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Preface

The attempt to find mechanically efficient structural designs and shapes was
initiated mainly in the fields of mechanical engineering and aeronautical engi-
neering, which established the field known as structural optimization. Many
practically acceptable results have been developed for application to auto-
mobiles and aircraft. Some examples are structural components, including
the wings of aircraft and engine mounts of automobiles, which can be fully
optimized using efficient shape optimization techniques.

In contrast, regarding civil engineering and architectural engineering, struc-
tural optimization is difficult to apply because structures in these fields are
not mass products: structures are designed in accordance with their specific
design requirements. Furthermore, the structure’s shape and geometry are de-
termined by a designer or an architect in view of nonstructural performance,
including the aesthetic perspective. Therefore, the main role of structural en-
gineers is often limited to selection of materials, determination of member sizes
through structural analyses, planning details of the construction process, and
so on. However, for special structures, such as shells, membrane structures,
spatial long-span frames, and highrise buildings, the structural shape should
be determined in view of the responses against static and dynamic loads. In
truth, the beauty of the structural form is related closely to the mechanical
performance of the structure. Therefore, cooperation between designers and
structural engineers is very important in designing such structures.

Even for building frames, because of the recent trend of performance-based
design, optimization has been identified as a powerful tool for designing struc-
tures under constraints imposed on practical performance measures, including
elastic/plastic stresses and displacements under static/dynamic design loads.
Furthermore, recent rapid advancements in the areas of computer hardware
and software enabled us to carry out structural analysis many times to ob-
tain optimal or approximately optimal designs. Optimization of real-world
structures with realistic objective function and constraints is possible through
quantitative evaluation of nonstructural performance criteria, e.g., aesthetic
properties, and life-cycle costs, including costs of construction, fabrication,
and maintenance.

Many books describing structural optimization have been published since
the 1960s; e.g., Hemp (1973), Rozvany (1976), Haug and Cea (1981), Haftka,
Gürdal, and Kamat (1990), Papalambos and Wilde (2000), Bendsøe and Sig-
mund (2003), Arora (2004), etc. These books are mainly classifiable into the
following three categories:

v
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1. Basic theories and methodologies for optimization with examples of
small structural optimization problems.

2. Continuum-based approaches for application to mechanical and aero-
nautical structures.

3. Theoretical and analytical results of structural optimization in earlier
times without the assistance of computer technology.

Using books of the first category, readers can learn only the concepts and
some difficult theories of structural optimization without application to large-
scale structures. On the other hand, for the books of the second category, a
good background in applied mathematics and continuum mechanics is needed
to fully understand the basic concepts and methods. Unfortunately, most
researchers, practicing engineers, and graduate students in the field of civil
engineering have no such background and are not strongly interested in the
basic theories or methods of structural optimization. Also, in mechanical en-
gineering, the finite element approach is used for practical applications, and
complex practical design problems are solved in a finite dimensional formula-
tion.

The derivatives of objective and constraint functions, called design sensitiv-
ity coefficients, should be computed if a gradient-based approach is used for
structural optimization. However, most methods of design sensitivity analy-
sis are developed mainly for a continuum utilizing variational principles, for
which sensitivity coefficients are to be computed for a functional, such as com-
pliance that can be formulated in an integral of a bilinear form of response.
For finite dimensional structures, including trusses and frames, variational
formulations are not needed, and sensitivity coefficients can be found simply
by differentiating the governing equations in a matrix-vector form.

Another important aspect of optimization in civil engineering is that the
design variables often have discrete values: the frame members are usually
selected from a pre-assigned list or catalog of available sections. Furthermore,
some traditional layouts are often used for plane and spatial trusses and for
latticed domes. Therefore, the optimization problem often turns out to be
a combinatorial problem, a fact that is not fully introduced into most books
addressing the study of structural optimization.

This book introduces methodologies and applications that are closely re-
lated to design problems of finite dimensional structures, to serve thereby as
a bridge between the communities of structural optimization in mechanical
engineering and the researchers and engineers in civil engineering. The book
provides readers with the basics of optimization of frame structures, such as
trusses, building frames, and long-span structures, with descriptions of various
applications to real-world problems.

Recently, many efficient techniques of optimization have been developed
for convex programming problems, e.g., semidefinite programming and inte-
rior point algorithms, which are extensions of the approaches used for linear
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and quadratic programming problems. The book introduces application of
these methods to optimization of finite-dimensional structures. Approximate
methods resembling the conventional optimality criteria approaches have also
been developed with no reference to the pioneering papers in the 1960s and
1970s. Therefore, it is extremely important to describe their development his-
tory to young researchers so that similar methods are not re-developed with
no knowledge related to conventional approaches. For that reason, another
purpose of this book is to present the historical development of the method-
ologies and theorems on optimization of frame structures.

The book is organized as follows:
In Chapter 1, the basic concepts and methodologies of optimization of

trusses and frames are presented with illustrative examples. Traditional prob-
lems with constraints on limit loads, member stresses, compliance, and eigen-
values of vibration are described in detail. A brief introduction is also pre-
sented for multiobjective structural optimization, and the shape and topology
optimization of trusses.

In Chapter 2, the method of design sensitivity analysis, which is a necessary
tool for optimization using nonlinear programming, is presented for various
response quantities, including static response, eigenvalue of vibration, tran-
sient response for dynamic load, and so on. All formulations are written in
matrix-vector form without resort to variational formulation to support ready
comprehension by researchers and engineers.

In Chapter 3, details of truss topology optimization are described, including
historical developments and difficulties in problems with stress constraints and
multiple eigenvalue constraints. Recently developed formulations by semidef-
inite programming and mixed integer programming are introduced. Applica-
tions to plane and spatial trusses are demonstrated.

Chapter 4 presents methods for configuration optimization for simultane-
ously optimizing the geometry and topology of trusses. Difficulties in opti-
mization of regular trusses are extensively discussed, and an application to
generating a link mechanism is presented.

Chapter 5 summarizes various results of optimization of building frames.
Uniqueness of the optimal solution of a regular frame is first investigated,
and applications of parametric programming are presented. Multiobjective
optimization problems are also presented for application to seismic design,
and a simple heuristic method based on local search is presented.

In Chapter 6, as a unique aspect of this book, optimization results are pre-
sented for spatial trusses and latticed domes. Simple applications of nonlinear
programming and heuristic methods are first introduced, and the spatial varia-
tion of seismic excitation is addressed in the following sections. The trade-off
designs between geometrical properties and stiffness under static loads are
shown for arch-type frames and latticed domes described using parametric
curve and surface.

Mathematical preliminaries and basic methodologies are summarized in the
Appendix, so that readers can understand the details, if necessary, without the
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exposition of tedious mathematics presented in the main chapters. Various
methodologies specifically utilized in some of the sections, e.g., the response
spectrum approach for seismic response analysis, are also explained in the
Appendix. Also, many small examples that can be solved by hand or using
a simple program are presented in the main chapters. Therefore, this book is
self-contained, and easily used as a textbook or sub-textbook in a graduate
course.

The author would like to deliver his sincere appreciation to Prof. Tsuneyoshi
Nakamura, Prof. Emeritus of Kyoto University, Japan, for supervising the
author’s study for master’s degree and Ph.D. dissertation on structural op-
timization. Supervision by Prof. Jasbir S. Arora of The University of Iowa
during the author’s sabbatical leave is also acknowledged.

The numerical examples in this book are a compilation of the author’s
work on structural optimization at Kyoto University, Japan, during the period
1985–2010. The author would like to extend his appreciation to researchers for
collaborations on the studies that appear as valuable contents in this book,
namely, Prof. Naoki Katoh of the Dept. of Architecture and Architectural
Engineering, Kyoto University; Prof. Shinji Nishiwaki of the Dept. of Me-
chanical Engineering and Science, Kyoto University; Prof. Hiroshi Tagawa of
the Dept. of Environmental Engineering and Architecture, Nagoya University;
Prof. Yoshihiro Kanno of the Dept. of Mathematical Informatics, University
of Tokyo; Prof. Peng Pan of the Dept. of Civil Engineering, Tsinghua Uni-
versity, P. R. China; Dr. Takao Hagishita of Mitsubishi Heavy Industries; Mr.
Yuji Kato of JSOL Corporation; Mr. Takuya Kinoshita, Mr. Shinnosuke Fu-
jita, and Mr. Ryo Watada, graduate students in the Dept. of Architecture
and Architectural Engineering, Kyoto University. The author would also like
to thank again Prof. Yoshihiro Kanno of University of Tokyo for checking the
details of the manuscript.

