
In the ten years since the publication of the first edition, the statistical landscape 
has substantially changed for analyzing space and space-time data. More than 
twice the size of its predecessor, Hierarchical Modeling and Analysis for 
Spatial Data, Second Edition reflects the major growth in spatial statistics as 
both a research area and an area of application.

New to the Second Edition
•	 New chapter on spatial point patterns developed primarily from a modeling 

perspective
•	 New chapter on big data that shows how the predictive process handles 

reasonably large datasets
•	 New chapter on spatial and spatiotemporal gradient modeling that 

incorporates recent developments in spatial boundary analysis and 
wombling

•	 New chapter on the theoretical aspects of geostatistical (point-referenced) 
modeling 

•	 Greatly expanded chapters on methods for multivariate and spatiotemporal 
modeling

•	 New special topics sections on data fusion/assimilation and spatial analysis 
for data on extremes

•	 Double the number of exercises 
•	 Many more color figures integrated throughout the text
•	 Updated computational aspects, including the latest version of WinBUGS, 

the new flexible spBayes software, and assorted R packages

This second edition continues to provide a complete treatment of the theory, 
methods, and application of hierarchical modeling for spatial and spatiotemporal 
data. It tackles current challenges in handling this type of data, with increased 
emphasis on observational data, big data, and the upsurge of associated 
software tools. The authors also explore important application domains, 
including environmental science, forestry, public health, and real estate.
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Preface to the Second Edition

In the ten years that have passed since the first edition of this book, we believe the statis-
tical landscape has changed substantially, even more so for analyzing space and space-time
data. Apart from the remarkable growth in data collection, with datasets now of enormous
size, the fields of statistics and biostatistics are also witnessing a change toward examina-
tion of observational data, rather than being restricted to carefully-collected experimentally
designed data. We are witnessing an increased examination of complex systems using such
data, requiring synthesis of multiple sources of information (empirical, theoretical, physical,
etc.), necessitating the development of multi-level models. We are seeing repeated exem-
plification of the hierarchical framework [data|process, parameters][process|parameters]
[parameters]. The role of the statistician is evolving in this landscape to that of an integral
participant in team-based research: A participant in the framing of the questions to be in-
vestigated, the determination of data needs to investigate these questions, the development
of models to examine these questions, the development of strategies to fit these models, and
the analysis and summarization of the resultant inference under these specifications. It is
an exciting new world for modern statistics, and spatial analysis is a particularly important
player in this new world due to the increased appreciation of the information carried in spa-
tial locations, perhaps across temporal scales, in learning about these complex processes.
Applications abound, particularly in the environmental sciences but also in public health,
real estate, and many other fields.

We believe this new edition moves forward in this spirit. The first edition was intended
as a research monograph, presenting a state-of-the-art treatment of hierarchical modeling
for spatial data. It has been a delightful success, far exceeding our expectations in terms of
sales and reception by the community. However, reflecting on the decade that has passed,
we have made consequential changes from the first edition. Not surprisingly, the new volume
is more than 50% bigger, reflecting the major growth in spatial statistics as a research area
and as an area of application.

Rather than describing the contents, chapter by chapter, we note the following major
changes. First, we have added a much needed chapter on spatial point patterns. This is
a subfield that is finding increased importance but, in terms of application, has lagged
behind the use of point-referenced and areal unit data. We offer roughly 80 new pages here,
developed primarily from a modeling perspective, introducing as much current hierarchical
and Bayesian flavor as we could. Second, reflecting the ubiquitous increases in the sizes of
datasets, we have developed a “big data” chapter. Here, we focus on the predictive process
in its various forms, as an attractive tool for handling reasonably large datasets. Third, near
the end of the book we have added a new chapter on spatial and spatiotemporal gradient
modeling, with associated developments by us and others in spatial boundary analysis and
wombling. As elsewhere in the book, we divide our descriptions here into those appropriate
for point-referenced data (where underlying spatial processes guarantee the existence of
spatial derivatives) and areal data (where processes are not possible but boundaries can
still be determined based on alternate ways of hierarchically smoothing the areal map).
Fourth, since geostatistical (point-referenced) modeling is still the most prevalent setting
for spatial analysis, we have chosen to present this material in two separate chapters. The
first (Chapter 2) is a basic introduction, presented for the reader who is more focused on the
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practical side of things. In addition, we have developed a more theoretical chapter (Chapter
3) which provides much more insight into the scope of issues that arise in the geostatistical
setting and how we deal with them formally. The presentation of this material is still gentle
compared with that in many stochastic processes texts, and we hope it provides valuable
model-building insight. At the same time, we recognize that Chapter 3 may be somewhat
advanced for more introductory courses, so we marked it as a starred chapter. In addition
to these four new chapters, we have greatly revised and expanded the multivariate and
spatio-temporal chapters, again in response to the growth of work in these areas. We have
also added two new special topics sections, one on data fusion/assimilation, and one on
spatial analysis for data on extremes. We have roughly doubled the number of exercises in
the book, and also include many more color figures, now integrated appropriately into the
text. Finally, we have updated the computational aspects of the book. Specially, we work
with the newest version of WinBUGS, the new flexible spBayes software, and we introduce
other suitable R packages as needed, especially for exploratory data analysis.

In addition to those to whom we expressed our gratitude in the preface to the first
edition, we now extend this list to record (in alphabetical order) the following colleagues,
current and former postdoctoral researchers and students: Dipankar Bandyopadhyay, Veron-
ica Berrocal, Avishek Chakraborty, Jim Clark, Jason (Jun) Duan, David Dunson, Andrew
Finley, Souparno Ghosh, Simone Gray, Rajarshi Guhaniyogi, Michele Guindani, Xiaoping
Jin, Giovanna Jona Lasinio, Matt Heaton, Dave Holland, Thanasis Kottas, Andrew La-
timer, Tommy Leininger, Pei Li, Shengde Liang, Haolan Lu, Kristian Lum, Haijun Ma,
Marshall McBean, Marie Lynn Miranda, Joao Vitor Monteiro, XuanLong Nguyen, Lucia
Paci, Sonia Petrone, Gavino Puggioni, Harrison Quick, Cavan Reilly, Qian Ren, Abel Ro-
driguez, Huiyan Sang, Sujit Sahu, Maria Terres, Beth Virnig, Fangpo Wang, Adam Wilson,
Gangqiang Xia, and Kai Zhu. In addition, we much appreciate the continuing support of
CRC/Chapman and Hall in helping to bring this new edition to fruition, in particular the
encouragement of the steadfast and indefatigable Rob Calver.

Sudipto Banerjee Minneapolis, Minnesota
Bradley P. Carlin Durham, North Carolina
Alan E. Gelfand July 2013



Preface to the First Edition

As recently as two decades ago, the impact of hierarchical Bayesian methods outside of
a small group of theoretical probabilists and statisticians was minimal at best. Realistic
models for challenging data sets were easy enough to write down, but the computations
associated with these models required integrations over hundreds or even thousands of un-
known parameters, far too complex for existing computing technology. Suddenly, around
1990, the “Markov chain Monte Carlo (MCMC) revolution” in Bayesian computing took
place. Methods like the Gibbs sampler and the Metropolis algorithm, when coupled with
ever-faster workstations and personal computers, enabled evaluation of the integrals that
had long thwarted applied Bayesians. Almost overnight, Bayesian methods became not only
feasible, but the method of choice for almost any model involving multiple levels incorpo-
rating random effects or complicated dependence structures. The growth in applications
has also been phenomenal, with a particularly interesting recent example being a Bayesian
program to delete spam from your incoming email (see popfile.sourceforge.net).

Our purpose in writing this book is to describe hierarchical Bayesian methods for one
class of applications in which they can pay substantial dividends: spatial (and spatiotempo-
ral) statistics. While all three of us have been working in this area for some time, our moti-
vation for writing the book really came from our experiences teaching courses on the subject
(two of us at the University of Minnesota, and the other at the University of Connecticut).
In teaching we naturally began with the textbook by Cressie (1993), long considered the
standard as both text and reference in the field. But we found the book somewhat uneven
in its presentation, and written at a mathematical level that is perhaps a bit high, especially
for the many epidemiologists, environmental health researchers, foresters, computer scien-
tists, GIS experts, and other users of spatial methods who lacked significant background in
mathematical statistics. Now a decade old, the book also lacks a current view of hierarchical
modeling approaches for spatial data.

But the problem with the traditional teaching approach went beyond the mere need for a
less formal presentation. Time and again, as we presented the traditional material, we found
it wanting in terms of its flexibility to deal with realistic assumptions. Traditional Gaussian
kriging is obviously the most important method of point-to-point spatial interpolation,
but extending the paradigm beyond this was awkward. For areal (block-level) data, the
problem seemed even more acute: CAR models should most naturally appear as priors for
the parameters in a model, not as a model for the observations themselves.

This book, then, attempts to remedy the situation by providing a fully Bayesian treat-
ment of spatial methods. We begin in Chapter 1 by outlining and providing illustrative
examples of the three types of spatial data: point-level (geostatistical), areal (lattice), and
spatial point process. We also provide a brief introduction to map projection and the proper
calculation of distance on the earth’s surface (which, since the earth is round, can differ
markedly from answers obtained using the familiar notion of Euclidean distance). Our sta-
tistical presentation begins in earnest in Chapter 2, where we describe both exploratory
data analysis tools and traditional modeling approaches for point-referenced data. Model-
ing approaches from traditional geostatistics (variogram fitting, kriging, and so forth) are
covered here. Chapter 4 offers a similar presentation for areal data models, again starting
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with choropleth maps and other displays and progressing toward more formal statistical
models. This chapter also presents Brook’s Lemma and Markov random fields, topics that
underlie the conditional, intrinsic, and simultaneous autoregressive (CAR, IAR, and SAR)
models so often used in areal data settings.

Chapter 5 provides a review of the hierarchical Bayesian approach in a fairly generic
setting, for readers previously unfamiliar with these methods and related computing and
software. (The penultimate sections of Chapters 2, 4, and 5 offer tutorials in several pop-
ular software packages.) This chapter is not intended as a replacement for a full course in
Bayesian methods (as covered, for example, by Carlin and Louis, 2000, or Gelman et al.,
2004), but should be sufficient for readers having at least some familiarity with the ideas. In
Chapter 6 then we are ready to cover hierarchical modeling for univariate spatial response
data, including Bayesian kriging and lattice modeling. The issue of nonstationarity (and
how to model it) also arises here.

Chapter 7 considers the problem of spatially misaligned data. Here, Bayesian methods
are particularly well suited to sorting out complex interrelationships and constraints and
providing a coherent answer that properly accounts for all spatial correlation and uncer-
tainty. Methods for handling multivariate spatial responses (for both point- and block-level
data) are discussed in Chapter 9. Spatiotemporal models are considered in Chapter 11, while
Chapter 14 presents an extended application of areal unit data modeling in the context of
survival analysis methods. Chapter 15 considers novel methodology associated with spa-
tial process modeling, including spatial directional derivatives, spatially varying coefficient
models, and spatial cumulative distribution functions (SCDF’s). Finally, the book also fea-
tures two useful appendices. Appendix A reviews elements of matrix theory and important
related computational techniques, while Appendix B contains solutions to several of the
exercises in each of the book’s chapters.

Our book is intended as a research monograph, presenting the “state of the art” in hier-
archical modeling for spatial data, and as such we hope readers will find it useful as a desk
reference. However, we also hope it will be of benefit to instructors (or self-directed students)
wishing to use it as a textbook. Here we see several options. Students wanting an introduc-
tion to methods for point-referenced data (traditional geostatistics and its extensions) may
begin with Chapter 1, Chapter 2, Chapter 5, and Section 6.1 to Section 3.2. If areal data
models are of greater interest, we suggest beginning with Chapter 1, Chapter 4, Chapter 5,
Section 6.4, and Section 6.5. In addition, for students wishing to minimize the mathematical
presentation, we have also marked sections containing more advanced material with a star
(�). These sections may be skipped (at least initially) at little cost to the intelligibility of
the subsequent narrative. In our course in the Division of Biostatistics at the University of
Minnesota, we are able to cover much of the book in a 3-credit-hour, single-semester (15-
week) course. We encourage the reader to check http://www.biostat.umn.edu/~brad/ on
the web for many of our data sets and other teaching-related information.

