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Preface

A significant part of this book is based on a graduate course on pattern for-
mation which I have been teaching during the past two decades in the Physics
Department at Ben-Gurion University. Another significant part of the book
reflects the activities of my research group and the interactions with a few
close colleagues, throughout this period on pattern formation problems and
their applications to ecology. The book has also benefited from numerous joint
meetings with Prof. Moshe Shachak’s ecology group. These meetings helped
to establish a common language, understandable to both physicists and ecol-
ogists, which I have used in the book.

The book is primarily intended for graduate students and researchers in
nonlinear and interdisciplinary physics, geophysics, biomathematics, mathe-
matical ecology, and ecohydrology. However, a broader readership, including
ecologists in general and physical geographers, may also benefit from the book.
The book chapters are intentionally divided into three parts: an overview of
pattern formation and spatial ecology as disparate research fields that are
yet strongly related to one another (Part I), an advanced account of pattern
formation theory (Part II), and applications of pattern formation theory to
ecological problems (Part III). Readers who are not mathematically oriented
may skip Part II, which is pretty technical, and use the basic introduction
to pattern formation theory and modeling in Part I to follow the ecological
applications of pattern formation theory described in Part III. A fairly good
understanding of model results can be achieved without dwelling on their
mathematical derivation.

Many studies that are related to the topics addressed in the book are not
cited, and I apologize for that. The book is not intended to provide a review
of the proliferating studies at the interface between pattern formation and
spatial ecology; it is rather intended to introduce the concepts and tools of
pattern formation theory and demonstrate their utility in ecological research
using selected problems in spatial ecology. It therefore includes representative
references rather than citations to all relevant studies.

The content of the book is a result of many collaborations with colleagues
and students. I am indebted to Christian Elphick, from whom I learnt more
about asymptotic expansions and perturbation theory than from any course
or textbook. I am also indebted to Moshe Shachak, who introduced me to
the field of spatial ecology and kept updating me with new relevant studies; I
particularly benefited from his integrative approach to the field. Special thanks
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go to Aric Hagberg and Jost von Hardenberg for most enjoyable and fruitful
long-term collaborations, and to Golan Bel for the very productive recent
collaboration. The outcomes of these interactions fill up many pages in this
book. Special thanks go also to Harry Swinney, Anna Lin and other members
of the experimental Austin group. The long and fruitful collaboration with
this top group helped me realize the importance of confronting theory with
experiment and has provided many joyful moments, especially when matching
between the two has been achieved. Last but not least, I would like to thank
Yagil Osem, Antonello Provenzale, Hezi Yizhaq, and Yair Zarmi for the most
productive interactions, the outcomes of which constitute important parts of
the book.

First and foremost, however, this book describes the work of graduate stu-
dents I have been advising and co-advising throughout the years: Arik Yoche-
lis, Erez Gilad, Efrat Sheffer, Assaf Kletter, Rotem Manor, Adam Lampert,
Jonathan Nathan, Yair Mau, Lev Haim, Shai Kinast, Paris Kyriazopoulos, and
Yuval Zelnik. Their capacity to study new topics and methods, their commit-
ment to hard work, and the often surprising ideas and results they came up
with made this book possible.

I would also like to thank all people who helped me in preparing the
manuscript through helpful suggestions and corrections or figure preparation:
Yair Zarmi, Moshe Shachak, Isaak Rubinstein, Ruhama Lipow, Michele Her-
man, Yuval Zelnik, Yair Mau, Lev Haim, and Marco Cusmai. Finally, I would
like to thank Luna Han, a senior editor of the Taylor & Francis publishing
group, for her helpful comments and patience, and my wife, Liora, for her help
in designing the cover page and for her enthusiastic and continuous encour-
agement.

The support of the Israel Science Foundation, the US - Israel Binational
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Chapter 1

Introduction

1.1 An emerging new scientific discipline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Pattern formation—a missing link in ecological research . . . . . . . . 3
1.3 Purpose and scope of the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 An emerging new scientific discipline

Scientific research is generally conducted within well established disciplines
of “normal science” [162] with few cross-disciplinary interactions. Periods of
time in which two disparate scientific disciplines begin to interface with one
another are rather the exception. Such is the case with spatial ecology and
pattern formation, a research field that centers on the nonlinear dynamics of
spatially extended systems and the self-appearance of spatial patterns. Field
observations in arid and semi-arid regions during the past decade [317, 309, 63,
101] have revealed nearly periodic vegetation patterns that are familiar from a
variety of other pattern-formation contexts, including fluid dynamics, chemical
reactions and nonlinear optics [56]. A few examples of such patterns are shown
in Figure 1.1. They consist of vegetation spots in an otherwise bare area devoid
of vegetation (panel (a)), vegetation stripes (panel (b)), or barren gaps in
vegetated areas (panel (c)). The understanding that vegetation patchiness is
not merely dictated by environmental heterogeneities, but may also be a result
of self-organization driven by pattern-forming instabilities of uniform states,
has led to a surge of empirical and theoretical studies using the conceptual
framework of pattern-formation theory [169, 155, 325, 128, 255, 256, 29, 212].

