
“While the debate between enthusiasts and detractors influences the level 
of interest by governments and the public, thankfully there are engineers and 
scientists in academia and industry who continue researching, developing, and 
applying hydrogen technologies toward ever more practical solutions. This book 
provides insights from many of those scientists and engineers on a broad array of 
issues, challenges, and accomplishments of hydrogen technology over the past 
years leading to the present.”
—From the Foreword by William R. Taylor

With contributions from noted laboratory scientists, professors, and engineers, 
Hydrogen Energy and Vehicle Systems presents a new comprehensive 
approach for applying hydrogen-based technologies to the transportation and 
electric power generation sectors. It shows how these technologies can improve 
the efficiency and reliability of energy and transportation systems.

The book’s interdisciplinary approach to sustainable energy systems disproves 
common misconceptions regarding hydrogen technologies and demonstrates 
that hydrogen technologies are a viable part of a sustainable, stable, and secure 
energy infrastructure. The book discusses intelligent energy management 
schemes for hydrogen energy and vehicle systems, safety and environmental 
science related to hydrogen technologies, and the infrastructure required for safe, 
renewable hydrogen options.

A clear and up-to-date resource on hydrogen systems, this work provides 
a balanced presentation of theoretical/technical and application aspects of 
hydrogen technologies. It presents all stakeholder perspectives and connects 
hydrogen technology through proper systems analysis and integration, covering 
both quantitative and qualitative factors. 
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Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide 
Janusz Nowotny

Lithium-Ion Batteries: Advanced Materials and Technologies 
Xianxia Yuan, Hansan Liu, and Jiujun Zhang

Process Integration for Resource Conservation 
Dominic C. Y. Foo

Chemicals from Biomass: Integrating Bioprocesses into Chemical Production Complexes  
for Sustainable Development 

Debalina Sengupta and Ralph W. Pike

Hydrogen Safety
Fotis Rigas and Paul Amyotte

 
Biofuels and Bioenergy: Processes and Technologies

Sunggyu Lee and Y. T. Shah

Integrated Biorefineries: Design, Analysis, and Optimization
Paul R. Stuart and Mahmoud M. El-Halwagi

Hydrogen Energy and Vehicle Systems
Scott E. Grasman



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120829

International Standard Book Number-13: 978-1-4398-2682-9 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable 
efforts have been made to publish reliable data and information, but the author and publisher cannot 
assume responsibility for the validity of all materials or the consequences of their use. The authors and 
publishers have attempted to trace the copyright holders of all material reproduced in this publication 
and apologize to copyright holders if permission to publish in this form has not been obtained. If any 
copyright material has not been acknowledged please write and let us know so we may rectify in any 
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are 
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



v

Contents

Series Preface ........................................................................................................ vii
Foreword .................................................................................................................ix
Preface ......................................................................................................................xi
Aknowledgments ............................................................................................... xvii
About the Editor .................................................................................................. xix
About the Contributors ...................................................................................... xxi

	 1	 Hydrogen	and	Electricity:	Parallels,	Interactions,	and	Convergence ..... 1
Christopher Yang

	 2	 Hydrogen	Infrastructure:	Production,	Storage,	and	Transportation ..... 23
Kevin B. Martin and Warren Vaz

	 3	 PEM	Fuel	Cell	Basics	and	Computational	Modeling ............................45
Umit O. Koylu, Steven F. Rodgers, and Scott E. Grasman

	 4	 Dynamic	Modeling	and	Control	of	PEM	Fuel	Cell	Systems ............... 79
Lie Tang, Nima Lotfi, Joseph Ishaku, and Robert G. Landers

	 5	 Market	Transformation	Lessons	for	Hydrogen	from	the	Early	
History	of	the	Manufactured	Gas	Industry .......................................... 123
Marc W. Melaina

	 6	 Fuel	Cell	Technology	Demonstrations	and	Data	Analysis ................ 159
Jennifer Kurtz, Keith Wipke, Leslie Eudy, Sam Sprik, and Todd Ramsden

	 7	 Producing	Hydrogen	for	Vehicles	via	Fuel	Cell–Based	
Combined	Heat,	Hydrogen,	and	Power:	Factors	Affecting	
Energy	Use,	Greenhouse	Gas	Emissions,	and	Cost ............................. 183
Darlene Steward, Karen Webster, and Jarett Zuboy

	 8	 Hybrid	and	Plug-in	Hybrid	Electric	Vehicles .......................................225
Andrew Meintz

	 9	 Hydrogen	as	Energy	Storage	to	Increase	Wind	Energy	
Penetration	into	Power	Grid ..................................................................... 247
Raquel Garde, Gabriel García, and Mónica Aguado