We owe a debt of gratitude to those who helped us make this book a reality. Kirsty
Stroud and Bob Stern took us to lunch and said encouraging things (and more importantly,
picked up the check) whenever we needed it. Cathy Brown, Alex Zirpoli, and Desdamona
Racheli prepared significant portions of the text and figures. Many of our current and former
graduate and postdoctoral students, including Yue Cui, Xu Guo, Murali Haran, Xiaoping
Jin, Andy Mugglin, Margaret Short, Amy Xia, and Li Zhu at Minnesota, and Deepak Agar-
wal, Mark Ecker, Sujit Ghosh, Hyon-Jung Kim, Ananda Majumdar, Alexandra Schmidt,
and Shanshan Wu at the University of Connecticut, played a big role. We are also grateful
to the Spring 2003 Spatial Biostatistics class in the School of Public Health at the University
of Minnesota for taking our draft for a serious “test drive.” Colleagues Jarrett Barber, Nicky
Best, Montserrat Fuentes, David Higdon, Jim Hodges, Oli Schabenberger, John Silander,
Jon Wakefield, Melanie Wall, Lance Waller, and many others provided valuable input and
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assistance. Finally, we thank our families, whose ongoing love and support made all of this
possible.

Sudipto Banerjee Minneapolis, Minnesota
Bradley P. Carlin Durham, North Carolina
Alan E. Gelfand October 2003





Chapter 1

Overview of spatial data problems

1.1 Introduction to spatial data and models

Researchers in diverse areas such as climatology, ecology, environmental health, and real
estate marketing are increasingly faced with the task of analyzing data that are:

• highly multivariate, with many important predictors and response variables,

• geographically referenced, and often presented as maps, and

• temporally correlated, as in longitudinal or other time series structures.

For example, for an epidemiological investigation, we might wish to analyze lung, breast,
colorectal, and cervical cancer rates by county and year in a particular state, with smoking,
mammography, and other important screening and staging information also available at
some level. Public health professionals who collect such data are charged not only with
surveillance, but also statistical inference tasks, such as modeling of trends and correlation
structures, estimation of underlying model parameters, hypothesis testing (or comparison of
competing models), and prediction of observations at unobserved times or locations.

In this text we seek to present a practical, self-contained treatment of hierarchical mod-
eling and data analysis for complex spatial (and spatiotemporal) datasets. Spatial statistics
methods have been around for some time, with the landmark work by Cressie (1993) pro-
viding arguably the only comprehensive book in the area. However, recent developments
in Markov chain Monte Carlo (MCMC) computing now allow fully Bayesian analyses of
sophisticated multilevel models for complex geographically referenced data. This approach
also offers full inference for non-Gaussian spatial data, multivariate spatial data, spatiotem-
poral data, and, for the first time, solutions to problems such as geographic and temporal
misalignment of spatial data layers.

This book does not attempt to be fully comprehensive, but does attempt to present
a fairly thorough treatment of hierarchical Bayesian approaches for handling all of these
problems. The book’s mathematical level is roughly comparable to that of Carlin and Louis
(2000). That is, we sometimes state results rather formally, but spend little time on the-
orems and proofs. For more mathematical treatments of spatial statistics (at least on the
geostatistical side), the reader is referred to Cressie (1993), Wackernagel (1998), Chiles and
Delfiner (1999), and Stein (1999a). For more descriptive presentations the reader might
consult Bailey and Gattrell (1995), Fotheringham and Rogerson (1994), or Haining (1990).
Our primary focus is on the issues of modeling (where we offer rich, flexible classes of hierar-
chical structures to accommodate both static and dynamic spatial data), computing (both
in terms of MCMC algorithms and methods for handling very large matrices), and data
analysis (to illustrate the first two items in terms of inferential summaries and graphical
displays). Reviews of both traditional spatial methods (Chapters 2, 3 and 4) and Bayesian
methods (Chapter 5) attempt to ensure that previous exposure to either of these two areas
is not required (though it will of course be helpful if available).

1
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Figure 1.1 Map of PM2.5 sampling sites over three midwestern U.S. states; plotting character
indicates range of average monitored PM2.5 level over the year 2001.

Following convention, we classify spatial data sets into one of three basic types:

• point-referenced data, where Y (s) is a random vector at a location s ∈ �r, where s varies
continuously over D, a fixed subset of �r that contains an r-dimensional rectangle of
positive volume;

• areal data, where D is again a fixed subset (of regular or irregular shape), but now
partitioned into a finite number of areal units with well-defined boundaries;

• point pattern data, where now D is itself random; its index set gives the locations of
random events that are the spatial point pattern. Y (s) itself can simply equal 1 for all
s ∈ D (indicating occurrence of the event), or possibly give some additional covariate
information (producing a marked point pattern process).

The first case is often referred to as geocoded or geostatistical data, names apparently
arising from the long history of these types of problems in mining and other geological
sciences. Figure 1.1 offers an example of this case, showing the locations of 114 air-pollution
monitoring sites in three midwestern U.S. states (Illinois, Indiana, and Ohio). The plotting
character indicates the 2001 annual average PM2.5 level (measured in ppb) at each site.
PM2.5 stands for particulate matter less than 2.5 microns in diameter, and is a measure
of the density of very small particles that can travel through the nose and windpipe and
into the lungs, potentially damaging a person’s health. Here we might be interested in a
model of the geographic distribution of these levels that account for spatial correlation and
perhaps underlying covariates (regional industrialization, traffic density, and the like). The
use of colors makes it somewhat easier to read, since the color allows the categories to be
ordered more naturally, and helps sharpen the contrast between the urban and rural areas.
Again, traditional analysis methods for point level data like this are described in Chapter 2,
while Chapter 6 introduces the corresponding hierarchical modeling approach.

The second case above (areal data) is often referred to as lattice data, a term we find
misleading since it connotes observations corresponding to “corners” of a checkerboard-like
grid. Of course, there are data sets of this type; for example, as arising from agricultural
field trials (where the plots cultivated form a regular lattice) or image restoration (where
the data correspond to pixels on a screen, again in a regular lattice). However, in practice
most areal data are summaries over an irregular lattice, like a collection of county or other
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Figure 1.2 ArcView map of percent of surveyed population with household income below 200% of
the federal poverty limit, regional survey units in Hennepin County, MN.

regional boundaries, as in Figure 1.2. Here we have information on the percent of a surveyed
population with household income falling below 200% of the federal poverty limit for a
collection of regions comprising Hennepin County, MN. Note that we have no information
on any single household in the study area, only regional summaries for each region. Figure 1.2
is an example of a choropleth map, meaning that it uses shades of color (or greyscale) to
classify values into a few broad classes (six in this case), like a histogram (bar chart) for
nonspatial data. Choropleth maps are visually appealing (and therefore, also common), but
of course provide a rather crude summary of the data, and one that can be easily altered
simply by manipulating the class cutoffs.

As with any map of the areal units, choropleth maps do show reasonably precise bound-
aries between the regions (i.e., a series of exact spatial coordinates that when connected
in the proper order will trace out each region), and thus we also know which regions are
adjacent to (touch) which other regions. Thus the “sites” s ∈ D in this case are actu-
ally the regions (or blocks) themselves, which in this text we will denote not by si but by
Bi, i = 1, . . . , n, to avoid confusion between points si and blocks Bi. It may also be illumi-
nating to think of the county centroids as forming the vertices of an irregular lattice, with
two lattice points being connected if and only if the counties are “neighbors” in the spatial
map, with physical adjacency being the most obvious (but not the only) way to define a
region’s neighbors.

Some spatial data sets feature both point- and areal-level data, and require their simul-
taneous display and analysis. Figure 1.3 offers an example of this case. The first component
of this data set is a collection of eight-hour maximum ozone levels at 10 monitoring sites
in the greater Atlanta, GA, area for a particular day in July 1995. Like the observations
in Figure 1.1, these were made at fixed monitoring stations for which exact spatial coordi-
nates (say, latitude and longitude) are known. (That is, we assume the Y (si), i = 1, . . . , 10
are random, but the si are not.) The second component of this data set is the number of
children in the area’s zip codes (shown using the irregular subboundaries on the map) that
reported at local emergency rooms (ERs) with acute asthma symptoms on the following
day; confidentiality of health records precludes us from learning the precise address of any
of the children. These are areal summaries that could be indicated by shading the zip codes,
as in Figure 1.2. An obvious question here is whether we can establish a connection between
high ozone and subsequent high pediatric ER asthma visits. Since the data are misaligned
(point-level ozone but block-level ER counts), a formal statistical investigation of this ques-
tion requires a preliminary realignment of the data; this is the subject of Chapter 7.
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Figure 1.3 Zip code boundaries in the Atlanta metropolitan area and 8-hour maximum ozone levels
(ppm) at 10 monitoring sites for July 15, 1995.

The third case above (spatial point pattern data) could be exemplified by residences
of persons suffering from a particular disease, or by locations of a certain species of tree
in a forest. Here the response Y is often fixed (occurrence of the event), and only the
locations si are thought of as random. In some cases this information might be supplemented
by age or other covariate information, producing a marked point pattern). Such data are
often of interest in studies of event clustering, where the goal is to determine whether an
observed spatial point pattern is an example of a clustered process (where points tend to
be spatially close to other points), or merely the result of a random event process operating
independently and homogeneously over space. Note that in contrast to areal data, where
no individual points in the data set could be identified, here (and in point-referenced data
as well) precise locations are known, and so must often be protected to protect the privacy
of the persons in the set.

In the remainder of this initial section, we give a brief outline of the basic models most
often used for each of these three data types. Here we only intend to give a flavor of the
models and techniques to be fully described in the remainder of this book.

Even though our preferred inferential outlook is Bayesian, the statistical inference tools
discussed in Chapters 2 through 4 are entirely classical. While all subsequent chapters adopt
the Bayesian point of view, our objective here is to acquaint the reader with the classical
techniques first, since they are more often implemented in standard software packages.
Moreover, as in other fields of data analysis, classical methods can be easier to compute,
and produce perfectly acceptable results in relatively simple settings. Classical methods
often have interpretations as limiting cases of Bayesian methods under increasingly vague
prior assumptions. Finally, classical methods can provide insight for formulating and fitting
hiearchical models.

1.1.1 Point-level models

In the case of point-level data, the location index s varies continuously over D, a fixed
subset of �d. Suppose we assume that the covariance between the random variables at two
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locations depends on the distance between the locations. One frequently used association
specification is the exponential model. Here the covariance between measurements at two
locations is an exponential function of the interlocation distance, i.e., Cov(Y (si), Y (si′)) ≡
C(dii′ ) = σ2e−φdii′ for i �= i′, where dii′ is the distance between sites si and si′ , and σ2

and φ are positive parameters called the partial sill and the decay parameter, respectively
(1/φ is called the range parameter). A plot of the covariance versus distance is called the
covariogram. When i = i′, dii′ is of course 0, and C(dii′ ) = V ar(Y (si)) is often expanded
to τ2 + σ2, where τ2 > 0 is called a nugget effect, and τ2 + σ2 is called the sill. Of course,
while the exponential model is convenient and has some desirable properties, many other
parametric models are commonly used; see Section 2.1 for further discussion of these and
their relative merits.

Adding a joint distributional model to these variance and covariance assumptions then
enables likelihood inference in the usual way. The most convenient approach would be to
assume a multivariate normal (or Gaussian) distribution for the data. That is, suppose we
are given observations Y ≡ {Y (si)} at known locations si, i = 1, . . . , n. We then assume
that

Y | μ, θ ∼ Nn(μ1 , Σ(θ)) , (1.1)

where Nn denotes the n-dimensional normal distribution, μ is the (constant) mean level,
1 is a vector of ones, and (Σ(θ))ii′ gives the covariance between Y (si) and Y (si′). For the
variance-covariance specification of the previous paragraph, we have θ = (τ2, σ2, φ)T , since
the covariance matrix depends on the nugget, sill, and range.

In fact, the simplest choices for Σ are those corresponding to isotropic covariance func-
tions, where we assume that the spatial correlation is a function solely of the distance
dii′ between si and si′ . As mentioned above, exponential forms are particularly intuitive
examples. Here,

(Σ(θ))ii′ = σ2 exp(−φdii′ ) + τ2I(i = i′), σ2 > 0, φ > 0, τ2 > 0 , (1.2)

where I denotes the indicator function (i.e., I(i = i′) = 1 if i = i′, and 0 otherwise).
Many other choices are possible for Cov(Y (si), Y (si′)), including for example the powered
exponential,

(Σ(θ))ii′ = σ2 exp(−φdκii′ ) + τ2I(i = i′), σ2 > 0, φ > 0, τ2 > 0, κ ∈ (0, 2] ,

the spherical, the Gaussian, and the Matérn (see Subsection 2.1.3 for a full discussion). In
particular, while the latter requires calculation of a modified Bessel function, Stein (1999a,
p. 51) illustrates its ability to capture a broader range of local correlation behavior despite
having no more parameters than the powered exponential. We shall say much more about
point-level spatial methods and models in Chapters 2, 3 and 6 and also provide illustrations
using freely available statistical software.