The relevance of pattern-formation theory to spatial ecology has been
pointed out earlier [275, 173, 172], and has motivated modeling studies in var-
ious ecological contexts [259, 307, 209, 40, 293, 15, 190, 341, 220]. However,
of all contexts, self-organized vegetation patchiness in water-limited systems
stands out in providing the best case study, so far, for applying pattern-
formation theory to spatial ecology. One reason for that is the wide scope of
observed vegetation patterns and the good correspondence to model predic-
tions. These observations not only include nearly periodic spot, stripe and gap
patterns, but also a wide variety of non-periodic patterns (see Figures 10.12,
10.17 and 10.19). Another reason is the wide scope of ecological problems that

1



2 Nonlinear Physics of Ecosystems

FIGURE 1.1: Aerial photographs of nearly periodic vegetation patterns in
nature: (a) a spot pattern in Zambia (from [29]), (b) a stripe pattern in Niger
(from [317]), (c) a gap (“fairy circle”) pattern in Namibia (courtesy of S.
Getzin).

can be addressed, including outstanding questions such as desertification, bio-
diversity loss and their implication for ecosystem function.

The increasing interest in dryland vegetation has motivated pattern for-
mation studies in wetland vegetation too [85, 46], and in a few other marine
ecosystems, such as mussels beds [178]. In all these cases pattern formation
results from non-uniform instabilities of uniform states in which the growth of
spatially structured modes leads to patterned states. However, pattern forma-
tion may also result from uniform instabilities that give rise to a multiplicity
of stable uniform states, as patterns consisting of spatial domains occupied
by different states are then possible. As will be shown in Part II of this book,
such systems can show a wide variety of persistent patterns, including station-
ary labyrinthine patterns, rotating spiral waves, and spatiotemporal chaos. A
multiplicity of stable states has been found in studies of tidal marshes [197],
plankton systems [262, 261] and coastal vegetation [140], and is likely to be
found in many more marine or marine-related ecosystems. These systems all
lend themselves to pattern formation studies.

The main thesis we pursue here is that inasmuch as concepts of nonlinear
dynamics, such as multi-stability of steady states, tipping points, oscillations
and chaos, have already been integrated into ecological research, pattern for-
mation concepts should be integrated too. The latter include the concepts of
a non-uniform instability, periodic stripe and hexagonal patterns, traveling
waves, front dynamics, spatial resonances and others. The need to integrate
these concepts should be expected on general grounds, as ecosystems are non-
linear spatially extended systems, like all other pattern forming systems in
nature, but can also be motivated using concrete examples, as we discuss in
the next section.
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1.2 Pattern formation—a missing link in ecological

research

Much effort is focused in ecology on understanding the reciprocal rela-
tionships between the abiotic environment, biodiversity, and ecosystem func-
tion [180]. We argue that these relationships are very often mediated by
pattern-formation processes as Figure 1.2 schematically illustrates. Pattern
formation is directly linked to any of the three components (small dotted ar-
rows). It is linked to the abiotic environment because environmental stresses
often induce spatially patterned states. It is linked to biodiversity because
it may induce self-organized heterogeneity of biomass and resources that af-
fect inter-specific interactions1. It is also linked to ecosystem function since
pattern formation can affect water-use efficiency and biomass production, or
imply different rates and pathways of nutrient change.

These links form indirect causal relationships between the abiotic environ-
ment, biodiversity and ecosystem function through various pattern formation
processes (solid arrows in Figure 1.2). The impact of climate change on species
diversity through pattern transitions that change inter-specific interactions is
an example of an indirect relation between the abiotic environment and bio-
diversity. A possible example of an indirect relation between biodiversity and
ecosystem function is spatial self-reorganization of a community in an alter-
native stable state of different productivity, and an example of an indirect
relation between the abiotic environment and ecosystem function is gradual
regime shifts involving cascades across different pattern states.

