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Computer arithmetic has become so fundamentally embedded into
digital design that many engineers are unaware of the many research
advances in the area. As a result, they are losing out on emerging
opportunities to optimize its use in targeted applications and technologies.
In many cases, easily available standard arithmetic hardware might not
necessarily be the most efficient implementation strategy.

Multiple-Base Number System: Theory and Applications stands apart
from the usual books on computer arithmetic with its concentration on
the uses and the mathematical operations associated with the recently
introduced multiple-base number system (MBNS). The book identifies
and explores several diverse and never-before-considered MBNS
applications (and their implementation issues) to enhance computation
efficiency, specifically in digital signal processing (DSP) and public key
cryptography.

Despite the recent development and increasing popularity of MBNS as
a specialized tool for high-performance calculations in electronic
hardware and other fields, no single text has compiled all the crucial,
cutting-edge information engineers need to optimize its use. The authors’
main goal was to disseminate the results of extensive design research—
including much of their own—to help the widest possible audience of
engineers, computer scientists, and mathematicians.

Dedicated to helping readers apply discoveries in advanced integrated
circuit technologies, this single reference is packed with a wealth of
vital content previously scattered throughout limited-circulation technical
and mathematical journals and papers—resources generally accessible
only to researchers and designers working in highly specialized fields.
Leveling the informational playing field, this resource guides readers
through an in-depth analysis of theory, architectural techniques, and
the latest research on the subject, subsequently laying
the groundwork users require to begin applying MBNS. K11497
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Preface

This is a book about a new number representation that has interesting prop-
erties for special applications. It is appropriately catalogued in the area of 
computer arithmetic, which, as the name suggests, is about arithmetic that 
is appropriate for implementing on calculating machines. These machines 
have changed over the millennia that humans have been building aids to 
performing arithmetic calculations. At the present time, arithmetic proces-
sors are buried in the architectural structures of computer processors, built 
mostly out of silicon, with a minimum lateral component spacing of the order 
of a few tens of nanometers, and vertical spacing down to just a few atoms.

Arithmetic is one of the fields that even young children learn about. 
Counting with the natural numbers (1, 2, 3 …) leads to learning to add and 
multiply. Negative numbers and the concept of zero lead to expanding the 
natural numbers to the integers (…, −3, −2, −1, 0, 1, 2, 3 …), and learning about 
division leads to fractions and the rational numbers. When we perform arith-
metic “longhand” we use a positional number representation with a radix of 
10—undoubtedly developed from the fact that humans have a total of 10 
digits on their two hands. Early mechanical as well as some electronic digi-
tal computers maintained the radix of 10, but the two-state nature of digital 
logic gates and storage technology leads to a radix of 2 as being more natural 
for electronic machines. Binary number representations, which use a fixed 
radix of 2, are ubiquitous in the field of computer arithmetic, and there are 
many valuable textbooks that cover the special arithmetic hardware circuits 
and processing blocks that make use of binary representations.

The subject of computer arithmetic is fascinating since it deals with the 
basic computational underpinnings of processor functions in all digital elec-
tronic systems with applications that are ubiquitous in our modern tech-
nological world. In fact, computer arithmetic is so fundamental to digital 
design that there is a danger of it being dismissed by many designers, who 
see it as well-worn knowledge that is already encased in hardware (actual 
or in a design library) or that can be readily called up from a variety of soft-
ware packages. What is often missing, however, is that computer arithme-
tic can be optimized based on targeted applications and technologies, and 
easily available standard arithmetic hardware may not be the most efficient 
implementation strategy. There is also a strong curiosity element associ-
ated with unusual approaches to implementing fundamental computer 
operations, and in this book we try to stir in a mixture of curiosity with 
our pragmatic approaches to implementing basic arithmetic for two applica-
tion areas: digital signal processing and cryptography. As such, this book is 
somewhat different from most of the textbooks on computer arithmetic, in 
that it deals almost entirely with a rather new multiple-base number system 
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that is rapidly gaining in popularity. In its original form, the double-base 
number system (DBNS) can be viewed as an extension to the binary number 
system. By using a second base, in addition to the base 2 used by the binary 
number system, we uncover some rather remarkable properties of both the 
DBNS and its logarithmic extension, the multidimensional logarithmic num-
ber system (MDLNS).

