1 Binary-to-Single-Digit 2DLNS Structure 144
6.4 Two-Digit 2DLNS-to-Binary Conversion 145

6.4.1 Two-Digit 2DLNS-to-Binary Conversion
Architecture .. 145

viii Contents

6.5 Binary-to-Two-Digit 2DLNS Conversion 145
6.5.1 Binary-to-Two-Digit 2DLNS Conversion (Quick

Method) ... 147
6.5.1.1 Quick Binary-to-Two-Digit 2DLNS

Conversion Architecture 149
6.5.2 Binary-to-Two-Digit 2DLNS Conversion (High/Low

Method) ... 149
6.5.2.1 Modifying the RALUT for the High/Low

Approximation ... 151
6.5.2.2 High/Low Binary-to-Two-Digit 2DLNS

Architecture .. 152
6.5.3 Binary-to-Two-Digit 2DLNS Conversion (Brute-Force

Method) ... 152
6.5.3.1 Brute-Force Conversion Architecture................ 155

6.5.4 Binary-to-Two-Digit 2DLNS Conversion (Extended-
Brute-Force Method) .. 156

6.5.5 Comparison of Binary-to-Two-Digit 2DLNS
Conversion Methods ... 156

6.6 Multidigit 2DLNS Representation (n > 2) 157
6.6.1 Multidigit 2DLNS-to-Binary Conversion 157
6.6.2 Binary-to-Multidigit 2DLNS Conversion

(Quick Method) .. 157
6.6.3 Binary-to-Multidigit 2DLNS Conversion (High/Low

Method) ... 157
6.6.4 Binary-to-Multidigit 2DLNS Conversion (Brute-Force

Method) ... 158
6.7 Extending to More Bases.. 158
6.8 Physical Implementation .. 159
6.9 Very Large-Bit Word Binary-to-DBNS Converter 160

6.9.1 Conversion Methods for Large Binary Numbers 161
6.9.2 Reducing the Address Decode Complexity 163
6.9.3 Results and Discussion ... 163

6.10 Summary .. 166
References ... 166

 7. Multidimensional Logarithmic Number System:
Addition and Subtraction ... 169
7.1 Introduction ... 169
7.2 MDLNS Representation ... 170

7.2.1 Simplified MDLNS Representation 170
7.3 Simple Single-Digit MDLNS Addition and Subtraction 171
7.4 Classical Method ... 172

7.4.1 LNS Implementation ... 173
7.4.2 MDLNS Implementation .. 173

ixContents

7.5 Single-Base Domain .. 175
7.5.1 Single-Digit MDLNS to Single-Base Domain 176
7.5.2 Single-Base Domain to Single-Digit MDLNS 178
7.5.3 MDLNS Magnitude Comparison 180

7.6 Addition in the Single-Base Domain.. 180
7.6.1 Computing the Addition Table .. 180

7.6.1.1 Minimizing the Search Space 181
7.6.1.2 Table Redundancy .. 183
7.6.1.3 RALUT Implementation 183
7.6.1.4 Table Merging ... 183
7.6.1.5 Alternatives for m ... 186

7.6.2 The Complete Structure .. 187
7.6.3 Results ... 187

7.7 Subtraction in the Single-Base Domain ... 188
7.7.1 Computing the Subtraction Table 188

7.7.1.1 Minimizing the Search Space 189
7.7.1.2 RALUT Implementation and Table

Reduction ... 190
7.7.2 The Complete Structure .. 192
7.7.3 Results ... 192

7.8 Single-Digit MDLNS Addition/Subtraction 193
7.8.1 The Complete Structure .. 193
7.8.2 Results ... 193

7.9 Two-Digit MDLNS Addition/Subtraction 194
7.10 MDLNS Addition/Subtraction with Quantization Error

Recovery ... 195
7.10.1 Feedback Accumulation in SBD .. 196
7.10.2 Feedback Accumulation in SBD (with Full SBD

Range) .. 197
7.10.3 Increasing the SBD Accuracy Internally 197

7.11 Comparison to an LNS Case ... 198
7.11.1 Addition .. 199
7.11.2 Subtraction .. 199
7.11.3 Comparisons ...200

7.12 Summary .. 201
References ... 201

 8. Optimizing MDLNS Implementations ... 203
8.1 Introduction ... 203
8.2 Background .. 203

8.2.1 Single-Digit 2DLNS Representation 203
8.2.2 Single-Digit 2DLNS Inner Product Computational

Unit ... 204

x Contents

8.3 Selecting an Optimal Base ... 205
8.3.1 The Impact of the Second Base on Hardware Cost 205
8.3.2 Defining a Finite Limit for the Second Base 206
8.3.3 Finding the Optimal Second Base 207