The pattern formation links depicted in Figure 1.2 involve processes occur-
ring on different length scales and across different organization levels. Figure
1.3 illustrates an example of a series of such processes in the context of dry-
land vegetation. The processes described are motivated by model studies to be
presented in detail in Part III. Local biomass-water feedbacks, involving wa-
ter transport toward vegetation growth points, can induce spatial instabilities
that lead to vegetation pattern formation at the landscape scale. Environ-
mental changes at the landscape scale, such as drought or spate, can induce
transitions to a variety of other alternative stable patterns. Associated with
these transitions are changes in the spatial soil-water distributions, which,
in turn, affect inter-specific interactions at local scales. In woody-herbaceous
systems these interaction changes can result in transitions from competition
to facilitation and, consequently, in community-structure changes.

The scenario described above includes bottom-up processes whereby plant-
plant interactions, mediated by the limiting water resource at the local scale,
give rise to the emergence of periodic patterns at the landscape scale. It also

1The term inter-specific interaction refers to the interaction between individuals of dif-
ferent species, in contrast to the term intra-specific interaction, which refers to interactions
between individuals of the same species.
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FIGURE 1.2: Pattern formation processes induce indirect causal relation-
ships between the abiotic environment, biodiversity and ecosystem function.
The dotted arrows represent different manners by which pattern formation
is linked to these three components, and the solid arrows represent compo-
sitions of these manners that form indirect relationships between the three
components (see the text for examples).

includes top-down processes, in which species-interactions at local scales are
affected by pattern changes at the landscape scale. These processes not only in-
volve disparate length scales, but also different levels of organization, starting
at the organism level, with species traits that give rise to spatial instabilities,
proceeding to the population level, through vegetation pattern formation, and
to the community level, through changes in inter-specific interactions.

This example also highlights the integrative role pattern formation can
play in ecological research. Ecology, as an empirical science, has branched
into different research fields according to the hierarchical levels and spatio-
temporal scales that the empirical studies have addressed. As a result, many
subdisciplines have emerged, such as population ecology, community ecology,
ecosystem ecology2, and landscape ecology. By bridging over different orga-
nization and trophic levels, and over different length and time scales, studies
of pattern formation in ecology can contribute to the integration of these
subdisciplines.

2Ecosystem ecology is a subfield of ecology dealing with the flow of energy and matter
through biotic and abiotic ecosystem components. The term is somewhat misleading in that
it refers to specific aspects of ecosystems, rather than to all aspects as the term suggests.
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FIGURE 1.3: Pattern formation can link phenomena that occur on dif-
ferent length scales and organization levels - an illustration with a dryland-
vegetation example. Local biomass-water feedbacks (lower frame) induce veg-
etation pattern formation at the landscape scale (upper frame; dark spots
represent vegetation patches). Environmental changes at the landscape scale
induce transitions to other alternate stable vegetation patterns (upper frame).
These pattern transitions change the local soil-water distributions and thereby
affect inter-specific interactions (lower frame). In woody-herbaceous systems
these interaction changes may induce transitions from competition to facili-
tation. In other systems they may feed back on vegetation pattern formation
(dashed arrow).

1.3 Purpose and scope of the book

The purpose of this book is to assimilate the concepts and methods of
pattern formation theory into ecological research and, thereby, to contribute
to the development of the newly emerging interdisciplinary research field at
the interface between spatial ecology and pattern formation. Much of the
book revolves around the diagram shown in Figure 1.2, and the elucidation
of various links between pattern formation, on one hand, and the abiotic
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environment, biodiversity and ecosystem function, on the other hand. We focus
on dryland vegetation as a case study, but the general approach is applicable
to other ecological contexts, including marine ecosystems. The book is by no
means intended to be comprehensive. It is rather intended to demonstrate
the utility of pattern formation theory in ecological research and to highlight
outstanding open problems that can be handled with this approach, along
with the progress that has already been made on selected problems.

Being an interdisciplinary field in its infancy, a significant part of the book
is devoted to the introduction of pattern formation theory. The introduction is
made at two levels; an elementary level that requires basic knowledge of linear
algebra and ordinary differential equations, and a more advanced level which
also requires familiarity with partial differential equations. The elementary-
level introduction is included in Part I of the book, which is devoted to an
overview of pattern formation and spatial ecology as strongly related disparate
research fields. The advanced introduction is presented in Part II of the book,
and includes descriptions of analytical tools and applications of these tools to
the study of general mechanisms of pattern formation and pattern dynamics.