1.1.2 Areal models

In models for areal data, the geographic regions or blocks (zip codes, counties, etc.) are de-
noted by Bi, and the data are typically sums or averages of variables over these blocks. To
introduce spatial association, we define a neighborhood structure based on the arrangement
of the blocks in the map. Once the neighborhood structure is defined, models resembling
autoregressive time series models are considered. Two very popular models that incorporate
such neighborhood information are the simultaneously and conditionally autoregressive mod-
els (abbreviated SAR and CAR), originally developed by Whittle (1954) and Besag (1974),
respectively. The SAR model is computationally convenient for use with likelihood meth-
ods. By contrast, the CAR model is computationally convenient for Gibbs sampling used
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in conjunction with Bayesian model fitting, and in this regard is often used to incorporate
spatial correlation through a vector of spatially varying random effects φ = (φ1, . . . , φn)T .

For example, writing Yi ≡ Y (Bi), we might assume Yi
ind∼ N(φi, σ

2), and then impose the
CAR model

φi|φ(−i) ∼ N

⎛
⎝μ +

n∑
j=1

aij(φj − μ) , τ2i

⎞
⎠ , (1.3)

where φ(−i) = {φj : j �= i}, τ2i is the conditional variance, and the aij are known or unknown

constants such that aii = 0 for i = 1, . . . , n. Letting A = (aij) and M = Diag(τ21 , . . . , τ
2
n),

by Brook’s Lemma (c.f. Section 4.2), we can show that

p(φ) ∝ exp{−(φ− μ1)TM−1(I −A)(φ − μ1)/2} , (1.4)

where 1 is an n-vector of 1’s, and I is a n× n identity matrix.
A common way to construct A and M is to let A = ρ Diag(1/wi+)W and M−1 =

τ−2Diag(wi+). Here ρ is referred to as the spatial correlation parameter, and W = (wij) is
a neighborhood matrix for the areal units, which can be defined as

wij =

{
1 if subregions i and j share a common boundary, i �= j
0 otherwise

. (1.5)

Thus Diag(wi+) is a diagonal matrix with (i, i) entry equal to wi+ =
∑

j wij . Letting

α ≡ (ρ, τ2), the covariance matrix of φ then becomes C(α) = τ2[Diag(wi+) − ρW ]−1,
where the inverse exists for an appropriate range of ρ values; see Subsection 4.3.1.

In the context of Bayesian hierarchical areal modeling, when choosing a prior distribution
π(φ) for a vector of spatial random effects φ, the CAR distribution (1.3) is often used
with the 0–1 weight (or adjacency) matrix W in (1.5) and ρ = 1. While this results in an
improper (nonintegrable) prior distribution, this problem is remedied by imposing a sum-
to-zero constraint on the φi (which turns out to be easy to implement numerically using
Gibbs sampling). In this case the more general conditional form (1.3) is replaced by

φi | φ(−i) ∼ N(φ̄i , τ
2/mi) , (1.6)

where φ̄i is the average of the φj �=i that are adjacent to φi, and mi is the number of these
adjacencies (see, e.g., Besag, York, and Mollié, 1991). We discuss areal models in greater
detail in Chapters 4 and 6.

1.1.3 Point process models

In the point process model, the spatial domain D is itself random, so that the elements of
the index set D are the locations of random events that constitute the spatial point pattern.
Y (s) then normally equals the constant 1 for all s ∈ D (indicating occurrence of the event),
but it may also provide additional covariate information, in which case the data constitute
a marked point process.

Questions of interest with data of this sort typically center on whether the data are
clustered more or less than would be expected if the locations were determined completely
by chance. Stochastically, such uniformity is often described through a homogeneous Poisson
process, which implies that the expected number of occurrences in region A is λ|A|, where
λ is the intensity parameter of the process and |A| is the area of A. To investigate this
in practice, plots of the data are typically a good place to start, but the tendency of the
human eye to see clustering or other structure in virtually every point pattern renders
a strictly graphical approach unreliable. Instead, statistics that measure clustering, and
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perhaps even associated significance tests, are often used. The most common of these is
Ripley’s K function, given by

K(d) =
1

λ
E[number of points within d of an arbitrary point], (1.7)

where again λ is the intensity of the process, i.e., the mean number of points per unit area.
The theoretical value of K is known for certain spatial point process models. For instance,

for point processes that have no spatial dependence at all, we would have K(d) = πd2, since
in this case the number of points within d of an arbitrary point should be proportional to
the area of a circle of radius d; the K function then divides out the average intensity λ.
However, if the data are clustered we might expect K(d) > πd2, while if the points follow
some regularly spaced pattern we would expect K(d) < πd2. This suggests a potential
inferential use for K; namely, comparing an estimate of it from a data set to some theoretical
quantities, which in turn suggests whether clustering is present, and if so, which model might
be most plausible. The usual estimator for K is given by

K̂(d) = n−2|A|
∑∑

i�=j
p−1
ij Id(dij) , (1.8)

where n is the number of points in A, dij is the distance between points i and j, pij is the
proportion of the circle with center i and passing through j that lies within A, and Id(dij)
equals 1 if dij < d, and 0 otherwise.

We provide an extensive account for point processes in Chapter 8. Other useful texts
focusing primarily upon point processes and patterns include Diggle (2003), Lawson and
Denison (2002), and Møller and Waagepetersen (2004) for treatments of spatial point pro-
cesses and related methods in spatial cluster detection and modeling.

1.1.4 Software and datasets

This text extensively uses the R (www.r-project.org) software programming language and
environment for statistical computing and graphics. R is released under the GNU open-
source license and can be downloaded for free from the Comprehensive R Archive Network
(CRAN), which can be accessed from http://cran.us.r-project.org/. The capabilities
of R are easily extended through “libraries” or “packages” that perform more specialized
tasks. These packages are also available from CRAN and can be downloaded and installed
from within the R software environment.

There are a variety of spatial packages in R that perform modeling and analysis for the
different types of spatial data. For example, the gstat and geoR packages provide functions
to perform traditional (classical) analysis for point-level data; the latter also offers simpler
Bayesian models. The packages spBayes and sptimer have much more elaborate Bayesian
functions, the latter focusing primarily upon space-time data. We will provide illustrations
using some of these R packages in Chapters 2 and 6.

The spdep package in R provides several functions for analyzing areal-level data, includ-
ing basic descriptive statistics for areal data as well as fitting areal models using classical
likelihood methods. For Bayesian analysis, the BUGS language and the WinBUGS software is
still perhaps the most widely used engine to fit areal models. We will discuss areal models
in greater detail in Chapters 4 and 6.

Turning to point-process models, a popular spatial R package, spatstat, allows com-
putation of K for any data set, as well as the approximate 95% intervals for it so the
significance of departure from some theoretical model may be judged. However, full infer-
ence likely requires use of the R package Splancs, or perhaps a fully Bayesian approach
with user-specific coding (also see Wakefield and Morris, 2001). We provide some examples
of R packages for point-process models in Chapter 8.
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We will use a number of spatial and spatiotemporal datasets for illustrating the model-
ing and software implementation. While some of these datasets are included in the R pack-
ages we will be using, others are available from www.biostat.umn.edu/~brad/data2.html.
We remark that the number of R packages performing spatial analysis is already too
large to be discussed in this text. We refer the reader to the CRAN Task View
http://cran.r-project.org/web/views/Spatial.html for an exhaustive list of such
packages and brief descriptions regarding their capabilities.

1.2 Fundamentals of cartography

In this section we provide a brief introduction to how geographers and spatial statisticians
understand the geometry of (and determine distances on) the surface of the earth. This
requires a bit of thought regarding cartography (mapmaking), especially map projections,
and the meaning of latitude and longitude, which are often understood informally (but
incorrectly) as being equivalent to Cartesian x and y coordinates.

1.2.1 Map projections

A map projection is a systematic representation of all or part of the surface of the earth
on a plane. This typically comprises lines delineating meridians (longitudes) and parallels
(latitudes), as required by some definitions of the projection. A well-known fact from topol-
ogy is that it is impossible to prepare a distortion-free flat map of a surface curving in all
directions. Thus, the cartographer must choose the characteristic (or characteristics) that
are to be shown accurately in the map. In fact, it cannot be said that there is a “best”
projection for mapping. The purpose of the projection and the application at hand lead
to projections that are appropriate. Even for a single application, there may be several
appropriate projections, and choosing the “best” projection can be subjective. Indeed there
are an infinite number of projections that can be devised, and several hundred have been
published.

Since the sphere cannot be flattened onto a plane without distortion, the general strategy
for map projections is to use an intermediate surface that can be flattened. This intermediate
surface is called a developable surface and the sphere is first projected onto the this surface,
which is then laid out as a plane. The three most commonly used surfaces are the cylinder,
the cone and the plane itself. Using different orientations of these surfaces leads to different
classes of map projections. Some examples are given in Figure 1.4. The points on the
globe are projected onto the wrapping (or tangential) surface, which is then laid out to
form the map. These projections may be performed in several ways, giving rise to different
projections.

Before the availability of computers, the above orientations were used by cartographers in
the physical construction of maps. With computational advances and digitizing of cartogra-
phy, analytical formulae for projections were desired. Here we briefly outline the underlying
theory for equal-area and conformal (locally shape-preserving) maps. A much more detailed
and rigorous treatment may be found in Pearson (1990).

The basic idea behind deriving equations for map projections is to consider a sphere
with the geographical coordinate system (λ, φ) for longitude and latitude and to construct
an appropriate (rectangular or polar) coordinate system (x, y) so that

x = f(λ, φ), y = g(λ, φ) ,

where f and g are appropriate functions to be determined, based upon the properties we
want our map to possess. We will study map projections using differential geometry con-
cepts, looking at infinitesimal patches on the sphere (so that curvature may be neglected
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Figure 1.4 The geometric constructions of projections using developable surfaces (figure courtesy
of the U.S. Geological Survey).

and the patches are closely approximated by planes) and deriving a set of (partial) differen-
tial equations whose solution will yield f and g. Suitable initial conditions are set to create
projections with desired geometric properties.

Thus, consider a small patch on the sphere formed by the infinitesimal quadrilateral,
ABCD, given by the vertices,

A = (λ, φ), B = (λ, φ + dφ), C = (λ + dλ, φ), D = (λ + dλ, φ + dφ).

So, with R being the radius of the earth, the horizontal differential component along an arc
of latitude is given by |AC| = (R cosφ)dλ and the vertical component along a great circle of
longitude is given by |AB| = Rdφ. Note that since AC and AB are arcs along the latitude
and longitude of the globe, they intersect each other at right angles. Therefore, the area of
the patch ABCD is given by |AC||AB|. Let A′B′C′D′ be the (infinitesimal) image of the
patch ABCD on the map. Then, we see that

A′ = (f(λ, φ), g(λ, φ)),
C′ = (f(λ + dλ, φ), g(λ + dλ, φ)),
B′ = (f(λ, φ + dφ), g(λ, φ + dφ)),

and D′ = (f(λ + dλ, φ + dφ), g(λ + dλ, φ + dφ)) .

This in turn implies that

−−→
A′C′ =

(
∂f

∂λ
,
∂g

∂λ

)
dλ and

−−−→
A′B′ =

(
∂f

∂φ
,
∂g

∂φ

)
dφ .

If we desire an equal-area projection we need to equate the area of the patches ABCD
and A′B′C′D′. But note that the area of A′B′C′D′ is given by the area of parallelogram

formed by vectors
−−→
A′C′ and

−−−→
A′B′. Treating them as vectors in the xy plane of an xyz

system, we see that the area of A′B′C′D′ is the cross-product,

(
−−→
A′C′, 0) × (

−−−→
A′B′, 0) =

(
∂f

∂λ

∂g

∂φ
− ∂f

∂φ

∂g

∂λ

)
dλdφ .
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Figure 1.5 The sinusoidal projection.

