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Preface

Plasmas occur pervasively in nature: indeed, most of the known matter in
the Universe is in the ionized state, and many naturally occurring plasmas,
such as the surface regions of the Sun, interstellar gas clouds and the Earth’s
magnetosphere, exhibit distinctively plasma-dynamical phenomena arising from
the effects of electric and magnetic forces. The science of plasma physics was
developed both to provide an understanding of these naturally occurring plasmas
and in furtherance of the quest for controlled nuclear fusion. Plasma science has
now been used in a number of other practical applications, such as the etching
of advanced semiconductor chips and the development of compact x-ray lasers.
Many of the conceptual tools developed in the course of fundamental research
on the plasma state, such as the theory of Hamiltonian chaos, have found wide
application outside the plasma field.

Research on controlled thermonuclear fusion has long been a world-wide
enterprise. Major experimental facilities in Europe, Japan and the United States,
as well as smaller facilities elsewhere including Russia, are making remarkable
progress toward the realization of fusion conditions in a confined plasma. The
use, for the first time, of a deuterium—tritium plasma in the tokamak experimental
fusion device at the Princeton Plasma Physics Laboratory has recently produced
slightly in excess of ten megawaits of fusion power, albeit for less than a second.
In 1992, an agreement was signed by the European Union, Japan, the Russian
Federation and the United States of America to undertake jointly the engineering
design of an experimental reactor to demonstrate the practical feasibility of fusion
power.

This book is based on a one-semester course offered at Princeton University
to advanced undergraduates majoring in physics, astrophysics or engineering
physics. If the more advanced material, identified by an asterisk after the Chapter
heading or Section heading, is included then the book would also be suitable as
an introductory text for graduate students entering the field of plasma physics.

We have attempted to cover all of the basic concepts of plasma physics with
reasonable rigor but without striving for complete generality—especially where
this would result in excessive algebraic complexity. Although single-particle,

xiii



Xiv Preface

fluid and kinetic approaches are introduced independently, we emphasize the
interconnections between different descriptions of plasma behavior; particular
phenomena which illustrate these interconnections are highlighted. Indeed, a
unifying theme of our book is the attempt at a deeper understanding of the
underlying physics through the presentation of multiple perspectives on the same
physical effects. Although there is some discussion of weakly ionized gases,
such as are used in plasma etching or occur naturally in the Earth’s ionosphere,
our emphasis is on fully ionized plasmas, such as those encountered in many
astrophysical settings and employed in research on controlled thermonuclear
fusion, the field in which both of us work. The physical issues we address are,
however, applicable to a wide range of plasma phenomena. We have included
problems for the student, which range in difficulty from fairly straightforward
to quite challenging; most of the problems have been used as homework in our
course.

Standard international (SI) units are employed throughout the book, except
that temperatures appearing in formulae are in units of energy (i.e. joules)
to avoid repeated writing of Boltzmann’s constant; for practical applications,
temperatures are generally stated in electron-volts (eV). Appendices A and C
allow the reader to convert from SI units to other units in common use.

The student should be well-prepared in electromagnetic theory, including
Maxwell’s equations, which are provided in SI units in Appendix B. The student
should also have some knowledge of thermodynamics and statistical mechanics,
including the Maxwell-Boltzmann distribution. Preparation in mathematics must
have included vectors and vector calculus, including the Gauss and Stokes
theorems, some familiarity with tensors or at least the underlying linear algebra,
and complex analysis including contour integration. Appendix D contains all
of the vector formulae that are used, while Appendix E gives expressions
for the relevant differential operators in various coordinate systems. Higher
transcendental functions, such as Bessel functions, are avoided. Suggestions for
further reading are given in Appendix F.

In addition to the regular problems, which are to be found in all chapters,
we have provided a disk containing two graphics programs, which allow the
student to experiment visually with mathematical models of quite complex
plasma phenomena and which form the basis for some homework problems
and for optional semester-long student projects. These programs are provided
in both Macintosh! and IBM PC-compatible format. In the first of these two
computer programs, the reader is introduced to the relatively advanced topic of
area-preserving maps and Hamiltonian chaos; these topics, which form another
of the underlying themes of the book, reappear later in our discussions both
of the magnetic islands caused by resistive tearing modes and of the nonlinear

I Macintosh is a registered trademark of Apple Computer, Inc.
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Introduction

After an initial Chapter, which introduces plasmas, both in the laboratory and in
nature, and derives the defining characteristics of the plasma state, this book is
divided into six ‘Units’. In Unit 1, the plasma is considered as an assemblage
of charged particles, each moving independently in prescribed electromagnetic
fields. After deriving all of the main features of the particle orbits, the topic
of ‘adiabatic’ invariants is introduced, as well as the conditions for ‘non-
adiabaticity’, illustrating the latter by means of the modern dynamical concepts
of mappings and the onset of stochasticity. In Unit 2, the fluid model of a
plasma is introduced, in which the electromagnetic fields are required to be
self-consistent with the currents and charges in the plasma. Particular attention
is given to demonstrating the equivalence of the particle and fluid approaches.
In Unit 3, after an initial Chapter which describes the most important atomic
processes that occur in a plasma, the effects of Coulomb collisions are treated
in some detail. In Unit 4, the topic of small-amplitude waves is covered in
both the ‘cold’ and ‘warm’ plasma approximations. The treatment of waves
in the low-frequency branch of the spectrum leads naturally, in Unit 5, to an
analysis of three of the most important instabilities in non-spatially-uniform
configurations: the Rayleigh-Taylor (flute), resistive tearing, and drift-wave
instabilities. In Unit 6, the kinetic treatment of ‘hot’ plasma phenomena is
introduced, from which the Landau treatment of wave—particle interactions and
associated instabilities is derived; this is then extended to the non-uniform plasma
in the drift-kinetic approximation.

XVii






Chapter 1

Introduction to plasmas

1.1 WHAT IS A PLASMA?

First and foremost, a plasma is an ionized gas. When a solid is heated sufficiently
that the thermal motion of the atoms breaks the crystal lattice structure apart,
usually a liquid is formed. When a liquid is heated enough that atoms vaporize
off the surface faster than they recondense, a gas is formed. When a gas is heated
enough that the atoms collide with each other and knock their electrons off in
the process, a plasma is formed: the so-called ‘fourth state of matter’. Exactly
when the transition between a ‘very weakly ionized gas’ and a ‘plasma’ occurs
is largely a matter of nomenclature. The important point is that an ionized gas
has unique properties. In most materials the dynamics of motion are determined
by forces between near-neighbor regions of the material. In a plasma, charge
separation between ions and electrons gives rise to electric fields, and charged-
particle flows give rise to currents and magnetic fields. These fields result in
‘action at a distance’, and a range of phenomena of startling complexity, of
considerable practical utility and sometimes of great beauty.

Irving Langmuir, the Nobel laureate who pioneered the scientific study
of ionized gases, gave this new state of matter the name ‘plasma’. In greek
mAoo e means ‘moldable substance’, or ‘jelly’, and indeed the mercury arc
plasmas with which he worked tended to diffuse throughout their glass vacuum
chambers, filling them like jelly in a mold'.

! We also like to imagine that Langmuir listened to the blues. Maybe he was thinking of the song
‘Must be Jelly "cause Jam don’t Shake Like That’, recorded by J Chalmers MacGregor and Sonny
Skylar. This song was popular in the late 1920s, when Langmuir, Tonks and Mott-Smith were
studying oscillations in plasmas.



2 Introduction to plasmas
1.2 HOW ARE PLASMAS MADE?

A plasma is not usually made simply by heating up a container of gas. The
problem is that for the most part a container cannot be as hot as a plasma needs
to be in order to be ionized—or the container itself would vaporize and become
plasma as well.