There are several related topics which were left aside. We focus on deter-
ministic dynamics, largely ignoring stochastic aspects, such as demographic
noise in small populations [28] and noise-induced patterns [34, 268, 253]. A
few pattern formation topics have not been considered, including front prop-
agation into an unstable state [73], which is relevant to species invasion prob-
lems [289], and pattern formation in excitable media [211], which has been
studied in the context of phytoplankton ecosystems [311, 189]. The presen-
tation of mathematical methods has also been limited to the most common
ones. For example, we refer to, but do not describe the derivation of phase
equations far from the onset of instabilities [226, 136], nor do we describe
free boundary-layer analysis, leading, for example, to kinematic descriptions
of curved fronts [20, 119, 121] and spiral waves [124]. Finally, although nu-
merical methods are crucial tools for studying nonlinear spatially extended
systems we left a detailed description of these methods outside the scope of
this book, as this topic is well covered in the literature.
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2.1 Natural and laboratory realizations of pattern

formation

The term “pattern formation” refers to processes by which positive feed-
backs operating at small spatial scales give rise to self-organization at large
scales that results in stationary or time-dependent spatial patterns. Numer-
ous examples of such processes have been found and studied in various fields
of science, including fluid dynamics, chemical kinetics, nonlinear optics and
geophysics. Much of our understanding of pattern formation phenomena de-
rives from controlled laboratory experiments conducted on simple model sys-
tems. Following a brief description of patterns in nature and some of their
characteristic features (Section 2.1.1), we introduce two experimental model
systems, the Rayleigh–Bénard thermal convection system (Section 2.1.2) and
the Belouzov–Zhabotinsky chemical reaction (2.1.3). Both systems show a
variety of pattern formation phenomena and have played important roles in
uncovering general mechanisms of pattern formation and dynamics.

9
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2.1.1 Patterns in nature

A common feature of spatially extended nonequilibrium systems is the pos-
sible emergence of ordered patterns with characteristic length scales. Plenty
of natural examples of this phenomenon exist, including cloud streets, sand
ripples, stone patterns and vegetation patterns (Figure 2.1). A fascinating as-
pect of these pattern-formation phenomena is that the order is not imposed by
any external factor; it rather results from positive feedbacks operating at small
scales, that give rise to self-organization and pattern formation at large scales.
We will discuss these phenomena in two specific physical contexts shortly, but
some of the underlying principles can already be stated. A uniform force that
drives a uniform system out of equilibrium can break the spatial uniformity of
the system and induce spatially periodic patterns. The transition to the pat-
terned state is not gradual; spatial variability appears only beyond a critical
force strength. We call such a phenomenon a symmetry breaking instability.
Although we generally cannot prove the emergence of patterns in nature from
symmetry breaking instabilities, we often do make this association, relying
on experimental studies of model systems and on mathematical analyses of
model equations.

Another principle of pattern formation relates to the universal nature of
these phenomena, that is, to the observations of similar patterns, such as
stripes, hexagons and spiral waves, in completely different physical contexts.
Stripe patterns, for example, appear in clouds, in dryland vegetation and in
animal coat patterns, although the mechanisms responsible for these patterns
are obviously specific to the system in question, and differ from one another.
The universality of pattern formation phenomena is tightly related to the
symmetry breaking instabilities that induce patterns; different systems that
go through the same type of instability behave similarly close to the instability
threshold.

Pattern formation is an example of an emergent property [3], that is, a
property that appears at the system level, e.g., the level of clouds, sand dunes,
or patchy landscapes, and often has no meaning at the level of the system’s
constituents—the water molecules, sand grains, or plants. At the system level,
patterns are affected by global forces, such as temperature, wind, and rainfall,
and the resulting pattern dynamics may feed back on small-scale processes
(Figure 1.3). Studying pattern formation and pattern dynamics is therefore
significant for understanding bottom-up and top-down cross-scale processes
in complex natural systems.

2.1.2 The Rayleigh–Bénard system

A classical experimental model for pattern formation is the Rayleigh–
Bénard (RB) system of thermal convection [44, 24]. Consider a fluid at rest
that is heated from below. If the temperature difference between the bottom
and the top of the fluid compartment is smaller than some critical value,
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FIGURE 2.1: Patterns in nature. From left to right: cloud stripes, sand
ripples on a dune [13], stone patterns [151] and grass patterns [325].

FIGURE 2.2: Schematic representation of convection rolls in the Rayleigh–
Bénard system. The fluid compartment is of depth d with temperature at the
bottom Tbot = T +∆T higher than that at the top Ttop = T . From [56].