	10	 Hydrogen	Design	Case	Studies ............................................................... 273
Mathew Thomas, John W. Sheffield, and Vijay Mohan



vi Contents

	11	 Hydrogen	Safety ......................................................................................... 297
Mathew Thomas

	12	 Hydrogen	Fuel	Cell	Vehicle	Regulations,	Codes,	and	Standards .... 311
Carl H. Rivkin



vii

Series Preface 

The subjects and disciplines of chemistry and chemical engineering have 
encountered a new landmark in the way of thinking about, developing, and 
designing chemical products and processes.  This revolutionary philosophy, 
termed green chemistry and chemical engineering, focuses on the designs of 
products and processes that are conducive to reducing or eliminating the use 
and/or generation of hazardous substances. In dealing with hazardous or 
potentially hazardous substances, there may be some overlap with and inter-
relationship between environmental chemistry and green chemistry.  While 
environmental chemistry is the chemistry of the natural environment and 
pollutant chemicals in nature, green chemistry proactively aims to reduce 
and prevent pollution at its very source.  In essence, the philosophies of 
green chemistry and chemical engineering tend to focus more on industrial 
application and practice rather than academic principles and phenomeno-
logical science. However, as both a chemistry and chemical engineering phi-
losophy, green chemistry and chemical engineering derives from and builds 
upon organic chemistry, inorganic chemistry, polymer chemistry, fuel chem-
istry, biochemistry, analytical chemistry, physical chemistry, environmental 
chemistry, thermodynamics, chemical reaction engineering, transport phe-
nomena, chemical process design, separation technology, automatic process 
control, and more. In short, green chemistry and chemical engineering is the 
rigorous use of chemistry and chemical engineering for pollution prevention 
and environmental protection.  

The Pollution Prevention Act of 1990 in the United States established a 
national policy to prevent or reduce pollution at its source whenever feasible. 
In adhering to the spirit of this policy, the Environmental Protection Agency 
(EPA) launched its Green Chemistry Program in order to promote innovative 
chemical technologies which reduce or eliminate the use or generation of 
hazardous substances in the design, manufacture, and use of chemical prod-
ucts. The global efforts in green chemistry and chemical engineering have 
recently gained substantial support from the international communities of 
science, engineering, academia, industry, and governments in all phases and 
aspects.

Some of the successful examples and key technological developments 
include the use of supercritical carbon dioxide as green solvent in separation 
technologies; application of supercritical water oxidation for destruction of 
harmful substances; process integration with carbon dioxide sequestration 
steps; solvent-free synthesis of chemicals and polymeric materials; exploita-
tion of biologically degradable materials; use of aqueous hydrogen peroxide 
for efficient oxidation; development of hydrogen proton exchange membrane 
(PEM) fuel cells for a variety of power generation needs; advanced biofuel 
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productions; devulcanization of spent tire rubber; avoidance of the use of 
chemicals and processes causing generation of volatile organic compounds 
(VOCs); replacement of traditional petrochemical processes by microorganism-
based bioengineering processes; replacement of chlorofluoroacrbons (CFCs) 
with nonhazardous alternatives; advances in design of energy efficient pro-
cesses; use of clean, alternative, and renewable energy sources in manufac-
turing; and much more. This list, even though it is only a partial compilation, 
is undoubtedly growing exponentially.

This book series on green chemistry and chemical engineering by CRC 
Press/Taylor & Francis Group is designed to meet the new challenges of the 
21st century in the chemistry and chemical engineering disciplines by pub-
lishing books and monographs based upon cutting-edge research and devel-
opment to the effect of reducing adverse impacts upon the environment by 
chemical enterprise. In achieving this, the series will detail the development 
of alternative sustainable technologies that will minimize the hazard and 
maximize the efficiency of any chemical choice. The series aims at deliver-
ing the readers in academia and industry with an authoritative information 
source in the field of green chemistry and chemical engineering. The pub-
lisher and series editor are fully aware of the rapidly evolving nature of the 
subject and its long-lasting impact upon the quality of human life in both the 
present and future. As such, the team is committed to making this series 
the most comprehensive and accurate literary source in the field of green 
chemistry and chemical engineering.

Sunggyu	Lee
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Foreword

The gasoline crisis way back in the 1970s produced an initial awareness 
on the part of the general public about the finiteness of popular energy 
sources. Since that time, enthusiasm by the public, investors, and gov-
ernment administrations has surged and waned for various technolo-
gies viewed as possible “silver bullet” answers to the energy needs of 
developed and developing nations. In more recent years, a more realistic 
notion has been adopted by many that there probably are no technology 
silver bullets but rather that an “all of the above” technological approach 
is needed.