The assistance of Ms. Kari Budyk and Ms. Leong Li-Ming of CRC Press
and Taylor & Francis in bringing the manuscript to its final form is heartily
acknowledged.

January 2010 Makoto Ohsaki
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Chapter 1

Various Formulations of Structural
Optimization

Various formulations of optimization of finite dimensional structures are pre-
sented in this chapter. The concepts of structural optimization are first pre-
sented in Sec. 1.1 followed by historical review in Sec. 1.2. The basic formula-
tions are presented in Sec. 1.3 with an illustrative example. The simple opti-
mization approach to plastic design that is formulated as a linear programming
problem is presented in Sec. 1.4. Optimization results under stress constraints
are shown in Sec. 1.5. The approximate method called fully-stressed design
(FSD) is presented in Sec. 1.6 with investigation of the relation between op-
timum design and FSD. The optimality criteria approach to a problem with
displacement constraints is presented in Sec. 1.7. Problems concerning the
compliance and frequency of free vibration as measures of static and dynamic
stiffness are extensively studied in Secs. 1.8 and 1.9, respectively. An example
of shape and topology optimization of a truss is presented in Sec. 1.10 as an
introduction to Chaps. 3 and 4. The basic formulation of multiobjective struc-
tural optimization programming and various methodologies of heuristics are
shown in Secs. 1.11 and 1.12, respectively, as an introduction to several sec-
tions in the following chapters. Finally, developments in simultaneous analysis
and design are summarized in Sec. 1.13.

1.1 Overview of structural optimization

In the process of designing structures in various fields of engineering, the
designers and engineers make their best decisions at every step in view of
structural and non-structural aspects such as stiffness, strength, serviceability,
constructability, and aesthetic property. In other words, they make their
optimal decisions to realize their best designs; hence, the process of structural
design may be regarded as an optimum design even though optimality is not
explicitly pursued.

Structural optimization is regarded as an application of optimization meth-
ods to structural design. The typical structural optimization problem is for-
mally formulated to minimize an objective function representing the structural

1
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Optimization algorithm

    function values

    gradients of functions

    update variables

Sensitivity analysis

    compute gradients

    of responses

Structural analysis

    evaluate responses

FIGURE 1.1: Relations among structural analysis, optimization algo-
rithm, and design sensitivity analysis for optimization using a nonlinear pro-
gramming approach.

cost under constraints on mechanical properties of the structure. The total
structural weight or volume is usually used for representing the structural
cost. Even for the case in which the structural weight is not strongly related
to the cost, it is very important that a feasible solution satisfying all the
design requirements can be automatically found through the process of op-
timization. The mechanical properties include nodal displacements, member
stresses, eigenvalues of vibration, and linear buckling loads. The structural
optimization problem can be alternatively formulated to maximize a mechan-
ical property under constraint on the structural cost.

Although there are many possible formulations for structural optimization,
e.g., minimum weight design and maximum stiffness design, the term struc-
tural optimization or optimum design is usually used for representing all types
of optimization problems corresponding to structural design.

In this book, we consider finite dimensional structures, such as frames and
trusses, which are mainly used in civil and architectural engineering. In the
typical process of structural optimization of finite dimensional structures, the
cross-sectional properties, nodal locations, and member locations are chosen
as design variables. There are many methods for structural optimization that
are classified into

• Nonlinear programming based on the gradients (sensitivity coefficients
or derivatives) of the objective and constraint functions, which is the
most popular and straightforward approach.

• Heuristic approaches, including genetic algorithm and simulated anneal-
ing, that do not need gradient information.

In a nonlinear programming approach, the design variables are updated in
the direction defined by the sensitivity coefficients of the objective function
and constraints. The relations among structural analysis, optimization al-
gorithm, and design sensitivity analysis for optimization using a nonlinear
programming approach are illustrated in Fig. 1.1, where the arrows represent
the direction of data flow; i.e., sensitivity analysis is carried out at each step of
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optimization to provide gradients of responses for the optimization algorithm,
and structural analysis is needed for sensitivity analysis and function evalua-
tion at an optimization step (see Chap. 2 and Appendix A.2.2 for details of
sensitivity analysis and nonlinear programming, respectively).

There are several approaches to the classification of structural optimization
problems. In the field of continuum structural optimization, shape optimiza-
tion means the optimization of boundary shape, whereas the addition and/or
removal of holes are allowed in topology optimization (Bendsøe and Sigmund
2003). In this book, we present various methodologies and results for opti-
mization of finite dimensional structures, including rigidly jointed frames and
pin-jointed trusses. Since optimization of trusses and frames was developed
gradually in 1960s and 1970s by academic groups in different geographical
locations, several different terminologies, e.g., configuration, geometry, and
layout, were used for representing the similar processes of shape and topology
optimization; see, e.g., Dobbs and Felton (1969), Svanberg (1981), Lin, Che,
and Yu (1982), Imai and Schmit (1982), Zhou and Rozvany (1991), Twu and
Choi (1992), Bendsøe, Ben-Tal, and Zowe (1994), Dems and Gatkowski (1995),
Ohsaki (1997b), Bojczuk and Mróz (1999), Stadler (1999), Evgrafov (2006),
and Achtziger (2007). On the other hand, optimization of cross-sectional ar-
eas of trusses was traditionally called optimum design, design optimization, or
structural optimization (Hu and Shield 1961; Prager 1974a; Rozvany 1976).
However, the term sizing optimization was often used recently to distinguish it
from shape optimization (Grierson and Pak 1993; Lin, Che, and Yu 1982; Zou
and Chan 2005; Schutte and Groenwold 2003), and structural optimization
covers all areas related to optimization of structures.

In this chapter, we present a historical review and various formulations of
optimization of finite dimensional structures.

1.2 History of structural optimization

The origin of structural optimization is sometimes credited to Galileo Galilei
(1638), who investigated the optimal shape of a beam subjected to a static
load. However, his approach was rather intuitive, and he did not establish
any theoretical foundation of structural optimization.

The intrinsic properties of minimizing or maximizing functions or function-
als in physical phenomena in nature were noticed from ancient times as various
minimum/maximum principles. The theoretical basis of minimum principles
as a foundation of modern optimization was investigated in the 18th century
and established as the calculus of variation. The principle of minimum po-
tential energy that leads to the shape of a hanging cable called catenary is
extensively used nowadays for the design of flexible structures, e.g., cable nets
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and membrane structures (Krishna 1979). The surface of the minimum area
for the specified boundary shape in three-dimensional space is called minimal
surface, which is equivalent to the surface with vanishing mean curvature, and
can be achieved by a membrane with a uniform tension field without external
load or pressure. Therefore, the minimal surface is effectively used as the ideal
self-equilibrium shape for designing a membrane structure that does not have
bending stiffness (Otto 1967, 1969).

Papers by Michell (1904), Maxwell (1890), and Cilly (1900) are often cited
as the first paper that mentioned the basic idea of topology optimization;
see Sec. 3.1 for the history of topology optimization. However, the so-called
Michell truss or Michell structure has an infinite number of members; hence,
it did not lead to any practical development until the 1950s, when the prop-
erties of the optimal plastic design of frames were investigated (Foulkes 1954;
Drucker and Shield 1961; Heyman 1959). We do not discuss the history of
optimization of continuum structures such as plates and shells, because the
scope of this book is limited to finite dimensional structures. A comprehensive
literature review of early developments of structural optimization is found in
Bradt (1986), which was originally published by the Polish Academy of Sci-
ence, and includes about 300 entries up to the 1950s starting with the book by
Galileo Galilei (1638), and more than 1800 entries for the period 1960–1980.

In the 1950s, optimality conditions were studied for the plastic design of
frames (Foulkes 1954; Drucker and Shield 1961). In the 1960s, conditions or
criteria of optimality were derived utilizing minimum principles for several
performance measures of structures (Sewell 1987). Hu and Shield (1961) in-
vestigated the uniqueness of optimal plastic design. Taylor (1967) derived the
optimality condition for a vibrating rod with specified natural frequency using
Hamilton’s principle or the principle of least action. Prager and Taylor (1968)
developed optimality conditions for sandwich beams considering constraints
on compliance, natural frequency, buckling load, and plastic limit load, using
minimal total potential energy, Rayleigh’s principle, and lower- and upper-
bound theorems of limit analysis, respectively. Prager (1972, 1974a) summa-
rized the optimality conditions corresponding to various types of constraints,
including the case of multiple constraints.