∆T = Tbot − Ttop < ∆TC , the fluid remains at rest and the heat trans-
fer upward proceeds by molecular conduction. However, when ∆T > ∆TC a
convection sets in, generating ordered parallel fluid rolls as illustrated in Fig-
ure 2.2. The number of rolls is approximately determined by the ratio of the
length of the fluid compartment to its height, the so-called aspect ratio.

Why does the rest state of the fluid become unstable beyond a certain
temperature difference? Imagine a fluctuation in which a fluid particle1 at
some height has a temperature which is slightly higher than the surrounding
fluid at that height. Because of thermal expansion the fluid particle will have
a lower density than that of the surrounding fluid (i.e., will be lighter) and will
tend to move upward. As it moves upward the surrounding fluid becomes yet
colder and the buoyancy force upwards increases. This is a positive feedback
between the height of the fluid particle and the buoyancy force; the higher the

1By a “fluid particle” we mean a parcel of fluid which is very small on a macroscopic
scale, but still very large on a microscopic scale.
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particle’s position the stronger the force and the stronger the force the higher
the particle’s position. Besides the buoyancy force there are also processes that
act to stabilize the rest state. Fluid viscosity induces transfer of linear momen-
tum from the upward moving fluid particle to its neighborhood, thus reducing
its momentum and speed. In addition, thermal conduction induces diffusion
of heat from the fluid particle to its colder neighborhood, thus reducing the
buoyancy force that drives the fluid particle upward. The instability therefore
sets in at a critical temperature difference, ∆TC , at which these stabilizing
factors just balance the destabilizing buoyancy force.

The instability can be induced by varying other parameters that affect the
buoyancy force or the stabilizing factors: the coefficient of thermal expansion,
α, the thermal diffusivity, κ, the fluid’s kinematic viscosity, ν, the gravitational
acceleration, g, and the hight of the fluid layer, d. The instability can be
induced, for example, by increasing α which strengthens the buoyancy force,
or by decreasing κ and ν, which weakens the stabilizing factors. The effects of
all parameters are lumped together in a single dimensionless parameter, the
so called Rayleigh number R, given by [44]

R =
αg∆Td3

κν
. (2.1)

The instability sets in as R exceeds a threshold value Rc. In practice, the
Rayleigh number is generally increased by heating the bottom of the fluid
compartment, i.e., by increasing ∆T . The roll patterns that form beyond
the instability point can be visualized by the shadowgraphy method. This
method makes use of the fact that the index of refraction varies weakly with
temperature; warmer (colder) fluid regions have a lower (higher) index of
refraction. Since the temperature varies periodically across the rolls, so does
the refraction index. Passing a beam of light through the fluid layer results in a
pattern of alternating bright and dark stripes. The bright stripes correspond to
regions of cold fluid flowing downward, that act as converging lenses because
of the higher refraction index. Figure 2.3 shows examples of roll patterns
observed with the shadowgraphy method.

2.1.3 The Belouzov–Zhabotinsky reaction

The Rayleigh–Bénard system is an example of an experimental pattern-
formation model associated with fluid motion. Chemical reactions provide
another type of experimental pattern-formation model. A classical example is
the oscillatory Belousov–Zhabotinsky (BZ) reaction [90], a catalytic oxidation
reaction of malonic acid in an acidic bromate solution. A nice aspect of this
reaction is that the oscillations are clearly visible to the bare eye because of
the different colors associated with the two oxidation states of the catalyst.
The mechanism of this reaction has been worked out by Field et al. [91]
and contains many elementary reactions. A reduced model (the Oregonator),
consisting of only five reaction steps, captures many qualitative aspects of the
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FIGURE 2.3: Regular (a) and chaotic (b) roll patterns in a Rayleigh–Bénard
convection experiment. From [24].

BZ reaction dynamics [92]. The five reaction steps are:

A+W → U + P , (2.2a)

U +W → 2P , (2.2b)

A+ U → 2U + 2V , (2.2c)

2U → A+ P , (2.2d)

B + V → hW . (2.2e)

where A = BrO−
3 (bromate ions), W = Br− (bromide ions), U = HBrO2

(bromous acid), P = HOBr (hypobromous acid), V is the oxidized form of
the catalyst (e.g., cerium Ce4+), B = CH2(COOH)2 (malonic acid), and h is
a stoichiometric coefficient (note that this simple model is not stoichiometri-
cally balanced). The key steps in this reaction scheme are (2.2b) and (2.2c).
Both steps compete for U , but while U is consumed in (2.2b) it is autocatalyt-
ically produced in (2.2c). An initial access of W eliminates U in step (2.2b)
before step (2.2c) becomes significant. However, as W drops down step (2.2c)
takes over. This step involves a positive feedback (U accelerates the growth of
itself), which leads to fast exponential production of U . The production of U
is accompanied by the production of V , which changes the color of the solu-
tion. The growth of U is slowed down in step (2.2d) which, together with step
(2.2e), brings the system to the starting point and to the initiation of a new
cycle. The chemical composition needed to initiate the reaction consists of an
acidic aqueous solution containing bromate ions (e.g., potassium bromate),
malonic acid, bromide ions (e.g., potassium bromide), and a metal catalyst in
a reduced form (e.g., cerium Ce3+).