Hydrogen technology can be one part of a comprehensive energy approach. 
While hydrogen enthusiasts tout the inherent cleanness of this basic element 
found prolifically in nature, detractors like to point out the challenges and 
costs of producing, storing, and using hydrogen on a large scale. While the 
debate between enthusiasts and detractors influences the level of interest by 
governments and the public, thankfully there are engineers and scientists in 
academia and industry that continue researching, developing, and applying 
hydrogen technologies toward ever more practical solutions.

This book provides insights from many of those scientists and engineers 
on a broad array of issues, challenges, and accomplishments of hydrogen 
technology over the past years leading to the present. As for the future for 
hydrogen technology, whether the glass is half full or half empty may be a 
matter of perspective. However, hydrogen technology seems certain to have 
a role in our energy future.

William	R.	Taylor
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Preface

Purpose	and	Audience

Hydrogen shows great promise both as an energy carrier and as a fuel for 
transportation, portable, and stationary sources; however, the expanded use 
of hydrogen as a renewable energy source raises a number of concerns and 
challenges that complicate planning efforts. Organizations are researching, 
developing, and validating hydrogen pathways to establish a business case 
for market implementation. However, significant research and educational 
challenges still must be addressed.

The use of hydrogen technologies addresses critical societal issues related 
to energy security, stability, and sustainability. First, hydrogen may be pro-
duced from local resources, thus eliminating the need for complex energy/fuel 
supply lines. Second, hydrogen, used in conjunction with renewable energy 
sources, provides a stable method of energy/fuel production. Third, hydrogen 
produced from renewable sources provides clean, emission-free energy/fuel.

Hydrogen technology constitutes a highly interdisciplinary field that 
extends from the fundamentals of materials, electrochemical processes, 
and fuel processing/storage systems, to complex design concepts for hybrid 
vehicles, and renewable power/fuel systems. Infrastructure analysis, market 
transformation, public policy, safety, and environment also play key roles. 
Additionally, sustainable energy systems is an emerging field that aims 
to develop new and improved energy technologies, systems, and services, 
while understanding the impact of energy on the economy and society.

Hydrogen technology research encompasses traditional engineering dis-
ciplines (biological, chemical, electrical, environmental, geological, material 
science, mechanical, systems), sciences (biology, chemistry, mathematics, 
physics), social sciences (economics, psychology), and business. Thus, the 
book addresses transformational interdisciplinary research in the emerg-
ing field of sustainable energy systems to disprove common misconceptions 
regarding hydrogen technologies and demonstrate that hydrogen technolo-
gies are a viable part of a sustainable, stable, and secure energy infrastructure.

The book addresses a new comprehensive approach to the applications of 
hydrogen-based technologies aimed at integrating the transportation and 
electric power generation sectors to improve the efficiency and reliability of 
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both systems. Improving the overall efficiency and performance of any/all 
stages will decrease costs and improve market penetration, which is critical to 
the long-term success of hydrogen technologies. The book also addresses intel-
ligent energy management schemes for hydrogen energy and vehicle systems, 
as well as safety and environmental science related to hydrogen technolo-
gies and the infrastructure required to provide for safe, renewable-hydrogen 
options.

Major themes of this book are focused on hydrogen fuel and fuel cell tech-
nologies (including safety and environmental science), hydrogen vehicle sys-
tems, hydrogen energy systems, and hydrogen infrastructure and marketing 
strategies. Whereas other books focus on specific aspects of hydrogen (e.g., 
materials, fuel processing, fuel cell electrochemistry), this book aims to be a 
comprehensive look at state-of-the-art research in hydrogen energy and vehi-
cle systems.

There is strong interest in hydrogen as an energy carrier that has gained 
support from industrial companies and a continuously growing level of 
government backing. While the establishment of a sustainable hydrogen 
economy is seen as key to long-term environmental and economic stabil-
ity, achieving these societal benefits involves a variety of stakeholders on 
regional, national, and global levels. Thus, this book will do the following:

• Provide the basis for pursuing a broad research agenda to develop, 
demonstrate, evaluate, and promote the long-term successful use of 
hydrogen-based technologies

• Develop resources to attain, coordinate, and articulate stable and 
independent energy benefits

This book is appropriate for researchers and professionals in energy-
related fields, faculty in related disciplines, students in related majors, and 
policy makers. It may be used as a reference for the practitioner or for univer-
sity courses, short courses, and workshops. For example, courses are being 
taught as part of integrated energy curriculum in over 250 related programs. 
These courses have titles such as Energy Systems, Alternative Energy/Fuels, 
Hydrogen Systems, Fuel Cell Applications, Automotive Fuel Cell Systems, 
and Renewable Systems.