Plastic design of frames was extensively studied in the 1960s and 1970s, be-
cause analytical and/or computationally inexpensive methods can be used for
this problem. Prager (1971) developed conditions for an optimal frame, sub-
jected to alternative loads, exhibiting the so-called Foulkes mechanism. Adeli
and Chyou (1987) presented a kinematic approach using automatic generation
of independent mechanisms (see Hemp (1973) for various early developments
in optimal plastic design).

In the 1970s, when the computer power was still not strong enough to use
mathematical programming approaches to optimization of real-world struc-
tures, optimality criteria (OC) approaches were widely used for finite dimen-
sional structures. The modern discrete OC approaches to trusses and frames
were initiated by Venkayya, Khot, and Berke (1973). Dobbs and Nelson (1975)
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developed the OC approach to truss design. Reviews of OC approaches are
found in Berke and Venkayya (1974) and Venkayya (1978).

Owing to the rapid development of computer hardware and software tech-
nologies, many numerical approaches were developed in the 1980s and 1990s
to obtain optimization results for practical problems. Developments in this
period can be found in many books, e.g., Arora (2007), Adeli (1994), Burns
(2002), and Haftka, Gürdal, and Kamat (1990).

It should be noted that the preferred terminologies for structural optimiza-
tion vary with age. As noted earlier, structural optimization of trusses covered
only optimization of cross-sectional properties in the 1950s and 1960s. How-
ever, sizing optimization was recently used to distinguish it from shape and
topology optimization. Optimality conditions were first called Kuhn-Tucker
conditions; however, the name was corrected to Karush-Kuhn-Tucker condi-
tions in the 1980s. Multiple load sets for formulation of constraints on static
responses were called alternative loads until the 1970s; however, they are now
usually called multiple loading conditions or multiple load sets. Furthermore,
framed structure was used for representing finite dimensional structures, in-
cluding pin-jointed trusses and rigidly jointed frames; however, they are clas-
sified into trusses and frames, respectively, in recent literature. In this book,
we use up-to-date terminology, for consistency, even for describing the results
of papers in the early stages of development.

1.3 Structural optimization problem

1.3.1 Continuous problem

If the design variables can vary continuously, i.e., can have real values, and
the objective and constraint functions are continuous and differentiable with
respect to the variables, the structural optimization problem can be formu-
lated as a nonlinear programming (NLP) problem. Let A = (A1, . . . , Am)⊤

denote the vector of m design variables. For a sizing design optimization
problem, A represents the cross-sectional areas of truss members, heights of
the sections of frame members, etc. For a geometry optimization problem, A
may represent the nodal coordinates of trusses and frames. All vectors are
assumed to be column vectors throughout this book.

The number of design variables is often reduced using the approach called
design variable linking, utilizing, e.g., the symmetry properties of the struc-
ture. The requirements to be considered in practical applications can also be
used for reducing the number of variables; e.g., the beams in the same story
of a building frame should have the same section. However, in the following,
we assume that each variable can vary independently, and, for trusses and
frames, Ai belongs to member i, for simplicity.
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Consider an elastic finite dimensional structure subjected to static loads.
The vector of state variables representing the nodal displacements is denoted
by U = (U1, . . . , Un)⊤, where n is the number of degrees of freedom. In most of
the design problems in various fields of engineering, the design requirements
for responses such as stresses and displacements are given with inequality
constraints specified by design codes:

Hj(U(A),A) ≤ 0, (j = 1, . . . , nI) (1.1)

where nI is the number of inequality constraints. Generally, there exist equal-
ity constraints on the response quantities; e.g., an eigenvalue of vibration
should be exactly equal to the specified value. However, we consider inequal-
ity constraints only, for simple presentation of formulations.

The constraint function Hj(U(A),A) depends on the design variables im-
plicitly through the displacement (state variable) vector U(A) and also di-
rectly on the design variables. For example, the axial force Ni of the ith
member of a truss is given using a constant n-vector bi, defining the stress-
displacement relation as

Ni = Aib⊤
i U(A) (1.2)

which depends explicitly on Ai and implicitly on A through U(A).
The upper and lower bounds, which are denoted byAU

i and AL
i , respectively,

are usually given for the design variable Ai due to the restriction in fabrication
and construction. The objective function, e.g., the total structural volume, is
denoted by F (A). Then the structural optimization problem is formulated as

Minimize F (A) (1.3a)

subject to Hj(U(A),A) ≤ 0, (j = 1, . . . , nI) (1.3b)

AL
i ≤ Ai ≤ AU

i , (i = 1, . . . ,m) (1.3c)

Problem (1.3) is classified as an NLP problem, because U(A) is a nonlinear
function of A; see Appendix A.2.2 for details of NLP. The constraints (1.3c)
are called side constraints, bound constraints, or box constraints, which are
treated separately from the general inequality constraints (1.3b) in most of
the optimization algorithms.

As is seen from the definition of constraints in (1.3b), the differential coef-
ficients of U(A) with respect to A, called design sensitivity coefficients, are
needed when solving Problem (1.3) using a gradient-based NLP algorithm.
For convenience in deriving the conditions to be satisfied at the optimal solu-
tion, the constraint function with respect to A only is defined as

H̃j(A) = Hj(U(A),A) (1.4)

If the side constraints are treated separately from the general inequality
constraints, the conditions for optimality are derived using the Lagrangian
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ψ(A,µ) defined as

ψ(A,µ) = F (A) +
nI∑

j=1

µjH̃j(A) (1.5)

where µ = (µ1, . . . , µnI)⊤ (≥ 0) is the vector of Lagrange multipliers.
The necessary conditions for local optimality, which are called Karush-

Kuhn-Tucker conditions or simply KKT conditions, are given as

∂ψ

∂Ai
≥ 0 for Ai = AL

i

∂ψ

∂Ai
= 0 for AL

i < Ai < AU
i

∂ψ

∂Ai
≤ 0 for Ai = AU

i

(1.6)

where

∂ψ

∂Ai
=

∂F

∂Ai
+

nI∑
j=1

µj
∂H̃j

∂Ai
, (i = 1, . . . ,m) (1.7)

H̃j ≤ 0, µj ≥ 0, µjH̃j = 0, (i = 1, . . . , nI) (1.8)

The third equation in (1.8) is called complementarity conditions (see Ap-
pendix A.2.2.3 for details of the optimality conditions).

Conditions (1.6)–(1.8) are the necessary and sufficient conditions for local
optimality, if all the objective and constraint functions are locally convex.
Furthermore, (1.6)–(1.8) are sufficient conditions for global optimality, if all
the objective and constraint functions are globally convex.

For problems with real variables and continuously differentiable functions,
the optimal solutions are found using various approaches of mathematical pro-
gramming. If the objective function and the constraints are linear functions
of the design variables, the problem is formulated as a linear programming
(LP) problem, and the optimal solutions are easily found using the standard
approach called the simplex method (Luenberger 2003) or the relatively new
approach called the interior-point method (Karmarkar 1984; Gondzio 1995).

If the objective and the constraint functions are nonlinear, various ap-
proaches of the NLP problem can be used (Fiacco and Cormic 1968; Man-
gasarian 1969; Pierre and Lowe 1975; Peressini, Sullivan, and Uhl 1988; Ben-
Israel, Ben-Tal, and Zolbec 1981; Bersekas 1982). However, there is no ap-
proach that is applicable to any type of NLP problem; i.e., the most suitable
method should be appropriately chosen for each problem at hand. Further-
more, the method should be selected with regard to the desired accuracy and
computational cost for optimization. One of the most popular approaches is
sequential quadratic programming (Gill, Murray, and Saunders 2002), which
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FIGURE 1.2: A five-bar plane truss.

is used for most of the examples of the application of NLP in this book.
Readers may refer to Appendix A.2.2 for details of NLP.