The BZ reaction is an example of an activator-inhibitor system. In such a
system, the activator is a substance that “activates” the growth of itself and
of another substance–the inhibitor. The inhibitor inhibits the growth of the
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FIGURE 2.4: Relaxation oscillations in the BZ reaction. Shown are time sig-
nals of log [Ce4+]/[Ce3+] (top) and log [Br−] (bottom). The oscillation period
is of the order of 102s. Adopted from [91].

activator and often the growth of itself too. In the BZ reaction U plays the
role of the activator and V the role of the inhibitor. Quite often the activator
changes on a time-scale significantly shorter than that of the inhibitor. The
oscillatory dynamics then involve alternate phases of slow and fast concentra-
tion changes as Figure 2.4 shows. Oscillations that involve two distinct time
scales are often called “relaxation oscillations” [296]. In spatially extended
systems with diffusive coupling such oscillations can give rise to traveling-
wave phenomena; diffusion of the activator to its neighborhood, before it is
damped by the inhibitor, can induce its growth there and therefore its spatial
spread. Sufficiently fast inhibitor diffusion, on the other hand, can give rise
to stationary patterns; the fast inhibitor diffusion away from an activated do-
main prevents the local decay of the activator and also the activator’s spread
to the highly inhibited neighborhood of this domain. In the BZ reaction the
activator changes on a time scale much shorter than that of the inhibitor, and
the inhibitor diffusion is sufficiently slow to allow for traveling waves.

Early pattern formation experiments in the BZ reaction were made in
closed systems (petri-dish experiments) with the inevitable approach to a sta-
tionary, uniform equilibrium state. Even in these simple experiments striking
traveling-wave phenomena, such as spiral waves, have been observed [331].
More recent experiments have utilized open systems which are continuously
fed with fresh chemicals so as to keep the system at a fixed distance from
equilibrium [299, 17]. A typical experimental setup consists of a thin reactor
layer containing an inert gel or a porous glass that allow diffusion of the re-
actants but damp convection. The reactor layer is in diffusive contact with
one or two stirred reservoirs which are continuously fed with fresh reagents.
The reaction dynamics can be controlled by varying the flow rates of chemical
reagents, such as bromate or malonic acid, into the reservoirs. The advantage
of this type of setup is that it allows conducting long experiments which are
needed in studying instability phenomena.
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FIGURE 2.5: Patterns in a reactor of the light sensitive BZ reaction whose
lower half is subjected to periodic illumination at twice the natural frequency
of the oscillatory reaction. The unforced reaction (upper half) shows a rotat-
ing spiral wave, while the forced reaction shows a labyrinthine standing-wave
pattern. The labels A and B denote points that oscillate out of phase. From
[241].

Various modifications of the BZ reaction have been studied. One type of
modification is the replacement of the metal catalyst, Ce3+, by other metal
ions such as Fe2+, Mn2+ and Ru2+. Of particular significance is the use of
ruthenium (Ru2+) as the catalyst. This modification makes the chemical ki-
netics sensitive to light, and allows studying the effects of forcing the chemical
oscillations by periodic illumination in time or in space or in both. Experi-
ments on the light-sensitive BZ reaction, subjected to time-periodic, spatially
uniform illumination, have shown resonant responses similar to those found in
periodically forced oscillators [177]. That is, denoting the oscillation frequency
of the unforced system by ω0, and the forcing frequency by ωf , resonance
bands have been found in which the oscillation frequency of the forced sys-
tem, ω, locks to a rational fraction of the forcing frequency, ω = (n/m)ωf , in
a range of ωf around ω0 (whose width increases with the forcing amplitude).
Various resonances (ωf : ω) = (m : n) have been found in the experiments,
revealing part of a Farey tree hierarchy of resonances2 [74, 108] as Figure 8.1
shows. The forcing, however, can also induce new spatial patterns. A striking
example is shown in Figure 2.5, where spiral waves in the unforced reaction
destabilize to standing-wave labyrinthine patterns when a sufficiently strong
uniform forcing with a frequency ωf ≈ 2ω0 is applied. A detailed discussion

2In a Farey tree of resonances, between any two resonances (i : j) and (k : l) there is an
intermediate resonance (i+ k) : (j + l).
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FIGURE 2.6: Patterns observed in the BZ-AOT reaction. From [321].

of periodically forced, spatially extended oscillatory systems is presented in
Chapter 8.