Typically, in the laboratory, a small amount of gas is heated and ionized
by driving an electric current through it, or by shining radio waves into it.
Either the thermal capacity of the container is used to keep it from getting hot
enough to melt—Ilet alone ionize—during a short heating pulse, or the container
is actively cooled (for example with water) for longer-pulse operation. Generally,
these means of plasma formation give energy to free electrons in the plasma
directly, and then electron—atom collisions liberate more electrons, and the
process cascades until the desired degree of ionization is achieved. Sometimes
the electrons end up quite a bit hotter than the ions, since the electrons carry the
electrical current or absorb the radio waves.

1.3 WHAT ARE PLASMAS USED FOR?

There are all sorts of uses for plasmas. To give one example, if we want
to make a short-wavelength laser we need to generate a population inversion in
highly excited atomic states. Generally, gas lasers are ‘pumped’ into their lasing
states by driving an electric current through the gas, and using electron—atom
collisions to excite the atoms. X-ray lasers depend on collisional excitation
of more energetic states of partially ionized atoms in a plasma. Sometimes a
magnetic field is used to hold the plasma together long enough to create the
highly ionized states.

A whole field of ‘plasma chemistry’ exists where the chemical processes
that can be accessed through highly excited atomic states are exploited. Plasma
etching and deposition in semiconductor technology is a very important related
enterprise. Plasmas used for these purposes are sometimes called ‘process
plasmas’.

Perhaps the most exciting application of plasmas such as the ones we
will be studying is the production of power from thermonuclear fusion. A
deuterium ion and a tritium ion which collide with energy in the range of tens
of keV have a significant probability of fusing, and producing an alpha particle
(helium nucleus) and a neutron, with 17.6 MeV of excess energy (alpha particle
~ 3.5MeV, neutron ~ 14.1MeV). A promising way to access this energy is
to produce a plasma with a density in the range 10% m~3 and average particle
energies of tens of keV. The characteristic time for the thermal energy contained
within such a plasma to escape to the surrounding material surfaces must exceed
about five seconds, in order that the power produced in alpha particles can
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sustain the temperature of the plasma. This is not a simple requirement to meet,
since electrons within a fusion plasma travel at velocities of ~ 108 ms~!, while
a fusion device must have a characteristic size of ~ 2m, in order to be an
economic power source. We will learn how magnetic fields are used to contain
a hot plasma.

The goal of producing a plentiful and environmentally benign energy source
is still decades away, but at the present writing fusion power levels of 2-
10MW have been produced in deuterium—tritium plasmas with temperatures
of 20-40keV and energy confinement times of 0.25-1s. This compares with
power levels in the 10mW range that were produced in deuterium plasmas with
temperatures of ~ 1keV and energy confinement times of ~ 5ms in the early
1970s. It is the quest for a limitless energy source from controlled thermonuciear
fusion which has been the strongest impetus driving the development of the
physics of hot plasmas.

1.4 ELECTRON CURRENT FLOW IN A VACUUM TUBE

Let us look more closely now at how a plasma is made with a dc electric current.
Consider a vacuum tube (not filled with gas), with a simple planar electrode
structure, as shown in Figure 1.1. Imagine that the cathode is sufficiently heated
that copious electrons are boiling off of its surface, and (in the absence of an
applied electric field) returning again. Now imagine we apply a potential to
draw some of the electrons to the anode. First, let us look at the equation of
motion for the electrons:
me-dﬁ = —¢E =¢eV¢ (1.1)
dr
where m. is the electron mass (9.1 x 103! kg), ve is the vector electron velocity
(ms™"), e is the unit charge (1.6 x 107'° C), E is the vector electric field (V m™),
and ¢ is the electrical potential (V). To derive energy conservation, we take the
dot product of both sides with v,:

dv, dv?
-T;;—=lm De = eve - V. (1.2)

MmeVe 5Me —d_t—

The total (or convective) derivative, moving with the particle, is defined by

d a
—=—+4vVv.-V. 1.3
G5 TV (1.3)
Thus the total (convective) time derivative of the electric potential, ¢, moving
with the electron, can be viewed as being made up of a part having to do with
the potential changing in time at a fixed location (the partial derivative, 9/9t),
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plus a part having to do with the changing location at which we must evaluate
¢. Since in this case we are considering a steady-state electric field, the partial
(non-convective) time derivatives are zero. Thus we have

d (meve) _d 1.4
m(z)_m@@ (14

or, moving along the trajectory of an electron,

mev?

—2—° — e¢ = constant. (1.5)

Vacuum Boundary

Cathode (-)

Anode (+)

Heater

Figure 1.1. Vacuum-tube geometry for a hot-cathode Child—-Langmuir calculation.

Equation (1.5) gives us some important information about the electron
velocity in the inter-electrode space of our vacuum tube. If for simplicity we
assign ¢ = 0 to the cathode (since the offset to ¢ can be chosen arbitrarily), and
negligibly small energy to the random ‘boiling’ energy of the electrons near the
cathode, then the constant on the right-hand side of equation (1.5) can be taken

to be zero, and
2 1/2
%%(w> . (1.6)
me

Note that, in this case, v, is not a random thermal velocity, but rather a directed
flow of the electrons—the individual velocities of the electrons and the average
velocity of the electron ‘fluid’ are the same. As a consequence of this ‘fluid’
velocity of the electrons, there is a net current density j (amperes/meter?) =
—neev, flowing between the two electrodes, where n. is the number density
of electrons—the electron ‘count’ per cubic meter. In order to understand this
current, it is helpful to think of a differential cube, as shown in Figure 1.2,
with edges of length dI, volume (dl)3, and total electron count in the cube of
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ne(dl)®. Imagine that the electron velocity is directed so that the contents are
flowing out of one face of the cube (see Figure 1.2). If the fluid is moving
at v, (meters/second), the cube of electrons is emptied out across that face in
time d!/ve seconds. Thus, ene(dl)* units of charge cross (d)? square meters of
surface in dI/v, seconds—the current density is thus en(dl)?/[(dl/ve)(d])?] =
neeve (coulombs/second - meter?, i.e. amperes/meterz), as we stated above.

Figure 1.2. Geometry for interpreting j = —n.ev,.

If we now consider the integral of this particle current over the surface area
of a given volume, we have the total flow of particles out of the volume per
second, and so the time derivative of the total number of particles in a given
volume of our vacuum tube is given by

N,
” =—/neve-dS=0 1.7

where N, is the total number of particles in a volume, and dS is an element of
area of its surface. Here we assume that there are no sources or sinks of electrons
within the volume; by setting the result to zero we are positing a steady-state
condition. By Gauss’s theorem, this can be expressed in differential notation as

a
Mo W (neve) = 0. (1.8)
ot
Poisson’s equation is of course
V - (V) = en, (1.9)

where €, the permittivity of free space, is 8.85 x 10~'2C V™! m~!.
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The complete set of equations we need to solve in order to understand the
current flow in our evacuated tube is then made up of equations (1.6), (1.8),
and (1.9). Before we go on to solve these equations, we can immediately see a
useful overall scaling relation. If we imagine taking any valid solution of this
set of equations, and scaling ¢ by a factor o everywhere, then equation (1.9)
tells us that n. must scale by the same factor «. Equation (1.6) says that v,
must scale everywhere by o'/2. Equation (1.8) is also satisfied by this result,
since n.V, is scaled everywhere equally by /2. In the conditions we have been
describing, with plenty of electrons boiling off the cathode (so there is no limit
to the source of electrons at the boundary of our problem), the total current in
the tube scales as ¢*/2. This is called the Child-Langmuir law.