8.3.3.1 Algorithmic Search .. 207
8.3.3.2 Range Search ... 208
8.3.3.3 Fine Adjustment ... 208

8.4 One-Bit Sign Architecture .. 208
8.4.1 Representation Efficiency ... 209
8.4.2 Effects on Determining the Optimal Base 209
8.4.3 Effects on Hardware Architecture 209

8.5 Example Finite Impulse Response Filter 211
8.5.1 Optimizing the Base through Analysis of the

Coefficients ... 214
8.5.1.1 Single-Digit Coefficients 214
8.5.1.2 Two-Digit Coefficients ... 215
8.5.1.3 Comparison of Single- and Two-Digit

Coefficients .. 216
8.5.1.4 Effects on the Two-Digit Data............................. 216

8.5.2 Optimizing the Base through Analysis of the Data 217
8.5.3 Optimizing the Base through Analysis of Both the

Coefficients and Data .. 218
8.5.3.1 Single-Digit Coefficients and Two-Digit Data ... 219
8.5.3.2 Comparison to the Individual Optimal Base ... 219
8.5.3.3 Two-Digit Coefficients and Two-Digit Data220
8.5.3.4 Comparison to the Individual Optimal Base ...220

8.5.4 Comparison of Base 3 to the Optimal Bases 220
8.5.5 Comparison to General Number Systems 221

8.6 Extending the Optimal Base to Three Bases223
8.7 Summary .. 224
References ...225

 9. Integrated Circuit Implementations and RALUT Circuit
Optimizations ...227
9.1 Introduction ..227
9.2 A 15th-Order Single-Digit Hybrid DBNS Finite Impulse

Response (FIR) Filter ...227
9.2.1 Architecture ..228
9.2.2 Specifications ..228
9.2.3 Results ... 229

9.3 A 53rd-Order Two-Digit DBNS FIR Filter229
9.3.1 Specifications for the Two-Digit 2DLNS Filter230
9.3.2 Results ... 231

9.4 A 73rd-Order Low-Power Two-Digit MDLNS Eight-Channel
Filterbank ... 231

xiContents

9.4.1 Specifications .. 232
9.4.2 Results ... 232
9.4.3 Improvements ... 232
9.4.4 Results ...233

9.5 Optimized 75th-Order Low-Power Two-Digit MDLNS
Eight-Channel Filterbank...233
9.5.1 Results ...234

9.6 A RISC-Based CPU with 2DLNS Signal Processing
Extensions .. 235
9.6.1 Architecture and Specifications ...235
9.6.2 Results ...236

9.7 A Dynamic Address Decode Circuit for Implementing
Range Addressable Look-Up Tables ... 237
9.7.1 Efficient RALUT Implementation 237
9.7.2 Dynamic Address Decoders (LUT)238
9.7.3 Dynamic Range Address Decoders (RALUT) 240
9.7.4 Full Custom Implementation ... 242
9.7.5 Comparison with Past Designs .. 243
9.7.6 Additional Optimizations .. 243

9.8 Summary .. 244
References ... 244

 10. Exponentiation Using Binary-Fermat Number Representations 247
10.1 Introduction ... 247

10.1.1 Some Examples of Exponentiation Techniques 247
10.1.2 About This Chapter ... 248

10.2 Theoretical Background ... 249
10.3 Finding Suitable Exponents ... 252

10.3.1 Bases 2 and 3 ...253
10.4 Algorithm for Exponentiation with a Low Number of

Regular Multiplications..254
10.5 Complexity Analysis Using Exponential Diophantine

Equations .. 257
10.6 Experiments with Random Numbers .. 260

10.6.1 Other Bases ... 261
10.7 A Comparison Analysis ... 262
10.8 Final Comments .. 262
10.9 Summary .. 263
References ... 263

Index ... 267

This page intentionally left blankThis page intentionally left blank

xiii

Preface

This is a book about a new number representation that has interesting prop-
erties for special applications. It is appropriately catalogued in the area of
computer arithmetic, which, as the name suggests, is about arithmetic that
is appropriate for implementing on calculating machines. These machines
have changed over the millennia that humans have been building aids to
performing arithmetic calculations. At the present time, arithmetic proces-
sors are buried in the architectural structures of computer processors, built
mostly out of silicon, with a minimum lateral component spacing of the order
of a few tens of nanometers, and vertical spacing down to just a few atoms.