Authored by experts in the field, the book will clearly and accurately pres-
ent a comprehensive resource on hydrogen systems. It provides a balanced 
presentation of hydrogen technology from both theoretical/technical and 
application perspectives. Based on current research in hydrogen energy and 
vehicle systems, it connects hydrogen technology through proper systems 
analysis and integration, including both quantitative and qualitative factors, 
and includes all stakeholder perspectives, including energy and environ-
mental perspectives of hydrogen technologies.
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Overview	of	the	Book

The chapters published in this book are authored by over 25 researchers 
affiliated with higher education institutions and/or research centers. The 
chapters cover a range of theory and application and are grouped into 
three sections.

Section I: Hydrogen Energy and Fuel Cell Modeling

Chapter 1: Hydrogen and Electricity: Parallels, Interactions, and Convergence

This chapter discusses some of the major ways that a future hydrogen econ-
omy would interact with the electricity sector and how the transportation 
and stationary fuels sectors and the electricity sectors might converge. H2 
and electricity are both zero-carbon, flexible, useful, and complementary 
energy carriers that could provide power for a wide range of applications. 
Hydrogen is touted as an important future transportation fuel in the light-
duty sector because of its storage characteristics, efficiency, and emissions. In 
addition, an important consideration for the evolution of the energy system 
is the competition and synergies for the use of energy resources for produc-
ing H2 and electricity.

Chapter 2: Hydrogen Infrastructure: Production, Storage, and Transportation

This chapter provides a review of hydrogen production, storage, and trans-
portation technologies. The production technologies selected represent 
promising near- and long-term options based upon state of technology, 
scale of production quantities, and environmental impacts. The production 
technologies include steam methane reformation, gasification, electrolysis, 
and thermochemical conversion. Compressed gas, liquid, cryo-compressed, 
metal hydride, and surface adsorption storage methods are presented based 
on the scale of hydrogen storage capability. The chapter concludes with a 
discussion on transportation methods and operational characteristics for an 
expanded hydrogen infrastructure.

Chapter 3: PEM Fuel Cell Basics and Computational Modeling

This chapter discusses the operational principles of polymer electrolyte mem-
brance (PEM) fuel cells and presents models incorporated into a commer-
cial software package. The models are evaluated against independent data 
reported in the literature for its suitability to predict the performance of PEM 
fuel cells. The findings establish a model capable of simulating PEM fuel cells 
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with a reasonable degree of accuracy and the low computational intensity 
inherent to analytical modeling. Given the software environment the model is 
implemented in, this could be of significant aid to the design and optimization 
of fuel cell- and hybrid-powered vehicles.

Chapter 4: Dynamic Modeling and Control of PEM Fuel Cell Systems

This chapter discusses the basic principles of fuel cells including the history and 
different types of fuel cells along with their properties, structure, and applica-
tions, with a special focus on polymer electrolyte membrane (PEM) fuel cells. 
Auxiliary devices needed for safe and efficient operation of PEM fuel cells are 
also introduced. Some well-known control-oriented dynamic models of PEM 
fuel cell components are presented. Simulation analysis of a typical PEM fuel 
cell is conducted based on the dynamic control-oriented models. Finally, com-
monly used control algorithms, such as oxygen excess ratio and temperature 
regulation, are presented and implemented using the control-oriented models.

Section II: Market Transformation and Applications

Chapter 5:  Market Transformation Lessons for Hydrogen from the 
Early History of the Manufactured Gas Industry

This chapter explores the future for hydrogen by delving into the history 
of the manufactured gas industry, drawing comparisons and contrasts, and 
highlighting potentially valuable analogies and lessons. It examines various 
side-by-side comparisons between the two energy systems, including physi-
cal and chemical properties, costs, production processes, and system con-
figurations, and examines infrastructure developments over time, reviewing 
five major phases in the history of manufactured gas. It concludes with five 
key analogies or lessons for hydrogen based upon this historical review.

Chapter 6: Fuel Cell Technology Demonstration and Data Analysis

This chapter strives to provide an independent third-party technology 
assessment that focuses on fuel cell system and hydrogen infrastructure 
performance, operation, maintenance, and safety. U.S. government-funded 
hydrogen and fuel cell demonstrations support technology research and 
development, and researchers at the National Renewable Energy Laboratory 
(NREL) are working to validate hydrogen and fuel cell systems in real-
world settings. A key component of these demonstrations and deployments 
involves data collection, analysis, and reporting. NREL’s Hydrogen Secure 
Data Center (HSDC) was established in 2004 as the central location for data 
analysis and works with DOE and its fuel cell award teams to collect and 
analyze data from these early deployment and demonstration projects. The 
analysis is regularly updated and published by application and is summa-
rized in this chapter.
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Chapter 7:  Producing Hydrogen for Vehicles via Fuel Cell–Based 
Combined Heat, Hydrogen, and Power: Factors Affecting 
Energy Use, Greenhouse Gas Emissions, and Cost

