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Preface

Application-specific optimization of embedded systems becomes inevitable to
satisfy the market demand for designers to meet tighter constraints on cost,
performance and power. On the other hand, the flexibility of a system is also
important to accommodate the short time-to-market requirements for em-
bedded systems. To compromise these incompatible demands, coarse-grained
reconfigurable architecture (CGRA) has emerged as a suitable solution. A
typical CGRA requires many processing elements (PEs) and a configuration
cache for reconfiguration of its PE array. However, such a structure consumes
significant area and power. Therefore, designing cost-effective CGRA has been
a serious concern for reliability of CGRA-based embedded systems.

As an effort to provide such cost-effective design, the first half of this book
focuses on reducing power in the configuration cache. For power saving in the
configuration cache, a low-power reconfiguration technique is presented based
on reusable context pipelining achieved by merging the concept of context
reuse into context pipelining. In addition, we propose dynamic context com-
pression capable of supporting only required bits of the context words set
to enable and the redundant bits set to disable. Finally, we provide dynamic
context management capable of reducing power consumption in configuration
cache by controlling a read/write operation of the redundant context words.

In the second part of this book, we focus on designing a cost-effective
PE array to reduce area and power. For area and power saving in a PE ar-
ray, we devise a cost-effective array fabric that addresses novel rearrangement
of processing elements and their interconnection designs to reduce area and
power consumption. In addition, hierarchical reconfigurable computing arrays
are proposed consisting of two reconfigurable computing blocks with two types
of communication structure together. The two computing blocks have shared
critical resources and such a sharing structure provides efficient communica-
tion interface between them with reducing overall area. Based on the proposed
design approaches, a CGRA combining the multiple design schemes is shown
to verify the synergy effect of the integrated approach.

Audience for This Book

This book is intended for computer professionals, graduate students, and ad-
vanced undergraduates who need to understand issues involved in design-
ing and constructing embedded systems. The reader is assumed to have had
introductory courses in digital system, VLSI design, computer architecture,
or equivalent work experience.
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Chapter 1

Introduction

1.1 Coarse-Grained Reconfigurable Architecture

With the growing demand for high quality multimedia, especially over
portable media, there has been continuous development on more sophisti-
cated algorithms for audio, video, and graphics processing. These algorithms
have the characteristics of data-intensive computation of high complexity. For
such applications, we can consider two extreme approaches to implementation:
software running on a general purpose processor and hardware in the form of
Application-Specific Integrated Circuit (ASIC). In the case of general purpose
processor, it is flexible enough to support various applications but may not
provide sufficient performance to cope with the complexity of the applications.
In the case of ASIC, we can optimize best in terms of power and performance
but only for a specific application. With a coarse-grained reconfigurable ar-
chitecture (CGRA), we can take advantage of the above two approaches. This
architecture has higher performance level than general purpose processor and
wider applicability than ASIC.

As the market pressure of embedded systems compels the designer to meet
tighter constraints on cost, performance, and power, the application specific
optimization of a system becomes inevitable. On the other hand, the flexibility
of a system is also important to accommodate rapidly changing consumer
needs. To compromise these incompatible demands, domain-specific design is
focused on as a suitable solution for recent embedded systems. Coarse-grained
reconfigurable architecture is the very domain-specific design in that it can
boost the performance by adopting specific hardware engines while it can be
reconfigured to adapt to ever-changing characteristics of the applications.

Typically, a CGRA consists of a main processor, a Reconfigurable Array
Architecture (RAA), and their interface as Figure 1.1. The RAA has identi-
cal processing elements (PEs) containing functional units and a few storage
units such as ALU, multiplier, shifter and register file. The data buffer pro-
vides operand data to PE array through a high-bandwidth data bus. The
configuration cache (or context memory) stores the context words used for
configuring the PE array elements. The context register between a PE and a
cache element (CE) in configuration cache is used to keep the cache access
path from being the critical path of the CGRA.
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FIGURE 1.1: Block diagram of general CGRA.

Unlike FPGA (most typical of a fine-grained reconfigurable architecture),
which are built with bit-level configurable logic blocks (CLBs), CGRA is built
with PEs, which are word-level configurable functional blocks. By raising the
granularity of operations from a bit to a word, CGRA can improve on the
speed and the performance as well as the resource utilization for compute-
intensive applications. Another consequence of this raised granularity is that
whereas FPGA can be used for implementing any digital circuits, CGRA is
targeted only for a limited set of applications, although different CGRAs may
target different application domains. Still, CGRA retains the idea of “repro-
grammable hardware” in the reprogrammable interconnects as well as in the
configurable functional blocks (i.e., PEs). Moreover, since the amount of the
configuration bit-stream is greatly reduced through the raised granularity, the
configuration can be actually changed even at the runtime very fast. Most of
the CGRAs feature single-cycle configuration change, fetching the configura-
tion data from a distributed local cache. This unique combination of efficiency
and flexibility, which is the main advantage of CGRA, explains an evaluation
result [9] that under certain conditions CGRAs are actually more cost-effective
for wireless communication applications than alternatives such as FPGA im-
plementations as well as DSP architectures. It is worth mentioning that the
improved efficiency of CGRAs in terms of the performance and flexibility is a
result of the architecture specialization for compute-intensive applications.

In spite of the above advantages, the deployment of CGRA is prohibitive
due to its significant area and power consumption. This is due to the fact that
CGRA is composed of several memory components and the array of many
processing elements including ALU, multiplier and divider, etc. Especially,
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processing element (PE) array occupies most of the area and consumes most of
the power in the system to support flexibility and high performance. Therefore,
reducing area and power consumption in the PE array has been a serious
concern for the adoption of CGRA.

1.2 Objective and Approach

This book explores the problem of reducing area and power in CGRA
based on architecture optimization. To provide cost-effective CGRA design,
the following questions are considered.

e How to reduce area and power consumption in CGRA? For power sav-
ing in CGRA, we should obtain area and power breakdown data of
CGRA to identify area and power-dominant components. Then the com-
ponents may be optimized for area and power by removing redundancies
of CGRA wasting area and power. Such redundancies may depend on
the characteristics of computation model or applications.

e How to design cost-effective CGRA with non-sacrificing or enhancing
performance? Ultimately, the goals of designing cost-effective CGRA is
that proposed approaches do not cause performance degradation with
saving area and power. It means that the proposed cost-effective CGRA
keeps original functionality of CGRA intact and does not increase critical
path delay. In addition, the performance may be enhanced by optimizing
the performance bottleneck with keeping the area and power-efficient
approaches.

In this book, these central questions are addressed for area/power-critical
components of CGRA and we suggest new frameworks to achieve these goals.
The validation of the proposed approaches is demonstrated through the use
of real application benchmarks and gate level simulations.

1.3 Overview of the Book’s Contents

This volume is divided into 11 chapters as follows:

e Chapter 1. Introduction
This chapter introduces general characteristics of Coarse-Grained Re-
configurable Architecture (CGRA). In addition we present the contri-
bution and the organization of this book.