The condition we are considering is called space-charge-limited current
flow. If too few electrons are available from the cathode, the current can fall
below the Child-Langmuir law. It is then called emission-limited current flow.
For the specific case of planar electrodes, with a gap smaller than the typical
electrode dimensions, we can approximate the situation using one-dimensional
versions of equations (1.8) and (1.9):

—neeVe = j = constant (1.10)
and q i
d—x‘ (60“&;) = €Ne. (111)
Substituting equation (1.6), we have
d2¢ . me \
€og = e =—j/Ve=—] (26;) (1.12)

We can find a solution to this nonlinear equation simply by assuming that ¢ o x?,
where B is some constant power. Looking at the powers of x that occur on each
side, we come to the conclusion that

B—2=-B/2 or B=4/3. (1.13)

So now we can assume that ¢ = Ax*? which, when substituted into equation
(1.12), gives

e 1/2
C0A4/3)(1/3) = —j (2'ZA) (1.14)
or 23
_ (=% me\'? 4p
$(x) = <4€O) (26) X3 (1.15)

This solution is appropriate for our conditions, where we have taken the potential
to be zero at the cathode, and since so many electrons are ‘boiling’ around the
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cathode, we have assumed that negligible electric field strength is required to
extract electrons from this region. Thus we have chosen the solution that has
d¢/dx = 0 where ¢ =0, i.e. at x = 0. Let us now make the last step of deriving
the current—voltage characteristics of our vacuum tube. At x = L (where L is
the inter-electrode spacing), let the potential be V volts. Then we can solve
equation (1.15) for the current density:

. deq [ 2e iz
="§Z—2<m_) V32, (1.16)

Finally, let us evaluate the performance of a specific configuration. Let us take
a fairly large tube: an inter-electrode spacing of 0.01 m, and an electrode area
of 0.05m x 0.20m = 0.01 m?. For a voltage drop of 50V, we get a current
drain of 8.3 Am™2, or only 83 mA—we need much larger electric fields to draw
significant power in a vacuum tube. The cloud of electrons at a density of about
2 x 10" m™3 impedes the flow of current rather effectively. For perspective,
note that a tungsten cathode of this area can provide an emission current of
hundreds of amperes.

1.5 THE ARC DISCHARGE

We have now in our vacuum tube a population of electrons with energies
up to 50eV. Let us imagine introducing gas at a pressure of ~ 1Pa (about
1073 of an atmosphere). The electrons emitted from the cathode will collide
with the gas molecules, transferring momentum and energy efficiently to the
bound electrons within these gas molecules. Since typical binding energies
of outer-shell electrons are in the few eV range, these collisions have a good
probability of ionizing the gas, resulting in more free electrons. The ‘secondary’
electrons created in this way are then heated by collisions with the incoming
primary electrons from the hot cathode, and cause further ionizations themselves.
Eventually the ions and electrons come into thermal equilibrium with each other
at temperatures corresponding to particle energies in the range of 2¢V, in the
plasma generated in such an ‘arc’ discharge. Since most of the electrons are
now thermalized—not monoenergetic as in the Child-Langmuir problem—they
have a range of velocities. The energy of some of the secondary electrons, as
well as that of the primaries, is high enough to continue to cause ionization.
This continual ionization process balances the loss of ions which drift out of
the plasma and recombine with electrons at the cathode or on the walls of the
discharge chamber, and the system comes into steady state. Ion and electron
densities in the range of 10'® m~ are easily obtained in such a system.
Matters have changed dramatically from the original Child-Langmuir
problem. The electron density has risen by five orders of magnitude, but
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nonetheless the space-charge effect impeding the flow of the electron current
is greatly reduced. The presence of the plasma, which is an excellent conductor
of electricity, greatly reduces the potential gradient in most of the inter-electrode
space. Only in the region close to the cathode are the neutralizing ions absent—
because there they are rapidly drawn into the cathode by its negative potential.
Almost all of the potential drop occurs then across this narrow ‘sheath’ in front
of the cathode. If we return to equation (1.16), we see that the current extracted
from the cathode must then increase by about the ratio (L/As)?, where A is the
width of the cathode sheath.

The current—voltage characteristic of an arc plasma is very different from
the Child-Langmuir relation: indeed in a certain sense its resistance is negative.
The external circuit driving the arc must include a resistive element as well as a
voltage source. If the resistance of this element is reduced, allowing more current
to flow through the arc, the plasma density increases due to the increased input
power, the cathode sheath narrows due to the higher plasma density, and the
voltage drop across the arc falls! Of course even though the voltage decreases
with rising current, the input power, IV, increases. This nonetheless strange
situation pertains up to the point where the full electron emission from the
cathode is drawn into the arc. The voltage drop at this point might be 10-20V
in our case, the current hundreds of amperes, and the input power would be
thousands of watts. If the current is raised further the arc makes the transition
from space-charge-limited to emission-limited, and the voltage across the arc
rises with rising current, since a higher voltage is needed to pull ions into the
cathode.

Thus, as we can see, by introducing gas—and therefore plasma—into the
problem, we have created a very different situation. From an engineering point
of view, we now have to consider how to handle kilowatts of heat outflow from
a small volume. From a physics point of view, it is interesting now to try to
understand the behavior of the new state of matter we have just created.

Of course we do not always have to make a plasma in order to study one.
The Sun is a plasma; so are the Van Allen radiation belts surrounding the Earth.
The solar wind is a streaming piasma that fills the solar system. These plasmas in
our solar system provide many unsolved mysteries. How is the Sun’s magnetic
field generated, and why does it flip every eleven years? How is the solar corona
heated to temperatures greater than the surface temperature of the Sun? What
causes the magnetic storms that result in a rain of energetic particles into the
Earth’s atmosphere, and disturbances in the Earth’s magnetic field? Outside of
the solar system there are also many plasma-related topics. What is the role of
magnetic fields in galactic dynamics? The signals from pulsars are thought to be
synchrotron radiation from rotating, highly magnetized neutron stars. What can
we learn from these signals about the atmospheres of neutron stars and about
the interstellar medium? All of these are very active areas of research.
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Figure 1.3. Typical parameters of naturally occurring and laboratory plasmas.
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Some typical parameters of naturally occurring and laboratory plasmas
are given in Table 1.1. Their density and temperature parameter regimes are
illustrated in Figure 1.3. We see that the plasma state spans enormous ranges in
scale-length, density of particles and temperature.

1.6 THERMAL DISTRIBUTION OF VELOCITIES IN A PLASMA

If we have a plasma in some form of near-equilibrium, i.e. where the particles
collide with each other frequently compared to the characteristic time-scale
over which energy and particles are replaced, it is reasonable to expect the
laws of equilibrium statistical mechanics to give a good approximation to the
distribution of velocities of the particles. We will assume for the time being that
the distribution with respect to space is uniform.
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Table 1.1. Typical parameters of naturally occurring and laboratory plasmas.

Length  Particle Electron Magnetic

scale density temperature  field

(m) (m) (eV) (T
Interstellar gas 106 106 1 10710
Solar wind 10% 107 10 1078
Van Allen belts 10¢ 10° 10? 106
Earth’s ionosphere  10° 101 107! 3% 1073
Solar corona 108 1013 10? 10~°
Gas discharges 102 10'8 2 —
Process plasmas 107! 10'8 102 107!
Fusion experiment 1 10"-10%  10°-10* 5
Fusion reactor 2 102 10* 5

Consider any one specific particle, labeled ‘r’, in the plasma as a
distinguishable microsystem. We will ignore quantum-mechanical effects
that make distinguishability invalid, and consider only particles that behave
classically.

Problem 1.1: What are some plasma parameters (electron temperatures
and densities) where quantum-mechanical effects might be important?