Therefore, we equate the above to |AC||AB|, leading to the following partial differential
equation in f and g: (

∂f

∂λ

∂g

∂φ
− ∂f

∂φ

∂g

∂λ

)
= R2 cosφ .

Note that this is the equation that must be satisfied by any equal-area projection. It is
an underdetermined system, and further conditions need to be imposed (that ensure other
specific properties of the projection) to arrive at f and g.

Example 1.1 Equal-area maps are used for statistical displays of areal-referenced data.
An easily derived equal-area projection is the sinusoidal projection, shown in Figure 1.5.
This is obtained by specifying ∂g/∂φ = R, which yields equally spaced straight lines for the
parallels, and results in the following analytical expressions for f and g (with the 0 degree
meridian as the central meridian):

f(λ, φ) = Rλ cosφ; g(λ, φ) = Rφ.

Another popular equal-area projection (with equally spaced straight lines for the meridians)
is the Lambert cylindrical projection given by

f(λ, φ) = Rλ; g(λ, φ) = R sinφ .

For conformal (angle-preserving) projections we set the angle ∠(AC,AB) equal to
∠(A′C′, A′B′). Since ∠(AC,AB) = π/2, cos(∠(AC,AB)) = 0, leading to

∂f

∂λ

∂f

∂φ
+

∂g

∂λ

∂g

∂φ
= 0

or, equivalently, the Cauchy-Riemann equations of complex analysis,

(
∂f

∂λ
+ i

∂g

∂λ

)(
∂f

∂φ
− i

∂g

∂φ

)
= 0 .

A sufficient partial differential equation system for conformal mappings of the Cauchy-
Riemman equations that is simpler to use is

∂f

∂λ
=

∂g

∂φ
cosφ;

∂g

∂λ
=

∂f

∂φ
cosφ .

Example 1.2 The Mercator projection shown in Figure 1.6 is a classical example of a
conformal projection. It has the interesting property that rhumb lines (curves that intersect
the meridians at a constant angle) are shown as straight lines on the map. This is particularly
useful for navigation purposes. The Mercator projection is derived by letting ∂g/∂φ =
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Figure 1.6 The Mercator projection.

R secφ. After suitable integration, this leads to the analytical equations (with the 0 degree
meridian as the central meridian),

f(λ, φ) = Rλ; g(λ, φ) = R ln tan

(
π

4
+

φ

2

)
.

As is seen above, even the simplest map projections lead to complex transcendental
equations relating latitude and longitude to positions of points on a given map. Therefore,
rectangular grids have been developed for use by surveyors. In this way, each point may
be designated merely by its distance from two perpendicular axes on a flat map. The y-
axis usually coincides with a chosen central meridian, y increasing north, and the x-axis is
perpendicular to the y-axis at a latitude of origin on the central meridian, with x increasing
east. Frequently, the x and y coordinates are called “eastings” and “northings,” respectively,
and to avoid negative coordinates, may have “false eastings” and “false northings” added
to them. The grid lines usually do not coincide with any meridians and parallels except for
the central meridian and the equator.

One such popular grid, adopted by The National Imagery and Mapping Agency (NIMA)
(formerly known as the Defense Mapping Agency), and used especially for military use
throughout the world, is the Universal Transverse Mercator (UTM) grid; see Figure 1.7.
The UTM divides the world into 60 north-south zones, each of width six degrees longitude.
Starting with Zone 1 (between 180 degrees and 174 degrees west longitude), these are
numbered consecutively as they progress eastward to Zone 60, between 174 degrees and 180
degrees east longitude. Within each zone, coordinates are measured north and east in meters,
with northing values being measured continuously from zero at the equator, in a northerly
direction. Negative numbers for locations south of the equator are avoided by assigning an
arbitrary false northing value of 10,000,000 meters (as done by NIMA’s cartographers). A
central meridian cutting through the center of each 6 degree zone is assigned an easting
value of 500,000 meters, so that values to the west of the central meridian are less than
500,000 while those to the east are greater than 500,000. In particular, the conterminous 48
states of the United States are covered by 10 zones, from Zone 10 on the west coast through
Zone 19 in New England.

In practice, the UTM is used by overlaying a transparent grid on the map, allowing
distances to be measured in meters at the map scale between any map point and the
nearest grid lines to the south and west. The northing of the point is calculated as the sum
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Figure 1.7 Example of a UTM grid over the United States (figure courtesy of the U.S. Geological
Survey).

Figure 1.8 Finding the easting and northing of a point in a UTM projection (figure courtesy of the
U.S. Geological Survey).

of the value of the nearest grid line south of it and its distance north of that line. Similarly,
its easting is the value of the nearest grid line west of it added to its distance east of that
line. For instance, in Figure 1.8, the grid value of line A-A is 357,000 meters east, while
that of line B-B is 4,276,000 meters north. Point P is 800 meters east and 750 meters north
of the grid lines resulting in the grid coordinates of point P as north 4,276,750 and east
357,800.
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Finally, since spatial modeling of point-level data often requires computing distances be-
tween points on the earth’s surface, one might wonder about a planar map projection, which
would preserve distances between points. Unfortunately, the existence of such a map is pre-
cluded by Gauss’ Theorema Eggregium in differential geometry (see, e.g., Guggenheimer,
1977, pp. 240–242). Thus, while we have seen projections that preserve area and shapes,
distances are always distorted. The gnomonic projection (Snyder, 1987, pp. 164–168) gives
the correct distance from a single reference point, but is less useful for the practicing spatial
analyst who needs to obtain complete intersite distance matrices (since this would require
not one but many such maps). Banerjee (2005) explores different strategies for computing
distances on the earth and their impact on statistical inference. We present a brief summary
below.

1.2.2 Calculating distances on the earth’s surface

Distance computations are indispensable in spatial analysis. Precise inter-site distance com-
putations are used in variogram analysis to assess the strength of spatial association. They
help in setting starting values for the non-linear least squares algorithms in classical analysis
(more in Chapter 2) and in specifying priors on the range parameter in Bayesian modeling
(more in Chapter 5), making them crucial for correct interpretation of spatial range and the
convergence of statistical algorithms. For data sets covering relatively small spatial domains,
ordinary Euclidean distance offers an adequate approximation. However, for larger domains
(say, the entire continental U.S.), the curvature of the earth causes distortions because of
the difference in differentials in longitude and latitude (a unit increment in degree longitude
is not the same length as a unit increment in degree latitude except at the equator).

Suppose we have two points on the surface of the earth, P1 = (θ1, λ1) and P2 = (θ2, λ2).
We assume both points are represented in terms of latitude and longitude. That is, let θ1
and λ1 be the latitude and longitude, respectively, of the point P1, while θ2 and λ2 are those
for the point P2. The main problem is to find the shortest distance (geodesic) between the
points. The solution is obtained via the following formulae:

D = Rφ

where R is the radius of the earth and φ is an angle (measured in radians) satisfying

cosφ = sin θ1 sin θ2 + cos θ1 cos θ2 cos (λ1 − λ2) . (1.9)

These formulae are derived as follows. The geodesic is actually the arc of the great circle
joining the two points. Thus, the distance will be the length of the arc of a great circle (i.e.,
a circle with radius equal to the radius of the earth). Recall that the length of the arc of a
circle equals the angle subtended by the arc at the center multiplied by the radius of the
circle. Therefore it suffices to find the angle subtended by the arc; denote this angle by φ.

Let us form a three-dimensional Cartesian coordinate system (x, y, z), with the origin
at the center of the earth, the z-axis along the North and South Poles, and the x-axis
on the plane of the equator joining the center of the earth and the Greenwich meridian.
Using the left panel of Figure 1.9 as a guide, elementary trigonometry provides the following
relationships between (x, y, z) and the latitude-longitude (θ, λ):

x = R cos θ cosλ,

y = R cos θ sinλ,

and z = R sin θ .

Now form the vectors u1 = (x1, y1, z1) and u2 = (x2, y2, z2) as the Cartesian coordi-
nates corresponding to points P1 and P2. Hence φ is the angle between u1 and u2. From
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Figure 1.9 Diagrams illustrating the geometry underlying the calculation of great circle (geodesic)
distance.

standard analytic geometry, the easiest way to find this angle is therefore to use the following
relationship between the cosine of this angle and the dot product of u1 and u2:

cosφ =
〈u1,u2〉

||u1|| ||u2||
.

We then compute 〈u1,u2〉 as

R2 [cos θ1 cosλ1 cos θ2 cosλ2 + cos θ1 sinλ1 cos θ2 sinλ2 + sin θ1 sin θ2]

= R2 [cos θ1 cos θ2 cos (λ1 − λ2) + sin θ1 sin θ2] .

But ||u1|| = ||u2|| = R, so the result in (1.9) follows. Looking at the right panel of Figure 1.9,
our final answer is thus

D = Rφ = R arccos[sin θ1 sin θ2 + cos θ1 cos θ2 cos (λ1 − λ2)] . (1.10)

While calculating (1.10) is straightforward, Euclidean metrics are popular due to their
simplicity and easier interpretability. More crucially, statistical modeling of spatial correla-
tions proceed from correlation functions that are often valid only with Euclidean metrics.
For example, using (1.10) to calculate the distances in general covariance functions may
not result in a positive definite Σ(θ) in (1.1). We consider a few different approaches for
computing distances on the earth using Euclidean metrics, classifying them as those arising
from the classical spherical coordinates, and those arising from planar projections.

Equation (1.10) clearly reveals that the relationship between the Euclidean distances and
the geodetic distances is not just a matter of scaling. We cannot mutiply one by a constant
number to obtain the other. A simple scaling of the geographical coordinates results in a
“naive Euclidean” metric obtained directly in degree units, and converted to kilometer units
as: ‖P1−P2‖πR/180. This metric performs well on small domains but always overestimates
the geodetic distance, flattening out the meridians and parallels, and stretching the curved
domain onto a plane, thereby stretching distances as well. As the domain increases, the
estimation deteriorates.

Banerjee (2005) also explores a more natural metric, which is along the “chord” joining
the two points. This is simply the Euclidean metric ||u2 − u1||, yielding a “burrowed through
the earth” distance — the chordal length between P1 and P2. The slight underestimation
of the geodetic distance is expected, since the chord “penetrates” the domain, producing a
straight line approximation to the geodetic arc.

The first three rows of Table 1.1 compare the geodetic distance with the “naive Eucidean”
and chordal metrics. The next three rows show distances computed by using three planar
projections: the Mercator, the sinusoidal and a centroid-based data projection, which is
developed in Exercise 10. The first column corresponds to the distance between the farthest
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Methods Colorado Chicago-Minneapolis New York-New Orleans

geodetic 741.7 562.0 1897.2
naive Euclidean 933.8 706.0 2172.4

chord 741.3 561.8 1890.2

Mercator 951.8 773.7 2336.5
sinusoidal 742.7 562.1 1897.7

centroid-based 738.7 562.2 1901.5

Table 1.1 Comparison of different methods of computing distances (in kms). For Colorado, the
distance reported is the maximum inter-site distance for a set of 50 locations.

points in a spatially referenced data set comprising 50 locations in Colorado (we will revisit
this dataset later in Chapter 11), while the next two present results for two differently
spaced pairs of cities. The overestimation and underestimation of the “naive Euclidean”
and “chordal” metrics respectively is clear, although the chordal metric excels even for
distances over 2000 kms (New York and New Orleans). We find that the sinusoidal and
centroid-based projections seem to be distorting distances much less than the Mercator,
which performs even worse than the naive Euclidean.

This approximation of the chordal metric has an important theoretical implication for
the spatial modeler. A troublesome aspect of geodetic distances is that they are not neces-
sarily valid arguments for correlation functions defined on Euclidean spaces (see Chapter 2
for more general forms of correlation functions). However, the excellent approximation of
the chordal metric (which is Euclidean) ensures that in most practical settings valid corre-
lation functions in �3 such as the Matérn and exponential yield positive definite correlation
matrices with geodetic distances and enable proper convergence of the statistical estimation
algorithms.

Schoenberg (1942) develops a necessary and sufficient representation for valid positive-
definite functions on spheres in terms of normalized Legendre polynomials Pk of the form:

ψ(t) =
∞∑
k=0

akPk(cos t),

where ak’s are positive constants such that
∑∞
k=0 ak converges. An example is given by

ψ(t) =
1√

1 + α2 − 2α cos t
, α ∈ (0, 1),

which can be easily shown to have the Legendre polynomial expansion
∑∞

k=0 α
kPk(cos t).