This chapter introduces the concept of producing fuel for hydrogen-powered 
vehicles using combined heat, hydrogen, and power (CHHP) systems based 
on stationary high-temperature fuel cells, which also provide electricity and 
heat to buildings. In addition, it explores the factors affecting the performance 
of CHHP systems in various locations as well as the associated greenhouse 
gas (GHG) emissions and hydrogen cost. The energy, GHG, and hydrogen cost 
implications of this technological strategy for facilitating efforts to establish a 
fueling infrastructure to support early hydrogen vehicle markets have been 
modeled; the analysis employs the FCPower model, which was developed 
by the National Renewable Energy Laboratory and is available for download 
as an Excel spreadsheet. This chapter explains some of the basic modeling 
assumptions underlying the representation of MCFC systems in the FCPower 
model and reviews the total energy use, emissions, and hydrogen cost for 
CHHP installations in comparison to conventional supplies of energy to 
buildings and small-scale dedicated (SMR) production of hydrogen.

Chapter 8: Hybrid and Plug-in Hybrid Electric Vehicles

The introduction of high-power and high-energy dense lithium-ion-based 
electrochemical storage technologies has provided the necessary transforma-
tive advance to bring forth the recent focus on hybrid and plug-in hybrid elec-
tric vehicles. Hybridization of hydrogen combustion and hydrogen fuel cell 
propulsion systems can provide benefits similar to those seen with conven-
tional vehicles. This chapter will discuss the benefits and consequences of the 
various hybrid electric vehicle propulsion architectures as they are applied to 
hydrogen propulsion technology. These architectures have varying benefits 
to the propulsion system based on their ability to influence the output power 
of the vehicle relative to the goal of the vehicle hybridization. Further, the 
difference between hybrid and plug-in hybrid electric vehicles represents a 
varying degree of energy storage that must be considered with the size, class, 
and intent of the vehicle propulsion system. The appropriate application of 
the hybrid vehicle architecture with an accompanying energy management 
control will be crucial to the advancement of these vehicles.

Chapter 9:  Hydrogen as Energy Storage to Increase Wind 
Energy Penetration into Power Grid

This chapter presents an analysis of a full wind and hydrogen integration. 
This study is a part of the activities carried out in the framework of the IEA 
Hydrogen Agreement, Task 24 “Wind Energy and Hydrogen Integration.” 
As a result of the study, it is concluded that hydrogen could compete with 
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other energy storage systems, mainly in energy applications linked to 
renewable energies such as wind power. Hydrogen can be stored for a future 
reconversion into electricity or can be used in a different application, taking 
advantage of its energy vector feature. Although there are still several disad-
vantages and technical problems to be solved, it presents optimism concern-
ing the future of hydrogen in the energy sector. The chapter also discusses 
applications for hydrogen such as CHP and CHHP.

Chapter 10: Hydrogen Design Case Studies

This chapter discusses real-world applications of hydrogen technologies for 
a hydrogen community. The applications are generic and are applicable for 
communities around the world. They include a commercial hydrogen fueling 
station, residential hydrogen fueling, hydrogen applications for airports, and 
other hydrogen applications. These conceptual designs were created by the 
Missouri University of Science and Technology’s hydrogen student design team 
in response to the Fuel Cell Hydrogen Energy Association (formerly known as 
National Hydrogen Association) Hydrogen Student Design Contests.

Section III: Hydrogen Safety

Chapter 11: Hydrogen Safety

This chapter discusses hydrogen safety in a “hydrogen infrastructure” 
setting such as hydrogen fueling stations, hydrogen vehicle research and 
development garages, hydrogen storage, and stationary fuel cell installa-
tions—each with different risks and potential hazards. Hydrogen has many 
properties that make it unique including wide flammability limits, low igni-
tion energy, high diffusivity, and low flame visibility. With proper under-
standing of these properties, incorporating experience, and safe handling 
procedures, hydrogen can be used in a safe working environment.

Chapter 12: Hydrogen Fuel Cell Vehicle Regulations, Codes, and Standards

This chapter covers regulations, codes, and standards (RCS) for hydrogen fuel 
cell vehicles. The chapter covers both domestic vehicle standards found pri-
marily in Society of Automotive Engineers (SAE) and CSA Standards (CSA) 
documents and international standards found primarily in International 
Organization for Standardization (ISO) standards. The chapter does not 
cover the motor vehicle safety regulations promulgated by federal transpor-
tation safety agencies outside of the United States. The basic purpose of these 
RCS is to ensure safe operation of fuel cell–powered vehicles. These RCS do 
not cover the infrastructure required to support these vehicles. The infra-
structure requirements are well developed in the United States, but they are 
outside of the scope of this chapter.
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2 Hydrogen Energy and Vehicle Systems

1.1	 	Introduction

The current energy system is comprised of a number of distinct energy car-
riers whose infrastructures have evolved over the course of the 20th cen-
tury. The main fuels and energy carriers that consumers and end users use 
include petroleum fuels (gasoline and diesel), natural gas, and electricity. The 
transportation sector has been primarily powered by liquid petroleum fuels, 
while buildings and other end uses have relied on natural gas and electricity.