Arithmetic is one of the fields that even young children learn about.
Counting with the natural numbers (1, 2, 3 …) leads to learning to add and
multiply. Negative numbers and the concept of zero lead to expanding the
natural numbers to the integers (…, −3, −2, −1, 0, 1, 2, 3 …), and learning about
division leads to fractions and the rational numbers. When we perform arith-
metic “longhand” we use a positional number representation with a radix of
10—undoubtedly developed from the fact that humans have a total of 10
digits on their two hands. Early mechanical as well as some electronic digi-
tal computers maintained the radix of 10, but the two-state nature of digital
logic gates and storage technology leads to a radix of 2 as being more natural
for electronic machines. Binary number representations, which use a fixed
radix of 2, are ubiquitous in the field of computer arithmetic, and there are
many valuable textbooks that cover the special arithmetic hardware circuits
and processing blocks that make use of binary representations.

The subject of computer arithmetic is fascinating since it deals with the
basic computational underpinnings of processor functions in all digital elec-
tronic systems with applications that are ubiquitous in our modern tech-
nological world. In fact, computer arithmetic is so fundamental to digital
design that there is a danger of it being dismissed by many designers, who
see it as well-worn knowledge that is already encased in hardware (actual
or in a design library) or that can be readily called up from a variety of soft-
ware packages. What is often missing, however, is that computer arithme-
tic can be optimized based on targeted applications and technologies, and
easily available standard arithmetic hardware may not be the most efficient
implementation strategy. There is also a strong curiosity element associ-
ated with unusual approaches to implementing fundamental computer
operations, and in this book we try to stir in a mixture of curiosity with
our pragmatic approaches to implementing basic arithmetic for two applica-
tion areas: digital signal processing and cryptography. As such, this book is
somewhat different from most of the textbooks on computer arithmetic, in
that it deals almost entirely with a rather new multiple-base number system

xiv Preface

that is rapidly gaining in popularity. In its original form, the double-base
number system (DBNS) can be viewed as an extension to the binary number
system. By using a second base, in addition to the base 2 used by the binary
number system, we uncover some rather remarkable properties of both the
DBNS and its logarithmic extension, the multidimensional logarithmic num-
ber system (MDLNS).

We trust that the reader will find something fascinating about multiple
bases and, if we have done our job well, will also be convinced that there
are applications that can benefit from, at least, a serious consideration of this
number representation and the techniques we have identified to efficiently
implement calculations using multiple bases. The authors of the book have
a collective interest in pursuing alternative representations that have the
potential to improve aspects of the implementation of high-performance cal-
culations in hardware. Two of us are engineers (Jullien and Muscedere), and
the principal author, Dimitrov, has both a mathematics and an engineering
background. All three of us are dedicated to implementing our discoveries
in advanced integrated circuit technologies, and some of these designs are
used to illustrate the theory and architectural techniques that are disclosed
in this book.

In summary, the purpose of the book is to showcase the usefulness of the
multiple-base number representation in various applications, and our main
goal is to disseminate the results of our research work to as wide as possible
an audience of engineers, computer scientists, and mathematicians. We hope
this book at least partially achieves this goal.

Vassil S. Dimitrov
Graham Jullien

Roberto Muscedere

xv

About the Authors

Vassil S. Dimitrov earned a PhD degree in applied mathematics from the
Bulgarian Academy of Sciences in 1995. Since 1995, he has held postdoctoral
positions at the University of Windsor, Ontario (1996–1998) and Helsinki
University of Technology (1999–2000). From 1998 to 1999, he worked as a
research scientist for Cigital, Dulles, Virginia (formerly known as Reliable
Software Technology), where he conducted research on different cryptanaly-
sis problems. Since 2001, he has been an associate professor in the Department
of Electrical and Computer Engineering, Schulich School of Engineering,
University of Calgary, Alberta. His main research areas include implementa-
tion of cryptographic protocols, number theoretic algorithms, computational
complexity, image processing and compression, and related topics.

Graham Jullien recently retired as the iCORE chair in Advanced Technology
Information Processing Systems, and the director of the ATIPS Laboratories,
in the Department of Electrical and Computer Engineering, Schulich School
of Engineering, at the University of Calgary. His long-term research inter-
ests are in the areas of integrated circuits (including SoC), VLSI signal pro-
cessing, computer arithmetic, high-performance parallel architectures, and
number theoretic techniques. Since taking up his chair position at Calgary,
he expanded his research interests to include security systems, nanoelec-
tronic technologies, and biomedical systems. He was also instrumental,
along with his colleagues, in developing an integration laboratory cluster
to explore next-generation integrated microsystems. Dr. Jullien is a fel-
low of the Royal Society of Canada, a life fellow of the IEEE, a fellow of
the Engineering Institute of Canada, and until recently, was a member of
the boards of directors of DALSA Corp., CMC Microsystems, and Micronet
R&D. He has published more than 400 papers in refereed technical journals
and conference proceedings, and has served on the organizing and program
committees of many international conferences and workshops over the past
35 years. Most recently he was the general chair for the IEEE International
Symposium on Computer Arithmetic in Montpellier in 2007, and was guest
coeditor of the IEEE Proceedings special issue System-on-Chip: Integration and
Packaging, June 2006.