Another interesting modification of the BZ reaction is a water-in-oil mi-
croemulsion system with nanometer-sized droplets of water surrounded by
monolayers of a surfactant (aerosol OT or AOT) and dispersed in oil (oc-
tane) [321]. Since most reagents of the BZ reaction are polar, they reside in
the water droplets and diffuse at a relatively slow rate characteristic of entire
droplets. Some key intermediates, however, are non-polar and therefore escape
into the oil and diffuse much faster. This property of the BZ-AOT reaction
allows for stationary patterns and a wide variety of traveling wave patterns
not observed in the original BZ reaction, as Figure 2.6 shows.

2.2 Pattern-forming systems as dynamical systems

Pattern-forming systems are often described by small sets of fields; the
velocity and temperature fields in thermal convection, the concentrations
of key species in chemical reactions, biomass and resource fields in patchy
landscapes, and so on. Quite often approximate dynamical equations for these
fields are known. For relatively simple systems the dynamical equations are
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derivable from first principles. This is the case with simple fluids that sat-
isfy the Navier–Stokes equations [44], or with electromagnetic radiation in
dielectric materials that satisfies the Maxwell equations [229]. More complex
systems generally involve some degree of modeling. Pattern-forming chemical
reactions, for example, are described by reaction-diffusion models that simplify
the complex chemical kinetics of these reactions. Pattern-forming ecosystems
require a yet higher degree of modeling (see Chapter 9). We will refer to the set
of dynamical equations that describe a pattern forming system as a dynamical
system.

In what follows we distinguish between small and large pattern forming
systems using the concept of dimension of a dynamical system (Section 2.2.1).
Small pattern forming systems are governed by small numbers of independent
degrees of freedom and can be described by small sets of nonlinear ordinary
differential equations or “low-dimensional” dynamical systems. The theory of
low-dimensional dynamical systems is well developed and is described in many
textbooks [296, 165, 163]. We briefly describe it here (Sections 2.2.2, 2.2.3,
2.2.4, and 2.2.5) focusing on concepts that are essential for understanding the
presentation of pattern formation theory in Part II and the applications to
spatial ecology in Part III.

2.2.1 Dimension and size of a pattern-forming system

The dynamical equations of pattern-forming systems represent infinitely
many degrees of freedom; formally, any point in space contributes at least one
degree of freedom. However, because of the dissipative nature of these systems,
the number of independent degrees of freedom reduces dramatically in the
course of time. The asymptotic3 independent degrees of freedom generally
represent slow modes, such as modes that begin to grow at instability points,
but may describe faster processes as well, such as transitions between slowly
evolving states. We define the dimension of a pattern-forming system as the
number of independent degrees of freedom that describe the (asymptotic)
long-term dynamics of the system.

The dimension of a pattern-forming system strongly depends on its physi-
cal size. The size is determined relative to a typical length in the system, such
as the wavelength of a periodic pattern. Thus, a small (large) aspect-ratio
Rayleigh–Bénard (RB) system that fits in a few (many) pairs of rolls, is an
example of a small (large) system. The dynamics of small pattern-forming
systems, just above the instability of the equilibrium state, involve a small
number of independent degrees of freedom. The tremendous reduction in the
number of degrees of freedom in this case is mathematically accounted for by
the center manifold theorem [114], but can be intuitively understood using the
example of a small RB system. The roll pattern that sets in at the instability

3Throughout the book we will use the term “asymptotic” to refer to long times unless
otherwise is stated.
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point represents the first spatial mode for which the buoyancy force just over-
comes all dissipative processes. All other modes describe significantly different
spatial structures for which the dissipative processes still dominate the buoy-
ancy force in some range above the instability point. These modes decay to
zero unless they are nonlinearly coupled to the growing mode. In that case
they do show up but do not represent independent degrees of freedom. As the
system becomes larger, more pairs of rolls fit in, and the difference between ad-
jacent modes (i.e., modes describing n and n+1 pairs of rolls) becomes smaller.
As a result, more modes can grow and the dimension of the system increases.