We trust that the reader will find something fascinating about multiple 
bases and, if we have done our job well, will also be convinced that there 
are applications that can benefit from, at least, a serious consideration of this 
number representation and the techniques we have identified to efficiently 
implement calculations using multiple bases. The authors of the book have 
a collective interest in pursuing alternative representations that have the 
potential to improve aspects of the implementation of high-performance cal-
culations in hardware. Two of us are engineers (Jullien and Muscedere), and 
the principal author, Dimitrov, has both a mathematics and an engineering 
background. All three of us are dedicated to implementing our discoveries 
in advanced integrated circuit technologies, and some of these designs are 
used to illustrate the theory and architectural techniques that are disclosed 
in this book.

In summary, the purpose of the book is to showcase the usefulness of the 
multiple-base number representation in various applications, and our main 
goal is to disseminate the results of our research work to as wide as possible 
an audience of engineers, computer scientists, and mathematicians. We hope 
this book at least partially achieves this goal.

Vassil S. Dimitrov
Graham Jullien

Roberto Muscedere
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1

1
Technology, Applications, and Computation

1.1 Introduction

The field of computer arithmetic is a fascinating subject, and not at all the 
drudgery that most of us experienced with our first exposure to the third r of 
the three r’s at school. The first two r’s are related as requirements of the pro-
cesses required to become literate. The third r relates to numeracy, the under-
standing and implementation of computation which is a basic requirement 
for “technical literacy,” as important a skill in today’s world as was traditional 
literacy in the past. In this introductory chapter, we provide a brief history and 
introduction to number systems and machine calculation; we emphasize spe-
cial applications that drive the search for efficient machine arithmetic given 
the requirements of the applications and the available technology.

1.2 Ancient Roots

Ancient numbering systems abound, but the most striking is the system 
developed by the Babylonians starting around 5,000 years ago. It is strik-
ing in that it is a form of weighted positional system, which we use today. 
However, the Babylonians did not have a symbol for zero (instead they used 
a space) and the weighting was based on the number 60 rather than the num-
ber 10, which we use today for representing decimal numbers. (Vestiges of 
the weight 60 can still be found in the way we measure time and angles.) 
It also appears that the binary number system, which we naturally think 
of as being introduced with the advent of electronic computers built with 
logic gates, was used at least 4,000 years ago for determining weights using 
a simple balance and carefully weighed stones [1].

1.2.1 An Ancient Binary A/D Converter

We can imagine a trader from 4,000 years ago by the side of a river, setting 
up a balance and then searching for a handful of river-washed pebbles that 
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had specific weight characteristics. These characteristics were determined 
from the simple operation of producing a balance between sets of stones. The 
technology used here was based only on the force of gravity using a balance 
bar and fulcrum. The operation is demonstrated in Figure 1.1 for an equiva-
lent 4-bit representation (1–15 times the smallest stone weight). The accuracy 
of the number system is determined by the accuracy with which the stones 
were selected and correctly balanced (including positioning the stones so that 
their accumulated center of gravity was always in the same position on the 
opposite sides of the balance). The relative weights of the stones in the full 
measurement set are shown in Figure 1.1 as {1, 1, 2, 4, 8}. Designers of binary-
weighted digital/analog converters (D/As) know this sequence well! Such a 
D/A converter can be used to implement a successive approximations A/D 
converter. The two 1’s are redundant in terms of a 4-bit measurement system, 
only being required to generate the full measurement set. In a sense, the trad-
ers of 4,000 years ago had also built an A/D converter in which an analog 
commodity weight was converted into a subset of stones from the full mea-
surement set.