Roberto Muscedere received his BASc degree in 1996, MASc degree in 1999,
and PhD in 2003, all from the University of Windsor in electrical engineer-
ing. During this time he also managed the microelectronics computing

xvi About the Authors

environment at the Research Centre for Integrated Microsystems (formally
the VLSI Research Group) at the University of Windsor. He is currently an
associate professor in the Electrical and Computer Engineering Department
at the University of Windsor. His research areas include the implementation
of high-performance and low-power VLSI circuits, full and semicustom VLSI
design, computer arithmetic, HDL synthesis, digital signal processing, and
embedded systems. Dr. Muscedere has been a member of the IEEE since 1994.

1

1
Technology, Applications, and Computation

1.1 Introduction

The field of computer arithmetic is a fascinating subject, and not at all the
drudgery that most of us experienced with our first exposure to the third r of
the three r’s at school. The first two r’s are related as requirements of the pro-
cesses required to become literate. The third r relates to numeracy, the under-
standing and implementation of computation which is a basic requirement
for “technical literacy,” as important a skill in today’s world as was traditional
literacy in the past. In this introductory chapter, we provide a brief history and
introduction to number systems and machine calculation; we emphasize spe-
cial applications that drive the search for efficient machine arithmetic given
the requirements of the applications and the available technology.

1.2 Ancient Roots

Ancient numbering systems abound, but the most striking is the system
developed by the Babylonians starting around 5,000 years ago. It is strik-
ing in that it is a form of weighted positional system, which we use today.
However, the Babylonians did not have a symbol for zero (instead they used
a space) and the weighting was based on the number 60 rather than the num-
ber 10, which we use today for representing decimal numbers. (Vestiges of
the weight 60 can still be found in the way we measure time and angles.)
It also appears that the binary number system, which we naturally think
of as being introduced with the advent of electronic computers built with
logic gates, was used at least 4,000 years ago for determining weights using
a simple balance and carefully weighed stones [1].

1.2.1 An Ancient Binary A/D Converter

We can imagine a trader from 4,000 years ago by the side of a river, setting
up a balance and then searching for a handful of river-washed pebbles that

2 Multiple-Base Number System: Theory and Applications

had specific weight characteristics. These characteristics were determined
from the simple operation of producing a balance between sets of stones. The
technology used here was based only on the force of gravity using a balance
bar and fulcrum. The operation is demonstrated in Figure 1.1 for an equiva-
lent 4-bit representation (1–15 times the smallest stone weight). The accuracy
of the number system is determined by the accuracy with which the stones
were selected and correctly balanced (including positioning the stones so that
their accumulated center of gravity was always in the same position on the
opposite sides of the balance). The relative weights of the stones in the full
measurement set are shown in Figure 1.1 as {1, 1, 2, 4, 8}. Designers of binary-
weighted digital/analog converters (D/As) know this sequence well! Such a
D/A converter can be used to implement a successive approximations A/D
converter. The two 1’s are redundant in terms of a 4-bit measurement system,
only being required to generate the full measurement set. In a sense, the trad-
ers of 4,000 years ago had also built an A/D converter in which an analog
commodity weight was converted into a subset of stones from the full mea-
surement set.

1.2.2 Ancient Computational Aids

Computational aids and calculators also have ancient roots. Counting
boards (a precursor of the “more modern” abacus using beads) have been
used for several thousand years [2], with some evidence that they were

1 1 2 4 8

FIGURE 1.1 (See color insert)
Four-thousand-year-old binary number system.

Technology, Applications, and Computation 3

initially developed by the Romans. Of some surprise, an astronomical pre-
diction machine, circa 200 BC, was recovered from an ancient shipwreck
off the Greek island of Antikythera in 1901. This mechanism was truly
advanced based on the fact that mechanical calculators of similar complex-
ity did not appear again (or, at least, have not been found) for at least another
1,500 years. Based on an analysis of CT scans of the components [3], the cal-
culator used a variety of sophisticated precision gears, each with up to sev-
eral hundred teeth, along with epicyclic gearing. The mechanism was able
to compute addition, subtraction, and multiplication with precise fractions
and, for example, could predict the position of the moon based on models
available at the time.

1.3 Analog or Digital?

Over the past five centuries the interest in computational aids and calcu-
lating machines has steadily increased, with an explosive growth over the
past 100 years, driven by mechanical devices, electromechanical devices, and
electronics.