We now ask the question: what is the probability P, of finding our specific
particle in any one particular state of energy W,? The particle has to have gained
this energy W, from its interaction with the others, so the remaining thermal
‘bath’ of particles must have energy W, — W,, where Wiy, is the total thermal
energy in the plasma. If the particles have collided with each other enough,
we can expect the fundamental theorem of statistical mechanics to hold. This
theorem amounts to saying that we know as little as could possibly be known
about any given thermal system: all possible accessible microstates of the total
system are populated with equal probability. Thus in order to determine the
probability P, of any given state of our specific particle, we need only evaluate
the number of microstates accessible to the ‘bath’ with energy W, — W,. Let us
define 2 as the number of microstates accessible to the bath with total energy
W. Then, for any thermal system statistical mechanics defines its temperature,
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T, by the relation
l=kdln§2____d_£ 1.17)
T dw ~— dw .
where k is the Boltzmann constant, and the entropy, S, of the system is defined
by S = kIn€2. Since the energy of our specific particle is small compared to the
energy of the bath, we can approximate the number of microstates available to
the system by

In Qly,—w, ~In Qly, — W,/kT. (1.18)
Taking the exponential of both sides, we obtain

Qlel—W, ~Q Wit exp(’—Wr/kT) (119)

which is just the result we are seeking. The relative probability P, of the particle
having energy W, is given by the famous ‘Boltzmann factor’, exp(—W,/kT),
since 2 evaluated at W, is not a function of W,.

If we ignore, for the time being, any potential energy associated with the
position of the particle, we have the result that the relative probability that
the velocity of our particle lies in some range of velocities dv,dv,dv, centered
around velocity (vy, vy, v;) is given by

—m(v + v +v2)
exp AT

) dv,dv,dv, (1.20)

where m is the mass of the particle. Since there was nothing special about
our particular particle (which was chosen arbitrarily from the bath), this same
relative probability distribution is appropriate for all the particles in the bath.
It is convenient to define a ‘phase-space density of particles’, f(x,v), which
gives the number of particles per unit of dxdydzdv,dv,dv,, the volume element
of six-dimensional phase space. The three-dimensional integral of f over all
velocities, v, gives the number density of particles per unit volume of ordinary
physical space, which we denote n. The units of f are given by

[fl=m3ms 3 =sm™. 121

For a Maxwell-Boltzmann distribution, f is simply the Boltzmann factor
with an appropriate normalization. If we carry through the necessary integral
over all v to ensure that

/fdvxdvydvz =n (1.22)

thereby obtaining the correct normalizing factor, the result is that the Maxwell-
Boltzmann (or Maxwellian) distribution function is given by

fm exp(—v%/2v?) (1.23)

n
B (N/Z_El)t)3
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where the thermal velocity, v, is given by
v = (kT/m)"2. (1.24)

Equation (1.24) is the last time that we will show the Boltzmann constant,
k. Henceforth we will drop k, writing for example simply v, = (T/m)"/?. The
Boltzmann constant k has the role of converting temperature from degrees Kelvin
to units of energy (see equation (1.17)). In plasma physics, we generally find
it more convenient to express temperature directly in energy units. In practical
applications, we tend to discuss the temperature in units of electron-volts (eV),
the kinetic energy an electron gains in free-fall down a potential of 1V, but the
equations we write, such as v, = (T/m)'/? above, are in SI units for velocity
and mass, so 7 is expressed in joules. Since when a charge of one coulomb
falls down a potential of one volt, the kinetic energy gain is by definition one
joule, the energy in an electron-volt, expressed in joules, is numerically equal
to the electron charge expressed in coulombs. Rather than refer to a plasma as
having temperature 11 600K, we say its temperature is 1eV, and evaluate T in
SI units as 1.60 x 107! J (see Appendix C). Often, however, we will encounter
the expressions (T /e) or (W/e) in plasma physics equations. When evaluating
such expressions, it is even more convenient to insert the temperature, T, or
particle energy, W, in units of eV, for the whole expression. An eV divided by
e is a V—a perfectly good unit in SI! In other words, the expression (W /e) for
a 10keV particle becomes in SI 10* V. Remember, however, that the average
kinetic energy of a particle in a Maxwellian distribution is (W) = (3/2)kT—
or, in our nomenclature, (W) = (3/2)T. This is because the distribution
contains three degrees of freedom per particle, corresponding to the three velocity
components (vy, vy, v;). From statistical mechanics we know that the typical
energy associated with each degree of freedom is 7/2.

One important use of the velocity-space distribution function f is to find
the value of some quantity averaged over the distribution. For any quantity X,
the local velocity-space average of X, which we denote (X), is given by

_ [ fX&v [ fXdv
X)y = [ fd30 n

In particular, if we take X = W = mv?/2, we find, for a Maxwellian distribution,
that (W), = (3/2)T, as we discussed above. If we are interested in the average
energy of motion that a particle has in any one direction, say the z direction,
W, = mvzz/Z, we find (W,), = T /2 for a Maxwellian distribution function. The
average of vz2 is simply T/m, or v} as defined by equation (1.24). Thus the
quantity v, as we have defined it, is the ‘root-mean-square’ of the velocities in
any cne direction. (Beware that some researchers use an alternative definition,
namely v, = T /m)'/%))

(1.25)
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In some cases, a plasma has an anisotropic distribution function, which
can be approximated as a ‘bi-Maxwellian’ with a different temperature along
the magnetic field than across the field. This can happen in the laboratory or in
natural plasmas due to forms of heating that add perpendicular or parallel energy
preferentially to the particles, or loss processes that take out one or the other
form of energy rapidly compared to collisions. In this case, taking the direction
of the magnetic field to be the z direction, we have

n v vitul
= exp| ——5% — —— (1.26)
(V2mvy)(V2m v L)? ( 2v,2|| 203

f

where
v = (Ty/m'? vy = (Ty/m)'? (1.27)

and (W,), = (W), = m(vﬁ)v/Z = T;/2, because the parallel direction
represents one degree of freedom. Similarly, defining v? = v2 + vg, (Wy)y =
(Wy)y = m(v2)y/4 = T1/2, so (W), = (Wy)y + (W,), = Ty, because the
perpendicular direction represents two degrees of freedom. In an isotropic
plasma, with Ty = T = T, (W), = 2(W))\.

Problem 1.2: Sketch a three-dimensional plot of an anisotropic
distribution function f, with 7 = 27,. Show that [ fd*v = n for f given
by equation (1.26).

1.7 DEBYE SHIELDING

We have now done some very basic statistical mechanics to understand the
Maxwell-Boltzmann distribution function of a plasma. Maxwell-Boltzmann
statistics arise repeatedly in plasma physics, and the next example is fundamental
to the very definition of a plasma. Consider a charge artificially immersed
in a plasma which is in thermodynamic equilibrium. The equilibrium state
implies that the plasma must be changing very slowly compared to the particle
collision time, and that there is no significant temperature variation over distances
comparable to a collision mean-free path. For present purposes, we will assume
that the plasma is ‘isothermal’—at a constant temperature, independent of
position. Once again, consider the particle distribution function to be a heat
‘bath’ at a given temperature. And again consider a single specific particle, but
now allow the particle to have both kinetic and potential energy:

W, =mv?/2 +q¢ (1.28)
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where g is the charge of the particle (—e for an electron, + Ze for an ion of
charge Z), and so the Boltzmann factor becomes

expl—(mv®/2 + q¢)/T). (1.29)

The relative probability of a given energy of the particle now depends
on position implicitly, through ¢. The point worth noting is that this
same Boltzmann factor (with a constant normalization in front—independent
of position) gives the relative probability and therefore the relative particle
distribution function over the whole volume in thermal equilibrium. If we
integrate the distribution function over velocity space to obtain a relative local
particle density, we find that the spatial dependence that remains comes only
from the Boltzmann factor:

n x exp(—q¢/T). (1.30)

This means physically that electrons will tend to gather near a positive
charge in a plasma, and therefore they will tend to shield out the electric field
from the charge, preventing the field from penetrating into the plasma. By the
same token, ions will have the opposite tendency, to ‘shy away from’ a positive
charge, and gather near a negative one.

A fundamental property of a plasma is the distance over which the field
from such a charge is shielded out. Indeed, it is considered one of two formal
defining characteristics of a plasma that this shielding length (called the Debye
length, Ap, which was first calculated in the theory of electrolytes by Debye and
Hiickel in 1923) be much smaller than the plasma size. The second defining
characteristic of a plasma is that there should be many particles within a Debye
sphere, which has volume (4/3)m A3, with the consequence that the statistical
treatment of Debye shielding is valid.