1.2.2 Ancient Computational Aids

Computational aids and calculators also have ancient roots. Counting 
boards (a precursor of the “more modern” abacus using beads) have been 
used for several thousand years [2], with some evidence that they were 

1 1 2 4 8

FIGURE 1.1 (See color insert)
Four-thousand-year-old binary number system.
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initially developed by the Romans. Of some surprise, an astronomical pre-
diction machine, circa 200 BC, was recovered from an ancient shipwreck 
off the Greek island of Antikythera in 1901. This mechanism was truly 
advanced based on the fact that mechanical calculators of similar complex-
ity did not appear again (or, at least, have not been found) for at least another 
1,500 years. Based on an analysis of CT scans of the components [3], the cal-
culator used a variety of sophisticated precision gears, each with up to sev-
eral hundred teeth, along with epicyclic gearing. The mechanism was able 
to compute addition, subtraction, and multiplication with precise fractions 
and, for example, could predict the position of the moon based on models 
available at the time.

1.3 Analog or Digital?

Over the past five centuries the interest in computational aids and calcu-
lating machines has steadily increased, with an explosive growth over the 
past 100 years, driven by mechanical devices, electromechanical devices, and 
electronics.

Mechanical and electromechanical devices were based on decimal 
arithmetic because of the need to interact with human operators. Some 
of the early electronic computers also used the decimal-based number 
systems for the same reason, even though the two-state property (0, 1) 
of signal propagation into and out of computer logic circuits provides 
a perfect match with pure binary number representations. Until the 
latter part of the 20th century, analog devices were also heavily used 
for advanced mathematical computations, such as finding solutions of 
 nonlinear differential equations, where a physical quantity (e.g.,  voltage 
in electronic circuits or rotation in mechanical systems) is observed 
as the solution to a problem. In this case there is no implied number 
 system, only that of the operator in interpreting the analog results. 
Analog  systems have a relatively large computational error  (several 
percent) compared to the much higher precision capable of digital 
machines, but there were application areas found for both analog and 
digital machines. We will discuss an analog method of computing with 
a double-base system in Chapter 3.

Examples of applications that took advantage of the disparity in complex-
ity and error between analog and digital mechanisms are ideally portrayed 
in comparing Lord Kelvin’s analog tide prediction machine [4] to Babbage’s 
digital difference engine [5]; they were proposed within a few decades of 
each other in the 19th century.
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1.3.1 An Analog Computer Fourier Analysis Tide Predictor

The tide predictor computed the height of the tide from a datum point as a 
function of time using the form of Equation (1.1):

 h t H A g t fi i i

i

( ) = + +[ ]{ }
=
∑0

1

10

cos  (1.1)

The predictor combines tidal harmonic constituents, based on harmonic 
components of the changes of the position of the earth, sun, and moon, 
to perform the prediction. The technique is still used today to make tide 
predictions, though the 10 components in Lord Kelvin’s first machine 
are augmented by a factor of 4 or more, based on location [4]. This ana-
log computer used a system of pulleys, wires, and dials (see Figure 1.2), 
and the generation of sinusoid motion used a rotating wheel with an 

FIGURE 1.2 (See color insert)
Lord Kelvin’s tide predicting machine (1876), Science Museum, London. (Copyright 2005 
William M. Connolley under the GNU Free Documentation License.)
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off-center peg to drive a vertically moving arm (the inverse of a piston 
driving a  crankshaft), and similar mechanisms can also be seen in the 
Antikythera machine of 2,000 years earlier! Lord Kelvin’s predictor could 
print out calculations of harbor tide patterns for up to a year in about 4 
hours by turning a crank. Clearly errors of a few percent were acceptable 
for this application, particularly considering the errors in the astronomical 
 models used.