Recently, concerns about air pollution, oil and energy insecurity, and 
greenhouse gas emissions have been driving a search for cleaner energy 
sources and alternative energy carriers for all sectors, especially in the trans-
portation sector. In particular, the last few decades have seen a renewed 
interest and significant research and development on electric drive vehicles, 
including battery electric vehicles, hybrid electric vehicles, and hydrogen 
fuel cell vehicles. Though there has been a great deal of activity in research 
and development, only a tiny fraction of our transportation energy use does 
not rely on petroleum.

While hydrogen has been touted primarily as a transportation fuel, it can 
serve a number of other potential needs and the potential development of 
a future hydrogen economy could significantly change the energy system 
because of linkages between hydrogen and the existing electricity system. 
The unique characteristics of electricity and its long history have resulted 
in an extensive infrastructure that converts primary energy resources such 
as fossil fuels, nuclear energy, and renewable energy resources into electri-
city and distributes the electricity to consumers essentially everywhere in 
the developed world. Any hydrogen infrastructure development can poten-
tially take advantage of this expansive network of energy resource extraction 
and transport and electricity generation and distribution systems. The new 
energy system can also utilize the advantages of hydrogen to complement 
the use of electricity in some applications. And the development of a hydro-
gen energy system can take different forms depending upon how integrated 
a future one imagines for the co-evolution of the hydrogen and electricity 
systems.

1.1.1	 	Standard View of H2 and Fuel Cells

Much of the interest and research in H2 and fuel cells has been in the transpor-
tation sector, with many automotive companies developing low-temperature 
proton exchange membrane (PEM) fuel cell vehicle research, development, 
and demonstration (RD&D) programs in the last decade [1, 2]. Oil compa-
nies that primarily supply transportation fuels have also been involved with 
RD&D projects for H2 production and refueling. Significant research and 
development is also being carried out on stationary fuel cells for use in the 
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electric sector. However, hydrogen infrastructure is widely viewed as a trans-
portation fuel supply system to be used in connection with fuel cell vehicles. 
Most stationary fuel cells do not require a ubiquitous hydrogen infrastruc-
ture since they are able to run on hydrocarbon fuels such as natural gas, 
which already has an extensive distribution infrastructure. Vehicles, on the 
other hand, require a widespread infrastructure to produce, store, transport, 
and dispense pure hydrogen at a network of refueling stations [3–6].

Because of the focus on hydrogen use in the light-duty transportation sec-
tor, the standard view of many in and out of the field is that hydrogen is a 
transportation fuel that will compete with and could potentially displace 
gasoline and diesel. Many hydrogen-related analyses and research pro-
grams focus primarily on hydrogen as a vehicle fuel [7–11]. Hydrogen and 
fuel cells are touted as an excellent alternative to gasoline and combustion 
vehicles because of their benefits with respect to efficiency, resource require-
ments, and environmental attributes [1, 8, 10–13]. The hydrogen infrastruc-
ture needed to extract, transport, and convert a primary energy feedstock 
to H2 and store, transport, distribute, and dispense that hydrogen for use in 
personal vehicles is also analogous to the exploration, refining, distribution, 
and dispensing infrastructure for gasoline and diesel fuels. This focus can 
be thought of as an evolutionary model of H2 and fuel cells because they are 
viewed as merely cleaner and more efficient technologies that will be used 
for light-duty vehicles. This framework is convenient because it does not fun-
damentally change the way that people view transportation fuels that power 
their vehicles. Hydrogen is merely a replacement for gasoline and fuel cells 
are a replacement for internal combustion engines.

1.1.2	 	Integrated View of H2 and Electricity

In an alternative view, H2 fuel and fuel cells are not merely replacements for 
specific components in the conventional transportation paradigm. Instead, 
they represent a new path that will be integrated with the electricity system, 
forming a future energy system with two primary energy carriers (hydrogen 
and electricity). There are multiple reasons for this convergence of hydro-
gen and electricity into an integrated hydrogen and electric energy system, 
including their complementary attributes as energy carriers, their potential 
production from the same primary energy resources, and their ability to be 
coproduced and interconverted.