It is fairly easy to calculate the Debye length for an idealized system. Let
us suppose that we have immersed a planar charge in a plasma. Assume the
plasma ions have charge Ze, and far from the electrode the ion and electron
densities are n. = Zn; = neeo. This boundary condition at infinity is required in
order to provide charge neutrality over the bulk of the plasma, so as to keep the
electric field, E, from building up indefinitely. Let us also choose to set ¢ =0
at infinity for simplicity. Given our assumptions at infinity, from the Boltzmann
factor we know that

ne(x) = neoexpl(ed/Te)
Zni(x) = neooexp(—eZiop/T;).

(1.31)

We are allowing T, # T, for generality, but both 7; and 7. are spatially
homogeneous, i.e. the electrons are in thermal equilibrium among themselves,
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and the ions are in thermal equilibrium among themselves, but the ions and
electrons are not necessarily in thermal equilibrium with each other. At first
sight this may seem unphysical, but it happens often in plasmas because electron—
electron energy transfer by collisions and ion—ion energy transfer by collisions
are both faster than collisional electron—ion energy transfer, due to the large
mass discrepancy. We will study this in Unit 3. For the time being, it might
be helpful to think about the example of collisional equilibration in a system of
ping-pong balls and bumper-cars. At first the ping-pong balls and bumper-cars
will each, separately, come to thermal equilibrium, because their self-collisions
are efficient at transferring energy as well as momentum. It will take longer for
the balls and cars to come into thermal equilibrium with each other, because the
transfer of energy in their collisions is weak.
The Poisson equation for our one-dimensional planar geometry is
d’¢

€ogz = elne — Zm) = enecolexp(ed/T.) — exp(—eZp/Ti)] (1.32)
where € is again the permittivity of free space. It is difficult to solve this
equation in the region near the planar charge, where e¢/T may be large, but we
can obtain a qualitative sense of the solution by assuming that e¢/T is small,
and expanding the exponential in e¢/T. Equation (1.32) then becomes

2

609‘?% R eNeco(ep/T. +eZd/T) (1.33)
dx

2 2 i
d_¢ ~ e Neco(1 + ZTE/Tx)q) (1.34)
dx? e T:

which can be solved to obtain the characteristic exponential decay length which
we are seeking:

¢ o exp(—x/Ap) (1.35)
where 2
Ap = ( _ “Te ) (1.36)
nee*(1+ ZT./T;)

Often the ion term is not included in the definition of the Debye length,
giving Ap = (€oT./nee?)'/2. For typical laboratory plasmas, the Debye length
is indeed small. For a 3eV electric arc discharge at a density of 10" m~>, we
find that Ap &~ 3 x 1078 m. The number of particles in the Debye sphere for this
case is about one thousand, making our statistical treatment reasonably valid.

Problem 1.3: Derive the equivalent of equation (1.34) in spherical
coordinates (i.e. for the case of a point charge immersed in a plasma).
Show that the solution is ¢ o exp(—r/Ap)/r.
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Problem 1.4: The typical distance betwsen two electrons in a plasma is
of order n;'/*. Show that the potential energy associated with bringing
two electrons this close together is much less than their typical kinetic

energy, so long as neAd » 1.

1.8 MATERIAL PROBES IN A PLASMA

In our discussion of Debye shielding, we considered the response of an
equilibrium plasma to a localized charge. We did not, however, consider the
possibility of collisions between plasma particles and whatever was carrying the
charge. The situation is very different in the case of a real material probe inserted
into a plasma. Such a probe intercepts particle trajectories, resulting in violation
of the assumption of equilibrium in its near vicinity. If the probe is biased
negative with respect to the plasma, with potential ¢ « —T./e, few electron
trajectories are intercepted, since most electrons cannot reach the probe, so the
electrons will be close to equilibrium and maintain ne ~ necexp(e@/7T). A
sheath region will develop around the probe, whose width scales with the Debye
length, as in the case we just considered, because the electron population will
be exponentially depleted close to the negatively biased probe. Ions, however,
will be accelerated across the sheath, and into the material electrode. In the
case of cold ions, T; « T, the calculation of the ion density reduces to the
ion analog of the Child-Langmuir calculation we performed at the beginning
of this Chapter. While the electron density falls exponentially in the vicinity
of a negatively biased material probe, the ion density is depressed as well, but
more weakly, as ¢~!/2 (see equation (1.12)). The ion density, in this case, is
not enhanced by the negative bias, due to the depleting collisions with the probe
surface. The ion current density to a negatively biased probe in a Z = 1 plasma
is given approximately by ji ~ ni0eCs, where Cy is the so-called ‘ion sound
speed’ Cg = [(T. + T;)/m;]'/2, which shows up in situations like this where both
ion and electron temperatures contribute to ion motion, and 7 is the ion density
far from the probe. (We will encounter Cs again when we study ion acoustic
waves in Unit 4.) This ion current is called the ‘ion saturation current’, ji,
because the ion current saturates at this value as the probe bias is driven further
negative. The sheath width grows as the potential becomes more negative, in
just such a way as to keep the ion Child—Langmuir current constant at jga ;.

Problem 1.5: Perform an ion Child-Langmuir calculation to model the
plasma sheath at a material probe. Assume an inter-electrode spacing
of Ap = (eT./n.€*)'/? to model the sheath width, and a potential drop
of ep = —T,. Take T; = 0. You may assume that the electron density is
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negligible in the sheath region, to make the ion Child—Langmuir calculation
valid. Determine the ion current density, j;, across this model sheath.

The electron current to a material probe depends exponentially on the probe
potential, since the electron density at the probe face varies exponentially with
e¢ /T, and the particle flux from a Maxwell-Boltzmann electron distribution into
a material wall is given by I' [particles s™! m~2] = ne(87T./mme)'/? ~ nevee. A
potential of e¢p ~ 3.3T; is required to reduce the electron current to the probe
to equal the ion current, in a hydrogen plasma. This is called the ‘floating’
potential, because the potential of a probe that is not allowed to draw any net
current will ‘float’ to this value. Such a strong potential is required, of course,
because v, e ~ Cs(m;/me)'/2, so the electron current in the absence of negative
probe bias is much larger in absolute magnitude than jg, .






UNIT 1

SINGLE-PARTICLE MOTION

In this Unit we will investigate charged-particle motion in magnetic, electric
and even gravitational fields. Natural and laboratory-generated plasmas are
frequently immersed in strong externally-generated magnetic fields, because
these fields confine charged-particle orbits (and therefore plasmas), at least in
the direction perpendicular to the magnetic field. Magnetic and electric fields
are also generated by currents and charge accumulations within plasmas, and
so an understanding of charged-particle motion in these fields underlies the.
understanding of the dynamics of plasma motion.

We will begin by studying particle motion in uniform static fields in
Chapter 2. Then we will include spatial gradients in Chapter 3. In Chapter 4
we will include time-dependent phenomena, and discuss invariants of particle
motion. In Chapter 5 we will introduce the modern nonlinear theory of chaos
in particle orbits, using the concept of Hamiltonian maps.






Chapter 2

Particle drifts in uniform fields

Many plasmas are immersed in externally imposed magnetic and/or electric
fields. All plasmas have the potential to generate their own electromagnetic
fields as well. Thus, as a first step towards understanding plasma dynamics,
in this Chapter we begin by considering the behavior of charged particles in
uniform fields, thus constructing the most fundamental aspects of a magnetized
plasma. We also carefully introduce some of the mathematical formalisms that
we will use throughout the book.