1.3.2 Babbage’s Difference Engine

Charles Babbage’s difference engine [5] was designed to tabulate the val-
ues of polynomials of nth degree using the method of finite differences. 
The engine design used mechanical wheels and gears to compute using the 
decimal number system; the main purpose of the engine was to produce 
accurate mathematical tables with no human error (including direct print-
ing from the engine). His difference engine no. 2 was able to hold (store) 
eight numbers of 31 decimal digits each, allowing the machine to tabulate 
seventh degree polynomials to that precision. By using Newton’s method of 
divided differences, the engine can compute a sequence of values of a poly-
nomial with only the need to add and store, using a ten’s complement form for 
negative numbers. There were some intriguing aspects to the design of the 
engine, including the addition and carry propagation, using carry save and 
carry skip techniques, techniques that are still used in modern microcom-
puters. Babbage never completed the building of the difference engine; we 
had to wait until the 1990s to be able to see replicas at the Science Museum in 
London and the Computer History Museum in Mountain View, California 
(see Figure 1.3).

1.3.3 Pros and Cons

Comparing the tide predictor to the difference engine, we note that the 
difference engine would not be able to automatically compute the com-
plete tide prediction model of Equation (1.1); however, the harmonic com-
ponents could be approximated by finite order polynomials so parts of the 
equation could be individually evaluated, with the final summation to be 
carried out at the end. Perhaps the analytical engine [5,6] that Babbage pro-
posed after abandoning the construction of the difference engine would 
have been more suitable based on its programmability with punched 
cards. However, the complete analytical engine has never been built, and 
even if it were it would be so cumbersome as to require a real engine to 
turn the crank! Analog computing machines were clearly much easier to 
build than digital machines using the technology of the 19th century, and 
this was still the case up to the end of the vacuum tube era (middle of the 
20th century).
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1.3.4 The Slide Rule: An Analog Logarithmic Processor

Analog and digital computational aids were available to students and engi-
neers long before the pocket calculator arrived. One of the authors went 
through his entire college and university education using tables of logarithms 
and trigonometric functions (digital aids) and a slide rule (analog aid). The 
$6.50 purchase of the 1,046-page standards book edited by Abramowitz and 
Stegun [7] was a particularly good deal for the professional engineer in 1969! 
The tables of logarithms (and their inverses) were mainly used for accurate 
computations of multiplications (including reciprocals and powers), with the 
slide rule being used where lower accuracy could be tolerated—this meant 
most of the time! The slide rule uses logarithmic scales on both the static 
body and the slide, so clearly, in both the digital and analog approaches, 
we are using the mapping property of multiplication to addition in going 
from a linear scale to a log scale. For the tables we looked up the logarithms 
of the multiplier and multiplicand, added the logarithms, and looked up 
the inverse logarithm in the tables. It was assumed, of course, that we were 
skilled at adding numbers. For the slide rule calculations the logarithmic 
map was automatically performed with the logarithmic scale. The addition 
was performed by concatenating the slide and body markings and looking 

FIGURE 1.3 (See color insert)
Babbage’s difference engine, Computer History Museum, Mountain View, California. 
(Copyright 2009 Allan J. Cronin under the GNU Free Documentation License.)
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up the sum, as shown in Figure 1.4 (using the author’s slide rule—warts and 
all). The figure shows the cursor “looking up” the concatenation of the body 
scale at 1.5 with the slide scale at 2.5, giving a result of between 3.74 and 3.76 
(the accurate answer is, of course, 3.75).

The master of the slide rule knew the trick to compute a b2 2+  in three 
moves without having to do a difficult addition. The trick was to rewrite the 
expression as shown in Equation (1.2):

 a b a
b
a

2 2
2

1+ = ⋅ + 





 (1.2)

Computing the right-hand side of Equation (1.2) involves a division, a squar-
ing, adding 1, a square root, and a multiplication. Assuming the slide rule 
has a scale of squares (all good slide rules did), then the only tricky move was 
the addition of 1, which is trivial.