The chordal metric also provides a simpler way to construct valid correlation functions over
the sphere using a sinusoidal composition of any valid correlation function on Euclidean
space. To see this, consider a unit sphere (R = 1) and note that

‖u1 − u2‖ =
√

2 − 2〈u1,u2〉 = 2 sin(φ/2).

Therefore, a correlation function ρ(d) (suppressing the range and smoothness parameters)
on the Euclidean space transforms to ρ(2 sin(φ/2)) on the sphere, thereby inducing a valid
correlation function on the sphere. This has some advantages over the Legendre polynomial
approach of Schoenberg: (1) we retain the interpretation of the smoothness and decay
parameters, (2) it is simpler to construct and compute, and (3) it builds upon a rich legacy
of investigations (both theoretical and practical) of correlation functions on Euclidean spaces
(again, see Chapter 2 for different correlation functions).
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1.3 Maps and geodesics in R

The R statistical software environment today offers excellent interfaces with Geographical
Information Systems (GIS) through a number of libraries (also known as packages). At
the core of R’s GIS capabilities is the maps library originally described by Becker and Wilks
(1993). This maps library contains the geographic boundary files for several maps, including
county boundaries for every state in the U.S. For example, creating a map of the state of
Minnesota with its county boundaries is as simple as the following line of code:

> library(maps)

> mn.map <- map(database="county", region="minnesota")

If we do not want the county boundaries, we simply write

> mn.map <- map("state", "minnesota"),

which produces a map of Minnesota with only the state boundary. The above code uses the
boundaries from R’s own maps database. However, other important regional boundary types
(say, zip codes) and features (rivers, major roads, and railroads) are generally not available,
although topographic features and an enhanced GIS interface is available through the library
RgoogleMaps . While in some respects R is perhaps not nearly as versatile as ArcView or
other purely GIS packages, it does offer a rare combination of GIS and statistical analysis
capabilities.

It is possible to import shapefiles from other GIS software (e.g. ArcView) into R using
the maptools package. We invoke the readShapePoly function in the maptools package to
read the external shapefile and store the output in minnesota.shp. To produce the map,
we apply plot to this output.

> library(maptools)

> minnesota.shp <- readShapePoly("minnesota.shp",

+ proj4string=CRS("+proj=longlat"))

> plot(minnesota.shp).

For the above to work, you will need three files with extensions “.shp”, “.shx” and “.dbf”.
They must have the same name and differ only in the extension. The “minnesota.shp”
file contains the geometry data, the “minnesota.shx” file contains the spatial index,
and the “minnesota.dbf” file contains the attribute data. These are read using the
readShapePoly() function to produce a spatial polygon object.

The above is an example of how to draw bare maps of a state within the USA using
either R’s own database or an external shapefile. We can also draw maps of other countries
using the mapdata package, which has some world map data, in conjunction with maps. For
example, to draw a map of Canada, we write

> library(maps)

> library(mapdata)

> map("worldHires","Canada",

+ xlim=c(-141,-53), ylim=c(40,85),

+ col="gray90", fill=TRUE)

We leave the reader to experiment further with these examples.
In practice, we are not interested in bare maps but would want to plot spatially refer-

enced data on the map. Let us return to the counties in Minnesota. Consider a new file
newdata.csv that includes information on the population of each county of Minnesota along
with the number of influenza A (H1N1) cases from each county. We first merge our new
dataset with the minnesota.shp object already created using the county names.

> newdata <- read.csv("newdata.csv")

> minnesota.shp@data <- merge(minnesota.shp@data, newdata,

+ by="NAME").
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Influenza A (H1N1) − Rate per 100

[0.0586,0.2094)
[0.2094,0.3603)
[0.3603,0.5111)
[0.5111,0.662)
[0.662,0.8128)
[0.8128,0.9637)
[0.9637,1.1145]

Figure 1.10 Map showing Influenza A (H1N1) rates (cases/population)×100 in different counties
of Minnesota for 1999.

To plot the data in a visually appealing way, we use two additional packages: RColorBrewer,
which creates nice color schemes, and classInt, which facilitates classifying the data into
classes which will correspond to the plotting colors. Below, we present the code to plot
H1N1 influenza rates per 100 after classifying the data into equal intervals.

> library(RColorBrewer)

> library(classInt)

> CASES <- minnesota.shp@data$cases

> POP1999 <- minnesota.shp@data$POP1999

> var <- (CASES/POP1999)*100

> nclr <- 7

> plotclr <- brewer.pal(nclr,"Reds")

> class <- classIntervals(var, nclr, style="equal", dataPrecision=4)

> colcode <- findColours(class, plotclr)

> plot(minnesota.shp)

> plot(minnesota.shp, col=colcode, add=T)

> title(main="Influenza A (H1N1) - Rate per 100")

> legend("bottomright", legend=names(attr(colcode, "table")),

+ fill=attr(colcode, "palette"), cex=0.6, bty="n").

The resulting map is shown in Figure 1.10 and is called a choropleth map.
Map projections in R can be performed using the mapproj package. For example, we

can create a variety of cartographic map projections of any part of the world using xlim

and ylim to specify the bounds (using longitudes and latitudes) of the plotting region and
use projection to specify the type of projection we desire. In fact, the maps package uses
mapproj for its map projections. Therefore, loading maps automatically invokes mapproj.

> library(maps) ## automatically loads mapproj

> sinusoidal.proj = map(database= "world", ylim=c(45,90), xlim=c(-160,-50),

+ col="grey80", fill=TRUE, plot=FALSE, projection="sinusoidal")
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> map(sinusoidal.proj)

produces a Sinusoidal map projection (Example 1.1) between latitudes 45 and 90 degrees
and longitudes −160 and −150 degrees. (Run the above code and test your geography to see
what part of the world this is!) Repeating the above with projection set to "mercator"

will result in a Mercator projection (Example 1.2). For higher resolution maps, one can load
the mapdata package and use "worldHires" instead of "world" in the database.

For distance computations using a map projection, as was done for the Mercator and
sinusoidal in Table 1.1, it is convenient to use the mapproject function in package mapproj.
This simply converts latitude and longitude to rectangular coordinates. Suppose LON and LAT

are two vectors containing longitudes and latitudes on the earth’s surface to be projected.
Then, a simple command such as

> xy.sinusoidal <- mapproject(LON, LAT, projection="sinusoidal")

produces the projected coordinates in Euclidean space. The coordinates are accessed by
xy.sinusoidal$x and xy.sinusoidal$y, respectively. For distance computations that will
approximate the great circle distance, these coordinates need to be multiplied by the radius
of the earth.

While mapproject does not offer the UTM projections, the rgdal package can be used
to construct UTM projections. This is particularly useful when plotting point-level data
through the RgoogleMaps package, another exciting GIS interface offered by R. It is espe-
cially useful for plotting points such as GPS (Global Positioning System) locations on maps.
For example, the Colorado data used in Table 1.1 is the file ColoradoS-T.dat and can be
downloaded from www.biostat.umn.edu/~brad/data2.html. We can read the file in R as

> coloradoST <- read.table("ColoradoS-T.dat", header = TRUE).

Next, we use the GetMap.bbox function in the RgoogleMaps package to set the region
within which our coordinates will be plotted. A ‘‘maptype’’ argument provides some
options for the type of background map we want. The region can also be plotted using
the PlotOnStaticMap function. This is sometimes useful to obtain an idea whether the
underlying map will be useful with reference to our plotting coordinates.

> library(RgoogleMaps)

> MyMap <- GetMap.bbox(lonR = range(coloradoST$Longitude),

+ latR = range(coloradoST$Latitude),

+ size=c(640,640), maptype = "hybrid")

> PlotOnStaticMap(MyMap).

We now convert the longitude and latitude to the same coordinate system as in the MyMap

object we created above.

> convert_points <- LatLon2XY.centered(MyMap,

+ coloradoST$Latitude,

+ coloradoST$Longitude)

> points(convert_points$newX, convert_points$newY,

+ col = ’red’, pch=19).

Finally, we convert our points to UTM coordinates using the rgdal package. The code
below performs the conversion from latitude-longitude to UTM coordinates and then plots
these coordinates on the map created above. This will be achieved in two steps. First, we
convert out longitudes and latitudes in the Colorado dataset into a special data type known
as SpatialPoints. We store this in SP_longlat, which is converted by spTransform to
UTM coordinates. The zone parameter specifies the zone of the UTM needs to be supplied
explicitly.

> library(sp)

> library(rgdal)
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(a) (b)

Figure 1.11 (a) A plot of the 50 locations in Colorado; (b) a plot of locations in the New York/New
Jersey Bight reporting scallop catches.

> SP_longlat <- SpatialPoints(coords =

+ cbind(coloradoST$Longitude,

+ coloradoST$Latitude),

+ proj4string = CRS("+proj=longlat +ellps=WGS84"))

> SP_utm <- spTransform(SP_longlat,

+ CRS("+proj=utm +zone=13 +datum=WGS84"))

> plot(SP_utm).

We repeat the above exercise with another well known spatial data set involv-
ing the catches of scallops in the New York/New Jersey Bight. This data set also
has coordinates in terms of latitude and longitude and can be downloaded from
www.biostat.umn.edu/~brad/data/scallops.txt. The resulting plots are presented in
Figure 1.11. The map features, including the background, can be altered by changing
the parameter ‘‘maptype" in the function GetMap.bbox. The options are ‘‘roadmap’’,
‘‘mobile’’, ‘‘satellite’’, ‘‘terrain" and ‘‘hybrid".

Finally, we mention the fields package in R, which offers several useful functions for
spatial analysis. In particular, it includes two functions rdist and rdist.earth that con-
veniently compute inter-site distances. Let X1 and X2 be two matrices representing two
different sets of locations. Then,

> library(fields)

> euclidean.dist = rdist(X1, X2)

> spherical.dist = rdist.earth(X1,X2)

computes the inter-site distance matrices between the locations in X1 and X2. The func-
tion rdist uses the Euclidean distance, while rdist.earth uses the spherical or geodetic
distance. The latter should be used only when X1 and X2 contain latitude-longitude coordi-
nates.

1.4 Exercises

1. What sorts of areal unit variables can you envision that could be viewed as arising from
point-referenced variables? What sorts of areal unit variables can you envision whose
mean could be viewed as arising from a point-referenced surface? What sorts of areal
unit variables fit neither of these scenarios?
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2. What sorts of sensible properties should characterize association between point-
referenced measurements? What sorts of sensible properties should characterize asso-
ciation between areal unit measurements?

3. Suggest some regional-level covariates that might help explain the spatial pattern evident
in Figure 1.2. (Hint: The roughly rectangular group of regions located on the map’s
eastern side is the city of Minneapolis, MN.)

4.(a) Suppose you recorded elevation and average daily temperature on a particular day for
a sample of locations in a region. If you were given the elevation at a new location,
how would you make a plausible estimate of the average daily temperature for that
location?

(b) Why might you expect spatial association between selling prices of single-family homes
in this region to be weaker than that between the observed temperature measure-
ments?

5. For what sorts of point-referenced spatial data would you expect measurements across
time to be essentially independent? For what sorts of point-referenced data would you
expect measurements across time to be strongly dependent?

6. For point-referenced data, suppose the means of the variables are spatially associated.
Would you expect the association between the variables themselves to be weaker than,
stronger than, or the same as the association between the means?

7.(a) Write your own R function that will compute the distance between two points P1 and
P2 on the surface of the earth. The function should take the latitude and longitude
of the Pi as input, and output the geodesic distance D given in (1.10). Use R = 6371
km.

(b) Use your program to obtain the geodesic distance between Chicago (87.63W, 41.88N)
and Minneapolis (93.22W, 44.89N), and between New York (73.97W, 40.78N) and
New Orleans (90.25W, 29.98N).

8. A “naive Euclidean” distance may be computed between two points by simply applying
the Euclidean distance formula to the longitude-latitude coordinates, and then multiply-
ing by (Rπ/180) to convert to kilometers. Find the naive Euclidean distance between
Chicago and Minneapolis, and between New York and New Orleans, comparing your
results to the geodesic ones in the previous problem.

9. The chordal (“burrowing through the earth”) distance separating two points is given
by the Euclidean distance applied to the Cartesian spherical coordinate system given
in Subsection 1.2.2. Find the chordal distance between Chicago and Minneapolis, and
between New York and New Orleans, comparing your results to the geodesic and naive
Euclidean ones above.