Example 1.1
As a simple example of structural optimization, consider a five-bar plane
truss, as shown in Fig. 1.2, subjected to vertical static loads. The intersecting
members 3 and 4 are not connected with each other. The five bars are classified
into Groups 1 and 2, consisting of members {1, 2, 5} and {3, 4}, respectively.
The members in Group i (i = 1, 2) have the same cross-sectional area Ag

i , and
let Ag = (Ag

1, A
g
2)

⊤. The sum of the lengths of members in the ith group is
denoted by Lg

i . Then the total structural volume C(Ag), which is taken as
the objective function, is defined as

C(Ag) = Ag
1L

g
1 +Ag

2L
g
2 (1.9)

For a simple illustration of the problem, the constraints are given, as fol-
lows, for the y-directional displacement U3 of node 3, which is assumed to be
positive, and the stress σ4 of member 4, which is assumed to be negative:

U3 ≤ UU
3 , σL

4 ≤ σ4 (1.10)

where UU
3 and σL

4 are the specified upper bound of U3 and the lower bound of
σ4, respectively. The constraints are formulated using the function H̃1(Ag)
of Ag only:

H̃1(Ag) = U3(Ag)− UU
3 ≤ 0, H̃2(Ag) = −σL

4 − σ4(Ag) ≤ 0 (1.11)

Let W1 = W2 = H = 1 m in Fig. 1.2. The elastic modulus is 200 kN/mm2,
and P = 10.0 kN. The bounds for the displacement and stress are UU

3 =
1.25 mm and σL

4 = −0.06 kN/mm2.
The set of solutions satisfying U3 = UU

3 and σ4 = σL
4 is shown in the solid

lines in Fig. 1.3 that are drawn in the design variable space. The gray area
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FIGURE 1.3: Feasible region and optimal solutions of the five-bar truss.

is the feasible region satisfying the two constraints with equality. From (1.9),
we obtain

Ag
2 =

1
Lg

2

C(Ag)− Lg
1

Lg
2

Ag
1 (1.12)

The solution on each dotted line in Fig. 1.3 has the same values of C. There-
fore, if Ag

1 and Ag
2 can take real values, the point ‘a’ with the coordinates

(Ag
1, A

g
2) = (184.33, 198.90) in the design variable space corresponds to the

optimal solution.
In order to verify the optimality of the solution, the sensitivity coefficients

are obtained at the optimal solution as

∂U3(Ag)
∂Ag

1

= −0.013112,
∂U3(Ag)
∂Ag

2

= −0.018015,

∂σ4(Ag)
∂Ag

1

= 0.45650,
∂σ4(Ag)
∂Ag

2

= 0.20541
(1.13)

The sensitivity coefficients of the objective function are easily computed from
the member lengths as

∂C

∂Ag
1

= 3828.4,
∂C

∂Ag
2

= 4472.1 (1.14)

Then, from the second equation in (1.6) with i = 1 and 2, while Ai is replaced
by Ag

i , the positive Lagrange multipliers are found as λ1 = 1.8680 × 105

and λ2 = 2.2694 × 107. Hence, the optimality conditions are satisfied at the
solution (Ag

1, A
g
2) = (184.33, 198.90).

As is seen in the above example, the optimal solution can be found for a sim-
ple truss graphically in the design variable space, if we have only two design
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variables. However, for larger structures with more design variables, the opti-
mal solutions are to be found numerically using a mathematical programming
approach or a heuristic approach.

1.3.2 Discrete problem

Suppose a list or catalog of the available standard sections is given for a
sizing optimization problem of a frame, and the list Ai of the cross-sectional
properties of the ith member is given as

Ai = {(A1
i , I

1
i , Z

1
i ), . . . , (Ar

i , I
r
i , Z

r
i )} (1.15)

where Aj
i is the cross-sectional area, Ij

i is the second moment of inertia, Zj
i is

the section modulus of the jth candidate section for member i, and r is the
number of available sections, which is the same for all members, for brevity.
Note that other properties such as fully-plastic moment should be included if
elastoplastic responses are to be considered; see Appendix A.8 for examples
of section lists.

Suppose that Ji = j (i = 1, . . . ,m) indicates that the jth section in the list is
assigned to the ith member, wherem is the number of members. This way, the
mechanical properties of the frame are defined by the vector J = (J1, . . . , Jm)⊤

of integer variables. Hence, the nodal displacement vector is a function of J
that is denoted by U(J). The objective and the constraint functions are
also functions of J, which are written as F (J) and H̃j(J) = Hj(J,U(J)),
respectively. Then the optimization problem with inequality constraints only
is formulated as

Minimize F (J) (1.16a)

subject to H̃j(J) ≤ 0, (j = 1, . . . , nI) (1.16b)
Ji ∈ {1, . . . , r}, (i = 1, . . . ,m) (1.16c)

Since Problem (1.16) is an integer programming problem, which is equiv-
alently called a combinatorial optimization problem, various methods, e.g.,
the branch-and-bound method and the branch-and-cut method, can be used
(Horst and Tuy 1985; Horst, Pardalos, and Thoai 1995) (see Sec. 3.5 for appli-
cation of the branch-and-bound method to topology optimization of trusses).

For the example of the five-bar truss in Fig. 1.2, suppose Ag
1 and Ag

2 can
take only integer values 100, 200, . . . . Then, the feasible designs satisfying
(1.10) are plotted in the filled circle in Fig. 1.3, and the optimal solution exists
at point ‘b’.

Since the state variables are continuous functions of the design variables,
a structural optimization problem turns out to be a mixed integer nonlinear
programming (MINLP) problem (Floudas 1995) if the formulation of simul-
taneous analysis and design, see Sec. 1.13, is used considering the nodal dis-
placements as independent variables. Arora (2002) classified the structural
optimization problems into the following six categories:
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1. Continuous design variables; functions are twice continuously differen-
tiable (standard NLP problem).

2. Mixed design variables; functions are twice continuously differentiable;
discrete variables can have non-discrete values during the solution pro-
cess (functions can be evaluated at non-discrete points). A configuration
optimization problem of a truss with discrete cross-sectional areas and
continuous nodal coordinates belongs in this category.

3. Mixed design variables; functions are non-differentiable; discrete vari-
ables can have non-discrete values during the solution process. A con-
figuration optimization problem of a truss with discrete cross-sectional
area, continuous nodal coordinates, and nodal cost defined as a non-
differential function of cross-sectional areas belongs in this category (see
Sec. 4.3).

4. Mixed design variables; functions may or may not be differentiable; some
of the discrete variables must have only discrete value in the solution
process. A configuration optimization problem with a list of candidate
topologies and continuous nodal coordinates belongs in this category.

5. Mixed design variables; functions may or may not be differentiable; some
of the discrete variables are linked to others; assignment of a value to
one variable specifies values for others. A frame optimization problem
with discrete cross-sectional properties such as second moment of inertia
linked with cross-sectional area belongs to this category.

6. Combinatorial problems; purely discrete non-differentiable problems.
Optimization problems for selection of materials, location of supports,
etc. belong to this category.

Arora, Huang, and Hsieh (1994) summarized various methods of optimization
with discrete variables.

1.4 Plastic design

Optimal plastic design is the simplest and classical problem of optimization
of trusses and frames, which was extensively studied in the 1960s. Consider
a truss consisting of a perfectly rigid-plastic material; i.e., the strain before
yielding is negligibly small, and the stress after yielding is constant at the
yield stress, which is assumed to be the same for all members. The truss is
subjected to a vector of quasistatic proportional loads P = ΛP0 defined by
the load factor Λ and the constant load pattern vector P0.
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The axial force vector is given as N = (N1, . . . , Nm)⊤, where m is the
number of members. Let n denote the number of degrees of freedom. The
equilibrium equations are formulated in terms of the n×m equilibrium matrix
D as

DN = ΛP0 (1.17)

Let Np = (Np
1 , . . . , N

p
m)⊤ denote the vector of tensile yield axial forces of the

members. The yield axial force in compression is given for the ith member,
ignoring member buckling, as −Np

i . Then the yield condition is written as

−Np
i ≤ Ni ≤ Np

i , (i = 1, . . . ,m) (1.18)

Note that Np
i is proportional to the cross-sectional area Ai as Np

i = Aiσ
p,

where σp is the tensile yield stress.
First the plastic limit analysis problem is formulated as a linear program-

ming (LP) problem. Utilizing the lower-bound theorem of plastic limit anal-
ysis (Shames and Cozzarelli 1997), we can obtain the plastic limit load factor
through maximization of the load factor under constraints on the equilibrium
equations and the yield conditions:

Maximize Λ (1.19a)
subject to −Np ≤ N ≤ Np (1.19b)

DN = ΛP0 (1.19c)

which is an LP problem with variables Λ and N. Therefore, the plastic limit
load can easily be obtained using a standard method of LP such as the simplex
method.