H2 and electricity are two decarbonized energy carriers that have very dif-
ferent yet complementary characteristics, which suggest specific uses and 
applications for each. With the emerging scientific, political, and public con-
sensus on climate change, there will be an increasing impetus for reducing 
and eventually decarbonizing our energy system. Hydrogen and electricity 
are two energy carriers that enable conversion, transport, and utilization of a 
wide variety of primary energy resources in a decarbonized energy system.
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Another basic idea supporting the concept of hydrogen and electricity con-
vergence is that hydrogen and electricity can and will be produced from the 
same primary energy resources and feedstocks, such as natural gas, coal, and 
biomass (see Figure 1.1). There are benefits associated with having another 
energy carrier, especially one that can be used in transportation applications 
that can be made from a large number of primary energy resources. However, 
this would also lead to a direct competition for the fossil, nuclear, and renew-
able energy resources that are used to produce each energy carrier.

The third argument for the convergence of hydrogen and electricity is 
related to the potential for their coproduction and interconversion. A num-
ber of studies have investigated production plants that can be used to gener-
ate both hydrogen and electricity [14–22]. In many of these studies, there are 
a number of benefits associated with producing both energy carriers in the 
same plant, including improved efficiency and lower costs. Interconversion 
is one of the most tangible examples of the shift toward a more integrated 
energy economy based upon hydrogen and electricity. With current energy 
carriers, there is little opportunity to convert between various forms. In 
addition, the widespread use and supporting infrastructure for these dual 
energy carriers may provide reliability benefits for consumers.

Figure 1.2 presents two different views of the hydrogen reactions in a fuel cell 
and electrolyzer. The “electrochemical” view shows the fuel cell reaction (on 
the right) that produces electricity when hydrogen and oxygen combine to form 
water and the electrolysis reaction (on the left) where electricity is required as 
an input to split water into hydrogen and oxygen. In this view, electricity and 
hydrogen have different roles: hydrogen is merely an enabler, while electricity 
is the primary focus (i.e., either the product or the input). This view is common 
when focusing on the end use of hydrogen—for example, if one thinks of a fuel 
cell vehicle as an electric vehicle that obtains its electricity from hydrogen.

The interconversion view describes the exact same reactions but emphasizes 
the conversions between energy carriers rather than the conversion between 
reactants and products of the electrochemical view. This alternative view 

Carbonaceous feedstocks
Coal, natural gas,

petroleum, biomass

Nuclear energy
Nuclear electricity, heat

Renewable electricity
Wind, solar, geothermal,

hydro

Transportation
Hydrogen

Electricity

Industrial

Residential

Commercial

FIGURE 1.1
Schematic showing the parallel nature of hydrogen and electricity from the perspective of the 
energy resources and end-use sectors. (From Yang, C., International Journal of Hydrogen Energy, 
33(8), 1977–1994, 2008.)
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shows that H2 (plus O 2) and electricity are merely different forms of the same 
energy carrier that result from the addition and removal of water. Hydrogen 
is the hydrated form and electricity is the dehydrated form. This view empha-
sizes the large impacts that hydrogen production and conversion would have 
throughout the energy system, on the production, transmission, and conversion 
of energy. It is not the case that one view is better or worse than the other, but 
the significance of these two views is that they help to make clear, by empha-
sizing these different aspects, the relationship between H2 and electricity.

This chapter will discuss many of the important elements that arise from 
the convergence between hydrogen and electricity as energy carriers, includ-
ing possible opportunities and challenges. The goal is to help readers iden-
tify key areas of these future interactions and how they may impact the 
potential evolution of the future energy system.

1.2	 	Hydrogen	and	Electricity	Parallels

Both hydrogen and electricity are energy carriers rather than energy sources, 
because they do not occur naturally but rather must be produced from other 
energy resources such as fossil fuels or renewables. A key similarity between 
hydrogen and electricity is that they are both zero-carbon and pollution-free 
energy carriers at the point of use and can have a wide range of life cycle 
emissions in bringing these energy carriers to the point-of-use.

Electricity Electricity

ElectricityH2O

H2O

H2O

H2 + ½O2

H2 + ½O2

Electrochemical

Interconversion

FIGURE 1.2
Alternative views of hydrogen and electricity reactions. The electrochemical view shows 
electricity as either an input or an output of chemical reactions, and the interconversion view 
shows water as an input or output of the conversion between H2 and electricity. (From Yang, 
C., International Journal of Hydrogen Energy, 33(8), 1977–1994, 2008.)
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1.2.1	 	Generation Resources

As with electricity, hydrogen can be produced from a range of produc-
tion methods and feedstocks. Figure 1.3 and Figure 1.4 show the potential 
resources for producing each energy carrier and their similarities. This is a 
major change, as hydrogen enables the possibility of using these resources 
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FIGURE 1.3
Resources and conversion technologies for electricity generation. (From Yang, C., International 
Journal of Hydrogen Energy, 33(8), 1977–1994, 2008.)
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in the transportation sector, which is currently, and has traditionally been, 
reliant on and restricted to petroleum.