10. A two-dimensional projection, often used to approximate geodesic distances by applying
Euclidean metrics, sets up rectangular axes along the centroid of the observed locations,
and scales the points according to these axes. Thus, with N locations having geograph-
ical coordinates (λi, θi)

N
i=1, we first compute the centroid

(
λ̄, θ̄
)

(the mean longitude
and latitude). Next, two distances are computed. The first, dX , is the geodesic distance
(computed using (1.10) between

(
λ̄, θmin

)
and

(
λ̄, θmax

)
, where θmin and θmax are the

minimum and maximum of the observed latitudes. Analogously, dY is the geodesic dis-
tance computed between

(
λmin, θ̄

)
and

(
λmax, θ̄

)
. These actually scale the axes in terms

of true geodesic distances. The projection is then given by

x =
λ− λ̄

λmax − λmin
dX ; and y =

θ − θ̄

θmax − θmin
dY .
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Applying the Euclidean metric to the projected coordinates yields a good approximation
to the inter-site geodesic distances. This projection is useful for entering coordinates in
spatial statistics software packages that require two-dimensional coordinate input and
uses Euclidean metrics to compute distances (e.g., the variogram functions in geoR, the
spatial.exp function in WinBUGS, etc.).

(a) Compute the above projection for Chicago and Minneapolis (N = 2) and find the
Euclidean distance between the projected coordinates. Compare with the geodesic
distance. Repeat this exercise for New York and New Orleans.

(b) When will the above projection fail to work?

11. Use the sp, rgdal and RgoogleMaps packages to create an UTM projection for the
locations in the scallops data and produce the picture in Figure 1.11(b).

12. Use the fields package to produce the inter-site distance matrix for the locations in
the scallops data. Compute this matrix using the rdist.earth function, which yields
the geodetic distances. Next project the data to UTM coordinates and use the rdist

function to compute the inter-site Euclidean distance matrix. Draw histograms of the
inter-site distances and comment on any notable discrepancies resulting from the map
projection.





Chapter 2

Basics of point-referenced data models

In this chapter we present the essential elements of spatial models and classical analysis for
point-referenced data. As mentioned in Chapter 1, the fundamental concept underlying the
theory is a stochastic process {Y (s) : s ∈ D}, where D is a fixed subset of r-dimensional
Euclidean space. Note that such stochastic processes have a rich presence in the time series
literature, where r = 1. In the spatial context, usually we encounter r to be 2 (say, northings
and eastings) or 3 (e.g., northings, eastings, and altitude above sea level). For situations
where r > 1, the process is often referred to as a spatial process. For example, Y (s) may
represent the level of a pollutant at site s. While it is conceptually sensible to assume the
existence of a pollutant level at all possible sites in the domain, in practice the data will
be a partial realization of that spatial process. That is, it will consist of measurements at
a finite set of locations, say {s1, . . . , sn}, where there are monitoring stations. The problem
facing the statistician is inference about the spatial process Y (s) and prediction at new
locations, based upon this partial realization. The remarkable feature of the models we
employ here is that, despite only seeing the process, equivalently, the spatial surface at a
finite set of locations, we can infer about the surface at an uncountable number of locations.
The reason is that we specify association through structured dependence which enables this
broad interpolation.

This chapter is organized as follows. We begin with a survey of the building blocks of
point-level data modeling, including stationarity, isotropy, and variograms (and their fitting
via traditional moment-matching methods). We defer theoretical discussion of the spatial
(typically Gaussian) process modeling that enables likelihood (and Bayesian) inference in
these settings to Chapters 3 and 6. Then, we illustrate helpful exploratory data analysis
tools, as well as traditional classical methods, especially kriging (point-level spatial predic-
tion). We view all of these activities in an exploratory fashion, i.e., as a prelude to fully
model-based inference under a hierarchical model. We close with some short tutorials in R

using easy to use and widely available point-level spatial statistical analysis packages.
The material we cover in this chapter is traditionally known as geostatistics, and could

easily fill many more pages than we devote to it here. While we prefer the more descriptive
term “point-level spatial modeling,” we will at times still use “geostatistics” for brevity and
perhaps consistency when referencing the literature.

2.1 Elements of point-referenced modeling

2.1.1 Stationarity

For our discussion we assume that our spatial process has a mean, say μ (s) = E (Y (s)), as-
sociated with it and that the variance of Y (s) exists for all s ∈ D. The process Y (s) is said to

be Gaussian if, for any n ≥ 1 and any set of sites {s1, . . . , sn}, Y = (Y (s1) , . . . , Y (sn))
T

has
a multivariate normal distribution. The process is said to be strictly stationary (sometimes
strong stationarity) if, for any given n ≥ 1, any set of n sites {s1, . . . , sn} and any h ∈ �r,

23
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the distribution of (Y (s1) , . . . , Y (sn)) is the same as that of (Y (s1 + h) , . . . , Y (sn + h)).
Here D is envisioned as �r as well.

A less restrictive condition is given by weak stationarity (also called second-order sta-
tionarity). A spatial process is called weakly stationary if μ (s) ≡ μ (i.e., it has a constant
mean) and Cov (Y (s) , Y (s + h)) = C (h) for all h ∈ �r such that s and s + h both lie
within D. In fact, for stationarity as a second-order property we will need only the second
property; E(Y (s)) need not equal E(Y (s+h)). But since we will apply the definition only to
a mean 0 spatial residual process, this distinction is not important for us. Weak stationarity
implies that the covariance relationship between the values of the process at any two loca-
tions can be summarized by a covariance function C (h), and this function depends only on
the separation vector h. Note that with all variances assumed to exist, strong stationarity
implies weak stationarity. The converse is not true in general, but it does hold for Gaussian
processes; see Exercise 4.

We offer a simple illustration of a weakly stationary process that is not strictly stationary.
It is easy to see in the one-dimensional case. Suppose the process Yt, t = 1, 2, ... consists of
a sequence of independent variables such that for t odd, Yt is a binary variable taking the
values 1 and −1 each with probability .5 while for t even, Yt is normal with mean 0 and
variance 1. We have weak stationarity since cov(Y (t), Y (t′)) = 0, t �= t′,= 1, t = t′. That is,
we only need to know the value of t − t′ to specify the covariance. However, clearly Y1, Y3

does not have the same distribution as Y2, Y4.

2.1.2 Variograms

There is a third type of stationarity called intrinsic stationarity. Here we assume E[Y (s +
h) − Y (s)] = 0 and define

E[Y (s + h) − Y (s)]2 = V ar (Y (s + h) − Y (s)) = 2γ (h) . (2.1)

Equation (2.1) makes sense only if the left-hand side depends solely on h (so that the right-
hand side can be written at all), and not the particular choice of s. If this is the case, we say
the process is intrinsically stationary. The function 2γ (h) is then called the variogram, and
γ (h) is called the semivariogram. We can offer some intuition behind the variogram but it
really arose simply as a result of its appearance in traditional kriging where one seeks the
best linear unbiased predictor, as we clarify below. Behaviorally, at short distances (small
||h||), we would expect Y (s + h) and Y (h) to be very similar, that is, (Y (s + h) − Y (s))2

to be small. As ||h|| grows larger, we expect less similarity between Y (s + h) and Y (h),
i.e., we expect (Y (s + h) − Y (s))2 to be larger. So, a plot of γ(h) would be expected to
increase with ||h||, providing some insight into spatial behavior. (The covariance function
C(h) is sometimes referred to as the covariogram, especially when plotted graphically.)
Note that intrinsic stationarity defines only the first and second moments of the differences
Y (s + h) − Y (s). It says nothing about the joint distribution of a collection of variables
Y (s1), . . . , Y (sn), and thus provides no likelihood.

In fact, it says nothing about the moments of the Y (s)’s, much less their distribution. It
only describes the behavior of differences rather than the behavior of the data that we ob-
serve, clearly unsatisfying from the perspective of data analysis. In fact, the Y (s)’s need not
have any moments. For example, we might have Y (s) = W (s)+V where W (s) is a collection
of i.i.d. normal variables and, independently, V is a Cauchy random variable. Then Y (s) is
intrinsically stationary but the Y (s)’s have no moments. Even more disconcerting, the dis-
tribution of Y (s)−Y (s′) may be proper while the distribution of Y (s) and of Y (s′) may be

improper. For instance, suppose the joint distribution, f(Y (s), Y (s′)) ∝ e−(Y (s)−Y (s′))2/2.
Then, Y (s) − Y (s′) ∼ N(0, 1) and, in fact, f(Y (s)|Y (s′)) and f(Y (s′)|Y (s)) are proper,
N(0, 1) but the joint distribution is improper. How could we employ a probability specifi-
cation that could not possibly have generated the data we observe?
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It is easy to see the relationship between the variogram and the covariance function:

2γ(h) = V ar (Y (s + h) − Y (s))

= V ar(Y (s + h)) + V ar(Y (s)) − 2Cov(Y (s + h), Y (s))

= C(0) + C(0) − 2C (h)

= 2 [C (0) − C (h)] .

Thus,
γ (h) = C (0) − C (h) . (2.2)

From (2.2) we see that given C, we are able to recover γ easily. But what about the converse;
in general, can we recover C from γ? Here it turns out we need to assume a bit more: if the
spatial process is ergodic, then C (h) → 0 as ||h|| → ∞, where ||h|| denotes the length of the
h vector. This is an intuitively sensible condition, since it means that the covariance between
the values at two points vanishes as the points become further separated in space. But taking
the limit of both sides of (2.2) as ||h|| → ∞, we then have that lim||h||→∞γ (h) = C (0).
Thus, using the dummy variable u to avoid confusion, we have

C (h) = C(0) − γ(h) = lim||u||→∞γ (u) − γ (h) . (2.3)

In general, the limit on the right-hand side need not exist, but if it does, then the process
is weakly (second-order) stationary with C (h) as given in (2.3). We therefore have a way
to determine the covariance function C from the semivariogram γ. Thus weak stationarity
implies intrinsic stationarity, but the converse is not true; indeed, the next section offers
examples of processes that are intrinsically stationary but not weakly stationary.

A valid variogram necessarily satisfies a negative definiteness condition. In fact, for any
set of locations s1, . . . , sn and any set of constants a1, . . . , an such that

∑
i ai = 0, if γ(h)

is valid, then ∑
i

∑
j

aiajγ(si − sj) ≤ 0 . (2.4)

To see this, note that

∑
i

∑
j

aiajγ(si − sj) =
1

2
E
∑
i

∑
j

aiaj(Y (si) − Y (sj))
2

= −E
∑
i

∑
j

aiajY (si)Y (sj)

= −E

[∑
i

aiY (si)

]2
≤ 0 .

We remark that, despite the suggestion of expression (2.2), there is no relationship
between this result and the positive definiteness condition for covariance functions (see
Subsection 3.1.2). Cressie (1993) discusses further necessary conditions for a valid variogram.
Lastly, the condition (2.4) emerges naturally in ordinary kriging (see Section 2.4).

2.1.3 Isotropy

Another important related concept is that of isotropy. If the semivariogram function γ (h)
depends upon the separation vector only through its length ||h||, then we say that the
variogram is isotropic; that is, if γ (h) is a real-valued function of a univariate argument,
and can be written as γ (||h||). If not, we say it is anisotropic. Because of the foregoing issues
with intrinsic stationarity, in the absence of a full probabilistic specification (as detailed in
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Figure 2.1 Theoretical semivariograms for three models: (a) linear, (b) spherical, and (c) exponen-
tial.

Chapter 3), we are reluctant to associate an isotropic variogram with a stochastic process.
Nonetheless, in the literature, we find terminology stating that, if a process is intrinsically
stationary and isotropic, it is also called homogeneous.

Isotropic variograms are popular because of their simplicity, interpretability, and, in par-
ticular, because a number of relatively simple parametric forms are available as candidates
for the semivariogram. Denoting ||h|| by d for notational simplicity, we now consider a few
of the more important such forms.

1. Linear:

γ(d) =

{
τ2 + σ2d if d > 0, τ2 > 0, σ2 > 0

0 otherwise
.

Note that γ (d) → ∞ as d → ∞, and so this semivariogram does not correspond to a weakly
stationary process (although it is intrinsically stationary). This semivariogram is plotted in
Figure 2.1(a) using the parameter values τ2 = 0.2 and σ2 = 0.5.