The problem of minimizing the total structural volume under constraint
on limit load factor can also be formulated as an LP problem. Since Np

i

is proportional to Ai, the optimal design that minimizes the total structural
volume can be obtained by minimizing Np⊤L, where L = (L1, . . . , Lm)⊤ is the
vector of member lengths. The upper and lower bounds for Np

i are denoted
by NpU

i and NpL
i , respectively, with the vectors NpU = (NpU

1 , . . . , NpU
m )⊤ and

NpL = (NpL
1 , . . . , NpL

m )⊤. The specified limit load factor is denoted by Λp.
Then, the optimization problem is formulated as

Minimize Np⊤L (1.20a)
subject to −Np ≤ N ≤ Np (1.20b)

DN = ΛpP0 (1.20c)

NpL ≤ Np ≤ NpU (1.20d)

where the variables are N and Np. Because Problem (1.20) is also an LP
problem, this problem was extensively studied in the 1960s and is still im-
portant for application to the plastic design of trusses. Note that the plastic
collapse mechanisms can be found as the Lagrange multipliers at the optimal
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FIGURE 1.4: A simple plane frame.

solution of Problem (1.20), or by solving the dual of Problem (1.20) that is
formulated on the basis of the upper-bound theorem of plastic limit analysis,
which states that the smallest load factor corresponding to admissible strain
and displacement rates defines the collapse load.

The plastic design problem of a frame with concentrated plastic hinges can
also be formulated as an LP problem, as follows, if the interaction between
the axial force and bending moment on the yield condition is ignored (Adeli
and Chyou 1987):

Example 1.2
Consider a plane frame, as shown in Fig. 1.4, subjected to a proportional
horizontal load 2ΛP 0 and a vertical load 3ΛP 0 simultaneously. The bending
moments at the member ends and the center of the beam are denoted by
M1, . . . ,M5, as shown in Fig. 1.4, which illustrates the state whereM1, . . . ,M5

are all positive. The numbers in parentheses are member numbers.
The equilibrium equations are given as

M2 +M1

H
+
M4 +M5

H
= 2ΛP 0,

M2 −M3

W/2
− M3 +M4

W/2
= 3ΛP 0

(1.21)

The fully-plastic moment of member i is denoted by Mp
i . The yield conditions

are then given as

−Mp
1 ≤M1 ≤Mp

1 , −M
p
1 ≤M2 ≤Mp

1 ,

−Mp
2 ≤M2 ≤Mp

2 , −M
p
2 ≤M3 ≤Mp

2 , −M
p
2 ≤M4 ≤Mp

2 ,

−Mp
3 ≤M4 ≤Mp

3 , −M
p
3 ≤M5 ≤Mp

3

(1.22)
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We assume that the tensile yield stress σp and the compressive yield stress
−σp are the same, respectively, for all members, and the cross-section of
each member is modeled as a sandwich section; i.e., the half of the cross-
sectional area Ai is concentrated at each flange, and Mp

i is proportional to Ai

as Mp
i = Airiσ

p, where ri is the distance between the flanges.
Hence, the objective function that is proportional to the total structural

volume of the frame is formulated as a function of Mp = (Mp
1 ,M

p
2 ,M

p
3 )⊤:

F (Mp) = Mp
1H +Mp

2W +Mp
3H (1.23)

Since both the objective function and the constraints are linear functions of
the variables M1, . . . ,M5 and Mp, the optimal solution can easily be found
by solving an LP problem. For a simple case with P 0 = 1, Λp = 1, and H =
W = 1, we obtain the optimal solution as Mp

1 = 3/8 and Mp
2 = Mp

3 = 5/8
with M1 = M2 = 3/8, M3 = M4 = M5 = 5/8, and F (Mp) = 13/8.

It is well known that the Foulkes mechanism satisfying the following con-
ditions exists at the optimal solution of a frame for the case in which Mp

i is
proportional to Ai (Foulkes 1954):{

θi = λLi for Mp
i > MpL

i

θi ≤ λLi for Mp
i = MpL

i

(1.24)

where θi is the sum of absolute values of the rotation rate of the plastic hinges
in the ith member, and λ is a positive constant. Note that the upper bound
for Mp

i is not considered, for brevity. Condition (1.24) suggests that the
plastic energy dissipation rate per unit volume is the same for members with
Mp

i > MpL
i .

There have been many studies on plastic design since the 1960s (Tam and
Jennings 1989). Multiple (alternative) loads are considered in some papers,
e.g., Prager (1967) and Chan (1969). Munro and Chuang (1986) presented a
fuzzy LP approach for the case in which uncertainty exists in the loads. A
probabilistic LP approach to limit design under uncertainty was developed by
Gavarini and Veneziano (1972).

1.5 Stress constraints

In view of structural design procedure in civil engineering based on allow-
able stress design criteria, it is very important to obtain an optimal design
that satisfies stress and displacement constraints against design loads. In this
section, we consider stress constraints only, for simple presentation of the
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optimization procedure. An approach to optimization of a truss under dis-
placement constraints is demonstrated in Sec. 1.8. Another important aspect
in structural design is that several loads, including static loads (self-weight,
service load, snow load, etc.) and dynamic loads (wind load, seismic load,
etc.), should be considered, and, in the practical design process, the dynamic
loads are represented by equivalent static loads. Furthermore, the self-weight
and service load are classified as long-term loads, while others are short-term
loads. Therefore, different bounds should be given for the stresses against
each loading condition.

Consider nP loading conditions (load patterns), and let the superscript k de-
note the variables and parameters corresponding to the kth loading condition.
The upper and lower bounds for σk

i are denoted by σkU
i and σkL

i , respectively.
Then the optimization problem for minimizing the total structural volume of
a truss under stress constraints is formulated as

Minimize
m∑

i=1

AiLi (1.25a)

subject to σkL
i ≤ σk

i ≤ σkU
i , (i = 1, . . . ,m; k = 1, . . . , nP) (1.25b)

AL
i ≤ Ai ≤ AU

i , (i = 1, . . . ,m) (1.25c)

where AL
i and AU

i are the lower and upper bounds for Ai, respectively. Note
again that the nP load patterns are applied independently, and the stress
constraints are assigned for each loading condition.

Example 1.3
Optimum designs are found for a 10-bar truss, as shown in Fig. 1.5, subjected
to vertical loads P1 and P2, where the numbers with and without parentheses
are node numbers and member numbers, respectively (Katoh, Ohsaki, and
Tani 2002). Note that the intersecting members are not connected at their
centers. A small lower bound AL

i = 0.1 mm2 is given for Ai to prevent insta-
bility of the truss, while the upper bound is not given for Ai. The bounds
for the stresses are σkU

i = 0.2 N/mm2 and σkL
i = −0.2 N/mm2. Optimal

solutions are obtained using the optimization software package SNOPT Ver.
7.2 (Gill, Murray, and Saunders 2002), which utilizes the sequential quadratic
programming; see Appendix A.2.2.5.

First, consider a single loading condition (P1, P2) = (0.0, 100.0 kN). The
optimal cross-sectional areas and the optimal objective value are shown in
the second column in Table 1.1. The optimal solution is also illustrated in
Fig. 1.6, where the width of each member is proportional to its cross-sectional
area. Note that Ai is equal to its lower bound in members 4, 5, 6, 8, and 10,
which may be removed to obtain the statically determinate truss of optimal
topology after fixing the unstable node 4. The stress is equal to its upper
or lower bound in each member with Ai > AL

i . This process of topology
optimization is called the ground structure approach; it is extensively studied
in Chap. 3.



16 Optimization of Finite Dimensional Structures

P 1 P 2

2.0 m 2.0 m

2
.0

 m

1 6

2 7

3 84 9
5 10

(1) (3) (5)

(2) (4) (6)

x

y

FIGURE 1.5: A 10-bar truss.

TABLE 1.1: Optimal cross-sectional areas and structural
volume of the 10-bar truss under stress constraints.