Mechanical and electromechanical devices were based on decimal
arithmetic because of the need to interact with human operators. Some
of the early electronic computers also used the decimal-based number
systems for the same reason, even though the two-state property (0, 1)
of signal propagation into and out of computer logic circuits provides
a perfect match with pure binary number representations. Until the
latter part of the 20th century, analog devices were also heavily used
for advanced mathematical computations, such as finding solutions of
 nonlinear differential equations, where a physical quantity (e.g., voltage
in electronic circuits or rotation in mechanical systems) is observed
as the solution to a problem. In this case there is no implied number
 system, only that of the operator in interpreting the analog results.
Analog systems have a relatively large computational error (several
percent) compared to the much higher precision capable of digital
machines, but there were application areas found for both analog and
digital machines. We will discuss an analog method of computing with
a double-base system in Chapter 3.

Examples of applications that took advantage of the disparity in complex-
ity and error between analog and digital mechanisms are ideally portrayed
in comparing Lord Kelvin’s analog tide prediction machine [4] to Babbage’s
digital difference engine [5]; they were proposed within a few decades of
each other in the 19th century.

4 Multiple-Base Number System: Theory and Applications

1.3.1 An Analog Computer Fourier Analysis Tide Predictor

The tide predictor computed the height of the tide from a datum point as a
function of time using the form of Equation (1.1):

 h t H A g t fi i i

i

() = + +[]{ }
=
∑0

1

10

cos (1.1)

The predictor combines tidal harmonic constituents, based on harmonic
components of the changes of the position of the earth, sun, and moon,
to perform the prediction. The technique is still used today to make tide
predictions, though the 10 components in Lord Kelvin’s first machine
are augmented by a factor of 4 or more, based on location [4]. This ana-
log computer used a system of pulleys, wires, and dials (see Figure 1.2),
and the generation of sinusoid motion used a rotating wheel with an

FIGURE 1.2 (See color insert)
Lord Kelvin’s tide predicting machine (1876), Science Museum, London. (Copyright 2005
William M. Connolley under the GNU Free Documentation License.)

Technology, Applications, and Computation 5

off-center peg to drive a vertically moving arm (the inverse of a piston
driving a crankshaft), and similar mechanisms can also be seen in the
Antikythera machine of 2,000 years earlier! Lord Kelvin’s predictor could
print out calculations of harbor tide patterns for up to a year in about 4
hours by turning a crank. Clearly errors of a few percent were acceptable
for this application, particularly considering the errors in the astronomical
 models used.

1.3.2 Babbage’s Difference Engine

Charles Babbage’s difference engine [5] was designed to tabulate the val-
ues of polynomials of nth degree using the method of finite differences.
The engine design used mechanical wheels and gears to compute using the
decimal number system; the main purpose of the engine was to produce
accurate mathematical tables with no human error (including direct print-
ing from the engine). His difference engine no. 2 was able to hold (store)
eight numbers of 31 decimal digits each, allowing the machine to tabulate
seventh degree polynomials to that precision. By using Newton’s method of
divided differences, the engine can compute a sequence of values of a poly-
nomial with only the need to add and store, using a ten’s complement form for
negative numbers. There were some intriguing aspects to the design of the
engine, including the addition and carry propagation, using carry save and
carry skip techniques, techniques that are still used in modern microcom-
puters. Babbage never completed the building of the difference engine; we
had to wait until the 1990s to be able to see replicas at the Science Museum in
London and the Computer History Museum in Mountain View, California
(see Figure 1.3).

1.3.3 Pros and Cons

Comparing the tide predictor to the difference engine, we note that the
difference engine would not be able to automatically compute the com-
plete tide prediction model of Equation (1.1); however, the harmonic com-
ponents could be approximated by finite order polynomials so parts of the
equation could be individually evaluated, with the final summation to be
carried out at the end. Perhaps the analytical engine [5,6] that Babbage pro-
posed after abandoning the construction of the difference engine would
have been more suitable based on its programmability with punched
cards. However, the complete analytical engine has never been built, and
even if it were it would be so cumbersome as to require a real engine to
turn the crank! Analog computing machines were clearly much easier to
build than digital machines using the technology of the 19th century, and
this was still the case up to the end of the vacuum tube era (middle of the
20th century).