2. Spherical:

γ(d) =

⎧⎪⎨
⎪⎩

τ2 + σ2 if d ≥ 1/φ,

τ2 + σ2
{

3φd
2 − 1

2 (φd)
3
}

if 0 < d ≤ 1/φ,

0 otherwise

.

The spherical semivariogram is valid in r = 1, 2, or 3 dimensions, but for r ≥ 4 it fails
to correspond to a spatial variance matrix that is positive definite (as required to specify
a valid joint probability distribution). This variogram owes its popularity largely to the
fact that it offers clear illustrations of the nugget, sill, and range, three characteristics
traditionally associated with variograms. Specifically, consider Figure 2.1(b), which plots
the spherical semivariogram using the parameter values τ2 = 0.2, σ2 = 1, and φ = 1.
While γ(0) = 0 by definition, γ(0+) ≡ limd→0+ γ(d) = τ2; this quantity is the nugget.
Next, limd→∞ γ(d) = τ2 + σ2; this asymptotic value of the semivariogram is called the
sill. (The sill minus the nugget, which is simply σ2 in this case, is called the partial sill.)
Finally, the value d = 1/φ at which γ(d) first reaches its ultimate level (the sill) is called
the range. It is for this reason that many of the variogram models of this subsection are
often parametrized through R ≡ 1/φ. Confusingly, both R and φ are sometimes referred
to as the range parameter, although φ is often more accurately referred to as the decay
parameter.
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Note that for the linear semivariogram, the nugget is τ2 but the sill and range are both
infinite. For other variograms (such as the next one we consider), the sill is finite, but only
reached asymptotically.

3. Exponential:

γ(d) =

{
τ2 + σ2 (1 − exp (−φd)) if d > 0,

0 otherwise
.

The exponential has an advantage over the spherical in that it is simpler in functional form
while still being a valid variogram in all dimensions (and without the spherical’s finite range
requirement). However, note from Figure 2.1(c), which plots this semivariogram assuming
τ2 = 0.2, σ2 = 1, and φ = 2, that the sill is only reached asymptotically; strictly speaking,
the range R = 1/φ is infinite. In cases like this, the notion of an effective range is often used,
i.e., the distance at which there is essentially no lingering spatial correlation. To make this
notion precise, we must convert from γ scale to C scale (possible here since limd→∞ γ(d)
exists; the exponential is not only intrinsically but also weakly stationary). From (2.3) we
have

C(d) = limu→∞γ(u) − γ(d)

= τ2 + σ2 −
[
τ2 + σ2(1 − exp(−φd))

]

= σ2 exp(−φd) .

Hence

C(t) =

{
τ2 + σ2 if d = 0

σ2 exp(−φd) if d > 0
. (2.5)

If the nugget τ2 = 0, then this expression reveals that the correlation between two points d
units apart is exp(−φd); note that exp(−φd) = 1− for d = 0+ and exp(−φd) = 0 for d = ∞,
both in concert with this interpretation.

A common definition of the effective range, d0, is the distance at which this correlation
is negligible, customarily taken as having dropped to only 0.05. Setting exp(−φd0) equal to
this value we obtain t0 ≈ 3/φ, since log(0.05) ≈ −3. The range will be discussed in more
detail in Subsection 3.1.2.

Finally, the form of (2.5) gives a clear example of why the nugget (τ2 in this case) is often
viewed as a “nonspatial effect variance,” and the partial sill (σ2) is viewed as a “spatial
effect variance.” That is, we have two variance components. Along with φ, a statistician
would likely view fitting this model to a spatial data set as an exercise in estimating these
three parameters. We shall return to variogram model fitting in Subsection 2.1.4.

4. Gaussian:

γ(d) =

{
τ2 + σ2

(
1 − exp

(
−φ2d2

))
if d > 0

0 otherwise
. (2.6)

The Gaussian variogram is an analytic function and yields very smooth realizations of the
spatial process. We shall say much more about process smoothness in Subsection 3.1.4.

5. Powered exponential:

γ(d) =

{
τ2 + σ2 (1 − exp (− |φd|p)) if d > 0

0 otherwise
. (2.7)

Here 0 < p ≤ 2 yields a family of valid variograms. Note that both the Gaussian and the
exponential forms are special cases.

6. Rational quadratic:

γ(d) =

{
τ2 + σ2d2

(φ+d2) if d > 0

0 otherwise
.
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Model Covariance function, C(d)
Linear C(d) does not exist

Spherical C(d) =

⎧⎨
⎩

0 if d ≥ 1/φ
σ2
[
1 − 3

2φd + 1
2 (φd)3

]
if 0 < d ≤ 1/φ

τ2 + σ2 d = 0

Exponential C(d) =

{
σ2 exp(−φd) if d > 0

τ2 + σ2 d = 0
Powered
exponential

C(d) =

{
σ2 exp(−|φd|p) if d > 0

τ2 + σ2 d = 0

Gaussian C(d) =

{
σ2 exp(−φ2d2) if d > 0

τ2 + σ2 d = 0

Rational
quadratic

C(d) =

{
σ2
(
1 − d2

(φ+d2)

)
if d > 0

τ2 + σ2 d = 0

Wave C(d) =

{
σ2 sin(φd)

φd if d > 0

τ2 + σ2 d = 0

Power law C(d) does not exist

Matérn C(d) =

{
σ2

2ν−1Γ(ν) (φd)ν Kν(φd) if d > 0

τ2 + σ2 d = 0

Matérn
at ν = 3/2

C(d) =

{
σ2 (1 + φd) exp (−φd) if d > 0

τ2 + σ2 d = 0

Table 2.1 Summary of common isotropic parametric covariance functions (covariograms).

7. Wave:

γ(d) =

{
τ2 + σ2

(
1 − sin(φd)

φd

)
if d > 0

0 otherwise
.

Note this is an example of a variogram that is not monotonically increasing. The associated
covariance function is C(d) = σ2 sin(φd)/(φd). Bessel functions of the first kind include the
wave covariance function and are discussed in detail in Subsections 3.1.2 and 6.1.3.

8. Power law:

γ(d) =

{
τ2 + σ2dλ of d > 0

0 d = 0
.

This generalizes the linear case and produces valid intrinsic (albeit not weakly) stationary
semivariograms provided 0 ≤ λ < 2.

9. Matérn: The variogram for the Matérn class is given by

γ(d) =

{
τ2 + σ2

[
1 − (2

√
νdφ)ν

2ν−1Γ(ν)Kν(2
√
νdφ)

]
if d > 0

0 d = 0
. (2.8)

This class was originally suggested by Matérn (1960, 1986). Interest in it was revived by
Handcock and Stein (1993) and Handcock and Wallis (1994), who demonstrated attractive
interpretations for ν as well as φ. In particular, ν > 0 is a parameter controlling the
smoothness of the realized random field (see Subsection 3.1.4) while φ is a spatial decay
parameter. The function Γ (·) is the usual gamma function while Kν is the modified Bessel
function of order ν (see, e.g., Abramowitz and Stegun, 1965, Chapter 9). Implementations
of this function are available in several C/C++ libraries and also in R packages such as
spBayes and geoR. Note that special cases of the above are the exponential (ν = 1/2)
and the Gaussian (ν → ∞). At ν = 3/2 we obtain a closed form as well, namely γ(d) =
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Model Variogram, γ(d)

Linear γ(d) =

{
τ2 + σ2d if d > 0

0 d = 0

Spherical γ(d) =

⎧⎨
⎩

τ2 + σ2 if d ≥ 1/φ
τ2 + σ2

[
3
2φd−

1
2 (φd)3

]
if 0 < d ≤ 1/φ

0 d = 0

Exponential γ(d) =

{
τ2 + σ2(1 − exp(−φd)) if d > 0

0 d = 0
Powered
exponential

γ(d) =

{
τ2 + σ2(1 − exp(−|φd|p)) if d > 0

0 d = 0

Gaussian γ(d) =

{
τ2 + σ2(1 − exp(−φ2d2)) if d > 0

0 d = 0

Rational
quadratic

γ(d) =

{
τ2 + σ2d2

(φ+d2) if d > 0

0 d = 0

Wave γ(d) =

{
τ2 + σ2(1 − sin(φd)

φd ) if d > 0

0 d = 0

Power law γ(d) =

{
τ2 + σ2dλ if d > 0

0 d = 0

Matérn γ(d) =

{
τ2 + σ2

[
1 − (φd)ν

2ν−1Γ(ν)Kν(φd)
]

if d > 0

0 d = 0
Matérn
at ν = 3/2

γ(d) =

{
τ2 + σ2 [1 − (1 + φd) exp (−φd)] if d > 0

0 d = 0

Table 2.2 Summary of common parametric isotropic variograms.

τ2+σ2 [1 − (1 + φd) exp (−φd)] for t > 0. In fact, we obtain a polynomial times exponential
from for the Matérn for all ν of the form, ν = k + 1

2 with k a non-negative integer. The
Matérn covariance function is often reparametrized to α = 2

√
νφ along with η = σ2φ2ν and

ν. This transformation is helpful in providing better behaved model fitting, particularly
using Markov chain Monte Carlo (see Chapter 6 for further discussion).

The covariance functions and variograms we have described in this subsection are con-
veniently summarized in Tables 2.1 and 2.2, respectively. An important point which the
reader may wonder about is the fact that every presented covariance function and vari-
ogram has a discontinuity at 0. That is, the limit as d → 0 for the covariance function
is σ2 not σ2 + τ2 and for the variogram is τ2, not 0. Evidently, this is not a typo! What
is the reason? We elaborate this in greater detail in Chapter 3. Here, we offer a simple
explanation. Consider the form of the residual for a spatial model. We might write it as
r(s) = w(s) + ε(s) where w(s) is a spatial process, say a stationary Gaussian process with
mean 0 and covariance function σ2ρ(s− s′) and ε(s) is a pure error process, i.e., the ε(s)’s
are i.i.d., say N(0, τ2) with the ε’s independent of the w’s. Then, it is straightforward to
compute cov(r(s), r(s′)) = σ2ρ(s − s′) while varY (s) = σ2 + τ2, whence the discontinuity
at 0 emerges. And, in fact, corr(r(s), r(s′)) is bounded by σ2/(σ2 + τ2). The rationale for
including the ε(s)’s into the model is that we don’t want to insist that all model error is
spatial. Of course, we certainly want to include the w’s in order to be able to capture a
spatial story. Possible explanations for the pure error contribution include: (i) measurement
error associated with the data collection at a given location, (ii) replication error to ex-
press the possibility that repeated measurements at the same location might not provide
identical observations, or (iii) micro-scale error to acknowledge that, though we never see
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observations closer to each other than the minimum pairwise distance in our sample, there
might be very fine scale structure represented as noise.

2.1.4 Variogram model fitting

Having seen a fairly large selection of models for the variogram, one might well wonder how
we choose one of them for a given data set, or whether the data can really distinguish them
(see Subsection 6.1.3 in this latter regard). Historically, a variogram model is chosen by
plotting the empirical semivariogram (Matheron, 1963), a simple nonparametric estimate
of the semivariogram, and then comparing it to the various theoretical shapes available from
the choices in the previous subsection. The customary empirical semivariogram is

γ̂(d) =
1

2N(d)

∑
(si,sj)∈N(d)

[Y (si) − Y (sj)]
2 , (2.9)

where N(d) is the set of pairs of points such that ||si − sj || = d, and |N(d)| is the number
of pairs in this set. Notice that, unless the observations fall on a regular grid, the distances
between the pairs will all be different, so this will not be a useful estimate as it stands.
Instead we would “grid up” the d-space into intervals I1 = (0, d1), I2 = (d1, d2), and so forth,
up to IK = (dK−1, dK) for some (typically regular) grid 0 < d1 < · · · < dK . Representing
the d values in each interval by the midpoint of the interval, we then alter our definition of
N(d) to

N(dk) = {(si, sj) : ||si − sj || ∈ Ik} , k = 1, . . . ,K .

Selection of an appropriate number of intervals K and location of the upper endpoint tK
is reminiscent of similar issues in histogram construction. Journel and Huijbregts (1979)
recommend bins wide enough to capture at least 30 pairs per bin.