2.1 GYRO-MOTION

In the presence of a uniform magnetic field, the equation of motion of a charged
particle is given by

mv=gqvxB 2.1)
where g is the (signed) charge of the particle. Taking Z to be the direction of B

(i.e. B = BZ or we sometimes say b= B/B which, in this case, is the same as
Z), we have

Uy = quyB/m 2.2)
vy = —quyB/m 2.3)
v, = 0. 24)

For a specific trajectory, we also need initial conditions at ¢t = 0: these we take
to be x = xi, y = yi, 2 = 2i, Ux = Vyj, Uy = Vy;, U, = V. If we take the time
derivative of both sides of equation (2.2), we can use equation (2.3) to substitute

for vy, and obtain
2 2
o _ (ff.f.) o, @5)

dr? m

21
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If we define w, = |q|B/m, it is clear that the solution of this equation is
vy = Acos(wct) + Bsin(wt) (2.6)

where A and B are integration constants. Evidently w,, called the ‘cyclotron
frequency’ (also sometimes called the ‘Larmor frequency’ or the ‘gyro-
frequency’), is going to prove to be a very important quantity in a magnetized
plasma. It is convenient to use complex-variable notation, and rewrite
equation (2.6) as

vy = Re[Aexp(iwct)] — Re[Biexp(iw.t)]
= Re[(A — iB)exp(iwct)] = Re {[vLexp(id)] exp(ioct) }
= Re [viexp(iwct + i8)] 2.7)

where Re indicates the real part of the subsequent expression, v, is an absolute
speed perpendicular to B, and § is a phase angle. The quantities v, and é have
become our new integration constants. (We will now drop the Re in this notation,
since it is clear that we are dealing with real quantities.) In this formulation, v,
and § are chosen to match the initial velocity conditions. Equation (2.2) gives

vy =i(lql/q)viexp(iovct +18) = Fiv, exp(iwct + id) (2.8)

where =+ evidently indicates the sign of ¢g. From the initial conditions, we now
can say that vy = (v + v2)"? and § = Ftan~'(v,i/vy;), Where the upper
sign is for positive g. Note that v, and v, are 90° out of phase, so we have
circular motion in the plane perpendicular to B. Equation (2.4) indicates that
v, is a constant, and so the motion constitutes a helix along B. If we integrate
equations (2.4), (2.7) and (2.8) in time, we obtain

x =x; — (v Jo)exp(iwct + 18) — exp(id)]
y = yi £ (vi/wc)exp(iwet +i8) — exp(ié)] (2.9
=2 + Ut

where the integration constants have been chosen to match the initial position
conditions.

Clearly, then, another fundamental quantity in a magnetized plasma is the
length r,. = (v) /w.), called the ‘Larmor radius’ or ‘gyro-radius’. This is the
radius of the helix described by the particle as it travels along the magnetic
field line. Figure 2.1 shows an electron and a proton gyro-orbit, drawn more
or less to scale, for equal particle energies W = muv? /2. The ratio of the two
gyro-radii is the square-root of the ratio of the proton mass to the electron mass,
/1837 A 43. Note that v, is proportional to (W/m)'/2, and w, is proportional
to 1/m, so ry is proportional to (mW)!/2,
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Figure 2.1. Ton and electron gyro-motion in a magnetic field. For fixed energy, the ion’s
gyro-orbit is much larger than the electron’s. ‘X’ indicates that the magnetic field faces
into the page.

The centers of the gyro-orbits are referred to as their ‘guiding centers’,
or ‘gyro-centers’, and give a measure of a particle’s average location during
a gyro-orbit. Averaging equation (2.9) over a gyro-period, the guiding-center
position for the particular initial values considered here is seen to be given by

Xge = Xi +1(vL/wc)exp(i8)  yge = yi F (vi/wc)exp(id) (2.10)

so that the particle’s position described in terms of its guiding-center position is
given by

= Xge — i(vy /o )exp(ioct + id)
Y = Yge £ (v1/wo)exp(ioet + i8) @.11)
Z = Zge = Zi + Vgt

Thus we can think of particle gyro-centers as sliding along magnetic field lines,
like beads on a wire. Note that electrons and ions rotate around the field lines in
opposite directions, with the upper sign giving the phase for positively charged
particles. If you point your two thumbs along the direction of the magnetic field,
the fingers of your left hand curl in the direction of rotation of positively charged
ions, while those of your right hand do the same for electrons. These directions
of rotation are both such that the tiny perturbation of the magnetic field inside
the particle orbits, due to the current represented by the particle motion, acts to
reduce the ambient magnetic field. High-pressure plasmas reduce the externally
imposed magnetic field through the superposition of this ‘diamagnetic’ effect
from a high density of energetic particles.

The ion and electron Larmor radii and gyro-frequencies provide
fundamental space-scales and time-scales in a magnetized plasma. Phenomena
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which occur on space-scales much smaller than the gyro-radius, or on time-
scales much faster than a gyro-period, are often insensitive to the presence of
the magnetic field, and can be described using equations appropriate for an
unmagnetized plasma. In the opposite limit of large space-scales and long time-
scales, gyro-motion is crucial to plasma behavior, and generates some surprising
phenomena—somewhat akin to the behavior of a gyroscope which responds
to any attempt to change the orientation of its axis of rotation by moving at
90° to the applied torque. Some plasma phenomena, especially in the Earth’s
magnetosphere, can occur at intermediate space-scales and time-scales, such
that the electrons can be considered magnetized, while the ions are essentially
unmagnetized. In our discussion of particle motion, however, we will generally
consider space-scales much greater than a gyro-radius, and time-scales much
longer than a gyro-period of either species, unless we specifically state otherwise.

Problem 2.1: Look through articles in Physical Review Letters, Plasma
Physics, Physics of Fluids B (recently renamed Physics of Plasmas) or in
other journals over recent years and find at least one article each about
laboratory, solar or terrestrial, and astrophysical plasmas immersed in
magnetic fields. Give the reference and a few-sentence description of
each article. For the plasmas you find described, evaluate the ion and
electron gyro-radii and the Debye radius (ignoring ion shielding), insofar
as the authors give you the required information. Compare these to the
system sizes. Calculate how many particles are within a Debye sphere
for each case. Evaluate the ion and electron cyclotron frequencies and
compare to the evolution time-scale of the overall plasma. Which of
these systems are really plasmas? Which of these are magnetized versus
unmagnetized plasmas?

2.2 UNIFORM E FIELD AND UNIFORM B FIELD: E x B DRIFT

Starting from the configuration we have just discussed, with B = BZ, let us
add a uniform electric field E. We will assume that both the electric and the
magnetic field are time-independent. The non-relativistic equation of motion
becomes

mv = q(E + v x B). 2.12)

Now we will employ a mathematical transformation, which we will justify later,
in order to solve this equation expeditiously. Let us define a velocity u by

u=v - (E xB)/B?%. (2.13)

In other words, u is the particle velocity that we would see in a frame moving
at velocity (E x B)/B2. Since E and B are time-independent, we have v = u
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and so, substituting for v in terms of u, equation (2.12) for u becomes
ma = g[E +u x B+ (E x B) x B/B?]. (2.14)
Now, we use the vector identity
AxB)xC=A-OB-(B-0A (2.15)
(see Appendix D) to obtain

mi = g[E +u x B+ (E - B)B/B? — E]
= g[b(E - b) + u x B]. (2.16)

To obtain the equation for the velocity parallel to B, we take the dot-product of
equation (2.16) with b, giving

mu =qEj .17
where we are defining
uy=u-b E=E-b v =v-b (2.18)
From equation (2.13) we see that u; = v, and so the solution for vy is just
free-fall in the electric field:
vy = (@Ej/m)t + vy;. (2.19)

To obtain the equation for the velocity perpendicular to B, we multiply both
sides of equation (2.17) by b, and subtract from equation (2.16). We obtain

mll_L =qu; X B (220)

whereu; =u—u;b,E; =E— Ejb and v, = v —yb.