Member number Ai (mm2)
Single loading Multiple loading

1 999.931 825.107
2 500.069 674.893
3 707.010 459.771
4 0.100 421.531
5 0.100 211.499
6 0.100 0.100
7 499.937 499.909
8 0.100 0.129
9 707.017 706.978
10 0.100 0.100

Total volume (mm3) 8.00051× 106 8.91591× 106

Next, we obtain the optimal solution under stress constraints against multi-
ple loading conditions (P1, P2) = (0, 100.0 kN) and (100.0 kN, 0). The optimal
cross-sectional areas, which are also illustrated in Fig. 1.7, and the objective
value are listed in the last column of Table 1.1. The optimal objective value
is 8.91591 × 106 mm3, which is larger than that for the single loading con-
dition. Only the members 6 and 10 connected to node 5 satisfy Ai = AL

i ,
and node 5 cannot be removed, because the cross-sectional area of member
8 is larger than its lower bound. Note that a very strict tolerance of 10−10

is assigned for the constraints and optimality conditions in SNOPT. In fact,
we can confirm that the stresses for the first load (P1, P2) = (0, 100.0 kN) are
σ1

6 = σ1
10 = 0.18265 and σ1

8 = −0.2; the member 8 is fully stressed. Since the
equilibrium condition N8 = −

√
2(N6 + N10) should be satisfied for member

forces Ni of members 6, 8, and 10, the cross-sectional area should be larger
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P 2

FIGURE 1.6: Optimal design of the 10-bar truss under single loading con-
dition (P1, P2) = (0.0, 100.0 kN).

P 2P 1

FIGURE 1.7: Optimal solution for multiple loading conditions (P1, P2) =
(0, 100.0 kN) and (100.0 kN, 0).

than its lower bound if the stresses of members 6 and 10 are close to their
upper or lower bounds. Hence, it should be noted that the member with
Ai = AL

i sometimes cannot be removed in the conventional ground structure
approach of topology optimization, and the optimal topology may consist of
many members with small cross-sectional areas.

The result in Fig. 1.7 demonstrates that the optimal truss under multiple
loading conditions is statically indeterminate even when the removal of mem-
bers 6, 8, and 10 is allowed. It has been confirmed that the stress is equal to
its upper or lower bound against at least one loading condition for a member
with Ai > AL

i .

1.6 Fully-stressed design

1.6.1 Stress-ratio approach

Consider again a simple optimization problem of a truss with stress con-
straints, and suppose only the lower bound AL

i is given for the cross-sectional
area Ai of the ith member. In a practical design process, obtaining a feasible
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FIGURE 1.8: Convergence history of the total structural volume of FSD
of the 10-bar truss; solid line: r = 1, dashed line: r = 1.5.

solution is sometimes more important than minimizing an objective function.
Furthermore, the results of the example in the previous section suggest that
an optimal design can be obtained by finding the cross-sectional areas so that
the stress of a member with AL

i < Ai is equal to its upper or lower bound for
at least one of the nP loading conditions. The design satisfying this condition
is called a fully-stressed design (FSD). Note that the inequality constraints
σkL

i ≤ σk
i ≤ σkU

i (k = 1, . . . , nP) are to be satisfied by the member with
Ai = AL

i . In the fully-stressed design approach, a design satisfying these
conditions is obtained by iteratively modifying the design variables.

For a simple case of a single loading condition with σ1L
i = −σ1U

i for all
members, the FSD can be obtained by the following simple iterative algorithm
for updating the cross-sectional areas:

A
(k+1)
i = A

(k)
i

(
|σ1

i |
σ1U

i

)r

, (i = 1, . . . ,m) (1.26)

where A(k)
i is the value of Ai at the kth step of iteration, and r is the parameter

for controlling the convergence property, which is usually between 1 and 2.
Note that A(k+1)

i is replaced by AL
i if Ai < AL

i is satisfied as the result of
application of (1.26).

The design update rule (1.26) called the stress-ratio approach, assumes that
the modification of the cross-sectional area of a member does not have any
strong effect on the axial forces of the members. For example, the axial forces
of a statically determinate truss are determined only from the equilibrium
equations and are independent of the cross-sectional areas. In this case, the
stress of a member against the specified set of loads is inversely proportional
to its cross-sectional area, and the FSD can be found within only one step of
application of (1.26) with r = 1.
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The stress-ratio approach can also be effectively used for building frames,
for which constraints are given for the stress at each edge of the section at the
member ends due to the bending moment and axial force. It is very convenient
for investigating the nearly optimal load paths of a plane regular frame from
the loaded nodes to the supports. If the variable Ai defines the size of the
section with the dimension of length, e.g., height and width of the wide-flange
section, the appropriate value of the parameter r in (1.26) ranges between 1/3
and 1/2 (Mueller, Liu, and Burns 2002).

Example 1.4
An FSD is found for the 10-bar truss in Fig. 1.5 under single loading condition
(P1, P2) = (0.0, 100.0 kN). A small lower bound, 0.1 mm2, which is the same
as the value in Example 1.3 in Sec. 1.5, is given for Ai to prevent instability of
the truss and to compare the results. Fig. 1.8 shows the convergence history
of the total structural volume divided by the value 8.91591× 106 in Table 1.1
for the optimal solution under stress constraints subjected to the same single
loading condition. The histories of A1 and A6 are also plotted in Figs. 1.9
(a) and (b), respectively, where only a small range is plotted for A6, because
A6 is equal to the lower bound, 0.1 mm2, at the converged FSD. As is seen
from these figures, the total structural volume and the cross-sectional areas
converge monotonically to the optimal values within 30 steps, if r = 1. The
convergence property is improved if a larger value, 1.5, is assigned for r; i.e.,
an approximate optimal solution can be found within 20 steps; however, some
oscillation is observed at the early stage of iteration. Note that the total
structural volume converges to the optimal value under stress constraints,
and the cross-sectional areas of the FSD are the same as the optimal values
in Table 1.1. This way, the optimal truss under stress constraints for a single
loading condition can easily be found by the simple stress-ratio approach
(1.26) if the absolute values of the upper- and lower-bound stresses are the
same.

The relation between the FSD and optimum design under stress constraints
has been extensively studied since the 1960s (Razani 1965; Kicher 1966; Pat-
naik and Dayaratnam 1970; McNeil 1971; Chern and Prager 1972; Nagtegaal
1973; Gunnlaugsson and Martin 1973) and was revisited mainly in the com-
munity of applied mathematics in the 1990s (Bendsøe and Sigmund 2003).
However, it seems that the FSDs are not clearly defined each case with AL

i > 0
and AL

i = 0. Here we do not assign an upper bound for the cross-sectional
area, and define the FSD as follows (Nagtegaal 1973):

• If AL
i > 0, then the stress σk

i of a member with Ai > AL
i should be equal

to σkU
i or σkL

i for at least one loading condition; whereas σkL
i ≤ σk

i ≤
σkU

i should be satisfied by a member with Ai = AL
i .
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FIGURE 1.9: Convergence history of cross-sectional areas of FSD of the
10-bar truss; solid line: r = 1, dashed line: r = 1.5.

• If AL
i = 0, then the stress σk

i of a member with Ai > 0 should be equal
to σkU

i or σkL
i for at least one loading condition; whereas no constraint

exists on the stress of a nonexistent member with Ai = 0.

Therefore, there is a discontinuity in the FSDs between the cases with AL
i = 0

and AL
i = e, where e is a small positive value. Note that the case with

AL
i = 0 corresponds to the topology optimization problem that is extensively

investigated in Sec. 3.5.3.

1.6.2 Single loading condition

First we consider a truss subjected to a single loading condition, and let n
denote the number of degrees of freedom. Suppose the truss consisting of m
members is statically indeterminate; i.e., n < m with n being the number of
degrees of freedom. The vectors of nodal displacements U1 = (U1

1 , . . . , U
1
n)⊤
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FIGURE 1.10: A statically indeterminate five-bar truss.

and member strains ε1 = (ε11, . . . , ε
1
m)⊤ should satisfy the compatibility con-

ditions
ε1 = CU1 (1.27)

where C is an m × n matrix that is defined by the kinematic relations only.
Suppose the truss is stable and C is full-rank; i.e., the rank of C is equal to
n because n < m. Hence, we can eliminate U1 using (1.27) to express m− n
components of ε1 with respect to the remaining n components.