Clearly (2.9) is nothing but a method of moments (MOM) estimate, the semivariogram
analogue of the usual sample variance estimate s2. While very natural, there is reason to
doubt that this is the best estimate of the semivariogram. Certainly it will be sensitive to
outliers, and the sample average of the squared differences may be rather badly behaved
since under a Gaussian distributional assumption for the Y (si), the squared differences
will have a distribution that is a scale multiple of the heavily skewed χ2

1 distribution. In
this regard, Cressie and Hawkins (1980) proposed a robustified estimate that uses sample

averages of |Y (si) − Y (sj)|1/2; this estimate is available in several software packages (see
Section 2.3 below). Perhaps more uncomfortable is the fact that (2.9) uses data differences,
rather than the data itself. Also of concern is the fact that the components of the sum in
(2.9) will be dependent within and across bins, and that N(dk) will vary across bins.

In any case, an empirical semivariogram estimate can be plotted, viewed, and an appro-
priately shaped theoretical variogram model can be fitted to this “data.” Since any empirical
estimate naturally carries with it a significant amount of noise in addition to its signal, this
fitting of a theoretical model has traditionally been as much art as science: in any given real
data setting, any number of different models (exponential, Gaussian, spherical, etc.) may
seem equally appropriate. Indeed, fitting has historically been done “by eye,” or at best by
using trial and error to choose values of nugget, sill, and range parameters that provide a
good match to the empirical semivariogram (where the “goodness” can be judged visually
or by using some least squares or similar criterion); again see Section 2.3. More formally, we
could treat this as a statistical estimation problem, and use nonlinear maximization routines
to find nugget, sill, and range parameters that minimize some goodness-of-fit criterion.

If we also have a distributional model for the data, we could use maximum likelihood (or
restricted maximum likelihood, REML) to obtain sensible parameter estimates; see, e.g.,
Smith (2001) for details in the case of Gaussian data modeled with the various parametric
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variogram families outlined in Subsection 2.1.3. In Chapter 5 and Chapter 6 we shall see
that the hierarchical Bayesian approach is broadly similar to this latter method, although
it will often be easier and more intuitive to work directly with the covariance model C(d),
rather than changing to a partial likelihood in order to introduce the semivariogram. In
addition, we will gain full inference, e.g., posterior distributions for all unknowns of interest
as well as more accurate assessment of uncertainty than appealing to arguably inappropriate
asymptotics (see Chapter 5).

2.2 Anisotropy

Stationary correlation functions extend the class of correlation functions from isotropy where
association only depends upon distance to association that depends upon the separation
vector between locations. As a result, association depends upon direction. Here, we explore
covariance functions that are stationary but not isotropic. (We defer discussion of nonsta-
tionary covariance functions to Chapter 3.) A simple example is the class where we separate
the components. That is, suppose we write the components of s as slat, slon, similarly for
h. Then, we can define corr(Y (s + h), Y (s)) = ρ1(hlat)ρ2(hlon) where ρ1 and ρ2 are valid
correlation functions on �1. Evidently, this correlation function is stationary but depends
on direction. In particular, if we switch hlat and hlon we will get a different value for the
correlation even though ||h|| is unchanged. A common choice is eφ1(|hlat|)+φ2(|hlon|).

The separable correlation function is usually extended to a covariance function by in-
troducing the multiplier σ2, as we have done above. This covariance function tends to be
used, for instance, with Gaussian processes in computer model settings (Santner, Williams
and Notz, 2003; Rasmussen and Williams, 2006; Oakley and O’Hagan, 2004; Kennedy and
O’Hagan, 2001). Here we seek a response surface over covariate space and, since the co-
variates live on their own spaces with their own scales, component-wise dependence seems
appropriate. In the spatial setting, since lat and lon are on the same scale, it may be less
suitable.

2.2.1 Geometric anisotropy

A commonly used class of stationary covariance functions is the geometric anisotropic co-
variance functions where we set

C(s − s′) = σ2ρ((s − s′)TB(s− s′)) . (2.10)

In (2.10), B is positive definite with ρ a valid correlation function in �r (say, from Table 2.1).
We would omit the range/decay parameter since it can be incorporated into B. When r = 2
we obtain a specification with three parameters rather than one. Contours of constant
association arising from c in (2.10) are elliptical. In particular, the contour corresponding
to ρ = .05 provides the range in each spatial direction. Ecker and Gelfand (1997) provide the
details for Bayesian modeling and inference incorporating (2.10); see also Subsection 6.1.4.

Following the discussion in Subsection 3.1.2, we can extend geometric anisotropy to
product geometric anisotropy. In the simplest case, we would set

C(s − s′) = σ2 ρ1((s − s′)TB1(s− s′)) ρ2((s − s′)TB2(s− s′)) , (2.11)

noting that c is valid since it arises as a product of valid covariance functions. See Ecker and
Gelfand (2003) for further details and examples. Evidently, we can extend to a product of
more than two geometric anisotropy forms and we can create rich directional range behavior.
However, a challenge with (2.11) is that it introduces 7 parameters into the covariance
function and it will be difficult to identify and learn about all of them unless we have many,
many locations.
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2.2.2 Other notions of anisotropy

In a more general discussion, Zimmerman (1993) suggests three different notions of
anisotropy: sill anisotropy, nugget anisotropy, and range anisotropy. More precisely, working
with a variogram γ(h), let h be an arbitrary separation vector so that h/ ‖h‖ is a unit vector
in h’s direction. Consider γ(ah/ ‖h‖). Let a → ∞ and suppose lima→∞ γ(ah/ ‖h‖) depends
upon h. This situation is naturally referred to as sill anisotropy. If we work with the usual

relationship γ(ah/ ‖h‖) = τ2 + σ2
(
1 − ρ

(
a h
‖h‖

))
, then, in some directions, ρ must not

go to 0 as a → ∞. If this can be the case, then ergodicity assumptions (i.e., convergence
assumptions associated with averaging) will be violated. If so, then perhaps the constant
mean assumption, implicit for the variogram, does not hold. Alternatively, it is also possible
that the constant nugget assumption fails.

Instead, let a → 0 and suppose lima→0 γ(ah/ ‖h‖) depends upon h. This situation is
referred to as nugget anisotropy. Since, by definition, ρ must go to 1 as a → 0, this case
says that the assumption of uncorrelated measurement errors with common variance may
not be appropriate. In particular, a simple white noise process model with constant nugget
for the nonspatial errors is not appropriate.

A third type of anisotropy is range anisotropy where the range depends upon direc-
tion. Zimmerman (1993) asserts that “this is the form most often seen in practice.” Ge-
ometric anisotropy and the more general product geometric anisotropy from the previous
subsections are illustrative cases. However, given the various constructive strategies offered
in Subsection 3.1.2 to create more general stationary covariance functions, we can envision
nongeometric range anisotropy, implying general correlation function or variogram contours
in �2. However, due to the positive definiteness restriction on the correlation function, the
extent of possible contour shapes is still rather limited.

Lastly, motivated by directional variograms (see Subsection 2.3.2), some authors propose
the idea of nested models (see Zimmerman, 1993, and the references therein). That is, for
each separation vector there is an associated angle with, say, the x-axis, which by symmetry
considerations can be restricted to [0, π). Partitioning this interval into a set of angle classes,
a different variogram model is assumed to operate for each class. In terms of correlations, this
would imply a different covariance function is operating for each angle class. But evidently
this does not define a valid process model: the resulting covariance matrix for an arbitrary
set of locations need not be positive definite.

This can be seen with as few as three points and two angle classes. Let (s1, s2) belong to
one angle class with (s1, s3) and (s2, s3) in the other. With exponential isotropic correlation
functions in each class by choosing φ1 and φ2 appropriately we can make ρ(s1 − s2) ≈ 0
while ρ(s1 − s3) = ρ(s2 − s3) ≈ 0.8. A quick calculation shows that the resulting 3 × 3
covariance (correlation) matrix is not positive definite. So, in terms of being able to write
proper joint distributions for the resulting data, nested models are inappropriate; they do
not provide an extension of isotropy that allows for likelihood based inference.

2.3 Exploratory approaches for point-referenced data

2.3.1 Basic techniques

Exploratory data analysis (EDA) tools are routinely implemented in the process of analyzing
one- and two-sample data sets, regression studies, generalized linear models, etc. (see, e.g.,
Chambers et al., 1983; Hoaglin, Mosteller, and Tukey, 1983, 1985; Aiktin et al., 1989).
Similarly, such tools are appropriate for analyzing point-referenced spatial data.

For continuous spatial data, the starting point is the so-called “first law of geostatistics.”
Figure 2.2 illustrates this “law” in a one-dimensional setting. The data is partitioned into
a mean term and an error term. The mean corresponds to global (or first-order) behavior,
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Figure 2.2 Illustration of the first law of geostatistics.

Figure 2.3 Illustrative three-dimensional “drop line” scatterplot, Stockton data.

while the error captures local (or second-order) behavior through a covariance function.
EDA tools are available to examine both first- and second-order behavior.

The law also clarifies that spatial association in the data, Y (s), need not resemble
spatial association in the residuals, ε(s). That is, spatial association in the Y (s) corresponds
to looking at E(Y (s) − μ)(Y (s′) − μ), while spatial structure in the ε(s) corresponds to
looking at E(Y (s)− μ(s))(Y (s′)− μ(s′)). The difference between the former and the latter
is (μ−μ(s))(μ−μ(s′)), which, if interest is in spatial regression, we would not expect to be
negligible.

Certainly an initial exploratory display should be a simple map of the locations them-
selves. We need to assess how regular the arrangement of the points is and also whether there
is a much larger maximum distance between points in some directions than in others. Next,
some authors would recommend a stem-and-leaf display of the Y (s). This plot is evidently
nonspatial and is customarily for observations which are i.i.d. We expect both nonconstant
mean and spatial dependence, but such a plot may at least suggest potential outliers. Next
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Figure 2.4 Illustrative three-dimensional surface (“perspective”) plot, Stockton real estate data.
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Figure 2.5 Illustrative contour plot, Stockton real estate data.

we might develop a three-dimensional “drop line” scatterplot of Y (si) versus si, alterna-
tively, a three-dimensional surface plot or perhaps, a contour plot as a smoothed summary.
Examples of these three plots are shown for a sample of 120 log-transformed home selling
prices in Stockton, CA, in Figures 2.3, 2.4, and 2.5, respectively. Of these three, we find
the contour plot to be the most effective in revealing the entire spatial surface. However, as
the preceding paragraph clarifies, such displays may be deceiving. They may show spatial
pattern that will disappear after μ(s) is fitted, or perhaps vice versa. It seems more sensible
to study spatial pattern in the residuals.
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Figure 2.6 Illustrative row box plots, Diggle and Ribeiro (2002) surface elevation data.

In exploring μ(s) we may have two types of information at location s. One is the purely
geographic information, i.e., the geocoded location expressed in latitude and longitude or
as projected coordinates such as eastings and northings (Subsection 1.2.1 above). The other
will be features relevant for explaining the Y (s) at s. For instance, if Y (s) is a pollu-
tion concentration, then elevation, temperature, and wind information at s could well be
useful and important. If, instead, Y (s) is the selling price of a single-family home at s,
then characteristics of the home (square feet, age, number of bathrooms, etc.) would be
useful.

When the mean is described purely through geographic information, μ(s) is referred to
as a trend surface. When s ∈ �2, the surface is usually developed as a low-dimensional
bivariate polynomial. For data that is roughly gridded (or can be assigned to row and
column bins by overlaying a regular lattice on the points), we can make row and column
boxplots looking for trend. Displaying these boxplots versus their center could clarify the
existence and nature of such trend. In fact, median polishing (see, e.g., Hoaglin, Mosteller,
and Tukey, 1985) could be used to extract row and column effects, and also to see if a
multiplicative trend surface term is useful; see Cressie (1983, pp. 46–48) in this regard.

Figures 2.6 and 2.7 illustrate the row and column boxplot approach for a data set
previously considered by Diggle and Ribeiro (2002). The response variable is the surface
elevation (“height”) at 52 locations on a regular grid within a 310-foot square (and where
the mesh of the grid is 50 feet). The plots reveals some evidence of spatial pattern as we
move along the rows, but not down the columns of the regular grid.

To assess small-scale behavior, some authors recommend creating the semivariogram
cloud, i.e., a plot of (Y (si) − Y (sj))

2 versus ||si − sj ||. Usually this cloud is too “noisy” to
reveal very much; see, e.g., Figure 6.1. The empirical semivariogram (2.9) is preferable in
terms of reducing some of the noise, and can be a helpful tool in assessing the presence of
spatial structure. Again, the caveat above suggests employing it for residuals (not the data
itself) unless a constant mean is appropriate.