Thus, in the direction perpendicular to b, we have precisely the same
equation for u as we had for v in the absence of an electric field, i.e.
equation (2.11). We have found that the solution of this equation implies that
the guiding center does not move at all perpendicular to B, and we know that it
slides along B with velocity u; = v, as given by equation (2.19). Thus, in the
frame moving at speed (E x B)/B?, the only guiding-center velocity we see is
parallel to B, so in the laboratory frame we see a guiding-center velocity

Vge = vyb + (E x B)/B? = vyb + vg. (2.21)

The velocity vg = E x B/B? is called the ‘E x B drift’. It is particularly easy
to evaluate this drift in SI units: E is in units of volts/meter, B is evaluated in
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units of teslas and vg results in meters/second. Notice that vg is independent of
g, m, vy, and vy . This means that the whole plasma drifts together across the
electric and magnetic fields with the same velocity.

What we have actually done here is performed a simplified Lorentz
transformation, using the B field to eliminate the E field in the moving frame,
and so simplified the equation of motion. Of course the Lorentz transformation
works the same for all particles, so the whole plasma vg-drifts together, relative
to what it would have done without the E field. Since we have chosen to use a
non-relativistic equation of motion, our Lorentz transformation is particularly
simple. The approximation we have used is equivalent to assuming that
y=[1—-@/e)PI"?~1,0r (v/c)* < 1.

For a more physical picture of the origin of the E x B drift without resorting
to the Lorentz transformation, consider how the particles are accelerated by the
electric field during part of their gyro-orbits, and are decelerated during the
other part. The result of these accelerations and decelerations is that the radii
of curvature of the gyro-orbits will be slightly larger on the side where the
particles have greater kinetic energy than on the side where the particles have
less kinetic energy, due to having climbed a potential hill. This gives rise to a
drift perpendicular to E, as illustrated in Figure 2.2.

E ———g

B

O) I

Figure 2.2. Electron E x B drift motion. The half-orbit on the left-hand side is larger
than that on the right, because the electron has gained energy from the electric field. The
dot indicates that the magnetic field faces out of the page.

Incidentally, in our derivation of the E x B drift, we did not have to assume
anything about the relative size of v and |vg|. Indeed, the whole guiding center
formalism can be developed for the case where |vg| is of order v (at the expense
of a greater complexity of terms), but we will hereafter assume |vg| < v in our
derivations.
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2.3 GRAVITATIONAL DRIFT

In the presence of any other simple force on the charged particles in a plasma, we
can apply directly the results we have derived for the electric force. In particular,
if we imagine a plasma in the Earth’s magnetic field, we might wonder what
effect the Earth’s gravity would have on it. We can simply replace the electric
force gE with a general force, F, in both the equation of motion and in its
solution (e.g. in the definition of u). This gives a guiding-center drift

vr = (F x B)/qB? (2.22)
or, in the case of gravity, where F = mg,
Vg = m(g X B)/qB2 (2.23)

which is usually called the ‘gravitational drift’.

Note that v, unlike vg, depends on m and g. The presence of gravity gives
rise to a net current in a plasma; the ions drift one way and the electrons the
other—the ions, which are much heavier, drift much faster. In a finite plasma,
this current therefore gives rise to charge separation. Generally speaking, the
actual gravitational drift v, is very small, and we introduce it mainly for later
application of the idea of a ‘general force’ drift to the case of centrifugal force.

It is interesting to ask why it is that a plasma ‘cloud’ above the Earth does
not seem to fall down in the gravitational field. In fact, the gravitational drift is
horizontal, not vertical! (Galileo, for one, might have found this disturbing.) The
qualitative answer is that the ion and electron drifts are in opposite directions,
and so if the plasma is finite in the horizontal direction, perpendicular to B and
g, charge separation occurs, an electric field builds up (in the horizontal direction
and perpendicular to B), and the plasma does indeed drift downwards, after all,
due to the vg drift. To analyze this situation quantitatively—and to determine
whether the plasma falls with acceleration g—we must first understand how a
plasma responds to a time-varying electric field, E. We will return to this topic
in Chapter 4.

Problem 2.2: The ionosphere is composed mostly of a proton—electron
plasma immersed in the Earth’s magnetic field of about 3 x 1073 T. How
fast is the gravitational drift for each species?






Chapter 3

Particle drifts in non-uniform magnetic
fields

In the previous Chapter, we studied particle drifts in uniform fields and developed
the fundamental concepts of Larmor radius, gyro-frequency, and gyro-center
motion. Now we consider magnetic field gradients both perpendicular and
parallel to B, and curved magnetic fields. We will find gyro-center drifts across
the magnetic field, and acceleration (or deceleration) along B. We will develop
the concept of ‘ordering’ the drifts in the ratio of Larmor radius to gradient
scale-length. To zeroth order, particles slide along B as before (but vy will now
vary), and to first order they drift across B, but they still precisely conserve the
sum of potential and kinetic energy at each order.

3.1 VB DRIFT

We now proceed to examine particle guiding-center drifts in inhomogeneous
magnetic fields. We will assume in all of these studies that the gyro-radius,
rL, is much less than the typical scale-length of variation of the magnetic field.
Thus

ry .

EIVB|<<1. (3.1)

For example, if B has a sinusoidal variation, B o exp(ikx), or an exponential
variation, B o exp(kx), this is equivalent to saying krp < 1, where 1/k is a
characteristic gradient scale-length for the problem. In this situation, the quantity
krp becomes a useful ‘expansion parameter’ for studying the equations of motion
by the method of asymptotic expansion.

In our asymptotic expansion procedure, we will assume that the particle
velocities can be expressed as a sum of terms

V=vo+Vvi+va+... (3.2)

29
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where the leading term is the particle’s parallel velocity, v"f), plus its gyro-
motion perpendicular to B, and each successive term in the series is assumed to
be smaller than the previous one, by approximately kr;. We will be interested
here in calculating the evolution of vo and of v;, and in fact at first order
we will only need the guiding-center motion averaged over many gyro-periods.
Substituting our form for v into the equation of motion, we will find that we
have terms in the equation of each order: (krp)?, (krp)!, (krp)?, etc. If we solve
for vy, vy, v, etc., so as to make the terms in the equation of each order balance
separately, we will have an asymptotic series solution for v. This approach is
justified by noting that, in the limit kr;, — O, terms of higher order in kry, can
never be used to balance terms of lower order, because for small enough kr,
the higher-order terms must be negligible in comparison with the lower-order
ones.

We begin by considering the case where we have a perpendicular (i.e.
perpendicular to B) gradient in the field strength, B. For simplicity let us
assume that B is in the z direction, and varies only with y. (To generate this
field, we need distributed volume currents, since ¥V x B 7 0. Such currents are
common in plasmas, but do not affect directly our analysis of particle drifts. Of
more importance is the fact that our model field does not violate ¥V - B = 0.)
We write

. dB
B =By iz+(y— ch.i)az (3.3)
where ygc,i is the initial y position of the particle guiding-center, and By ; is
the value of B at yg ;. We assume for the validity of our asymptotic expansion

procedure that ri (dB/dy) <« B. The equations of motion in the perpendicular
(x and y) directions are

mvy = qUy[Bgci + (¥ — Ygc,i)(dB/dy)]

) (3.4)
muvy = "'qvx[Bgc,i + (- ygc,i)(dB/d)’)]-
Substituting the series expansion for v, we obtain
MUy + MUy = q(vyo + Uyl)[Bgc,i + (o — ygc,i)(dB/d)’)] 35)

mvyo + mvy; = —q(vxo + Ux1)[Bge,i + (Yo — )’gc,i)(dB/dy)]-

We have ignored some of the terms that are second order in kr, but we have
kept all terms that might prove to be of lower order.