Therefore, using the constitutive relation σ1
i = Eε1i with the elastic modulus

E, the m − n equations are obtained for the stresses σ1
1 , . . . , σ

1
m. Hence, the

stress can be independently assigned only for n members, and the stresses
of all the members of a statically indeterminate truss cannot generally be
equal to the upper or lower bound. Consequently, for a truss to be fully-
stressed, the cross-sectional areas of at least m− n members should be equal
to their lower bounds, and the stresses of the remaining n members should be
appropriately assigned so that σ1

i = σ1L
i or σ1

i = σ1U
i for those members, and

σ1L
i ≤ σ1

i ≤ σ1U
i for the remaining m− n members with Ai = AL

i .

Example 1.5
Consider a symmetric five-bar truss, as shown in Fig. 1.10, where n = 2
and m = 5, i.e., the truss is statically indeterminate, and we can assign two
member stresses independently. In the following examples, the units of load
and length are omitted for brevity. The truss is symmetric with respect to
the y-axis. The angles of members 1 and 2 from the x-axis are π/4 and π/3,
respectively. If σ1

1 and σ1
3 are chosen as the independent variables, the stresses

of the remaining members are given as

σ1
2 =
√

3
2
σ1

1 +
3−
√

3
4

σ1
3 ,

σ1
4 = −

√
3

2
σ1

1 +
3 +
√

3
4

σ1
3 ,

σ1
5 = σ1

3 − σ1
1

(1.28)

which show that the stresses cannot have the same absolute value for all
members. Therefore, generally Ai = AL

i should be satisfied for three members
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FIGURE 1.11: A statically indeterminate two-bar truss.

so that the truss is fully stressed. Hence, the FSD is statically determinate if
AL

i = 0 for all members. Note that the stress of a nonexistent member can
be computed from the strain because the two nodes (supports) connected to
any member of this truss exist (see Sec. 3.5.3 for more details).

For example, the total structural volume is minimized under conditions
P1 = 1, P2 = 0, and AL

i = 0 for all members. If the bounds of stresses are
given as σU

i = −σL
i = 1/

√
2 for all members, the optimal cross-sectional areas

are obtained as A1 = A5 = 1 and A2 = A3 = A4 = 0. Then the stresses
are obtained as σ1 = 1/

√
2. Accordingly, σ2 =

√
6/4, σ3 = 0, σ4 = −

√
6/4,

σ5 = −1/
√

2, and the truss is statically determinate and fully stressed. For
this example, the truss is fully stressed even if a very small positive value e
is assigned for AL

i of all members because σL
i ≤ σi ≤ σU

i is satisfied by the
nonexistent member 3.

Example 1.6
As another illustrative example, consider a statically indeterminate truss, as
shown in Fig. 1.11, that has two colinearly located members, and assume
P > 0. The bounds for the stress are given as σ1L

i = −σ1U
i , where σ1U

1

and σ1U
2 are not necessarily the same. The lower bounds for Ai are given as

AL
1 = AL

2 = e, where e has a sufficiently small positive value.
If L2 = 2L1 and σ1U

1 = σ1U
2 = σ for a specified positive value σ, then the

optimization for minimizing the total structural volume V leads to A1 ≃ P/σ
and A2 = e, because member 2 is longer than member 1, and σ1

1 = σ and
σ1

2 = −σ/2 are satisfied from the compatibility condition. Hence, the optimal
solution is fully stressed. By contrast, if σ1U

1 = σ and σ1U
2 = 4σ, then the

optimization leads to A1 = e and A2 ≃ P/(4σ), because the larger length of
member 2 is compensated by the larger absolute value of the allowable stress;
consequently, V is approximately equal to PL/(2σ). In fact, if we assume
A2 = e, then A1 ≃ P/σ and, accordingly, V is approximately equal to PL/σ,
which is larger than PL/(2σ).

At the optimal solution with A2 ≃ P/(4σ), σ1
1 = 8σ, and σ1

2 = −4σ are
satisfied. Hence, the optimal solution is not fully stressed; i.e., the stress
constraint is violated by member 1. Therefore, the optimal solution may not
be fully stressed if AL

i > 0 and the stress bounds are not the same for all the
members of a statically indeterminate truss. However, if AL

i = 0, then the
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FIGURE 1.12: A three-bar truss (Type 1).

optimal solution is (A1, A2) = (0, P/(4σ)), which is fully stressed, because the
stress constraint need not be satisfied by the nonexistent member 1.

1.6.3 Multiple loading conditions

Next we consider the truss under multiple loading conditions. The op-
timization problem under stress constraints is formulated as (1.25) without
upper-bound cross-sectional area. Let nA denote the number of members for
which the stress is equal to its lower or upper bound for at least one loading
condition. If the truss is statically determinate, the axial force is independent
of the cross-sectional areas, and nA = m should be satisfied; i.e., the truss is
fully stressed.

For a statically indeterminate truss, we can specify stresses for at most
n× nP members, because the stresses of n members can be specified for each
loading condition, as demonstrated in Example 1.5. Therefore, the stress can
be equal to its lower or upper bound for all members if nP ≥ m/n (Patnaik
and Dayaratnam 1970). However, it is well known that the optimal solution
under multiple loading conditions is not generally fully stressed even for the
case where σ1L

i = −σ1U
i and σ1U

i is the same for all members; i.e., σ1L
i ≤ σ1

i ≤
σ1U

i may be satisfied by a member with Ai > 0 (Kicher 1966; Patnaik and
Dayaratnam 1970; McNeil 1971; Gunnlaugsson and Martin 1973; Patnaik and
Hopkins 1998).

For a topology optimization problem withAL
i = 0 for all members, the stress

constraints may be violated by the nonexistent members, and the optimal
truss may be statically determinate even for the multiple loading conditions;
see Sec. 3.5 for details.

Example 1.7
Consider a three-bar truss (Type 1), as shown in Fig. 1.12, which is subjected
to two independent loads, P1 and P2, respectively. From nP = 2, m = 3,
and n = 2, we can see nP ≥ m/n is satisfied. Suppose P1 = P2 = 10, and
the lengths of members 1, 2, and 3 are

√
2, 1, and

√
2, respectively. The
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FIGURE 1.13: A three-bar truss (Type 2).

lower-bound cross-sectional areas are given as AL
i = 0.1 for all members; i.e.,

removal of a member is not allowed.
The optimal solution for σU

i = −σL
i = 10 for all members is (A1, A2, A3) =

(
√

2/2, 1/2,
√

2/2), where the total structural volume is 2.5. Note that the
value of AL

i does not have any effect on the optimal solution if it is positive and
not more than 1/2. The stresses are computed as (σ1

1 , σ
1
2 , σ

1
3) = (10, 0,−10)

and (σ2
1 , σ

2
2 , σ

2
3) = (5, 10, 5). Therefore, the optimal truss is fully stressed.

However, if AL
i = 0, then a member may be removed to obtain a statically

determinate optimal truss, and the stress constraint may be violated by a
nonexistent member. In fact, if we remove member 2, then the optimal so-
lution is (A1, A3) = (

√
2/2,
√

2/2), where the total structural volume is 2.0,
which is less than 2.5 for the three-bar truss. If we assume that the elas-
tic modulus E is equal to 1, then the vertical displacement of node 2 is 20.
Therefore, the strain of member 2, although it does not exist, is 20, which is
double the upper-bound stress.

Example 1.8
Next, consider a three-bar truss (Type 2), as shown in Fig. 1.13, where the
coordinates of nodes and supports 1–4 are (0,0), (1000,0), (2000,500), and
(500,1000), respectively. Three independent load sets (Px, Py) = (5, 10),
(−5, 10), and (−20, 10) are applied. The upper-bound stress is 0.2 and AL

i = 0
for all members. The optimal cross-sectional areas and the maximum abso-
lute value of stress of each member under three loading conditions are listed
in the second column of Table 1.2. As is seen, the optimal truss is statically
indeterminate. Because the absolute value of the stress of member 2 is less
than 0.2 for any loading condition, the optimal truss is not fully stressed. In
fact, the optimal solutions of two-bar trusses after removal of members 1, 2,
and 3, respectively, have larger objective values, as shown in the third, fourth,
and fifth columns of Table 1.2, than that of the three-bar truss in the second
column.
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TABLE 1.2: Optimal cross-sectional areas, total structural
volume, and maximum absolute values of stresses of the
three-bar truss (Type 2) and corresponding two-bar trusses.

three-bar two-bar
2, 3 1, 3 1, 2

A1 42.717 0 63.888 83.853
A2 36.063 89.443 0 139.75
A3 84.219 94.868 112.94 0
max |σk

1 | 0.20000 0.60000 0.20000 0.20000
max |σk

2 | 0.19709 0.20000 0.26429 0.20000
max |σk

3 | 0.20000 0.20000 0.20000 0.30000
Total volume 2.3539 2.5000 2.5000 2.5000

1.7 Optimality criteria approach

An optimization method that directly solves the optimality criteria (opti-
mality conditions) is called the optimality criteria approach (OC approach)
(Venkayya, Khot, and Berke 1973; Berke and Venkayya 1974; Dobbs and Nel-
son 1975; Khot, Berke, and Venkayya 1978). This approach is very effective
for the case where the optimality conditions are written in a simple manner
with explicit expressions of sensitivity coefficients with respect to the design
variables and the state variables. Furthermore, this approach is more efficient
in view of computational time and required memory than the gradient-based
nonlinear programming (NLP) approaches; see Sec. 2.2 for sensitivity analysis
of static responses, and Appendix A.2.2 for details of optimality conditions
for general NLP problems.