Figure 1.5 shows the three moves used to compute 3 4 52 2+ = . We elect 
to choose a > b so that b2/a2 < 1 and the addition will yield a number with 
1 to the left of the decimal point. From Figure 1.5(a) we see the first move, 
where we divide 3 by 4 (0.75) by subtracting the scales and then looking up 
the square (~0.562) on the right-hand side of the scale (at 100 on the x2 scale). 
We now move the slide to 1.562 (or as close as possible) on the left-hand side 
of the slide and move the cursor to 4 on the x scale of the slide. Looking at 
the x scale on the body of the slide rule, we get the answer, 5. The trick here 
was to rewrite the expression so that the addition is trivial. This same idea 
is used in logarithmic arithmetic to turn addition with two addends into 
a unary lookup table. In our group we affectionately refer to this as the 
slide rule trick, and will so refer to it in subsequent chapters dealing with a 
multiple-base logarithmic arithmetic. As an aside, we note that we have to 
keep track of the magnitude of the numbers in the calculation. Clearly the 
56.2 value in Figure 1.5(a) has to be interpreted as 0.562 so that the slide is 
located at 1.562 in Figure 1.5(b). Keeping track of magnitudes of calculations 

FIGURE 1.4 (See color insert)
Multiplication of 1.5 by 2.5 on a slide rule.
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is a skill that has seen some demise since the availability of the ubiquitous 
pocket calculator!

It is interesting to note that logarithmic arithmetic was suggested as a 
computational implementation tool for digital filters as far back as 1971 by 
Kingsbury and Rayner [8], with considerable interest since then in applying 
logarithmic arithmetic to this application area [9–11].

1.4 Where Are We Now?

Analog computers, used to solve mathematical equations, essentially disap-
peared during the early 1970s, although efforts were made to marry them to 
digital machines—a so-called hybrid computer approach. However, a dif-
ferent type of computation with analog devices started in the 1940s with the 
investigation of nervous (or neural) activity by McCulloch and Pitts [12], and 
further developed in the 1960s with the modeling of organic neural clusters 
(brains!) using nonlinear analog circuits. Thus it might be helpful to separate 
out analog computation into linear analog computers, which were used to 
evaluate differential equations with as much accuracy as the linearity of the 
amplifiers with passive component feedback allowed, and nonlinear analog 
processors, which include neural networks, cellular nonlinear networks, and 
their analog circuit implementations.

FIGURE 1.5 (See color insert)
Three moves to compute the slide rule trick.
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1.4.1 Moore’s Law

The 1970s also saw the birth of the microprocessor and the start of the cur-
rent revolution in high-performance computational systems. The advent of 
integrated transistor circuits (ICs) has allowed for an exponential increase 
in the complexity of single-chip computational circuits and the attendant 
advances in information processing capability. Moore’s law [13] has stood 
the test of time (4½ decades and counting) in spite of the need for regularly 
finding solutions to major roadblocks in lithography and other aspects of 
IC fabrication technology. The predictions of an imminent departure from 
Moore’s law abound throughout the decades of advances in IC technology. 
Though as we approach atomic dimensions in the active devices built on sili-
con, Moore’s law certainly seems threatened, unless we can find new nano-
technologies to provide a continuation of the law. Advances in IC fabrication 
density and device speed have had a profound effect on the basic computa-
tional units that are present in almost every IC that is fabricated today. In 
fact, there has been a revolution in the number and type of new applications 
that have appeared simply because of the availability of billions of active 
devices on a single sliver of monolithic crystalline silicon.