Decarbonized, clean energy carriers that have multiple production path-
ways are valuable because they allow policies and resource constraints to affect 
the upstream side of the supply system without any inconvenience, or even 
knowledge of these changes, to consumers. Currently, a number of states have 
enacted a renewable portfolio standard (RPS), which mandates a specified frac-
tion of electricity generation that must come from renewable resources, such 
as wind, solar, geothermal, and biomass. And while RPS targets are expected 
to increase over time, this process is transparent to the end user. Similarly, the 
ability to produce hydrogen from a wide range of resources enables producers, 
over time, to alter the mix of hydrogen production, so that it can be made less 
polluting and with lower greenhouse gas emissions as costs for these technolo-
gies declines. In fact, California has enacted a law (SB1505) that links state fund-
ing for hydrogen refueling stations to the renewable content and greenhouse 
gas emissions profile of the hydrogen that it dispenses (requiring a 30% reduc-
tion in greenhouse gas emissions and a goal of 33% renewable).

1.2.2	 	Generation Mix

Because of the variations in electricity demand that occur over the course of a 
day, and seasonally, and the difficulty in storing electricity, the electric power 
system consists of a number of power plants of different sizes and types, which 
are fueled by a number of energy sources. This structure has evolved because 
not all power plants need to be operating at full capacity all the time. Excess 
electricity generation that is not used cannot be stored efficiently and is thus 
wasted, so generation is carefully managed to make sure that there is the correct 
amount of generation occurring. Different types of power plants have different 
capital and operating costs associated with them, so some will be operated con-
tinuously while others will be operated only when demand is highest.

Hydrogen demand will also vary over the course of a year and the required 
output from a hydrogen production plant will not be constant over an entire year. 
While hydrogen can be stored more easily than electricity, it is not as inexpensive 
to store as a liquid fuel and hydrogen will likely not be stored for more than a few 
days. This means that variations in demand that occur on a longer timescale (i.e., 
seasonally) must be handled by the production plants themselves. Depending 
upon the extent of demand variation, it may be economically advantageous, like 
with the electric power system, for supply to consist of a mix of plants, with dif-
fering capital and operating costs, to minimize the cost of meeting demand.

1.2.3	 	Distribution and Infrastructure

Electricity is a commodity that is produced at hundreds or thousands of 
generating power plants in a given region and placed upon a common 
transmission and distribution infrastructure and then distributed nearly 
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universally. Hydrogen infrastructure could also consist of a common net-
work of hydrogen delivery that links a number of production facilities to the 
end users. Using H2 primarily as transportation fuel would require delivery 
to a network of refueling stations spread throughout a region. If hydrogen 
were distributed to homes and businesses, an extensive network of pipe-
lines would be needed that is similar to the network of natural gas distribu-
tion pipelines.

An analysis of regional hydrogen fuel infrastructure for supplying hydro-
gen FCVs in the U.S. states of Ohio and California indicates that because of 
economies of scale, having fewer large production plants provides lower cost 
fuel than many more smaller plants even if transportation distances are 
greater [6]. And while there are few production plants, they feed a common 
hydrogen delivery system that distributes hydrogen regionally to refueling sta-
tions in different cities.

1.3	 	Complementarity	and	Convergence

1.3.1	 	Complementary Attributes and Applications

H2 and electricity are two decarbonized energy carriers that have very dif-
ferent yet complementary characteristics, which suggest specific uses and 
applications for each. Given the importance of reducing GHG emissions to 
avoid dangerous anthropogenic climate change, the use of decarbonized 
energy carriers is essential over the next few decades. Electricity is already 
in widespread use, and there is already a system for producing and distrib-
uting electricity from multiple sources to end users. Thus, switching to lower 
GHG-emitting sources of electricity can be done in a manner that is hidden 
from the end user with no disruption on their part.

The direct use of fuels for transportation and combustion applications 
(boilers, burners, and other applications) is currently optimized around the 
specific characteristics of the fuels they use (typically natural gas, gasoline, 
and diesel) and cannot generally be switched to lower- or zero-carbon fuels 
without upgrading to new technologies. There is the potential to use liquid 
biofuels to replace conventional fuels, but even in these situations, ethanol 
and biodiesel cannot replace gasoline and diesel without some modifica-
tions to current vehicles and engines. There also appears to be significant 
limitations in the amount of biofuels that can be sustainably produced [23, 
24].	As a result, there are many benefits to the use of hydrogen in many 
of these applications that rely on direct use of fuels. These will be dis-
cussed in the context of the specific applications—vehicles and stationary 
applications.