6 Multiple-Base Number System: Theory and Applications

1.3.4 The Slide Rule: An Analog Logarithmic Processor

Analog and digital computational aids were available to students and engi-
neers long before the pocket calculator arrived. One of the authors went
through his entire college and university education using tables of logarithms
and trigonometric functions (digital aids) and a slide rule (analog aid). The
$6.50 purchase of the 1,046-page standards book edited by Abramowitz and
Stegun [7] was a particularly good deal for the professional engineer in 1969!
The tables of logarithms (and their inverses) were mainly used for accurate
computations of multiplications (including reciprocals and powers), with the
slide rule being used where lower accuracy could be tolerated—this meant
most of the time! The slide rule uses logarithmic scales on both the static
body and the slide, so clearly, in both the digital and analog approaches,
we are using the mapping property of multiplication to addition in going
from a linear scale to a log scale. For the tables we looked up the logarithms
of the multiplier and multiplicand, added the logarithms, and looked up
the inverse logarithm in the tables. It was assumed, of course, that we were
skilled at adding numbers. For the slide rule calculations the logarithmic
map was automatically performed with the logarithmic scale. The addition
was performed by concatenating the slide and body markings and looking

FIGURE 1.3 (See color insert)
Babbage’s difference engine, Computer History Museum, Mountain View, California.
(Copyright 2009 Allan J. Cronin under the GNU Free Documentation License.)

Technology, Applications, and Computation 7

up the sum, as shown in Figure 1.4 (using the author’s slide rule—warts and
all). The figure shows the cursor “looking up” the concatenation of the body
scale at 1.5 with the slide scale at 2.5, giving a result of between 3.74 and 3.76
(the accurate answer is, of course, 3.75).

The master of the slide rule knew the trick to compute a b2 2+ in three
moves without having to do a difficult addition. The trick was to rewrite the
expression as shown in Equation (1.2):

 a b a
b
a

2 2
2

1+ = ⋅ +

 (1.2)

Computing the right-hand side of Equation (1.2) involves a division, a squar-
ing, adding 1, a square root, and a multiplication. Assuming the slide rule
has a scale of squares (all good slide rules did), then the only tricky move was
the addition of 1, which is trivial.

Figure 1.5 shows the three moves used to compute 3 4 52 2+ = . We elect
to choose a > b so that b2/a2 < 1 and the addition will yield a number with
1 to the left of the decimal point. From Figure 1.5(a) we see the first move,
where we divide 3 by 4 (0.75) by subtracting the scales and then looking up
the square (~0.562) on the right-hand side of the scale (at 100 on the x2 scale).
We now move the slide to 1.562 (or as close as possible) on the left-hand side
of the slide and move the cursor to 4 on the x scale of the slide. Looking at
the x scale on the body of the slide rule, we get the answer, 5. The trick here
was to rewrite the expression so that the addition is trivial. This same idea
is used in logarithmic arithmetic to turn addition with two addends into
a unary lookup table. In our group we affectionately refer to this as the
slide rule trick, and will so refer to it in subsequent chapters dealing with a
multiple-base logarithmic arithmetic. As an aside, we note that we have to
keep track of the magnitude of the numbers in the calculation. Clearly the
56.2 value in Figure 1.5(a) has to be interpreted as 0.562 so that the slide is
located at 1.562 in Figure 1.5(b). Keeping track of magnitudes of calculations

FIGURE 1.4 (See color insert)
Multiplication of 1.5 by 2.5 on a slide rule.

8 Multiple-Base Number System: Theory and Applications

is a skill that has seen some demise since the availability of the ubiquitous
pocket calculator!

It is interesting to note that logarithmic arithmetic was suggested as a
computational implementation tool for digital filters as far back as 1971 by
Kingsbury and Rayner [8], with considerable interest since then in applying
logarithmic arithmetic to this application area [9–11].

1.4 Where Are We Now?

Analog computers, used to solve mathematical equations, essentially disap-
peared during the early 1970s, although efforts were made to marry them to
digital machines—a so-called hybrid computer approach. However, a dif-
ferent type of computation with analog devices started in the 1940s with the
investigation of nervous (or neural) activity by McCulloch and Pitts [12], and
further developed in the 1960s with the modeling of organic neural clusters
(brains!) using nonlinear analog circuits. Thus it might be helpful to separate
out analog computation into linear analog computers, which were used to
evaluate differential equations with as much accuracy as the linearity of the
amplifiers with passive component feedback allowed, and nonlinear analog
processors, which include neural networks, cellular nonlinear networks, and
their analog circuit implementations.

FIGURE 1.5 (See color insert)
Three moves to compute the slide rule trick.