The traditional applications for computing, such as the physical sciences, 
finance, and military applications, drove the first forays into electronic comput-
ers and have benefited enormously from the improvements, through vacuum 
tubes, transistors, and integrated circuits. For these applications, the require-
ments for computational accuracy have driven the design of the arithmetic 
units, in particular the use of floating point arithmetic as a way of represent-
ing numbers with precision and dynamic range, in spite of a relatively large 
overhead in the hardware required to perform the arithmetic. The demand 
for faster and more accurate processing power also led to the birth of super-
computers in the 1960s. These are computers that are able to process orders of 
magnitude more information per second than more accessible machines. A 
definition of number-crunching processing power, floating point operations per 
second (FLOPS), was also introduced, and we have seen this measure increase 
from mega-FLOPS to peta-FLOPS over just a few decades. Interestingly, even 
cheap consumer computers exceed the definition of a supercomputer of just 
a few years earlier, often faster than the U.S. military changes the definition! 
The ubiquitous FLOP has also been used as a more general measure of com-
puter processing power, even if the main use is not continuous computation 
with floating point arithmetic. In fact, all of a computer’s systems, including 
its architecture, in addition to arithmetic units, need to have performance 
improvements in order to provide sustained data to the arithmetic unit(s).

1.4.2 The Microprocessor and Microcontroller

The first microprocessors appeared in 1970–1971: the most well known is the 
4004 from Intel Corp. [14]. The CPU chip was actually part of a four-chip set 
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used to build a complete computer system. By the mid-1970s, complete com-
puter systems on a single chip were available in which all of the components 
required to build a complete computer system (albeit very limited) were con-
tained on the chip. One of the first chips was the Intel 8748, which contained 
an erasable programmable read-only memory (EPROM) for programming, 
and most of the pins were available as input/output (I/O) lines. Along with 
programmable I/O pins, the 8748 contained a basic timer and interrupt struc-
ture that together would normally be considered nonessential for a standard 
computer system, let alone for a resource-limited single chip of that time. In 
fact, this and subsequent complete single-chip computers were targeted to 
a new market where the computer was embedded into a product that was 
not, itself, a computer. In reality, the chip was a very flexible microcontroller. 
As an example, one of the major applications for the 8748 was as a keyboard 
controller for IBM computers. The terms microcontroller and embedded systems 
are very familiar to us now, but their birth was with the development of 
devices such as the 8748. In terms of being a computational unit, they were 
very limited by today’s standards, as were all of the microprocessor products 
of that time, but that did not stop users of these devices from exploring ways 
that fast computations could be carried out using alternative techniques [15].

The first desktop computers, based on microprocessors, started to appear 
in the late 1970s. They coexisted with mini-computers for several years until 
they became sufficiently powerful so that they could take on the same com-
plexity of computational tasks that mini-computers had handled just a few 
years previously. In fact, whatever had been on a 19-inch rack-mount-printed 
circuit board in the mini-computer era was now available on one or two very 
large-scale integration (VSLI) chips. These included coprocessors that were 
expressly designed to offload floating point and integer arithmetic calcula-
tions from the main processor.

1.4.3 Advances in Integrated Circuit Technology

Advances in the implementation of computation have been driven by advances 
in integrated circuit technology and the evolution of the approaches to build-
ing computational circuits. The technology advances were predicted by 
Gordon Moore [13] with remarkable accuracy, though the fact that the indus-
try uses Moore’s law as a guide to its own technology improvements [16] per-
haps introduces something of a self-fulfilling prophecy into the picture. The 
semiconductor industry is very inventive, and there have been  several major 
breakthroughs that have maintained the exponential advances, often against 
the predictions of top people in the field. The first microprocessors were built 
with p-channel metal oxide semiconductor (PMOS) and then n-channel MOS 
(NMOS) technologies, but the star technology is still complementary metal 
oxide semiconductor (CMOS). CMOS became the dominant MOS digital tech-
nology in the 1980s, and has maintained this position in spite of other tech-
nologies, such as Bipolar-CMOS (BiCMOS) and GaAs, that, for a time, offered 
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some advantages, e.g., speed, over CMOS. In reality, CMOS is a set of logic 
families that make use of the ability to produce complementary devices in the 
same process, and we have seen a wide variety of static and dynamic CMOS 
logic families that have been used to implement computation. The first com-
mercial CMOS processes used lithography (the optical technique of patterning 
photosensitive material on semiconductor substrates) with dimensions mea-
sured in microns. At the time of writing this book, 22 nm processes are start-
ing to come on line, and 45 nm ICs are in the marketplace. An experimental (in 
2009) Intel microprocessor family has 48 cores (individual processors) on a 1.3 
billion transistor single chip (called the cloud computer). The computational 
power of such chips is measured in tera-FLOPS.