In thinking carefully about this procedure, we encounter one of the
interesting subtleties of using asymptotic expansions. We will assume that
(¥ = Ygc,i)(dB/dy) is smaller than By ; by one order in kry. This requires that
(¥ = Yge.i) always be of order i, for our series expansion to be correct. However
that means that y(z), which we do not yet know, must not grow without bound,
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because in that case the quantity (y — ygc ;) would not remain of order ry, as our
ordering assumes. In particular y;(¢#) must not grow without bound, so we must
watch out for such ‘secularities’ in y. In the case at hand this turns out not to be
a problem, as we will see; our solution will maintain (y — y, ;) of order rp—so,
a posteriori, our assumption will be proven correct. In more complex situations,
special techniques may be needed to eliminate secularities, but a valid solution
can often still be obtained via this asymptotic expansion procedure.

So let us proceed with our order-by-order solution of equation (3.5). The
zeroth-order terms in equation (3.5) constitute simply the equations of motion in
a homogeneous magnetic field, which we gave first in equations (2.2) and (2.3),
and whose solution is given in equations (2.7), (2.8) and (2.11). Our procedure
calls for us to assume that the zeroth-order terms balance, implying that the
zeroth-order velocities and positions must be given by our previous solution.
Next we gather together all the first-order terms (terms of order kr;p compared
to the largest ones) to generate a first-order equation that we must solve:

mix; = quy1 Bgei + quyo(Yo — Yge,i)(dB/dy)

. (3.6)
mvy) = —qUx1 Bgei — quxo(Yo — Yge.i)(dB/dy).

To make further progress, we will now time-average both of these first-
order equations over many gyro-periods, since we are only interested in the
gyro-averaged particle motion, sometimes called the ‘guiding-center drift’. We
use the notation ( ) here to indicate a time average. The left-hand side of both
equations can be set to zero, because all that survives the gyro-averaging process
are the time derivatives of m(vy) and m(vy|) due to changes that are slow
compared to a gyro-period, with the result that these terms are now very small
compared to the first terms on the right-hand side. We say that the gyro-averaging
process ‘annihilates’ these terms on the left-hand side. In effect it raises them by
one order, since only time derivatives slow compared to a gyro-period survive
the averaging. However for present purposes, the resulting second-order time
derivatives can be neglected. Next we note that (vyo(yo — ygc.i)) = 0, since
equations (2.8) and (2.11) show that vyo and yo — y,; are 90° out-of-phase, and
of course, (vVyoYgc,i) = 0.

Problem 3.1: Prove that (vyo(yo — ygc,i)) = 0 for all 8.

Thus (vy;) = 0, and so the particles do not steadily drift off in the
y direction—justifying our expansion procedure (which required that y — yg;
not grow without bound) a posteriori. The particles do, however, steadily drift
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off in the x direction, since

{(vx0(Yo = Yge.i)) EE

L) = — i
(Ver) B, i (3.7
Referring to equation (2.11) and taking § = 0, we arrive at
(vxo(Yo — Yge.i)) = £(Re[v exp(iwct)] Re[(vL/wc)exp(iwet)])
= +v? /Qw.) (3.8)

where the £ sign goes with the charge of the particle. Note that (v,;) does not
even have a slow time derivative, so our assumption that (mv,;) was negligible
is also consistent with our solution. Note also that By. = Bgc;, because the
particle is drifting in a direction in which B is constant.

Problem 3.2: Evaluate (v.(yo — yg,i)) for arbitrary é.

Recognizing that the choices for B to be in the z direction and for VB to
be in the y direction were arbitrary, we have for perpendicular gradients of B,
a guiding-center drift given by

vi BXxVB W, BxVB
20 B> g B3

Vgrad = + (3.9)

where Vgaq is the gyro-averaged drift of the guiding-center, due to a
perpendicular gradient in B. We call this the ‘V B drift’. In SI units, with
energies in eV, equation (3.9) is particularly simple to evaluate: for a 1000eV
particle (and all its energy in W, ), in a 1 tesla magnetic field, with a gradient
scale-length of 1 meter, the V B drift velocity is simply 10° meters/second.

Note that the V B drift, like the gravitational drift, depends on the sign of
the charge of the particle, and so it gives rise to a net current, which in turn leads
to charge separation in a finite plasma and, consequently, a volumetric electric
field. Interestingly, at fixed energy the V B drift is independent of particle mass.
Notice that if v, is of order vy, this first-order gyro-averaged drift is indeed a
factor krp smaller than the parallel velocity of the particle along a field line,
v"f), which is the only zeroth-order motion that would survive gyro-averaging.
This is consistent with our ordering procedure.

Problem 3.3: Assume e¢ is of order W, a particle’s kinetic energy, and
that the gradient scale-length of the electric potential is roughly the same
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size, 1/k, as the scale-length of variation of B. Show that v is the same
order in kry @s Vgrad.

There is a simple physical picture for the V B drift, which follows from
the fact that the local radius-of-curvature of the gyro-orbit is smaller on the
larger-magnetic-field side of the orbit, and correspondingly larger on the smaller-
magnetic-field side. If we construct a continuous trajectory from smaller orbits
on one side, and larger orbits on the other, we find a net drift perpendicular to
both B and V B, as illustrated in Figure 3.1.

B B — Vge

©

vB

Figure 3.1. Ion VB drift motion. The combined effect of smaller gyro-orbits on the
high-field side and larger gyro-orbits on the low-field side produces a net leftward drift
of the guiding center. The dot indicates that the magnetic field faces out of the page.

3.2 CURVATURE DRIFT

In the previous Section, we made the assumption that there was a gradient in the
magnetic field strength, B, but that the vector B was purely in the z direction, i.e.
the magnetic field lines were straight. As we saw, this required volume currents,
but these did not affect our analysis. Now we will make another special, but
useful, simplifying assumption: that the field lines are locally curved with radius-
of-curvature R, but that the field strength B is locally constant. A magnetic
field with these properties can also be achieved with volume currents. Imagine
a current-carrying cylinder with j, o« r~! where j, is the current density in
the z direction. The total current I in the z direction within any radius r then
increases linearly with r, i.e. I o< r, so that from the usual formula B o I/r, the
0-directed magnetic field is independent of r. Again, these volume currents are
an artifact employed to produce the assumed magnetic field; they do not enter
into the analysis of particle drifts.

Now we will solve for the guiding-center drift in a locally cylindrical
coordinate system (r, 6, z) matched to the local curvature of the magnetic field
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lines, such that & = b. To zeroth order in kry, particles move along the 6-
directed field lines with paralle! velocity v”f), and spiral around the field lines
with speed v, . To solve for the first-order motion, we transform to the rotating
frame that is moving with the zeroth-order particle motion in the 6 direction. In
this frame, the usual equations of motion hold, except for a centrifugal ‘pseudo-
force’ in the radial direction, namely

R
Fi = r=mvﬁR—§ (3.10)

where we have defined a radius-of-curvature vector R, which is drawn from the
local center-of-curvature to the field-line, as shown in Figure 3.2. (A Coriolis
pseudo-force could also arise from drift motion in this rotating frame, but it will
turn out that the drift motion is parallel to the axis of rotation, so the Coriolis
force is zero in this particular case.)

Figure 3.2. Geometry for calculating the curvature drift.
Rc The radius-of-curvature vector is drawn from the local
center-of-curvature to the field line.

Using equation (2.22), we can then directly deduce

mvi R, x B _ 2W; R. x B

— = 3.11
qB* R?  qB®> R} G

Veurv =

where W is the particle’s parallel energy. The vector radius-of-curvature, R.,
may not be a familiar way to describe local magnetic field geometry. In fact,
however, any curved magnetic field can be characterized locally by a radius-of-
curvature R., meaning that db/ds (where s measures length along the field line)
= —R./R2. This is easily verified for the locally cylmdrlcal geometry we have
assumed, where the equivalent statement is just (1/r)d0/d9 = —f/r. Since the
d/ds operator is just the derivative along the direction b, the radius-of-curvature

can be re-expressed
R./R*=—(b- V)b (3.12)

giving a more common expression for the ‘curvature drift’

Veurv = <2—Z§l) B x [(b - V)b]. (3.13)