Technology, Applications, and Computation 9

1.4.1 Moore’s Law

The 1970s also saw the birth of the microprocessor and the start of the cur-
rent revolution in high-performance computational systems. The advent of
integrated transistor circuits (ICs) has allowed for an exponential increase
in the complexity of single-chip computational circuits and the attendant
advances in information processing capability. Moore’s law [13] has stood
the test of time (4½ decades and counting) in spite of the need for regularly
finding solutions to major roadblocks in lithography and other aspects of
IC fabrication technology. The predictions of an imminent departure from
Moore’s law abound throughout the decades of advances in IC technology.
Though as we approach atomic dimensions in the active devices built on sili-
con, Moore’s law certainly seems threatened, unless we can find new nano-
technologies to provide a continuation of the law. Advances in IC fabrication
density and device speed have had a profound effect on the basic computa-
tional units that are present in almost every IC that is fabricated today. In
fact, there has been a revolution in the number and type of new applications
that have appeared simply because of the availability of billions of active
devices on a single sliver of monolithic crystalline silicon.

The traditional applications for computing, such as the physical sciences,
finance, and military applications, drove the first forays into electronic comput-
ers and have benefited enormously from the improvements, through vacuum
tubes, transistors, and integrated circuits. For these applications, the require-
ments for computational accuracy have driven the design of the arithmetic
units, in particular the use of floating point arithmetic as a way of represent-
ing numbers with precision and dynamic range, in spite of a relatively large
overhead in the hardware required to perform the arithmetic. The demand
for faster and more accurate processing power also led to the birth of super-
computers in the 1960s. These are computers that are able to process orders of
magnitude more information per second than more accessible machines. A
definition of number-crunching processing power, floating point operations per
second (FLOPS), was also introduced, and we have seen this measure increase
from mega-FLOPS to peta-FLOPS over just a few decades. Interestingly, even
cheap consumer computers exceed the definition of a supercomputer of just
a few years earlier, often faster than the U.S. military changes the definition!
The ubiquitous FLOP has also been used as a more general measure of com-
puter processing power, even if the main use is not continuous computation
with floating point arithmetic. In fact, all of a computer’s systems, including
its architecture, in addition to arithmetic units, need to have performance
improvements in order to provide sustained data to the arithmetic unit(s).

1.4.2 The Microprocessor and Microcontroller

The first microprocessors appeared in 1970–1971: the most well known is the
4004 from Intel Corp. [14]. The CPU chip was actually part of a four-chip set

10 Multiple-Base Number System: Theory and Applications

used to build a complete computer system. By the mid-1970s, complete com-
puter systems on a single chip were available in which all of the components
required to build a complete computer system (albeit very limited) were con-
tained on the chip. One of the first chips was the Intel 8748, which contained
an erasable programmable read-only memory (EPROM) for programming,
and most of the pins were available as input/output (I/O) lines. Along with
programmable I/O pins, the 8748 contained a basic timer and interrupt struc-
ture that together would normally be considered nonessential for a standard
computer system, let alone for a resource-limited single chip of that time. In
fact, this and subsequent complete single-chip computers were targeted to
a new market where the computer was embedded into a product that was
not, itself, a computer. In reality, the chip was a very flexible microcontroller.
As an example, one of the major applications for the 8748 was as a keyboard
controller for IBM computers. The terms microcontroller and embedded systems
are very familiar to us now, but their birth was with the development of
devices such as the 8748. In terms of being a computational unit, they were
very limited by today’s standards, as were all of the microprocessor products
of that time, but that did not stop users of these devices from exploring ways
that fast computations could be carried out using alternative techniques [15].

The first desktop computers, based on microprocessors, started to appear
in the late 1970s. They coexisted with mini-computers for several years until
they became sufficiently powerful so that they could take on the same com-
plexity of computational tasks that mini-computers had handled just a few
years previously. In fact, whatever had been on a 19-inch rack-mount-printed
circuit board in the mini-computer era was now available on one or two very
large-scale integration (VSLI) chips. These included coprocessors that were
expressly designed to offload floating point and integer arithmetic calcula-
tions from the main processor.

1.4.3 Advances in Integrated Circuit Technology

Advances in the implementation of computation have been driven by advances
in integrated circuit technology and the evolution of the approaches to build-
ing computational circuits. The technology advances were predicted by
Gordon Moore [13] with remarkable accuracy, though the fact that the indus-
try uses Moore’s law as a guide to its own technology improvements [16] per-
haps introduces something of a self-fulfilling prophecy into the picture. The
semiconductor industry is very inventive, and there have been several major
breakthroughs that have maintained the exponential advances, often against
the predictions of top people in the field. The first microprocessors were built
with p-channel metal oxide semiconductor (PMOS) and then n-channel MOS
(NMOS) technologies, but the star technology is still complementary metal
oxide semiconductor (CMOS). CMOS became the dominant MOS digital tech-
nology in the 1980s, and has maintained this position in spite of other tech-
nologies, such as Bipolar-CMOS (BiCMOS) and GaAs, that, for a time, offered

Technology, Applications, and Computation 11

some advantages, e.g., speed, over CMOS. In reality, CMOS is a set of logic
families that make use of the ability to produce complementary devices in the
same process, and we have seen a wide variety of static and dynamic CMOS
logic families that have been used to implement computation. The first com-
mercial CMOS processes used lithography (the optical technique of patterning
photosensitive material on semiconductor substrates) with dimensions mea-
sured in microns. At the time of writing this book, 22 nm processes are start-
ing to come on line, and 45 nm ICs are in the marketplace. An experimental (in
2009) Intel microprocessor family has 48 cores (individual processors) on a 1.3
billion transistor single chip (called the cloud computer). The computational
power of such chips is measured in tera-FLOPS.