Another advantage of the OC approach is that the computer program is
very simple. Therefore, in the 1960s and 1970s, when computer power was
not sufficient for computing sensitivity coefficients of the responses of moder-
ately large structures many times for optimization, various studies on theo-
retical and computational aspects of the OC approaches were presented. For
problems with general equality and inequality constraints, the OC approach
is classified as a dual approach of NLP (Fleury 1979, 1980). Since the pur-
pose here is to find a solution that satisfies the constraints and optimality
conditions, it is possible to use a Newton-Raphson iteration for solving these
nonlinear equations (Khot, Berke, and Venkayya 1978). However, the recur-
sive formulas, as presented below, are generally used in an OC approach.

For the problem under stress constraints only, an approximate optimal so-
lution can be easily found using the stress-ratio approach of fully-stressed
design, as discussed in the previous section. Therefore, in this section, we
consider an optimization problem of a truss under displacement constraints.
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Suppose, for simplicity, a constraint is given only for the jth displacement
component as

Uj ≤ UU
j (1.29)

where Uj is assumed to be positive. The objective function is the total
structural volume, which is a monotonically increasing function of the cross-
sectional areas A = (A1, . . . , Am)⊤. On the other hand, the nodal displace-
ments are generally decreasing functions of A, if the loads do not depend
on A. Therefore, the displacement constraint (1.29) is considered to be ac-
tive, i.e., satisfied with equality, at the optimal solution assuming that the
lower bounds AL

i for the cross-sectional areas are sufficiently small. The up-
per bounds AU

i are assumed to be sufficiently large to ensure the existence of
a feasible solution. In this case, the following condition is obtained from the
optimality condition (1.6) for members with AL

i < Ai < AU
i :

Li + µj
∂Uj

∂Ai
= 0 (1.30)

where µj (≥ 0) is the Lagrange multiplier for the constraint (1.29).
The term ∂Uj/∂Ai in (1.30) is the sensitivity coefficient of Uj with respect

to Ai that can be obtained efficiently using the adjoint variable method de-
scribed in Sec. 2.2.2, because we have only one displacement component to
be constrained. Let n denote the number of degrees of freedom. The axial
force and the n× n stiffness matrix with respect to the global coordinates of
the ith member are denoted by Ni and Ki, respectively. The displacement
vector against the specified loads is denoted by U. The values corresponding
to the virtual unit load at the jth displacement component are indicated by
the superscript ( · )j . Then the following relation is derived from the adjoint
variable method of design sensitivity analysis of static response:

∂Uj

∂Ai
= −Uj⊤ ∂Ki

∂Ai
U

= − Li

A2
iE

N j
i Ni

(1.31)

where E is the elastic modulus.
Define Zi as

Zi = µj
N j

i Ni

A2
iE

(1.32)

Then the optimality condition (1.30) is written as

Zi = 1 (1.33)

Let the superscript ( · )(k) denote a value at the kth step of iteration. For a
statically determinate truss, N j

i and Ni are independent of Ai. Therefore,
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assuming that µj is constant, the cross-sectional areas can be updated from
(1.32) as follows:

A
(k+1)
i = (Z(k)

i )
1
2A

(k)
i (1.34)

For a statically indeterminate truss, the cross-sectional area is updated by

A
(k+1)
i = (Z(k)

i )rA
(k)
i (1.35)

where r is a parameter between 0 and 1 for controlling the convergence prop-
erty. Note that Ai is replaced with AL

i and AU
i , respectively, if Ai < AL

i or
Ai > AU

i after application of (1.35).
Next, we derive the update rule of the Lagrange multiplier. From (1.32)

and (1.33), we obtain

Ai =

√
µj
N j

i Ni

E
(1.36)

By using the principle of virtual unit load and the active constraint Uj = UU
j ,

we have

UU
j =

m∑
i=1

Li

AiE
N j

i Ni (1.37)

Through incorporation of Ai in (1.36) into (1.37), the Lagrange multiplier µj

is updated as

µ
(k+1)
j =

 m∑
i=1

Li

√
N j

i Ni

UU
j

√
E

2

(1.38)

Then we move to the next step of iteration. This way, the solution satisfying
the constraint and optimality conditions is found by an iterative approach.

Alternatively, a linear approximation can be used for recursively updating
Ai and µj (Khot, Berke, and Venkayya 1978). Multiplying (1 − α)A(k)

i on
both sides of (1.33) with a parameter 0 < α < 1, letting

(1− α)A(k)
i = A

(k+1)
i − αA(k)

i (1.39)

and rearranging the equation, we have the following update rule for Ai:

A
(k+1)
i = A

(k)
i [α+ (1− α)Z(k)

i ] (1.40)

Linear approximation of Uj leads to the following requirement for the dis-
placement constraint at the (k + 1)st step:

U
(k)
j +

m∑
i=1

∂Uj

∂Ai
(A(k+1)

i −A(k)
i ) = UU

j (1.41)
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Then, from (1.31), (1.37), (1.40), and (1.41), we obtain the following recursive
formula for µj :

µj

m∑
i=1

Li(N
j
i Ni)2

E3A3
i

=
(2− α)(U (k)

j − UU
j )

1− α
(1.42)

The OC approach assumes that the member forces against the applied loads
and the virtual unit load are insensitive to variation of the design variables,
which is the same as the assumption for the stress-ratio approach (1.26) for
fully-stressed design. This is better achieved if the responses are approximated
with respect to the reciprocals of the cross-sectional areas (Schmit and Farshi
1974; Zhou and Haftka 1995). Let ai = 1/Ai, and regard Ai as a function of
ai. Then we have

∂Ai

∂ai
= − 1

a2
i

(1.43)

and the sensitivity coefficient of Uj with respect to ai is obtained from (1.31),
(1.43), and Ai = 1/ai as

∂Uj

∂ai
=
∂Uj

∂Ai

∂Ai

∂ai

= −Li

E
N j

i Ni

(1.44)

which does not explicitly depend on ai. Although the sensitivity of the to-
tal structural volume turns out to be dependent on ai, convergence of the
recursive formulation is improved by using ai as a design variable.

Because the number of analyses for computing the displacements against
virtual unit load is proportional to the number of active or nearly active dis-
placement constraints, this approach is effective for the case with a small
number of active displacement constraints. For extension of the OC approach
to problems with stress constraints, a pair of unit self-equilibrium forces is
applied at the two ends of each member with an active stress constraint. How-
ever, the OC approach can be successfully combined with the fully-stressed
design approach for problems with stress and displacement constraints.

Pereyra, Lawver, and Isenberg (2003) used an OC approach with a penalty
function to optimize a building frame. For continuum structures such as
beams, plates, and shells, a continuum-type optimality criteria (COC) ap-
proach was developed in the 1960s (Prager and Taylor 1968; Olhoff and Tay-
lor 1979; Rozvany 1989). Furthermore, OC and COC were combined to a
discretized form of COC approach termed DCOC (Zhou and Rozvany 1992,
1993; Rozvany and Zhou 1994).

Since the OC approach is simple and easy to implement, it is widely applied
in many areas of heuristics, e.g., evolutionary structural optimization (ESO)
(Yang, Xie, Steven, and Querin 1999a; Xie and Steven 1993) and cellular
automaton (Canyurt and Hajela 2005).