1.5 Arithmetic and DSP

Concurrent with the commercial development of integrated circuits in the 
1960s, a new field of research was beginning to emerge: digital signal pro-
cessing (DSP). In DSP, signals are sampled both in time (discrete time) and 
in magnitude (digital). Although the basic theoretical techniques were quite 
well known before the commercial development took place, the use of DSP 
only took a firm foothold with the advent of semiconductor electronics and, 
in particular, IC fabrication. We will spend a few pages discussing this 
subject because the search for efficient computational techniques for DSP 
algorithms led to an increased interest in alternative arithmetic techniques, 
including the double-base number system. In this section, for completeness, 
we review the mathematical bases for replacing classical analog processing 
with DSP.

1.5.1 Data Stream Processing

One of the features of many DSP algorithms is the requirement for data 
stream processing, that is, the continuous application of a computational 
algorithm on an input digital data stream to produce a continuous output 
data stream. This is exactly what analog signal processing does, but ana-
log computers operate on continuous waveforms, and instead of digital 
logic, analog processors use amplifiers, resistors, capacitors, and induc-
tors. Replacing continuous (analog) signal processing with DSP has some 
limitations, but these are overcome in practice. This represents a funda-
mental difference between the use of computers to solve a problem, where 
a program is written to input numerical data and to output the solution to 
the problem as another set of data. Once the solution has been obtained, 
the computer has done its job! In data streaming, however, the processor 
is continuously fed with a stream of numbers (e.g., a regularly sampled 
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analog signal), and outputs a stream of numbers at the same rate as the 
input. The stream of input numbers may be essentially infinite (e.g., 
samples of the output of a microphone that is never turned off), so the 
processor is never finished. The throughput rate (the inverse of the time 
between adjacent samples of the waveform) is determined by the applica-
tion, and early DSP hardware was woefully inadequate to keep up with 
even the lowest-bandwidth applications. During the final three decades of 
the 20th century, many different processing techniques, including alterna-
tive arithmetic techniques and special architectures, were developed to 
squeeze higher and higher throughput rates out of the available hardware. 
As IC technology advances, mainstream computer arithmetic solutions 
can operate at sufficiently high-throughput rates to satisfy many of the 
ubiquitous applications, such as multimedia streaming, with acceptable 
results. However, as the definition of acceptable becomes more and more 
severe, as new applications take hold, and as we approach a potential brick 
wall for current technologies, it will be very useful to maintain interest in 
alternative techniques in order to increase the degrees of freedom to the 
designers of future systems.

1.5.2 Sampling and Conversion

The sampling operation allows continuous waveforms to be captured at reg-
ular intervals as streams of digital data. Figure 1.6 demonstrates the effect of 
sampling continuous signals by looking at the time and frequency domain 
of a sampled band-limited time domain waveform using the Fourier trans-
form (FT) [17]. The figure shows time domain waveforms on the left and 
frequency domain waveforms on the right.

In Figure 1.6 we make use of the multiplication ⇔ convolution FT mapping 
property. The FT is shown in Equation (1.3), where f(t) is an integrable func-
tion, t is the variable in the time domain, and ω is the variable in the radian 
frequency domain; i is the complex operator.
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Equation (1.4) shows the inverse FT.
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The FT is used to analyze the frequency domain components of a time 
domain waveform. The multiplication ⇔ convolution mapping property 
operates in both the forward and inverse transform directions; Figure 1.6 
uses the forward mapping direction. We also use the property that a periodic 
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train of Dirac delta functions (impulse train) in the time domain maps to 
another impulse train in the frequency domain [17]. A Dirac delta function, 
δ(x), is defined as in Equation (1.5):
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FIGURE 1.6
Processing continuous signals using digital signal processing (DSP).