The independent degrees of freedom of a pattern forming system near an
instability point are often represented by the amplitudes of the modes that
begin to grow at that point. Consider, for example, a chemical system that
goes through an instability to a stationary periodic pattern with a wavelength
λ. The concentrations, ci(x, t) (i = 1, ..., n), of the chemical species that par-
ticipate in the reaction, can be approximated, near the instability point, by

ci(x, t) ≈ αiu(t) cos(k0x+ φ) , (2.3)

where the cosine term represents the spatial mode that starts growing at the
instability point, with k0 = 2π/λ and φ being its wavenumber and phase, u(t)
is a slowly varying amplitude of that mode, and the factors αi are constants.
The amplitude u represents the independent degree of freedom that describes
the long-term dynamics of the system in some parameter range close to the
instability point in which k0 is the only mode to grow4. In small systems, i.e.,
systems whose size L is comparable to λ (L ∼ λ), this parameter range can
be significant and the long-term dynamics are captured by a single degree of
freedom—the amplitude of the growing mode k0. However, in large systems
(L ≫ λ) this range can become diminishingly small, because there are many
other modes with wavenumbers close to k0. At any finite range beyond the
instability point the asymptotic dynamics are described by a set of indepen-
dent degrees of freedom representing a band of modes centered around k0. We
postpone the discussion of large systems to Chapters 5 and 6 and consider in
the rest of this section small systems that are describable by low-dimensional
dynamical systems.

2.2.2 Basic concepts of low-dimensional dynamical systems

Low-dimensional systems are generally described by small sets of nonlinear
ordinary differential equations or ODEs:

u̇ = f(u;λ) , (2.4)

where u = (u1(t), ..., un(t)) is a vector of real valued state variables, represent-
ing the independent degrees of freedom, λ = (λ1, ..., λm) is a set of parameters,

4Note that the number of independent degrees of freedom is not determined by the
number of chemical species n, but rather by the number of modes that grow at the instability
point.
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f = (f1(u;λ), ..., fn(u;λ)) is a non-linear vector function of the state variables,
and the dot represents the time derivative (u̇ = du/dt)5.

The space spanned by the state variables u is called phase space. The
temporal evolution of the system, u(t), from an initial value, u(0), traces a
trajectory in phase space. Trajectories of this kind can be viewed as “stream
lines” of a flow in phase space, determined by the specific form of f(u).

In general, the first objective in studying equations of this kind is identify-
ing steady-state solutions and studying their stability properties. In the phase
space of the system such solutions are represented by points and are often re-
ferred to as fixed points. We say that a steady-state solution, us = (us1, ..., usn)
of (2.4) is linearly stable if any infinitesimally small perturbation of us decays
in time6. Conversely, a steady-state solution us is linearly unstable if there ex-
ists a small perturbation of us that grows in time. To study the linear stability
of us we consider an infinitesimal perturbation of that solution, which we de-
note by δu = (δu1, ..., δun), and insert the perturbed form u(t) = us + δu(t)
into (2.4). Linearizing around us we obtain

˙δu = Jδu , (2.5)

where J is the Jacobian matrix whose (i, j) entry is ∂fi/∂uj|u=us
. The solution

us is linearly stable when the eigenvalues of J all have negative real parts, for
in that case any perturbation δu decays exponentially in time. It is linearly
unstable if the largest real part of all eigenvalues is positive7.

An instability of a steady-state solution generally takes the system to a
new steady-state solution or to a time-periodic solution. We refer to such in-
stabilities as to stationary instability and oscillatory instability, respectively.
In two-dimensional systems steady-state and time-periodic are the only possi-
ble asymptotic solutions. In higher dimensional systems chaotic dynamics are
possible too [296]. In the following two subsections we analyze a few examples
of stationary and oscillatory instabilities and use them to introduce additional
concepts of dynamical systems.

2.2.3 Stationary instabilities

Many of the concepts to be introduced here can be explained using the
following one-dimensional system and variants thereof:

u̇ = f(u;λ) = λu − u3 . (2.6)

5Readers unfamiliar with ODEs are referred to Ref. [165] or to any other textbook on
ODEs

6The theory of dynamical systems defines a few forms of stability [107]. The definition
given here amounts to asymptotic stability in which points near us converge to it directly.
Weaker forms of stability include quasi-asymptotic stability in which nearby points even-
tually converge to us, but not necessarily in a direct manner. This weaker form of stability
occurs, for example, in excitable systems [211].

7The reader is referred to Ref. [165] for a brief introduction to the concepts of matrices
and eigenvalues.