1.5 Arithmetic and DSP

Concurrent with the commercial development of integrated circuits in the
1960s, a new field of research was beginning to emerge: digital signal pro-
cessing (DSP). In DSP, signals are sampled both in time (discrete time) and
in magnitude (digital). Although the basic theoretical techniques were quite
well known before the commercial development took place, the use of DSP
only took a firm foothold with the advent of semiconductor electronics and,
in particular, IC fabrication. We will spend a few pages discussing this
subject because the search for efficient computational techniques for DSP
algorithms led to an increased interest in alternative arithmetic techniques,
including the double-base number system. In this section, for completeness,
we review the mathematical bases for replacing classical analog processing
with DSP.

1.5.1 Data Stream Processing

One of the features of many DSP algorithms is the requirement for data
stream processing, that is, the continuous application of a computational
algorithm on an input digital data stream to produce a continuous output
data stream. This is exactly what analog signal processing does, but ana-
log computers operate on continuous waveforms, and instead of digital
logic, analog processors use amplifiers, resistors, capacitors, and induc-
tors. Replacing continuous (analog) signal processing with DSP has some
limitations, but these are overcome in practice. This represents a funda-
mental difference between the use of computers to solve a problem, where
a program is written to input numerical data and to output the solution to
the problem as another set of data. Once the solution has been obtained,
the computer has done its job! In data streaming, however, the processor
is continuously fed with a stream of numbers (e.g., a regularly sampled

12 Multiple-Base Number System: Theory and Applications

analog signal), and outputs a stream of numbers at the same rate as the
input. The stream of input numbers may be essentially infinite (e.g.,
samples of the output of a microphone that is never turned off), so the
processor is never finished. The throughput rate (the inverse of the time
between adjacent samples of the waveform) is determined by the applica-
tion, and early DSP hardware was woefully inadequate to keep up with
even the lowest-bandwidth applications. During the final three decades of
the 20th century, many different processing techniques, including alterna-
tive arithmetic techniques and special architectures, were developed to
squeeze higher and higher throughput rates out of the available hardware.
As IC technology advances, mainstream computer arithmetic solutions
can operate at sufficiently high-throughput rates to satisfy many of the
ubiquitous applications, such as multimedia streaming, with acceptable
results. However, as the definition of acceptable becomes more and more
severe, as new applications take hold, and as we approach a potential brick
wall for current technologies, it will be very useful to maintain interest in
alternative techniques in order to increase the degrees of freedom to the
designers of future systems.

1.5.2 Sampling and Conversion

The sampling operation allows continuous waveforms to be captured at reg-
ular intervals as streams of digital data. Figure 1.6 demonstrates the effect of
sampling continuous signals by looking at the time and frequency domain
of a sampled band-limited time domain waveform using the Fourier trans-
form (FT) [17]. The figure shows time domain waveforms on the left and
frequency domain waveforms on the right.

In Figure 1.6 we make use of the multiplication ⇔ convolution FT mapping
property. The FT is shown in Equation (1.3), where f(t) is an integrable func-
tion, t is the variable in the time domain, and ω is the variable in the radian
frequency domain; i is the complex operator.

 F f t e dti tω ω() = () −

−∞

∞

∫ (1.3)

Equation (1.4) shows the inverse FT.

 f t F e di t() = ()
−∞

∞

∫ ω ωω (1.4)

The FT is used to analyze the frequency domain components of a time
domain waveform. The multiplication ⇔ convolution mapping property
operates in both the forward and inverse transform directions; Figure 1.6
uses the forward mapping direction. We also use the property that a periodic

Technology, Applications, and Computation 13

train of Dirac delta functions (impulse train) in the time domain maps to
another impulse train in the frequency domain [17]. A Dirac delta function,
δ(x), is defined as in Equation (1.5):

 δ x x
x() = ≠

+∞ =
0, 0

, 0
 (1.5)

where δ x dx() =
−∞

∞

∫ 1 .

(b)(a)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

f(t) F(ω)

−ωB ωB

FIGURE 1.6
Processing continuous signals using digital signal processing (DSP).

